NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun
1995-05-01
This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.
Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography
NASA Astrophysics Data System (ADS)
Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu
2017-07-01
Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.
Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi
Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We showmore » that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length){sup 2}, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.« less
Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.
Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier
2013-07-17
Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.
Suzuki, Kosuke; Suzuki, Ayahito; Ishikawa, Taiki; Itou, Masayoshi; Yamashige, Hisao; Orikasa, Yuki; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi
2017-09-01
Compton scattering is one of the most promising probes for quantitating Li under in operando conditions, since high-energy X-rays, which have high penetration power, are used as the incident beam and the Compton-scattered energy spectrum has specific line-shapes for each element. An in operando quantitation method to determine the Li composition in electrodes has been developed by using line-shape (S-parameter) analysis of the Compton-scattered energy spectrum. In this study, S-parameter analysis has been applied to a commercial coin cell Li-ion rechargeable battery and the variation of the S-parameters during the charge/discharge cycle at the positive and negative electrodes has been obtained. By using calibration curves for Li composition in the electrodes, the change in Li composition of the positive and negative electrodes has been determined using the S-parameters simultaneously.
Degeneracy in the spectrum and bispectrum among featured inflaton potentials
NASA Astrophysics Data System (ADS)
Gallego Cadavid, Alexander; Enea Romano, Antonio; Sasaki, Misao
2018-05-01
We study the degeneracy of the primordial spectrum and bispectrum of the curvature perturbation in single field inflationary models with a class of features in the inflaton potential. The feature we consider is a discontinuous change in the shape of the potential and is controlled by a couple of parameters that describe the strength of the discontinuity and the change in the potential shape. This feature produces oscillations of the spectrum and bispectrum around the comoving scale k=k0 that exits the horizon when the inflaton passes the discontinuity. We find that the effects on the spectrum and almost all configurations of the bispectrum including the squeezed limit depend on a single quantity which is a function of the two parameters defining the feature. This leads to a degeneracy, i.e. different features of the inflaton potential can produce the same observational effects. However, we find that the degeneracy in the bispectrum is removed at the equilateral limit around k=k0. This can be used to discriminate different models which give the same spectrum.
Beyond [lambda][subscript max] Part 2: Predicting Molecular Color
ERIC Educational Resources Information Center
Williams, Darren L.; Flaherty, Thomas J.; Alnasleh, Bassam K.
2009-01-01
A concise roadmap for using computational chemistry programs (i.e., Gaussian 03W) to predict the color of a molecular species is presented. A color-predicting spreadsheet is available with the online material that uses transition wavelengths and peak-shape parameters to predict the visible absorbance spectrum, transmittance spectrum, chromaticity…
Application of the Hartmann-Tran profile to analysis of H2O spectra
NASA Astrophysics Data System (ADS)
Lisak, D.; Cygan, A.; Bermejo, D.; Domenech, J. L.; Hodges, J. T.; Tran, H.
2015-10-01
The Hartmann-Tran profile (HTP), which has been recently recommended as a new standard in spectroscopic databases, is used to analyze spectra of several lines of H2O diluted in N2, SF6, and in pure H2O. This profile accounts for various mechanisms affecting the line-shape and can be easily computed in terms of combinations of the complex Voigt profile. A multi-spectrum fitting procedure is implemented to simultaneously analyze spectra of H2O transitions acquired at different pressures. Multi-spectrum fitting of the HTP to a theoretical model confirms that this profile provides an accurate description of H2O line-shapes in terms of residuals and accuracy of fitted parameters. This profile and its limiting cases are also fit to measured spectra for three H2O lines in different vibrational bands. The results show that it is possible to obtain accurate HTP line-shape parameters when measured spectra have a sufficiently high signal-to-noise ratio and span a broad range of collisional-to-Doppler line widths. Systematic errors in the line area and differences in retrieved line-shape parameters caused by the overly simplistic line-shape models are quantified. Also limitations of the quadratic speed-dependence model used in the HTP are demonstrated in the case of an SF6 broadened H2O line, which leads to a strongly asymmetric line-shape.
Numerical details and SAS programs for parameter recovery of the SB distribution
Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques
2010-01-01
The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...
Pulse analysis of acoustic emission signals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Houghton, J. R.
1976-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.
Linearized spectrum correlation analysis for line emission measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
Statistical classifiers on multifractal parameters for optical diagnosis of cervical cancer
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Pratiher, Sawon; Kumar, Rajeev; Krishnamoorthy, Vigneshram; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-06-01
An augmented set of multifractal parameters with physical interpretations have been proposed to quantify the varying distribution and shape of the multifractal spectrum. The statistical classifier with accuracy of 84.17% validates the adequacy of multi-feature MFDFA characterization of elastic scattering spectroscopy for optical diagnosis of cancer.
Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.
1973-01-01
An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).
Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net
2010-07-15
A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.
Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing
We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less
Broadband superluminescent erbium source with multiwave pumping
NASA Astrophysics Data System (ADS)
Petrov, Andrey B.; Gumenyuk, Regina; Alimbekov, Mikhail S.; Zhelezov, Pavel E.; Kikilich, Nikita E.; Aleynik, Artem S.; Meshkovsky, Igor K.; Golant, Konstantin M.; Chamorovskii, Yuri K.; Odnoblyudov, Maxim; Filippov, Valery
2018-04-01
We demonstrate the superbroad luminescence source based on pure Er-doped fiber and two wavelength-pumping scheme. This source is capable to provide over 80 nm of spectrum bandwidth with flat spectrum shape close to Gaussian distribution. The corresponding coherence and decoherence lengths were as small as 7 μm and 85 μm, correspondingly. The parameters of Er-doped fiber luminescence source were explored theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
NASA Astrophysics Data System (ADS)
Eggert, F.; Camus, P. P.; Schleifer, M.; Reinauer, F.
2018-01-01
The energy-dispersive X-ray spectrometer (EDS or EDX) is a commonly used device to characterise the composition of investigated material in scanning and transmission electron microscopes (SEM and TEM). One major benefit compared to wavelength-dispersive X-ray spectrometers (WDS) is that EDS systems collect the entire spectrum simultaneously. Therefore, not only are all emitted characteristic X-ray lines in the spectrum, but also the complete bremsstrahlung distribution is included. It is possible to get information about the specimen even from this radiation, which is usually perceived more as a disturbing background. This is possible by using theoretical model knowledge about bremsstrahlung excitation and absorption in the specimen in comparison to the actual measured spectrum. The core aim of this investigation is to present a method for better bremsstrahlung fitting in unknown geometry cases by variation of the geometry parameters and to utilise this knowledge also for characteristic radiation evaluation. A method is described, which allows the parameterisation of the true X-ray absorption conditions during spectrum acquisition. An ‘effective tilt’ angle parameter is determined by evaluation of the bremsstrahlung shape of the measured SEM spectra. It is useful for bremsstrahlung background approximation, with exact calculations of the absorption edges below the characteristic peaks, required for P/B-ZAF model based quantification methods. It can even be used for ZAF based quantification models as a variable input parameter. The analytical results are then much more reliable for the different absorption effects from irregular specimen surfaces because the unknown absorption dependency is considered. Finally, the method is also applied for evaluation of TEM spectra. In this case, the real physical parameter optimisation is with sample thickness (mass thickness), which is influencing the emitted and measured spectrum due to different absorption with TEM measurements. The effects are in the very low energy part of the spectrum, and are much more visible with most recent windowless TEM detectors. The thickness of the sample can be determined in this way from the measured bremsstrahlung spectrum shape.
Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications
NASA Astrophysics Data System (ADS)
Ma, Chung-Pei
1996-11-01
This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.
Metallic nano-structures for polarization-independent multi-spectral filters
NASA Astrophysics Data System (ADS)
Tang, Yongan; Vlahovic, Branislav; Brady, David Jones
2011-05-01
Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.
Parameter identification of JONSWAP spectrum acquired by airborne LIDAR
NASA Astrophysics Data System (ADS)
Yu, Yang; Pei, Hailong; Xu, Chengzhong
2017-12-01
In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.
a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters
NASA Astrophysics Data System (ADS)
Huang, Lin-Shan; Chen, Yan-Guang
Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.
Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Meldi, Marcello; Sagaut, Pierre
2018-05-01
The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter Cɛ. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.
Turbulent transport measurements with a laser Doppler velocimeter
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.
1972-01-01
The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.
NASA Astrophysics Data System (ADS)
Teodorovich, E. V.
2018-03-01
In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.
THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.
2016-11-10
We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less
NASA Astrophysics Data System (ADS)
Pecháček, T.; Goosmann, R. W.; Karas, V.; Czerny, B.; Dovčiak, M.
2013-08-01
Context. We study some general properties of accretion disc variability in the context of stationary random processes. In particular, we are interested in mathematical constraints that can be imposed on the functional form of the Fourier power-spectrum density (PSD) that exhibits a multiply broken shape and several local maxima. Aims: We develop a methodology for determining the regions of the model parameter space that can in principle reproduce a PSD shape with a given number and position of local peaks and breaks of the PSD slope. Given the vast space of possible parameters, it is an important requirement that the method is fast in estimating the PSD shape for a given parameter set of the model. Methods: We generated and discuss the theoretical PSD profiles of a shot-noise-type random process with exponentially decaying flares. Then we determined conditions under which one, two, or more breaks or local maxima occur in the PSD. We calculated positions of these features and determined the changing slope of the model PSD. Furthermore, we considered the influence of the modulation by the orbital motion for a variability pattern assumed to result from an orbiting-spot model. Results: We suggest that our general methodology can be useful for describing non-monotonic PSD profiles (such as the trend seen, on different scales, in exemplary cases of the high-mass X-ray binary Cygnus X-1 and the narrow-line Seyfert galaxy Ark 564). We adopt a model where these power spectra are reproduced as a superposition of several Lorentzians with varying amplitudes in the X-ray-band light curve. Our general approach can help in constraining the model parameters and in determining which parts of the parameter space are accessible under various circumstances.
Turbulent transport measurements with a laser Doppler velocimeter.
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.
1972-01-01
The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time-average spectrum contains information only for times shorter than the Lagrangian-integral time scale of the turbulence. To examine the long-time behavior, one must use either extremely small scattering angles, much-longer-wavelength radiation, or a different mode of signal analysis, e.g., FM detection.
Noise characterization of a pulse train generated by actively mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, D.; Salvatore, R.A.; Yariv, A.
1996-07-01
We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed as well. {copyright} {ital 1996 Optical Society of America.}
Vibration-rotation-translation spectrum of molecular hydrogen in fullerite lattices around 80 K
NASA Astrophysics Data System (ADS)
Herman, Roger M.; Lewis, John Courtenay
2009-05-01
Calculations are presented for the fundamental vibration-rotation spectrum of H2 in fcc C60 (fullerite) lattices near 80 K using the approach and the parameters used by Herman and Lewis [Phys. Rev. B 73 (2006) 155408; in: E. Oks, M. Pindzola (Eds.) Spectral Line Shapes, AIP Conference Proceedings, No. 874, American Institute of Physics, 2006, pp. 162-176 (Proceedings of the 18th ICSLS)] at 293 K. Good agreement is found with recent DRIFT spectra of FitzGerald et al. [Personal communication, 2006]. It is argued that our approach cannot be extended to the 10 K spectrum without significant modification.
NASA Astrophysics Data System (ADS)
Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.
2018-02-01
The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.
NASA Astrophysics Data System (ADS)
Ge, Junqiang; Yan, Renbin; Cappellari, Michele; Mao, Shude; Li, Hongyu; Lu, Youjun
2018-05-01
Using mock spectra based on Vazdekis/MILES library fitted within the wavelength region 3600-7350Å, we analyze the bias and scatter on the resulting physical parameters induced by the choice of fitting algorithms and observational uncertainties, but avoid effects of those model uncertainties. We consider two full-spectrum fitting codes: pPXF and STARLIGHT, in fitting for stellar population age, metallicity, mass-to-light ratio, and dust extinction. With pPXF we find that both the bias μ in the population parameters and the scatter σ in the recovered logarithmic values follows the expected trend μ ∝ σ ∝ 1/(S/N). The bias increases for younger ages and systematically makes recovered ages older, M*/Lr larger and metallicities lower than the true values. For reference, at S/N=30, and for the worst case (t = 108yr), the bias is 0.06 dex in M/Lr, 0.03 dex in both age and [M/H]. There is no significant dependence on either E(B-V) or the shape of the error spectrum. Moreover, the results are consistent for both our 1-SSP and 2-SSP tests. With the STARLIGHT algorithm, we find trends similar to pPXF, when the input E(B-V)<0.2 mag. However, with larger input E(B-V), the biases of the output parameter do not converge to zero even at the highest S/N and are strongly affected by the shape of the error spectra. This effect is particularly dramatic for youngest age (t = 108yr), for which all population parameters can be strongly different from the input values, with significantly underestimated dust extinction and [M/H], and larger ages and M*/Lr. Results degrade when moving from our 1-SSP to the 2-SSP tests. The STARLIGHT convergence to the true values can be improved by increasing Markov Chains and annealing loops to the "slow mode". For the same input spectrum, pPXF is about two order of magnitudes faster than STARLIGHT's "default mode" and about three order of magnitude faster than STARLIGHT's "slow mode".
NASA Astrophysics Data System (ADS)
Shemer, L.; Sergeeva, A.
2009-12-01
The statistics of random water wave field determines the probability of appearance of extremely high (freak) waves. This probability is strongly related to the spectral wave field characteristics. Laboratory investigation of the spatial variation of the random wave-field statistics for various initial conditions is thus of substantial practical importance. Unidirectional nonlinear random wave groups are investigated experimentally in the 300 m long Large Wave Channel (GWK) in Hannover, Germany, which is the biggest facility of its kind in Europe. Numerous realizations of a wave field with the prescribed frequency power spectrum, yet randomly-distributed initial phases of each harmonic, were generated by a computer-controlled piston-type wavemaker. Several initial spectral shapes with identical dominant wave length but different width were considered. For each spectral shape, the total duration of sampling in all realizations was long enough to yield sufficient sample size for reliable statistics. Through all experiments, an effort had been made to retain the characteristic wave height value and thus the degree of nonlinearity of the wave field. Spatial evolution of numerous statistical wave field parameters (skewness, kurtosis and probability distributions) is studied using about 25 wave gauges distributed along the tank. It is found that, depending on the initial spectral shape, the frequency spectrum of the wave field may undergo significant modification in the course of its evolution along the tank; the values of all statistical wave parameters are strongly related to the local spectral width. A sample of the measured wave height probability functions (scaled by the variance of surface elevation) is plotted in Fig. 1 for the initially narrow rectangular spectrum. The results in Fig. 1 resemble findings obtained in [1] for the initial Gaussian spectral shape. The probability of large waves notably surpasses that predicted by the Rayleigh distribution and is the highest at the distance of about 100 m. Acknowledgement This study is carried out in the framework of the EC supported project "Transnational access to large-scale tests in the Large Wave Channel (GWK) of Forschungszentrum Küste (Contract HYDRALAB III - No. 022441). [1] L. Shemer and A. Sergeeva, J. Geophys. Res. Oceans 114, C01015 (2009). Figure 1. Variation along the tank of the measured wave height distribution for rectangular initial spectral shape, the carrier wave period T0=1.5 s.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; ...
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω m, σ 8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build anmore » emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω m, σ 8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω m, σ 8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ 8(Ω m/0.27)0.63 = 0.85 +0.03 -0.03.« less
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; May, Morgan; Petri, Andrea
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω m, σ 8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build anmore » emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω m, σ 8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω m, σ 8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ 8(Ω m/0.27)0.63 = 0.85 +0.03 -0.03.« less
Rogue waves and W-shaped solitons in the multiple self-induced transparency system.
Wang, Xin; Liu, Chong; Wang, Lei
2017-09-01
We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation is presented. We demonstrate that this family of solutions contain known rogue wave solutions and unusual W-shaped soliton solutions. State transitions between the fundamental rogue waves and W-shaped solitons as well as higher-order nonlinear superposition modes are revealed in the zero-frequency perturbation region by the suitable choice for the background wavenumber of the electric field component. Particularly, it is found that the multiple SIT system can admit both stationary and nonstationary W-shaped solitons in contrast to the stationary results in the single SIT system. Moreover, the W-shaped soliton complex which is formed by a certain number of fundamental W-shaped solitons with zero phase parameters and its decomposition mechanism in the case of the nonzero phase parameters are shown. Meanwhile, some important characteristics of the nonlinear waves including trajectories and spectrum are discussed through the numerical and analytical methods.
NASA Technical Reports Server (NTRS)
Szalay, Alexander S.; Jain, Bhuvnesh; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.
2003-01-01
We present measurements of parameters of the three-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey (SDSS). The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve (KL) eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the three-dimensional power spectrum of galaxies in the SDSS magnitude-limited sample with r* less than 21. Our best estimates are gamma = 0.188 +/- 0.04 and sigma(sub 8L) = 0.915 +/- 0.06 (statistical errors only), for a flat universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the three-dimensional power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sample size, and limiting magnitude. We find that the impact of most of these uncertainties stay within the 2 sigma uncertainties of our fiducial result.
Yan, Shubin; Zhang, Meng; Zhao, Xuefeng; Zhang, Yanjun; Wang, Jicheng; Jin, Wen
2017-12-11
In this study, a new refractive index sensor based on a metal-insulator-metal waveguide coupled with a notched ring resonator and stub is designed. The finite element method is used to study the propagation characteristics of the sensor. According to the calculation results, the transmission spectrum exhibits a typical Fano resonance shape. The phenomenon of Fano resonance is caused by the coupling between the broadband spectrum and narrowband spectrum. In the design, the broadband spectrum signal is generated by the stub, while the narrowband spectrum signal is generated by the notched ring resonator. In addition, the structural parameters of the resonators and the structure filled with media of different refractive indices are varied to study the sensing properties. The maximum achieved sensitivity of the sensor reached 1071.4 nm/RIU. The results reveal potential applications of the coupled system in the field of sensors.
Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation
NASA Astrophysics Data System (ADS)
Gazzarri, J. I.; Kesler, O.
As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.
Principal shapes and squeezed limits in the effective field theory of large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less
Prediction of spectral acceleration response ordinates based on PGA attenuation
Graizer, V.; Kalkan, E.
2009-01-01
Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.
Automatic Pulse Shaping with the AN/FPN-42 and AN/FPN-44A Loran-C transmitters
1992-12-01
with antenna simulator, pair 30. (a) TDW and (b) RF pulse. 39 CLOSEUP: POWER SPECTRUM OF TOW & RF (PAIR 30), 47 XMTR 190 17025 " 3 0 4 0 5 6 Sapl numbr... iec X 1e-6 (a) Phase Vf Selected Parameter 0.057 0.5 ... .. . . . ......... .... .. . ............... ,.. ...-.. . , .... celurro, 3 0.0517...PAIR 7 1), "SA XMTR ISO IS 25 30 35 40 4 0 55 60 Sample number, k Figure 3.15c: Closeup of power spectrum, 144A, pair 71i. 77 POLE/ZERO PLOT (PAIR 71
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Z. Y.; Ma, L.; Yin, Y.
2010-08-01
In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less
Extreme data compression for the CMB
NASA Astrophysics Data System (ADS)
Zablocki, Alan; Dodelson, Scott
2016-04-01
We apply the Karhunen-Loéve methods to cosmic microwave background (CMB) data sets, and show that we can recover the input cosmology and obtain the marginalized likelihoods in Λ cold dark matter cosmologies in under a minute, much faster than Markov chain Monte Carlo methods. This is achieved by forming a linear combination of the power spectra at each multipole l , and solving a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the likelihood only for the parameter of interest, with the data compression effectively marginalizing over all other parameters. The weighting vectors contain insight about the physical effects of the parameters on the CMB anisotropy power spectrum Cl . The shape and amplitude of these vectors give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmological parameters, and the relative sensitivity of different experiments to cosmological parameters. We test this method on exact theory Cl as well as on a Wilkinson Microwave Anisotropy Probe (WMAP)-like CMB data set generated from a random realization of a fiducial cosmology, comparing the compression results to those from a full likelihood analysis using CosmoMC. After showing that the method works, we apply it to the temperature power spectrum from the WMAP seven-year data release, and discuss the successes and limitations of our method as applied to a real data set.
Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping
Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...
2016-03-18
Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.
Rethinking CMB foregrounds: systematic extension of foreground parametrizations
NASA Astrophysics Data System (ADS)
Chluba, Jens; Hill, James Colin; Abitbol, Maximilian H.
2017-11-01
Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modelling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modelling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line-of-sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g. mean, dispersion, cross terms, etc.). The method is illustrated for the superposition of power laws, free-free spectra, grey-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds, but could also be useful for the modelling of X-ray emission in clusters of galaxies.
NASA Astrophysics Data System (ADS)
Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe
2016-04-01
Versatile and easy to implement methods to generate arbitrary optical waveforms at high repetition rates are of considerable interest with applications in optical communications, all-optical signal processing, instrumentation systems and microwave signal manipulation. While shaping sinusoidal, Gaussian or hyperbolic secant intensity profiles is commonly achieved by means of modulators or mode-locked lasers, other pulse profiles such as parabolic, triangular or flat-top shapes still remain challenging to synthesize. In this context, several strategies were already explored. First, the linear pulse shaping is a common method to carve an initial ultrashort pulse train into the desired shape. The line-by-line shaping of a coherent frequency comb made of tens of spectral components was also investigated to generate more complex structures whereas Fourier synthesis of a few discrete frequencies spectrum was exploited to efficiently generate high-fidelity ultrafast periodic intensity profiles. Besides linear shaping techniques, several nonlinear methods were implemented to benefit from the adiabatic evolution of the intensity pulse profile upon propagation in optical fibers. Other examples of efficient methods are based on the photonic generation involving specific Mach-Zehnder modulators, microwave photonic filters as well as frequency-to-time conversion. In this contribution, we theoretically and experimentally demonstrate a new approach enabling the synthesis of periodic high-repetition rate pulses with various intensity profiles ranging from parabola to triangular and flat-top pulses. More precisely by linear phase and amplitude shaping of only four spectral lines is it possible to reach the targeted temporal profile. Indeed, tailoring the input symmetric spectrum only requires the determination of two physical parameters: the phase difference between the inner and outer spectral sidebands and the ratio between the amplitude of these sidebands. Therefore, a systematic bidimensional analysis provides the optimum parameters and also highlights that switching between the different waveforms is achieved by simply changing the spectral phase between the inner and outer sidebands. We successfully validate this concept with the generation of high-fidelity ultrafast periodic waveforms at 40 GHz by shaping with a liquid cristal on insulator a four sideband comb resulting from a phase-modulated continuous wave. In order to reach higher repetition rates, we also describe a new scenario to obtain the required initial spectrum by taking advantage of the four-wave mixing process occurring in a highly nonlinear fiber. This approach is experimentally implemented at a repetition rate of 80-GHz by use of intensity and phase measurements that stress that full-duty cycle, high-quality, triangular, parabolic or flat-top profiles are obtained in full agreement with numerical simulations. The reconfigurable property of this photonic waveform generator is confirmed. Finally, the generation of bunch of shaped pulses is investigated, as well as the impact of Brillouin backscattering.
Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra
NASA Astrophysics Data System (ADS)
Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang
2016-02-01
We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.
Zhang, Yi; Li, Peng; Liu, Sheng; Zhao, Jianlin
2015-10-01
An intriguing photonic spin Hall effect (SHE) for a freely propagating fan-shaped cylindrical vector (CV) vortex beam in a paraxial situation is theoretically and experimentally studied. A developed model to describe this kind of photonic SHE is proposed based on angular spectrum diffraction theory. With this model, the close dependences of spin-dependent splitting on the azimuthal order of polarization, the topological charge of the spiral phase, and the propagation distance are accurately revealed. Furthermore, it is demonstrated that the asymmetric spin-dependent splitting of a fan-shaped CV beam can be consciously managed, even with a constant azimuthal order of polarization. Such a controllable photonic SHE is experimentally verified by measuring the Stokes parameters.
Primordial black hole production in Critical Higgs Inflation
NASA Astrophysics Data System (ADS)
Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester
2018-01-01
Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.
NASA Astrophysics Data System (ADS)
Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevinçli, Hâldun; Gutierrez, Rafael; Cuniberti, Gianaurelio
2013-03-01
Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. We also demonstrate Fano and anti-resonance in T-shaped molecular junctions using a simple tight-binding model. This parabolic model enables one to infer on-site energies of T-shaped molecules and the coupling between side group and main conduction channel from transmission spectra.
Extreme data compression for the CMB
Zablocki, Alan; Dodelson, Scott
2016-04-28
We apply the Karhunen-Loéve methods to cosmic microwave background (CMB) data sets, and show that we can recover the input cosmology and obtain the marginalized likelihoods in Λ cold dark matter cosmologies in under a minute, much faster than Markov chain Monte Carlo methods. This is achieved by forming a linear combination of the power spectra at each multipole l, and solving a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the likelihood only for the parameter of interest, with themore » data compression effectively marginalizing over all other parameters. The weighting vectors contain insight about the physical effects of the parameters on the CMB anisotropy power spectrum C l. The shape and amplitude of these vectors give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmological parameters, and the relative sensitivity of different experiments to cosmological parameters. We test this method on exact theory C l as well as on a Wilkinson Microwave Anisotropy Probe (WMAP)-like CMB data set generated from a random realization of a fiducial cosmology, comparing the compression results to those from a full likelihood analysis using CosmoMC. Furthermore, after showing that the method works, we apply it to the temperature power spectrum from the WMAP seven-year data release, and discuss the successes and limitations of our method as applied to a real data set.« less
NASA Technical Reports Server (NTRS)
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Rapid estimation of high-parameter auditory-filter shapes
Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.
2014-01-01
A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086
NASA Astrophysics Data System (ADS)
Korotey, E. V.; Sinyavskii, N. Ya.
2007-07-01
A new method for determination of rheological parameters of liquid crystals with zero anisotropy of diamagnetic susceptibility is proposed, which is based on the measurement of the quadrupole splitting line of the NMR 2H spectrum. The method provides higher information content of the experiments, with the shear flow discarded from consideration, compared to that obtained by the classical Leslie-Ericksen theory. A comparison with the experiment is performed, the coefficients of anisotropic viscosity of lecithin/D2O/cyclohexane are determined, and a conclusion is drawn as concerns the domain shapes.
Beta-spectrum shapes of forbidden β decays
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni
2018-03-01
The neutrinoless ββ decay of atomic nuclei continues to attract fervent interest due to its potential to confirm the possible Majorana nature of the neutrino, and thus the nonconservation of the lepton number. At the same time, the direct dark matter experiments are looking for weakly interacting massive particles (WIMPs) through their scattering on nuclei. The neutrino-oscillation experiments on reactor antineutrinos base their analyses on speculations of β-spectrum shapes of nuclear decays, thus leading to the notorious “reactor antineutrino anomaly.” In all these experimental efforts, one encounters the problem of β-spectrum shapes of forbidden β decays, either as unwanted backgrounds or unknown components in the analyses of data. In this work, the problem of spectrum shapes is discussed and illustrated with a set of selected examples. The relation of the β-spectrum shapes to the problem of the effective value of the weak axial-vector coupling strength gA and the enhancement of the axial-charge matrix element is also pointed out.
Audibility threshold spectrum for prominent discrete tone analysis
NASA Astrophysics Data System (ADS)
Kimizuka, Ikuo
2005-09-01
To evaluate the annoyance of tonal components in noise emissions, ANSI S1.13 (for general purposes) and/or ISO 7779/ECMA-74 (dedicatedfor IT equipment) state two similar metrics: tone-to-noise ratio (TNR) and prominence ratio(PR). By these or either of these two parameters, noise of question with a sharp spectral peak is analyzed by high resolution FFF and classified as prominent when it exceeds some criterion curve. According to present procedures, however this designation is dependent on only the spectral shape. To resolve this problem, the author proposes a threshold spectrum of human ear audibility. The spectrum is based on the reference threshold of hearing which is defined in ISO 389-7 and/or ISO 226. With this spectrum, one can objectively define whether the noise peak of question is audible or not, by simple comparison of the peak amplitude of noise emission and the corresponding value of threshold. Applying the threshold, one can avoid overkilling or unnecessary action for noise. Such a peak with absolutely low amplitude is not audible.
A Fiber-Optic System Generating Pulses of High Spectral Density
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.
2018-03-01
A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.
Diode laser spectroscopy: precise spectral line shape measurements
NASA Astrophysics Data System (ADS)
Nadezhdinskii, A. I.
1996-07-01
When one speaks about modern trends in tunable diode laser spectroscopy (TDLS) one should mention that precise line shape measurements have become one of the most promising applications of diode lasers in high resolution molecular spectroscopy. Accuracy limitations of TDL spectrometers are considered in this paper, proving the ability to measure spectral line profile with precision better than 1%. A four parameter Voigt profile is used to fit the experimental spectrum, and the possibility of line shift measurements with an accuracy of 2 × 10 -5 cm -1 is shown. Test experiments demonstrate the error line intensity ratios to be less than 0.3% for the proposed approach. Differences between "soft" and "hard" models of line shape have been observed experimentally for the first time. Some observed resonance effects are considered with respect to collision adiabacity.
Surface modified α-glycine - EuF3: Gd nanoparticles for upconversion luminescence
NASA Astrophysics Data System (ADS)
Mahajan, Manoj P.; Khandpekar, M. M.
2018-04-01
Gadolinium doped EuF3 nanoparticles have been synthesized in the presence of α-glycine via chloride route with subsequent microwave drying. The XRD profile shows hexagonal phase structure with lattice parameters a = b = 6.920 A° and c = 7.085 A° (JCPDS No. 32-0373) with Debye-Scherer particle size of 51 nm. The SEM shows chipped morphology and TEM images exhibit shallow toroid like hexagonal - rounded nanostructures (30 - 50 nm) and their subsequent spontaneous transformation in to hyperboloid shaped nanostructures (200 - 600 nm) possibly with extension of the reaction time. SAED pattern confirms crystalline nature of nanoparticles and the planes are in agreement with XRD Peaks. Comparative FTTR and Raman spectrum shows presence of various functional groups confirming the capping of the glycine on EuF3:Gd core. A TGA/DTA spectrum shows decomposition in two stages. The photoluminescence spectrum shows up conversion luminescence at wavelength 653 nm (red).
Photohadronic scenario in interpreting the February-March 2014 flare of 1ES 1011+496
NASA Astrophysics Data System (ADS)
Sahu, Sarira; de León, Alberto Rosales; Miranda, Luis Salvador
2017-11-01
The extraordinary multi-TeV flare from 1ES 1011+496 during February-March 2014 was observed by the MAGIC telescopes for 17 nights and the average spectrum of the whole period has a non-trivial shape. We have used the photohadronic model and a template extragalactic background light model to explain the average spectrum which fits the flare data well. The spectral index α is the only free parameter in our model. We have also shown that the non-trivial nature of the spectrum is due to the change in the behavior of the optical depth above ˜ 600 GeV γ -ray energy accompanied with the high SSC flux. This corresponds to an almost flat intrinsic flux for the multi-TeV γ -rays. Our model prediction can constrain the SSC flux of the leptonic models in the quiescent state.
Measuring the reionization 21 cm fluctuations using clustering wedges
NASA Astrophysics Data System (ADS)
Raut, Dinesh; Choudhury, Tirthankar Roy; Ghara, Raghunath
2018-03-01
One of the main challenges in probing the reionization epoch using the redshifted 21 cm line is that the magnitude of the signal is several orders smaller than the astrophysical foregrounds. One of the methods to deal with the problem is to avoid a wedge-shaped region in the Fourier k⊥ - k∥ space which contains the signal from the spectrally smooth foregrounds. However, measuring the spherically averaged power spectrum using only modes outside this wedge (i.e. in the reionization window) leads to a bias. We provide a prescription, based on expanding the power spectrum in terms of the shifted Legendre polynomials, which can be used to compute the angular moments of the power spectrum in the reionization window. The prescription requires computation of the monopole, quadrupole, and hexadecapole moments of the power spectrum using the theoretical model under consideration and also the knowledge of the effective extent of the foreground wedge in the k⊥ - k∥ plane. One can then calculate the theoretical power spectrum in the window which can be directly compared with observations. The analysis should have implications for avoiding any bias in the parameter constraints using 21 cm power spectrum data.
The spectral energy distribution of the scattered light from dark clouds
NASA Technical Reports Server (NTRS)
Mattila, Kalevi; Schnur, G. F. O.
1989-01-01
A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.
Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity
Muller, Richard A.; MacDonald, Gordon J.
1997-01-01
Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741
Luminescence spectra of a cholesteric photonic crystal
NASA Astrophysics Data System (ADS)
Dolganov, P. V.
2017-05-01
The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okura, Yuki; Petri, Andrea; May, Morgan
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ω m and σ 8.« less
Okura, Yuki; Petri, Andrea; May, Morgan; ...
2016-06-27
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ω m and σ 8.« less
NASA Astrophysics Data System (ADS)
Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.
2018-01-01
The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
NASA Astrophysics Data System (ADS)
Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan
2018-04-01
It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.
Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions
NASA Astrophysics Data System (ADS)
Peter, Niksa; Martin, Schlederer; Günter, Sigl
2018-07-01
We calculate the gravitational wave spectrum produced by magneto-hydrodynamic turbulence in a first order phase transitions. We focus in particular on the role of decorrelation of incompressible (solenoidal) homogeneous isotropic turbulence, which is dominated by the sweeping effect. The sweeping effect describes that turbulent decorrelation is primarily due to the small scale eddies being swept with by large scale eddies in a stochastic manner. This effect reduces the gravitational wave signal produced by incompressible MHD turbulence by around an order of magnitude compared to previous studies. Additionally, we find a more complicated dependence for the spectral shape of the gravitational wave spectrum on the energy density sourced by solenoidal modes (magnetic and kinetic). The high frequency tail follows either a k ‑5/3 or a k ‑8/3 power law for large and small solenoidal turbulence density parameter, respectively. Further, magnetic helicity tends to increase the gravitational wave energy at low frequencies. Moreover, we show how solenoidal modes might impact the gravitational wave spectrum from dilatational modes e.g. sound waves. We find that solenoidal modes greatly affect the shape of the gravitational wave spectrum due to the sweeping effect on the dilatational modes. For a high velocity flow, one expects a k ‑2 high frequency tail, due to sweeping. In contrast, for a low velocity flow and a sound wave dominated flow, we expect a k ‑3 high frequency tail. If neither of these limiting cases is realized, the gravitational wave spectrum may be a broken power law with index between ‑2 and ‑3, extending up to the frequency at which the source is damped by viscous dissipation.
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Proteins as sponges: a statistical journey along protein structure organization principles.
Paola, Luisa Di; Paci, Paola; Santoni, Daniele; Ruvo, Micol De; Giuliani, Alessandro
2012-02-27
The analysis of a large database of protein structures by means of topological and shape indexes inspired by complex network and fractal analysis shed light on some organizational principles of proteins. Proteins appear much more similar to "fractal" sponges than to closely packed spheres, casting doubts on the tenability of the hydrophobic core concept. Principal component analysis highlighted three main order parameters shaping the protein universe: (1) "size", with the consequent generation of progressively less dense and more empty structures at an increasing number of residues, (2) "microscopic structuring", linked to the existence of a spectrum going from the prevalence of heterologous (different hydrophobicity) to the prevalence of homologous (similar hydrophobicity) contacts, and (3) "fractal shape", an organizing protein data set along a continuum going from approximately linear to very intermingled structures. Perhaps the time has come for seriously taking into consideration the real relevance of time-honored principles like the hydrophobic core and hydrophobic effect.
The non-linear power spectrum of the Lyman alpha forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo
2015-12-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate themore » comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.« less
SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corti, C.; Bindi, V.; Consolandi, C.
In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LISmore » and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.« less
Primordial power spectrum from Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters andmore » the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.« less
On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costamante, L.; Benbow, W.; Horns, D.
2005-02-21
In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of {gamma} = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum ismore » steeper than {gamma} = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors {delta} = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on {delta} given by transparency to 2 TeV photons is {delta} > 19 (for historical SED fluxes and 2 hours variability timescale)« less
On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data
NASA Astrophysics Data System (ADS)
Costamante, L.; Benbow, W.; Horns, D.; Reimer, A.; H.E.S.S. Collaboration
2005-02-01
In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of Γ = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than Γ = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors δ = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on δ given by transparency to 2 TeV photons is δ > 19 (for historical SED fluxes and 2 hours variability timescale).
Halo modelling in chameleon theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk
2014-03-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on localmore » scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.« less
Wavelength selection in the crown splash
NASA Astrophysics Data System (ADS)
Zhang, Li V.; Brunet, Philippe; Eggers, Jens; Deegan, Robert D.
2010-12-01
The impact of a drop onto a liquid layer produces a splash that results from the ejection and dissolution of one or more liquid sheets, which expand radially from the point of impact. In the crown splash parameter regime, secondary droplets appear at fairly regularly spaced intervals along the rim of the sheet. By performing many experiments for the same parameter values, we measure the spectrum of small-amplitude perturbations growing on the rim. We show that for a range of parameters in the crown splash regime, the generation of secondary droplets results from a Rayleigh-Plateau instability of the rim, whose shape is almost cylindrical. In our theoretical calculation, we include the time dependence of the base state. The remaining irregularity of the pattern is explained by the finite width of the Rayleigh-Plateau dispersion relation. Alternative mechanisms, such as the Rayleigh-Taylor instability, can be excluded for the experimental parameters of our study.
ERIC Educational Resources Information Center
Field, Charlotte; Allen, Melissa L.; Lewis, Charlie
2016-01-01
The shape bias--generalising labels to same shaped objects--has been linked to attentional learning or referential intent. We explore these origins in children with typical development (TD), autism spectrum disorders (ASD) and other developmental disorders (DD). In two conditions, a novel object was presented and either named or described.…
Productive interactions: heavy particles and non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton Φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale Φ 1/2, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structuremore » of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ≲ 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. As a result, we also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.« less
Productive interactions: heavy particles and non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇{sup 1/2}, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structuremore » of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.« less
Productive interactions: heavy particles and non-Gaussianity
Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo; ...
2017-10-31
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton Φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale Φ 1/2, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structuremore » of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ≲ 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. As a result, we also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.« less
Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV dark matter candidates
NASA Astrophysics Data System (ADS)
Belikov, Alexander V.; Zaharijas, Gabrijela; Silk, Joseph
2012-10-01
Motivated by the complex gamma-ray spectrum of the Galactic Center source now measured over five decades in energy, we revisit the issue of the role of dark matter (DM) annihilations in this interesting region. We reassess whether the emission measured by the HESS collaboration could be a signature of dark matter annihilation, and we use the Fermi LAT spectrum to model the emission from SgrA*, using power-law spectral fits. We find that good fits are achieved by a power law with an index ˜2.5-2.6, in combination with a spectrum similar to the one observed from pulsar population and with a spectrum from a ≳10TeV DM annihilating to a mixture of bb¯ and harder τ+τ- channels and with boost factors of the order of a hundred. Alternatively, we also consider the combination of a log-parabola fit with the DM contribution. Finally, as both the spectrum of gamma rays from the Galactic Center and the spectrum of cosmic ray electrons exhibit a cutoff at TeV energies, we study the dark matter fits to both data sets. Constraining the spectral shape of the purported dark matter signal provides a robust way of comparing data. We find a marginal overlap only between the 99.999% C.L. regions in parameter space.
A NOVEL EMISSION SPECTRUM FROM A RELATIVISTIC ELECTRON MOVING IN A RANDOM MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teraki, Yuto; Takahara, Fumio, E-mail: teraki@vega.ess.sci.osaka-u.ac.jp
2011-07-10
We numerically calculate the radiation spectrum from relativistic electrons moving in small-scale turbulent magnetic fields expected in high-energy astrophysical sources. Such a radiation spectrum is characterized by the strength parameter a = {lambda}{sub B} e|B|/mc {sup 2}, where {lambda}{sub B} is the length scale of the turbulent field. When a is much larger than the Lorentz factor of a radiating electron {gamma}, synchrotron radiation is realized, while a << 1 corresponds to the so-called jitter radiation regime. Because for 1 < a < {gamma} we cannot use either approximations, we should have recourse to the Lienard-Wiechert potential to evaluate themore » radiation spectrum, which is performed in this Letter. We generate random magnetic fields assuming Kolmogorov turbulence, inject monoenergetic electrons, solve the equation of motion, and calculate the radiation spectrum. We perform numerical calculations for several values of a with {gamma} = 10. We obtain various types of spectra ranging between jitter radiation and synchrotron radiation. For a {approx} 7, the spectrum takes a novel shape which had not been noticed up to now. It is like a synchrotron spectrum in the middle energy region, but in the low frequency region it is a broken power law and in the high frequency region an extra power-law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.« less
NASA Astrophysics Data System (ADS)
Saetchnikov, Anton; Skakun, Victor; Saetchnikov, Vladimir; Tcherniavskaia, Elina; Ostendorf, Andreas
2017-10-01
An approach for the automated whispering gallery mode (WGM) signal decomposition and its parameter estimation is discussed. The algorithm is based on the peak picking and can be applied for the preprocessing of the raw signal acquired from the multiplied WGM-based biosensing chips. Quantitative estimations representing physically meaningful parameters of the external disturbing factors on the WGM spectral shape are the output values. Derived parameters can be directly applied to the further deep qualitative and quantitative interpretations of the sensed disturbing factors. The algorithm is tested on both simulated and experimental data taken from the bovine serum albumin biosensing task. The proposed solution is expected to be a useful contribution to the preprocessing phase of the complete data analysis engine and is expected to push the WGM technology toward the real-live sensing nanobiophotonics.
NASA Astrophysics Data System (ADS)
Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo
2017-04-01
We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, such as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k simeq 0.2 hMpc-1 the cross-correlation coefficient departs from -1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in kin[0.06,1] hMpc-1. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.
Comparison of digital signal processing modules in gamma-ray spectrometry.
Lépy, Marie-Christine; Cissé, Ousmane Ibrahima; Pierre, Sylvie
2014-05-01
Commercial digital signal-processing modules have been tested for their applicability to gamma-ray spectrometry. The tests were based on the same n-type high purity germanium detector. The spectrum quality was studied in terms of energy resolution and peak area versus shaping parameters, using a Eu-152 point source. The stability of a reference peak count rate versus the total count rate was also examined. The reliability of the quantitative results is discussed for their use in measurement at the metrological level. © 2013 Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Green, R. N.
1981-01-01
The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.
Khaleghi, A; Chávez-Santiago, R; Balasingham, I
2012-01-01
Ultra wideband (UWB) technology has big potential for applications in wireless body area networks (WBANs). The inherent characteristics of UWB signals make them suitable for the wireless interface of medical sensors. In particular, implanted medical wireless sensors for monitoring physiological parameters, automatic drug provision, etc. can benefit greatly from this ultra low power (ULP) interface. As with any other wireless technology, accurate knowledge of the channel is necessary for the proper design of communication systems. Only a few models that describe the radio propagation inside the human body have been published. Moreover, there is no comprehensive UWB in-body propagation model that includes the frequency-dependent attenuation. Hence, this paper extends a statistical model for UWB propagation channels inside the human chest in the 1-6 GHz frequency range by including the frequency-dependent attenuation. This is done by modeling the spectrum shape of distorted pulses at different depths inside the human chest. The distortion of the pulse was obtained through numerical simulations using a voxel representation of the human body. We propose a mathematical expression for the spectrum shape of the distorted pulses that act as a window function to reproduce the effects of frequency-dependent attenuation.
NASA Astrophysics Data System (ADS)
Rutkowski, Lucile; Masłowski, Piotr; Johansson, Alexandra C.; Khodabakhsh, Amir; Foltynowicz, Aleksandra
2018-01-01
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
Power spectrum model of visual masking: simulations and empirical data.
Serrano-Pedraza, Ignacio; Sierra-Vázquez, Vicente; Derrington, Andrew M
2013-06-01
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Universal fitting formulae for baryon oscillation surveys
NASA Astrophysics Data System (ADS)
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
On the intrinsic spectrum of PKS 2155-304 from the H.E.S.S. 2003 data.
NASA Astrophysics Data System (ADS)
Costamante, L.; Aharonian, F.; Benbow, W.; Horns, D.; Reimer, A.; Reimer, O.; Rowell, G.; H.E.S.S. Collaboration
2004-08-01
In 2003, PKS 2155-304 (z=0.116) has been significantly detected by H.E.S.S. ( 44sigma) at TeV energies, with an average spectrum of Γ =3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and see where could be the Inverse Compton (IC) peak of the SED, we used 3 EBL models (representatives of 3 different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than 2 (thus locating the IC peak <200 GeV) for fluxes below. With bulk Lorentz factors δ =20-30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thomson regime, and in agreement with the commonly fitted source parameters (e.g. Tavecchio et al. 1998). The constraint on δ given by transparency to 1-2 TeV photons is δ >19 (for historical SED fluxes and 2 hrs variability timescale).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palladino, Andrea; Vissani, Francesco; Spurio, Maurizio, E-mail: andrea.palladino@gssi.infn.it, E-mail: maurizio.spurio@bo.infn.it, E-mail: francesco.vissani@lngs.infn.it
Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly , that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E {sup −2.7} [ Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated bymore » theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E {sup −2.4}; 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the 'high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.« less
On the IceCube spectral anomaly
NASA Astrophysics Data System (ADS)
Palladino, Andrea; Spurio, Maurizio; Vissani, Francesco
2016-12-01
Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly, that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E-2.7 [Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated by theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E-2.4 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the `high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.
Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search
NASA Astrophysics Data System (ADS)
Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro
2018-06-01
We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.
In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less
Search for eV Sterile Neutrinos - The Stereo Experiment
NASA Astrophysics Data System (ADS)
Haser, J.; Stereo Collaboration
2017-07-01
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $\\theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The flux anomaly is known as the Reactor Antineutrino Anomaly and could be caused by the existence of a light sterile neutrino participating in the neutrino oscillation phenomenon. Introducing a sterile state implies the presence of a fourth mass eigenstate, global fits favour oscillation parameters around $\\sin^2({2\\theta}) \\approx 0.09$ and $\\Delta m^2 \\approx 1\\,\\mathrm{eV}^2$. The Stereo experiment was built to finally solve this puzzle. It is one of the first running experiments built to search for eV sterile neutrinos and takes data since end of 2016 at ILL Grenoble (France). At a short baseline of 10 metres, it measures the antineutrino flux and spectrum emitted by a compact research reactor. The segmentation of the detector in six target cells allows for measurements of the neutrino spectrum at multiple baselines. An active-sterile flavour oscillation could be unambiguously detected, as it distorts the spectral shape of each cell's measurement differently. This contribution gives an overview on the Stereo experiment, along with details on the detector design, detection principle and the current status of data analysis.
NASA Astrophysics Data System (ADS)
Martinović, M.
2017-12-01
Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.
Optimal surveys for weak-lensing tomography
NASA Astrophysics Data System (ADS)
Amara, Adam; Réfrégier, Alexandre
2007-11-01
Weak-lensing surveys provide a powerful probe of dark energy through the measurement of the mass distribution of the local Universe. A number of ground-based and space-based surveys are being planned for this purpose. Here, we study the optimal strategy for these future surveys using the joint constraints on the equation-of-state parameter wn and its evolution wa as a figure of merit by considering power spectrum tomography. For this purpose, we first consider an `ideal' survey which is both wide and deep and exempt from systematics. We find that such a survey has great potential for dark energy studies, reaching 1σ precisions of 1 and 10 per cent on the two parameters, respectively. We then study the relative impact of various limitations by degrading this ideal survey. In particular, we consider the effect of sky coverage, survey depth, shape measurement systematics, photometric redshift systematics and uncertainties in the non-linear power spectrum predictions. We find that, for a given observing time, it is always advantageous to choose a wide rather than a deep survey geometry. We also find that the dark energy constraints from power spectrum tomography are robust to photometric redshift errors and catastrophic failures, if a spectroscopic calibration sample of 104-105 galaxies are available. The impact of these systematics is small compared to the limitations that come from potential uncertainties in the power spectrum, due to shear measurement and theoretical errors. To help the planning of future surveys, we summarize our results with comprehensive scaling relations which avoid the need for full Fisher matrix calculations.
Hu, Miao; Zhang, Linzhou; He, Shan; Xu, Chunming; Shi, Quan
2018-05-15
The collision cross section (CCS) is an important shape parameter which is often used in molecular structure investigation. In Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), the CCS affects the ion signal damping shape due to the effect of ion-neutral collisions. It is potential to obtain ion CCS values from FTICR-MS with the help of a proper ion-collision model. We have developed a rapid method to obtain the ion damping profile and CCS for mixtures by only one FTICR-MS measurement. The method utilizes short-time Fourier transform (STFT) to process FTICR-MS time domain signals. The STFT-processed result is a three-dimensional (3D) spectrum which has an additional time axis in addition to the conventional mass-to-charge ratio and intensity domains. The damping profile of each ion can be recognized from the 3D spectrum. After extracting the decay profile of a specified ion, all the three ion-neutral collision models were tested in curve fitting. The hard-sphere model was proven to be suitable for our experimental setup. A linear relationship was observed between the CCS value and hard-sphere model parameters. Therefore, the CCS values of all the peaks were obtained through the addition of internal model compounds and linear calibration. The proposed method was successfully applied to determine the CCSs of fatty acids and polyalanines in a petroleum gas oil matrix. This technique can be used for simultaneous measurement of cross sections for many ions in congested spectra. Copyright © 2018 John Wiley & Sons, Ltd.
Operational modal analysis using SVD of power spectral density transmissibility matrices
NASA Astrophysics Data System (ADS)
Araújo, Iván Gómez; Laier, Jose Elias
2014-05-01
This paper proposes the singular value decomposition of power spectrum density transmissibility matrices with different references, (PSDTM-SVD), as an identification method of natural frequencies and mode shapes of a dynamic system subjected to excitations under operational conditions. At the system poles, the rows of the proposed transmissibility matrix converge to the same ratio of amplitudes of vibration modes. As a result, the matrices are linearly dependent on the columns, and their singular values converge to zero. Singular values are used to determine the natural frequencies, and the first left singular vectors are used to estimate mode shapes. A numerical example of the finite element model of a beam subjected to colored noise excitation is analyzed to illustrate the accuracy of the proposed method. Results of the PSDTM-SVD method in the numerical example are compared with obtained using frequency domain decomposition (FDD) and power spectrum density transmissibility (PSDT). It is demonstrated that the proposed method does not depend on the excitation characteristics contrary to the FDD method that assumes white noise excitation, and further reduces the risk to identify extra non-physical poles in comparison to the PSDT method. Furthermore, a case study is performed using data from an operational vibration test of a bridge with a simply supported beam system. The real application of a full-sized bridge has shown that the proposed PSDTM-SVD method is able to identify the operational modal parameter. Operational modal parameters identified by the PSDTM-SVD in the real application agree well those identified by the FDD and PSDT methods.
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
NASA Astrophysics Data System (ADS)
Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva
2017-10-01
Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.
Cospectral budget of turbulence explains the bulk properties of smooth pipe flow.
Katul, Gabriel G; Manes, Costantino
2014-12-01
Connections between the wall-normal turbulent velocity spectrum E(ww)(k) at wave number k and the mean velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u') and wall-normal (w') velocity fluctuations, which include a production term due to mean shear interacting with E(ww)(k), viscous effects, and a decorrelation between u' and w' by pressure-strain effects [=π(k)]. The π(k) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously proposed "spectral link" between the MVP and the spectrum of turbulence. The proposed cospectral budget is also shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer and wake regions. Because of the links between E(ww)(k) and the MVP, the effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy sizes (η) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter associated with the spectral exponential cutoff as kη→1 appears to be more significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature of the MVP within the buffer layer.
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.
2016-05-01
Context. During February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z = 0.212) in flaring state at very-high energy (VHE, E> 100 GeV). The flux reached a level of more than ten times higher than any previously recorded flaring state of the source. Aims: To describe the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim to detect the imprint of the extragalactic background light (EBL) in the VHE spectrum of the source, to constrain its intensity in the optical band. Methods: We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. To constrain the EBL, we implement the method developed by the H.E.S.S. collaboration, in which the intrinsic energy spectrum of the source is modeled with a simple function (≤4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results: The collected data allowed us to describe the night-wise flux changes and also to produce differential energy spectra for all nights in the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters, we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1.07 (-0.20, +0.24)stat+sys, relative to the one in the tested EBL template, is preferred at the 4.6σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm, 4.25 μm], with a peak value at 1.4 μm of λFλ = 12.27-2.29+2.75 nW m-2 sr-1, including systematics.
BinMag: Widget for comparing stellar observed with theoretical spectra
NASA Astrophysics Data System (ADS)
Kochukhov, O.
2018-05-01
BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.
A κ-generalized statistical mechanics approach to income analysis
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
Evading the Lyth bound in hybrid natural inflation
NASA Astrophysics Data System (ADS)
Hebecker, A.; Kraus, S. C.; Westphal, A.
2013-12-01
Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs
Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less
Broadening and collisional interference of lines in the IR spectra of ammonia. Theory
NASA Astrophysics Data System (ADS)
Cherkasov, M. R.
2016-06-01
The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.
Flat-band superconductivity in strained Dirac materials
NASA Astrophysics Data System (ADS)
Kauppila, V. J.; Aikebaier, F.; Heikkilä, T. T.
2016-06-01
We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.
Field, Charlotte; Allen, Melissa L; Lewis, Charlie
2016-10-01
The shape bias-generalising labels to same shaped objects-has been linked to attentional learning or referential intent. We explore these origins in children with typical development (TD), autism spectrum disorders (ASD) and other developmental disorders (DD). In two conditions, a novel object was presented and either named or described. Children selected another from a shape, colour or texture match. TD children choose the shape match in both conditions, children with DD and 'high-verbal mental age' (VMA) children with ASD (language age > 4.6) did so in the name condition and 'low-VMA' children with ASD never showed the heuristic. Thus, the shape bias arises from attentional learning in atypically developing children and is delayed in ASD.
NASA Astrophysics Data System (ADS)
Taylor, Stephen R.; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through "Bayesian model-emulation". We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of the spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through ``Bayesian model-emulation''. We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
Reheating signature in the gravitational wave spectrum from self-ordering scalar fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuroyanagi, Sachiko; Hiramatsu, Takashi; Yokoyama, Jun'ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp
2016-02-01
We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reactsmore » to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.« less
Cosmological information in Gaussianized weak lensing signals
NASA Astrophysics Data System (ADS)
Joachimi, B.; Taylor, A. N.; Kiessling, A.
2011-11-01
Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non-linear regime and resort to an exploration of parameter space via simulations.
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
Modular wide spectrum lighting system for diagnosis, conservation, and restoration
NASA Astrophysics Data System (ADS)
Miccoli, Matteo; Melis, Marcello
2013-05-01
In the framework of imaging, lighting systems have always played a key role due to the primary importance of both the uniformity of the illumination and the richness of the emitted spectra. Multispectral imaging, i.e. imaging systems working inside and outside the visible wavelength range, are even more demanding and require to pay further attention to a number of parameters characterizing the lighting system. A critical issue for lighting systems, even in the visible light, is the shape of the emitted spectra and (only in the visible range) the Color Rendering Index. The color we perceive from a surface is our eyes' interpretation of the linear spectral combination of the illuminant spectrum and the surface spectral reflectance. If there is a lack of energy in a portion of the visible spectrum, that portion will turn into black to our eyes (and to whatever instrument) regardless the actual reflectance of the surface. In other words a lack in the exciting energy hides part of the spectral reflectance of the observed subject. Furthermore, the wider is the investigated spectrum, the fewer are the sources of light able to cover such a range. In this paper we show how we solved both the problems of the not uniformity of the light beam, independently on the incident angle, and of the selection of a light source with energy rich and continuous enough emitted spectrum.
NASA Astrophysics Data System (ADS)
Merkel, Philipp M.; Schäfer, Björn Malte
2017-10-01
Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.
Spectral analysis method for detecting an element
Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID
2008-02-12
A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.
Jet Aeroacoustics: Noise Generation Mechanism and Prediction
NASA Technical Reports Server (NTRS)
Tam, Christopher
1998-01-01
This report covers the third year research effort of the project. The research work focussed on the fine scale mixing noise of both subsonic and supersonic jets and the effects of nozzle geometry and tabs on subsonic jet noise. In publication 1, a new semi-empirical theory of jet mixing noise from fine scale turbulence is developed. By an analogy to gas kinetic theory, it is shown that the source of noise is related to the time fluctuations of the turbulence kinetic theory. On starting with the Reynolds Averaged Navier-Stokes equations, a formula for the radiated noise is derived. An empirical model of the space-time correlation function of the turbulence kinetic energy is adopted. The form of the model is in good agreement with the space-time two-point velocity correlation function measured by Davies and coworkers. The parameters of the correlation are related to the parameters of the k-epsilon turbulence model. Thus the theory is self-contained. Extensive comparisons between the computed noise spectrum of the theory and experimental measured have been carried out. The parameters include jet Mach number from 0.3 to 2.0 and temperature ratio from 1.0 to 4.8. Excellent agreements are found in the spectrum shape, noise intensity and directivity. It is envisaged that the theory would supercede all semi-empirical and totally empirical jet noise prediction methods in current use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo, E-mail: ipcarucci@sissa.it, E-mail: fvillaescusa@simonsfoundation.org, E-mail: viel@oats.inaf.it
We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, suchmore » as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k ≅ 0.2 h Mpc{sup −1} the cross-correlation coefficient departs from −1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in k element of [0.06,1] h Mpc{sup −1}. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.« less
Shape of the primary proton spectrum in the multi-TeV region from data on the vertical muon flux
NASA Astrophysics Data System (ADS)
Tyumentsev, A. G.; Lagutin, A. A.; Yushkov, A. V.
2009-12-01
It is shown, that the primary proton spectrum, reconstructed from sea-level and underground data on the muon spectrum using the QGSJET 01, QGSJET II, NEXUS 3.97 and SIBYLL 2.1 interaction models, demonstrates not only a model-dependent intensity, but also a model-dependent form. For a correct reproduction of the muon spectrum shape the primary proton flux should have a non-constant power index for all considered models, except SIBYLL 2.1, with a break at energies around 10-15 TeV and a value of the exponent before the break close to that obtained in the ATIC-2 experiment.
Scaling earthquake ground motions for performance-based assessment of buildings
Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.
2011-01-01
The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.
Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laha, Ranjit; Ranjan, Pranay
2016-05-23
The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealingmore » temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.« less
Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Ranjan, Pranay
2016-05-01
The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealing temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Testing spatial uniformity of the CR spectrum in the local ISM with γ-ray observations
NASA Astrophysics Data System (ADS)
Prokhorov, D. A.; Colafrancesco, S.
2018-05-01
Gamma-ray observations of nearby radio-line-emitting gas structures in the interstellar medium allow us to probe the spectrum of cosmic rays (CRs). In this paper, we analysed Fermi Large Area Telescope (LAT) γ-ray observations of three such structures located near each other to check if their CR spectra are compatible with that of the CR background or might provide evidence for a population of "fresh" CRs. We found that the shape of the γ-ray spectrum in the Aquarius HI shell is consistent with the previously published stacked γ-ray spectrum of the Gould Belt molecular clouds. We also found that assumptions on the diffuse Galactic γ-ray background affect the spectral shapes of CRs derived in the R Coronae Australis and ρ Ophiuchi molecular clouds in which spectral deviations had previously been suggested. These two facts provide evidence to support the hypothesis of uniformity of the shapes of cosmic ray spectra in the local Galaxy environment.
Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.
2017-02-01
The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.
Kasesaz, Y; Khalafi, H; Rahmani, F
2013-12-01
Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brandt, Stephen B.; Rasskazov, S.V.; Brandt, I.S.; Ivanov, A.V.; Kunk, Michael J.
1997-01-01
Results of two routine 40Ar/39Ar stepwise heating experiments on a biotite and a basanite are interpreted in terms of Fick's and Arrhenius' laws. Both patterns represent a saddle-shaped 39Ar release. Argon isotope spectra are suggested to be controlled by the activation energy of diffusion E and the frequency factor D(o). The activation energy of 39Ar is lower than the one of 40Ar. This results in a preferable release of 40Ar relatively to 39Ar at high-temperature steps and an increasing high-temperature wing in the saddle-shaped age spectrum. At low temperatures, considerable losses and irregularities in release of mainly 39Ar are observed, which cause the decreasing low-temperature wing in the 'saddle'. The suggestion of argon losses (mainly of 39Ar) from a loose, 'unstable' zone of the mineral structures becomes justified. The n-irradiation of the samples and the shift of E of 39Ar towards lower values seems to explain the saddle-shaped age-spectra often encountered in 40Ar/39Ar-geochronometry.
Nonlinear solar cycle forecasting: theory and perspectives
NASA Astrophysics Data System (ADS)
Baranovski, A. L.; Clette, F.; Nollau, V.
2008-02-01
In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.
Non-Linear Cosmological Power Spectra in Real and Redshift Space
NASA Technical Reports Server (NTRS)
Taylor, A. N.; Hamilton, A. J. S.
1996-01-01
We present an expression for the non-linear evolution of the cosmological power spectrum based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to trace particle displacements, assuming Gaussian initial conditions. The model is found to exhibit the transfer of power from large to small scales expected in self-gravitating fields. Some exact solutions are found for power-law initial spectra. We have extended this analysis into red-shift space and found a solution for the non-linear, anisotropic redshift-space power spectrum in the limit of plane-parallel redshift distortions. The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to linear theory depends only weakly on the redshift-space distortion parameter, beta. The point of zero-crossing of the quadrupole, kappa(sub o), is found to obey a simple scaling relation and we calculate this scale in the Zel'dovich approximation. This model is found to be in good agreement with a series of N-body simulations on scales down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is underestimated. These results are applied to the quadrupole-to-monopole ratio found in the merged QDOT plus 1.2-Jy-IRAS redshift survey. Using a likelihood technique we have estimated that the distortion parameter is constrained to be beta greater than 0.5 at the 95 percent level. Our results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis suggests n = -2 un the translinear regime. The zero-crossing scale of the quadrupole is k(sub 0) = 0.5 +/- 0.1 h Mpc(exp -1) and from this we infer that the amplitude of clustering is sigma(sub 8) = 0.7 +/- 0.05. We suggest that the success of this model is due to non-linear redshift-space effects arising from infall on to caustic and is not dominated by virialized cluster cores. The latter should start to dominate on scales below the zero-crossing of the quadrupole, where our model breaks down.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.
2012-01-01
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.
NASA Astrophysics Data System (ADS)
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2018-05-01
Based on the minimal length concept, inspired by Heisenberg algebra, a closed analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian of nuclei, within a quantum perturbation method (QPM), by considering a scaled Davidson potential in β shape variable. In the resulting solution, called X(3)-D-ML, the ground state and the first β-band are all studied as a function of the free parameters. The fact of introducing the minimal length concept with a QPM makes the model very flexible and a powerful approach to describe nuclear collective excitations of a variety of vibrational-like nuclei. The introduction of scaling parameters in the Davidson potential enables us to get a physical minimum of this latter in comparison with previous works. The analysis of the corrected wave function, as well as the probability density distribution, shows that the minimal length parameter has a physical upper bound limit.
Predictions from a flavour GUT model combined with a SUSY breaking sector
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Hohl, Christian
2017-10-01
We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.
Simulation of the effect of incline incident angle in DMD Maskless Lithography
NASA Astrophysics Data System (ADS)
Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.
2017-06-01
The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.
NASA Astrophysics Data System (ADS)
Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer
2013-02-01
An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.
Andreev reflection enhancement in semiconductor-superconductor structures
NASA Astrophysics Data System (ADS)
Bouscher, Shlomi; Winik, Roni; Hayat, Alex
2018-02-01
We develop a theoretical approach for modeling a wide range of semiconductor-superconductor structures with arbitrary potential barriers and a spatially dependent superconducting order parameter. We demonstrate asymmetry in the conductance spectrum as a result of a Schottky barrier shape. We further show that the Andreev reflection process can be significantly enhanced through resonant tunneling with appropriate barrier configuration, which can incorporate the Schottky barrier as a contributing component of the device. Moreover, we show that resonant tunneling can be achieved in superlattice structures as well. These theoretically demonstrated effects along with our modeling approach enable much more efficient Cooper pair injection into semiconductor-superconductor structures, including superconducting optoelectronic devices.
Clouds on the hot Jupiter HD189733b: Constraints from the reflection spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.
2014-05-10
The hot Jupiter HD 189733b is probably the best studied of the known extrasolar planets, with published transit and eclipse spectra covering the near UV to mid-IR range. Recent work on the transmission spectrum has shown clear evidence for the presence of clouds in its atmosphere, which significantly increases the model atmosphere parameter space that must be explored in order to fully characterize this planet. In this work, we apply the NEMESIS atmospheric retrieval code to the recently published HST/STIS reflection spectrum, and also to the dayside thermal emission spectrum in light of new Spitzer/IRAC measurements, as well as ourmore » own re-analysis of the HST/NICMOS data. We first use the STIS data to place some constraints on the nature of clouds on HD 189733b and explore solution degeneracy between different cloud properties and the abundance of Na in the atmosphere; as already noted in previous work, absorption due to Na plays a significant role in determining the shape of the reflection spectrum. We then perform a new retrieval of the temperature profile and abundances of H{sub 2}O, CO{sub 2}, CO, and CH{sub 4} from the dayside thermal emission spectrum. Finally, we investigate the effect of including cloud in the model on this retrieval process. We find that the current quality of data does not warrant the extra complexity introduced by including cloud in the model; however, future data are likely to be of sufficient resolution and signal-to-noise that a more complete model, including scattering particles, will be required.« less
Clouds on the Hot Jupiter HD189733b: Constraints from the Reflection Spectrum
NASA Astrophysics Data System (ADS)
Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.; Hackler, T.; Fletcher, L. N.; Lee, J. M.; Gibson, N. P.
2014-05-01
The hot Jupiter HD 189733b is probably the best studied of the known extrasolar planets, with published transit and eclipse spectra covering the near UV to mid-IR range. Recent work on the transmission spectrum has shown clear evidence for the presence of clouds in its atmosphere, which significantly increases the model atmosphere parameter space that must be explored in order to fully characterize this planet. In this work, we apply the NEMESIS atmospheric retrieval code to the recently published HST/STIS reflection spectrum, and also to the dayside thermal emission spectrum in light of new Spitzer/IRAC measurements, as well as our own re-analysis of the HST/NICMOS data. We first use the STIS data to place some constraints on the nature of clouds on HD 189733b and explore solution degeneracy between different cloud properties and the abundance of Na in the atmosphere; as already noted in previous work, absorption due to Na plays a significant role in determining the shape of the reflection spectrum. We then perform a new retrieval of the temperature profile and abundances of H2O, CO2, CO, and CH4 from the dayside thermal emission spectrum. Finally, we investigate the effect of including cloud in the model on this retrieval process. We find that the current quality of data does not warrant the extra complexity introduced by including cloud in the model; however, future data are likely to be of sufficient resolution and signal-to-noise that a more complete model, including scattering particles, will be required.
Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D
1992-09-01
Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less
On the spectrum of inhomogeneous turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.
1979-01-01
Inhomogeneous turbulence is defined as turbulence whose statistics are functions of spatial position. The turbulence spectrum, and particularly how the shape of the spectrum varies, from point to point in space, as a consequence of well defined spatial variations in the turbulence intensity and/or integral scale is investigated.
Zaari, Ryan R; Brown, Alex
2011-07-28
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics
High-precision measurement of the X-ray Cu Kα spectrum
Mendenhall, Marcus H.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald; Cline, James P.
2017-01-01
The structure of the X-ray emission lines of the Cu Kα complex has been remeasured on a newly commissioned instrument, in a manner directly traceable to the Système Internationale definition of the meter. In this measurement, the region from 8000 eV to 8100 eV has been covered with a highly precise angular scale, and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement updates the standard multi-Lorentzian-fit parameters from Härtwig, Hölzer, et al., and is in modest disagreement with their results for the wavelength of the Kα1 line when compared via quadratic fitting of the peak top; the intensity ratio of Kα1 to Kα2 agrees within the combined error bounds. However, the position of the fitted top of Kα1 is very sensitive to the fit parameters, so it is not believed to be a robust value to quote without further qualification. We also provide accurate intensity and wavelength information for the so-called Kα3,4 “satellite” complex. Supplementary data is provided which gives the entire shape of the spectrum in this region, allowing it to be used directly in cases where simplified, multi-Lorentzian fits to it are not sufficiently accurate. PMID:28757682
Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong
2008-03-15
In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less
The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars
Krauß, F.; Wilms, J.; Kadler, M.; ...
2016-06-28
Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims. Here, we study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. We also use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux for constructing quasi-simultaneous spectral energy distributions (SEDs). The shapes of the resulting 81 SEDs are described by two logarithmic parabolas and a blackbody spectrum where needed. The peak frequencies andmore » luminosities agree well with the blazar sequence for low states with higher luminosity implying lower peak frequencies. This is not true for sources in high states. The γ-ray photon index in Fermi/LAT correlates with the synchrotron peak frequency in low and intermediate states. No correlation is present in high states. The black hole mass cannot be determined from the SEDs. Surprisingly, the thermal excess often found in FSRQs at optical/UV wavelengths can be described by blackbody emission and not an accretion disk spectrum. The so-called harder-when-brighter trend, typically seen in X-ray spectra of flaring blazars, is visible in the blazar sequence. Furthermore, our results for low and intermediate states, as well as the Compton dominance, are in agreement with previous results. Black hole mass estimates using recently published parameters are in agreement with some of the more direct measurements. For two sources, estimates disagree by more than four orders of magnitude, possibly owing to boosting effects. The shapes of the thermal excess seen predominantly in flat spectrum radio quasars are inconsistent with a direct accretion disk origin.« less
Chikvaidze, Eduard N; Partskhaladze, Tamar M; Gogoladze, Temur V
2014-07-01
The definition of the concentration of pheomelanin in the skin is an issue of great interest because in the case of being influenced by UV radiation, it manifests itself as a prooxidant, causing various skin disorders including melanoma that might help to explain the relatively high incidence of skin cancer among individuals with red hair. The ESR spectra of red hair samples were investigated. It was found that at low microwave power, they are characterized by two types of spectra. Red hair ESR signals result from a superposition of two spectral shapes, a singlet spectrum as a result of the existence of eumelanin and a triplet spectrum as a result of the existence of pheomelanin. At high microwave power, only triplet spectra shape was detected, caused by saturation of the eumelanin singlet. Using different concentration ratios of black to red hair, we measured ESR spectra and plotted the ratio values in each sample against a measured 'g-factor' (experimental). We found that there is a linear relationship between these two parameters. So, it is evident that using these results, the concentration ratio of pheomelanin to eumelanin in a sample of hair can be easily determined by an almost noninvasive method. This can be considered a potential advantage for many practical activities compared with other invasive methods. The concentration dependence curve of pheomelanin (µg/mg) on gexp-factor in an ESR spectrum of hair has been designed, which allows the determination of the amount of pheomelanin in hair of any color. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Kuzyuta, E. I.
1974-01-01
A transistorized spectrometric amplifier with a shaper is reported that selects the shape of the frequency characteristic of the amplifying channel for which the primary frequency spectrum of the signal will pass, but where the noise spectrum is limited to the maximum. A procedure is presented for selecting the shaping circuits and their inclusion principles.
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-06-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-04-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
Ueda, T; Kobatake, Y
1983-09-01
A new parameter expressing the complexity of cell shape defined as (periphery)2/(area) in 2D projection was found useful for a quantitative analysis of changes in the cell shape of Amoeba proteus and potentially of any amoeboid cells. During locomotion the complexity and the motive force of the protoplasmic streaming in amoeba varied periodically, and the Fourier analysis of the two showed a similar pattern in the power spectrum, giving a rather broad peak at about 2.5 X 10(-3) Hz. The complexity increased mainly due to elongation of the cell as external Ca2+ increased. This effect was blocked by La3+, half the inhibition being attained at 1/200 amount of the coexisting Ca2+. On the other hand, the complexity decreased due to rounding up of the cell as the concentration of other cations, such as Sr2+, Mg2+, Co2+, Ni2+, Na+, K+ etc., increased. Irrespective of the opposite effects of Ca2+ and other cations on the cell shape, the ATP concentration in amoeba decreased in both cases with increase of all these cations. The irregularity in amoeboid motility is discussed in terms of a dynamic system theory.
NASA Astrophysics Data System (ADS)
Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu
2017-08-01
We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.
Constraining parameters of the neutron star in the supernova remnant HESS J1731-347
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Puehlhofer, G.; Werner, K.; Santangelo, A.
2014-07-01
The Central Compact Object (CCO) in HESS J1731-347, presumably a neutron star, is one of the brightest sources in this class. Like other CCOs, it potentially provides an "undisturbed" view of thermal radiation generated at the neutron star surface. The shape and normalization of the corresponding X-ray spectrum depends on the emitting area, surface redshift, and gravity acceleration. Thus, its modeling under certain assumptions allows the mass and radius of the neutron star to be constrained. In our analysis, we model the spectrum of the CCO accumulated with XMM-Newton over ˜100 ksec exposure time in three observations. The exposure time has increased by a factor of five since our previous analysis of the source. For the spectral fitting, we use our hydrogen and carbon atmosphere models calculated assuming hydrostatic and radiative equilibria and taking into account pressure ionization and the presence of spectral lines (in case of carbon). We present the resulting constraints on the mass, radius, distance, and temperature of the neutron star.
NASA Astrophysics Data System (ADS)
Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu
2018-03-01
We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).
Development of a High Resolution X-Ray Spectrometer for the National Ignition Facility (NIF)
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; Macphee, A. G.; Beiersdorfer, P.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M., III; Maron, Y.
2016-10-01
A high resolution (E/ ΔE 2000) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in NIF experiments. The instrument will be a positioner insertable cassette designed to infer electron density in compressed capsules from Stark broadening of the helium- β (1s2-1s3p) lines of krypton, and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and sagittally focus (1) the Kr He β complex and (2) the He α and Ly α complexes onto a streak camera photocathode for time resolved measurement. A third cylindrical crystal will focus the full He α to He β spectrum onto an image plate for a time integrated calibration spectrum. Performance estimates and design status will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Multiple regimes of robust patterns between network structure and biodiversity
NASA Astrophysics Data System (ADS)
Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.
2015-12-01
Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.
Multiple regimes of robust patterns between network structure and biodiversity
Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.
2015-01-01
Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996
Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation
NASA Astrophysics Data System (ADS)
Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.
2016-06-01
Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.
Velocity spectrum for the Iranian plateau
NASA Astrophysics Data System (ADS)
Bastami, Morteza; Soghrat, M. R.
2018-01-01
Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.
NASA Astrophysics Data System (ADS)
Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Hohenberger, M.; Landen, O. L.; Regan, S. P.; Wehrenberg, C. E.; Remington, B. A.
2015-04-01
A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb Heα x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a "prepulse" shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.
NASA Astrophysics Data System (ADS)
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
Light sterile neutrinos and inflationary freedom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gariazzo, S.; Giunti, C.; Laveder, M., E-mail: gariazzo@to.infn.it, E-mail: giunti@to.infn.it, E-mail: laveder@pd.infn.it
2015-04-01
We perform a cosmological analysis in which we allow the primordial power spectrum of scalar perturbations to assume a shape that is different from the usual power-law predicted by the simplest models of cosmological inflation. We parameterize the free primordial power spectrum with a ''piecewise cubic Hermite interpolating polynomial'' (PCHIP). We consider a 3+1 neutrino mixing model with a sterile neutrino having a mass at the eV scale, which can explain the anomalies observed in short-baseline neutrino oscillation experiments. We find that the freedom of the primordial power spectrum allows to reconcile the cosmological data with a fully thermalized sterilemore » neutrino in the early Universe. Moreover, the cosmological analysis gives us some information on the shape of the primordial power spectrum, which presents a feature around the wavenumber k=0.002 Mpc{sup −1}.« less
Sensitivity analysis of pulse pileup model parameter in photon counting detectors
NASA Astrophysics Data System (ADS)
Shunhavanich, Picha; Pelc, Norbert J.
2017-03-01
Photon counting detectors (PCDs) may provide several benefits over energy-integrating detectors (EIDs), including spectral information for tissue characterization and the elimination of electronic noise. PCDs, however, suffer from pulse pileup, which distorts the detected spectrum and degrades the accuracy of material decomposition. Several analytical models have been proposed to address this problem. The performance of these models are dependent on the assumptions used, including the estimated pulse shape whose parameter values could differ from the actual physical ones. As the incident flux increases and the corrections become more significant the needed parameter value accuracy may be more crucial. In this work, the sensitivity of model parameter accuracies is analyzed for the pileup model of Taguchi et al. The spectra distorted by pileup at different count rates are simulated using either the model or Monte Carlo simulations, and the basis material thicknesses are estimated by minimizing the negative log-likelihood with Poisson or multivariate Gaussian distributions. From simulation results, we find that the accuracy of the deadtime, the height of pulse negative tail, and the timing to the end of the pulse are more important than most other parameters, and they matter more with increasing count rate. This result can help facilitate further work on parameter calibrations.
NASA Astrophysics Data System (ADS)
Tyynelä, J.; Leinonen, J.; Westbrook, C. D.; Moisseev, D.; Nousiainen, T.
2013-02-01
The applicability of the Rayleigh-Gans approximation (RGA) for scattering by snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the shapes of the single ice crystals, or monomers, and their amounts in the modeled snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to produce numerically accurate solutions to the single-scattering properties, such as the backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry parameter. We find that the single-scattering albedo is the most accurate with only about 10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at maximum. The backscattering and extinction cross-sections show about - 65% relative biases at maximum, corresponding to about - 4.6 dB difference. Overall, the RGA agrees well with the DDA computations for all the cases studied and is more accurate for the integrated quantities, such as the single-scattering albedo and the asymmetry parameter than the cross-sections for the same snowflakes. The accuracy of the RGA seems to improve, when the number of monomers is increased in an aggregate, and decrease, when the frequency increases. It is also more accurate for less dense monomer shapes, such as stellar dendrites. The DDA and RGA results are well correlated; the sample correlation coefficients of those are close to unity throughout the study. Therefore, the accuracy of the RGA could be improved by applying appropriate correction factors.
Superior haptic-to-visual shape matching in autism spectrum disorders.
Nakano, Tamami; Kato, Nobumasa; Kitazawa, Shigeru
2012-04-01
A weak central coherence theory in autism spectrum disorder (ASD) proposes that a cognitive bias toward local processing in ASD derives from a weakness in integrating local elements into a coherent whole. Using this theory, we hypothesized that shape perception through active touch, which requires sequential integration of sensorimotor traces of exploratory finger movements into a shape representation, would be impaired in ASD. Contrary to our expectation, adults with ASD showed superior performance in a haptic-to-visual delayed shape-matching task compared to adults without ASD. Accuracy in discriminating haptic lengths or haptic orientations, which lies within the somatosensory modality, did not differ between adults with ASD and adults without ASD. Moreover, this superior ability in inter-modal haptic-to-visual shape matching was not explained by the score in a unimodal visuospatial rotation task. These results suggest that individuals with ASD are not impaired in integrating sensorimotor traces into a global visual shape and that their multimodal shape representations and haptic-to-visual information transfer are more accurate than those of individuals without ASD. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi
2002-12-01
We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.
Rubens, P; Heremans, K
2000-12-01
The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed. Copyright 2000 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Bhat, R. B.
1979-01-01
A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.
Fano q-reversal in topological insulator Bi 2Se 3
S. V. Dordevic; Petrovic, C.; Foster, G. M.; ...
2016-03-22
Here, we studied the magneto-optical response of a canonical topological insulator Bi 2Se 3 with the goal of addressing a controversial issue of electron–phonon coupling. Magnetic-field induced modifications of reflectance are very pronounced in the infrared part of the spectrum, indicating strong electron–phonon coupling. This coupling causes an asymmetric line-shape of the 60 cm –1 phonon mode, and is analyzed within the Fano formalism. The analysis reveals that the Fano asymmetry parameter ( q) changes sign when the cyclotron resonance is degenerate with the phonon mode. To the best of our knowledge this is the first example of magnetic fieldmore » driven q-reversal.« less
Maturity assessment of harumanis mango using thermal camera sensor
NASA Astrophysics Data System (ADS)
Sa'ad, F. S. A.; Shakaff, A. Y. Md.; Zakaria, A.; Abdullah, A. H.; Ibrahim, M. F.
2017-03-01
The perceived quality of fruits, such as mangoes, is greatly dependent on many parameters such as ripeness, shape, size, and is influenced by other factors such as harvesting time. Unfortunately, a manual fruit grading has several drawbacks such as subjectivity, tediousness and inconsistency. By automating the procedure, as well as developing new classification technique, it may solve these problems. This paper presents the novel work on the using Infrared as a Tool in Quality Monitoring of Harumanis Mangoes. The histogram of infrared image was used to distinguish and classify the level of ripeness of the fruits based on the colour spectrum by week. The approach proposed thermal data was able to achieve 90.5% correct classification.
The influence of tortuosity on the spectrum of radiation from lightning return strokes
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.
The structure and spectrum of the accretion shock in the atmospheres of young stars
NASA Astrophysics Data System (ADS)
Dodin, Alexandr
2018-04-01
The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.
... severe defect, resulting in essentially nonfunctional peroxisomes. This phenomenon produces the range of severity of the disorders. How is the Zellweger Spectrum Diagnosed? The distinctive shape of the head and face of a child born with one of the diseases of the ...
Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux
NASA Astrophysics Data System (ADS)
Yushkov, A. V.; Lagutin, A. A.
2008-12-01
It is shown that the primary proton spectrum, reconstructed from sea-level and underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS 3.97, and SIBYLL 2.1 interaction models, demonstrates not only model-dependent intensity, but also a model-dependent form. For correct reproduction of muon spectrum shape the primary proton flux should have a nonconstant power index for all considered models, except SIBYLL 2.1, with break at energies around 10 15 TeV and a value of exponent before break close to that obtained in the ATIC-2 experiment. To validate the presence of this break, understanding of inclusive spectra behavior in the fragmentation region in p-air collisions should be improved, but we show that is impossible to do on the basis of the existing experimental data on primary nuclei, atmospheric muon, and hadron fluxes.
ERIC Educational Resources Information Center
Kuo, Melissa H.; Magill-Evans, Joyce; Zwaigenbaum, Lonnie
2015-01-01
Adolescents with autism spectrum disorder spend considerable time in media activities. Parents play an important role in shaping adolescents' responses to media. This study explored the mediation strategies that parents of adolescents with autism spectrum disorder used to manage television and video game use, factors associated with their use of…
The effect of ice crystal shape on aircraft contrails
NASA Astrophysics Data System (ADS)
Meza Castillo, Omar E.
Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in ice crystal number, N(t), is not significant compared with the level of uncertainty. In young contrails, the difference between spherical and non-spherical shapes in N(t) is less than 7% for relatively large ice particles and 23% for relatively small ice particles. The ice mass, M(t), is not significantly affected by the crystal shapes, with less than 8% difference. However, the ice surface area, S(t), is the ice metric more sensitive to crystal shape, with a maximum difference of 68%. It increases at late time, though it is mainly governed by geometrical rather than dynamical effects. The small sensitivity to shape effects in the ice contrail metrics when radiation is not included suggests that the spherical shape will provide a reasonable representation for all shapes found in the in-situ studies. The radiation is included at late time, when the lasting effects of contrails are more critical. The inclusion of coupled radiation increases the level of dispersion in the results and hence increases slightly the differences due to shape effects. The small difference is also observed in the infrared heating rates of contrails.
Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.
2014-01-01
The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.
Effects of SO(10)-inspired scalar non-universality on the MSSM parameter space at large tanβ
NASA Astrophysics Data System (ADS)
Ramage, M. R.
2005-08-01
We analyze the parameter space of the ( μ>0, A=0) CMSSM at large tanβ with a small degree of non-universality originating from D-terms and Higgs-sfermion splitting inspired by SO(10) GUT models. The effects of such non-universalities on the sparticle spectrum and observables such as (, B(b→Xγ), the SUSY threshold corrections to the bottom mass and Ωh are examined in detail and the consequences for the allowed parameter space of the model are investigated. We find that even small deviations to universality can result in large qualitative differences compared to the universal case; for certain values of the parameters, we find, even at low m and m, that radiative electroweak symmetry breaking fails as a consequence of either |<0 or mA2<0. We find particularly large departures from the mSugra case for the neutralino relic density, which is sensitive to significant changes in the position and shape of the A resonance and a substantial increase in the Higgsino component of the LSP. However, we find that the corrections to the bottom mass are not sufficient to allow for Yukawa unification.
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum
NASA Technical Reports Server (NTRS)
Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.;
2011-01-01
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be Beta(sub 3000) is identical to 6.8 +/- 2.9 mu K (exp 2), where Beta (sub l) is identical to l(l + 1) C(sub l)/2pi. The IR Poisson power at 148 GHz is Bewta(sub 3000) 7.8 +/- 0.7 muK(exp 2) (C(sub l) = 5.5 +/- 0.5 nK(exp 2)), and a clustered IR component is required with Beta (sub 3000) = 4.6 +/- 0.9 muK(exp 2), assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 mu K(exp 2), is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index alpha = 3.69 +/- 0.14 for flux scaling as S(nu) varies as nu(sup alpha). We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),
Decaying fermionic dark matter search with CALET
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Motz, H.; Torii, S.; Asaoka, Y.
2017-08-01
The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:105) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS-02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, S.; Torii, S.; Motz, H.
The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:10{sup 5}) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with eithermore » a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS−02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.« less
Little Boy neutron spectrum below 1 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, A.E.
1984-01-01
A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured atmore » the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.« less
Bentley, T. William
2015-01-01
Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228
Bentley, T William
2015-05-08
Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels-an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride).
An alternative interpretation for cosmic ray peaks
Kim, Doojin; Park, Jong -Chul
2015-10-03
We propose an alternative mechanism based upon dark matter (DM) interpretation for anomalous peak signatures in cosmic ray measurements, assuming an extended dark sector with two DM species. This is contrasted with previous effort to explain various line-like cosmic-ray excesses in the context of DM models where the relevant DM candidate directly annihilates into Standard Model (SM) particles. The heavier DM is assumed to annihilate to an on-shell intermediate state. As the simplest choice, it decays directly into the lighter DM along with an unstable particle which in turn decays to a pair of SM states corresponding to the interestingmore » cosmic anomaly. We show that a sharp continuum energy peak can be readily generated under the proposed DM scenario, depending on dark sector particle mass spectra. Remarkably, such a peak is robustly identified as half the mass of the unstable particle. Furthermore, other underlying mass parameters are analytically related to the shape of energy spectrum. We apply this idea to the two well-known line excesses in the cosmic photon spectrum: 130 GeV γ-ray line and 3.5 keV X-ray line. As a result, each observed peak spectrum is well-reproduced by theoretical expectation predicated upon our suggested mechanism, and moreover, our resulting best fits provide rather improved χ 2 values.« less
Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems
NASA Technical Reports Server (NTRS)
Cubukcu, Erkin
2012-01-01
This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched upon. Additionally the concept of the RRC filtering and some facts about the RRC filters will be presented
[Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].
Lu, Yu; Li, Xiang-Ru; Yang, Tan
2014-11-01
It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.
The shape parameter and its modification for defining coastal profiles
NASA Astrophysics Data System (ADS)
Türker, Umut; Kabdaşli, M. Sedat
2009-03-01
The shape parameter is important for the theoretical description of the sandy coastal profiles. This parameter has previously been defined as a function of the sediment-settling velocity. However, the settling velocity cannot be characterized over a wide range of sediment grains. This, in turn, limits the calculation of the shape parameter over a wide range. This paper provides a simpler and faster analytical equation to describe the shape parameter. The validity of the equation has been tested and compared with the previously estimated values given in both graphical and tabular forms. The results of this study indicate that the analytical solutions of the shape parameter improved the usability of profile better than graphical solutions, predicting better results both at the surf zone and offshore.
Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor
NASA Astrophysics Data System (ADS)
Haaranen, M.; Kotila, J.; Suhonen, J.
2017-02-01
Effective values of the axial-vector coupling constant gA have lately attracted much attention due to the prominent role of gA in determining the half-lives of double β decays, in particular their neutrinoless mode. The half-life method, i.e., comparing the calculated half-lives to the corresponding experimental ones, is the most widely used method to access the effective values of gA. The present paper investigates the possibilities offered by a complementary method: the spectrum-shape method (SSM). In the SSM, comparison of the shapes of the calculated and measured β electron spectra of forbidden nonunique β decays yields information on the magnitude of gA. In parallel, we investigate the impact of the next-to-leading-order terms of the β -decay shape function and the radiative corrections on the half-life method and the SSM by analyzing the fourfold forbidden decays of 113Cd and 115In by using three nuclear-structure theory frameworks; namely, the nuclear shell model, the microscopic interacting boson-fermion model, and the microscopic quasiparticle-phonon model. The three models yield a consistent result, gA≈0.92 , when the SSM is applied to the decay of 113Cd for which β -spectrum data are available. At the same time the half-life method yields results which are in tension with each other and the SSM result.
X-ray High-resolution Spectroscopy for Laser-produced Plasma
NASA Astrophysics Data System (ADS)
Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.
The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.
TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil
2016-06-20
Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less
Real-time monitoring of the human alertness level
NASA Astrophysics Data System (ADS)
Alvarez, Robin; del Pozo, Francisco; Hernando, Elena; Gomez, Eduardo; Jimenez, Antonio
2003-04-01
Many accidents are associated with a driver or machine operator's alertness level. Drowsiness often develops as a result of repetitive or monotonous tasks, uninterrupted by external stimuli. In order to enhance safety levels, it would be most desirable to monitor the individual's level of attention. In this work, changes in the power spectrum of the electroencephalographic signal (EEG) are associated with the subject's level of attention. This study reports on the initial research carried out in order to answer the following important questions: (i) Does a trend exist in the shape of the power spectrum, which will indicate the state of a subject's alertness state (drowsy, relaxed or alert)? (ii) What points on the cortex are most suitable to detect drowsiness and/or high alertness? (iii) What parameters in the power spectrum are most suitable to establish a workable alertness classification in human subjects? In this work, we answer these questions and combine power spectrum estimation and artificial neural network techniques to create a non-invasive and real - time system able to classify EEG into three levels of attention: High, Relaxed and Drowsiness. The classification is made every 10 seconds o more, a suitable time span for giving an alarm signal if the individual is with insufficient level of alertness. This time span is set by the user. The system was tested on twenty subjects. High and relaxed attention levels were measured in randomise hours of the day and drowsiness attention level was measured in the morning after one night of sleep deprivation.
Estimation of primordial spectrum with post-WMAP 3-year data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafieloo, Arman; Souradeep, Tarun
2008-07-15
In this paper we implement an improved (error-sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the Wilkinson Microwave Anisotropy Probe (WMAP) 3 year data to determine the primordial power spectrum assuming different points in the cosmological parameter space for a flat {lambda}CDM cosmological model. We also present the preliminary results of the cosmological parameter estimation by assuming a free form of the primordial spectrum, for a reasonably large volume of the parameter space. The recovered spectrum for a considerably large number of the points in the cosmological parameter space has a likelihood far better than a 'bestmore » fit' power law spectrum up to {delta}{chi}{sub eff}{sup 2}{approx_equal}-30. We use discrete wavelet transform (DWT) for smoothing the raw recovered spectrum from the binned data. The results obtained here reconfirm and sharpen the conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp cut off around the horizon scale and a bump after the horizon scale seem to be a common feature for all of these reconstructed primordial spectra. We have shown that although the WMAP 3 year data prefers a lower value of matter density for a power law form of the primordial spectrum, for a free form of the spectrum, we can get a very good likelihood to the data for higher values of matter density. We have also shown that even a flat cold dark matter model, allowing a free form of the primordial spectrum, can give a very high likelihood fit to the data. Theoretical interpretation of the results is open to the cosmology community. However, this work provides strong evidence that the data retains discriminatory power in the cosmological parameter space even when there is full freedom in choosing the primordial spectrum.« less
ERIC Educational Resources Information Center
de Jonge, Maretha V.; Kemner, Chantal; van Engeland, Herman
2006-01-01
We assessed the disembedding performance on the Embedded Figures Test (EFT) of high-functioning subjects with autism or autism spectrum disorders from multi-incidence families and the performance of their parents. The individuals with autism spectrum disorders were significantly faster than matched controls in locating the shape, but their parents…
NASA Astrophysics Data System (ADS)
Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang
2016-11-01
The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption. Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).
Planck 2013 results. XVI. Cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (ℓ ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ ℓ ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an "anomaly" in an otherwise self-consistent analysis of the Planck temperature data.
Goldstone radio spectrum signal identification, March 1980 - March 1982
NASA Technical Reports Server (NTRS)
Gaudian, B. A.
1982-01-01
The signal identification process is described. The Goldstone radio spectrum environment contains signals that are a potential source of electromagnetic interference to the Goldstone tracking receivers. The identification of these signals is accomplished by the use of signal parameters and environment parameters. Statistical data on the Goldstone radio spectrum environment from 2285 to 2305 MHz are provided.
Propagation of femtosecond laser pulses through water in the linear absorption regime.
Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W
2009-04-01
We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.
Closed loop adaptive control of spectrum-producing step using neural networks
Fu, Chi Yung
1998-01-01
Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.
Closed loop adaptive control of spectrum-producing step using neural networks
Fu, C.Y.
1998-11-24
Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.
Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.
Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao
2017-01-04
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.
1992-01-01
A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.
Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi
1994-01-01
We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.
How different are the Liège and Hamburg atlases of the solar spectrum?
NASA Astrophysics Data System (ADS)
Doerr, H.-P.; Vitas, N.; Fabbian, D.
2016-05-01
Context. The high-fidelity solar spectral atlas prepared by http://adsabs.harvard.edu/abs/1973apds.book.....D Delbouille et al. (Liège atlas, 1973) and the atlas by http://adsabs.harvard.edu/abs/1999SoPh..184..421N Neckel (Hamburg atlas, 1999, Sol. Phys., 184, 421) are widely recognised as the most important collection of reference spectra of the Sun at disc centre in the visible wavelength range. The two datasets serve as fundamental resources for many researchers, in particular for chemical abundance analyses. But despite their similar published specifications (spectral resolution and noise level), the shapes of the spectral lines in the two atlases differ significantly and systematically. Aims: Knowledge of any instrumental degradations is imperative to fully exploit the information content of spectroscopic data. We seek to investigate the magnitude of these differences and explain the possible sources. We provide the wavelength-dependent correction parameters that need to be taken into account when the spectra are to be compared with synthetic data, for instance. Methods: A parametrically degraded version of the Hamburg spectrum was fitted to the Liège spectrum. The parameters of the model (wavelength shift, broadening, intensity scaling, and intensity offset) represent the different characteristics of the respective instruments, observational strategies, and data processing. Results: The wavelength scales of the Liège and Hamburg atlases differ on average by 0.5 mÅ with a standard deviation of ± 2 mÅ, except for a peculiar region around 5500 Å. The continuum levels are offset by up to 18% below 5000 Å, but remain stably at a 0.8% difference towards the red. We find no evidence for spectral stray light in the Liège spectrum. Its resolving power is almost independent of wavelength but limited to about 216 000, which is between two to six times lower than specified. When accounting for the degradations determined in this work, the spectra of the two atlases agree to within a few parts in 103. The fit parameters displayed in Fig. 2 and derived data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A118
Relativistically correct DD and DT neutron spectra
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2014-06-01
We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2006-01-01
3896. Gordon, H.R. and Tao Du., 2001, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi ... huxleyi using disk-like shapes. Gordon and Du [2001] and Gordon [2004] found that the shape of the backscattering spectrum of detached coccoliths...from E. huxleyi could be well reproduced using a shape consisting of two parallel disks (diameter ~ 2.75 μm and thickness 0.05 μm) separated by 0.3
Bottom-up approach for microstructure optimization of sound absorbing materials.
Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond
2008-08-01
Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.
Haraguchi, Shojiro; Hara, Miwa; Shingae, Takahito; Kumauchi, Masato; Hoff, Wouter D; Unno, Masashi
2015-09-21
Raman optical activity (ROA) is an advanced technique capable of detecting structural deformations of light-absorbing molecules embedded in chromophoric proteins. Resonance Raman (RR) spectroscopy is widely used to enhance the band intensities. However, theoretical work has predicted that under resonance conditions the ROA spectrum resembles the shape of the RR spectrum. Herein, we use photoactive yellow protein (PYP) to measure the first experimental data on the effect of changing the excitation wavelength on the ROA spectra of a protein. We observe a close similarity between the shape of the RR spectrum and the resonance ROA spectrum of PYP. Furthermore, we experimentally verify the theoretical prediction concerning the ratio of the amplitudes of the ROA and Raman spectra. Our data demonstrate that selecting an appropriate excitation wavelength is a key factor for extracting structural information on a protein active site using ROA spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of neutron spectrum effects on primary damage in tritium breeding blankets
NASA Astrophysics Data System (ADS)
Choi, Yong Hee; Joo, Han Gyu
2012-07-01
The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.
Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.
Transverse vetoes with rapidity cutoff in SCET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis
We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less
Transverse vetoes with rapidity cutoff in SCET
Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis; ...
2017-12-11
We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less
NASA Astrophysics Data System (ADS)
Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.
2017-09-01
In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.
Perception of shapes targeting local and global processes in autism spectrum disorders.
Grinter, Emma J; Maybery, Murray T; Pellicano, Elizabeth; Badcock, Johanna C; Badcock, David R
2010-06-01
Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and global form processing ability. Within the visual domain, radial frequency (RF) patterns - shapes formed by sinusoidally varying the radius of a circle to add 'bumps' of a certain number to a circle - can be used to examine local and global form perception. Typically developing children and children with an ASD discriminated between circles and RF patterns that are processed either locally (RF24) or globally (RF3). Children with an ASD required greater shape deformation to identify RF3 shapes compared to typically developing children, consistent with difficulty in global processing in the ventral stream. No group difference was observed for RF24 shapes, suggesting intact local ventral-stream processing. These outcomes support the position that a deficit in global visual processing is present in ASDs, consistent with the notion of Weak Central Coherence.
The Effect of Roughness Model on Scattering Properties of Ice Crystals.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Van Diedenhoven, Bastiaan
2016-01-01
We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5deg to 20deg, where the uniform roughness model produces a plateau while the Weibull model does not.
NASA Astrophysics Data System (ADS)
Ardakani, Abbas Ghasempour; Moradi, Khatereh
2018-02-01
In this paper, an extrinsic chiral metasurface based on a silver thin film containing a periodic array of V-shaped nanostructures is proposed. The proposed structure is normally and obliquely illuminated by right- and left-handed circularly polarized plane waves and the transmission through the structure is calculated using the frequency domain finite-integration technique. Our simulation results show that the designed metasurface exhibits strong circular dichroism (CD) in the transmission Δ = T_{RCP}- T_{LCP}=0.98 in the near-infrared region under oblique incidence. To our knowledge, this is one of highest CD effects that have been achieved so far in the single-layer metasurface based on metallic nanostructures. The physical mechanism for this strong CD effect is explained in terms of the current density distribution. Furthermore, the effects of change of the incident angle, the refractive index of surrounding medium and structure parameters, such as film thickness and lattice constants on CD spectrum, are investigated. In addition, the CD phenomenon in the structure is analyzed in other frequency regions.
NASA Astrophysics Data System (ADS)
Namvari, E.; Shojaei, S.; Asgari, A.
2017-09-01
In this work, a numerical approach to investigate the room temperature luminescence emission from core/shell nanowire is presented where GaN quantum discs (QDiscs), periodically distributed in AlxGa1-xN nanowire, is considered as core and AlxGa1-xN as shell. Thin disc shaped (Ring shaped) n-doped region has been placed at the GaN/ AlxGa1-xN (AlxGa1-xN /air) interface in AlxGa1-xN region in axial (radial) directions. To obtain energy levels and related wavefunctions, self-consistent procedure has been employed to solve Schrodinger-Poisson equations with considering the spontaneous and piezoelectric polarization. Then luminescence spectrum is studied in details to recognize the parameters influent in luminescence. The results show that the amount of doping, size of QDiscs and theirs numbers have remarkable effects on the band to band luminescence emission. Our numerical calculations gives some insights into the luminescence emission of core/shell nanowire and exhibits a useful tool to analyze findings in experiments.
Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...
2017-01-03
Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less
A Quadriparametric Model to Describe the Diversity of Waves Applied to Hormonal Data.
Abdullah, Saman; Bouchard, Thomas; Klich, Amna; Leiva, Rene; Pyper, Cecilia; Genolini, Christophe; Subtil, Fabien; Iwaz, Jean; Ecochard, René
2018-05-01
Even in normally cycling women, hormone level shapes may widely vary between cycles and between women. Over decades, finding ways to characterize and compare cycle hormone waves was difficult and most solutions, in particular polynomials or splines, do not correspond to physiologically meaningful parameters. We present an original concept to characterize most hormone waves with only two parameters. The modelling attempt considered pregnanediol-3-alpha-glucuronide (PDG) and luteinising hormone (LH) levels in 266 cycles (with ultrasound-identified ovulation day) in 99 normally fertile women aged 18 to 45. The study searched for a convenient wave description process and carried out an extended search for the best fitting density distribution. The highly flexible beta-binomial distribution offered the best fit of most hormone waves and required only two readily available and understandable wave parameters: location and scale. In bell-shaped waves (e.g., PDG curves), early peaks may be fitted with a low location parameter and a low scale parameter; plateau shapes are obtained with higher scale parameters. I-shaped, J-shaped, and U-shaped waves (sometimes the shapes of LH curves) may be fitted with high scale parameter and, respectively, low, high, and medium location parameter. These location and scale parameters will be later correlated with feminine physiological events. Our results demonstrate that, with unimodal waves, complex methods (e.g., functional mixed effects models using smoothing splines, second-order growth mixture models, or functional principal-component- based methods) may be avoided. The use, application, and, especially, result interpretation of four-parameter analyses might be advantageous within the context of feminine physiological events. Schattauer GmbH.
Perception of Mirror Symmetry in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Falter, Christine M.; Bailey, Anthony J.
2012-01-01
Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…
Multispectrum analysis of air-broadened spectra in the ν3 Q branch of 12CH4
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Tran, H.; Smith, Mary Ann H.; Sams, Robert L.
2018-02-01
We report experimental measurements of spectral line shape parameters (air-broadened width, shift, and line mixing coefficients) for several transitions in the ν3 Q branch of methane in the 3000-3023 cm-1 region. 13 high-resolution, room temperature laboratory spectra of pure methane and air-broadened methane recorded with two different Fourier transform spectrometers are fitted. 12 of these spectra were acquired at 0.01 cm-1 resolution with the McMath-Pierce FTS at the National Solar Observatory on Kitt Peak, and one higher-resolution (∼0.0011 cm-1) low pressure methane spectrum was obtained with the Bruker IFS-120HR FTS at the Pacific Northwest National Laboratory, in Richland, Washington. All the spectra were obtained using high purity natural samples of CH4 and lean mixtures of the same natural CH4 in dry air. For the 12 spectra recorded at Kitt Peak, three different absorption cells (L = 5, 25 and 150 cm) were used while the methane spectrum at PNNL was obtained using a 19.95 cm long absorption cell. For the analysis, an interactive multispectrum nonlinear least squares fitting software was employed where all the 13 spectra were fitted simultaneously. An accurate and self-consistent set of line parameters were determined by constraining a few of those for severely blended transitions. Line mixing was measured for 14 transition pairs for the CH4-air collision system. A constant speed dependence parameter, consistent with measured speed dependence values obtained in other methane bands, was applied to all the transitions included in the fitted region. The present measurements are compared to values reported in the literature.
NASA Astrophysics Data System (ADS)
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Dalla Vecchia, Claudio; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J.; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J.; Eisenstein, Daniel J.; Percival, Will J.; Vargas-Magaña, Mariana; Tinker, Jeremy L.; Tojeiro, Rita; Brownstein, Joel R.; Maraston, Claudia; Nichol, Robert C.; Olmstead, Matthew D.; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2017-05-01
We extract cosmological information from the anisotropic power-spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Λ cold dark matter (ΛCDM) cosmology, we constrain the matter density to Ω M= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1 Mpc^{-1}}, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.
In this paper, we report experimental measurements of spectral line shape parameters (air-broadened width, shift, and line mixing coefficients) for several transitions in the ν 3 Q branch of methane in the 3000–3023 cm -1 region. 13 high-resolution, room temperature laboratory spectra of pure methane and air-broadened methane recorded with two different Fourier transform spectrometers are fitted. 12 of these spectra were acquired at 0.01 cm -1 resolution with the McMath-Pierce FTS at the National Solar Observatory on Kitt Peak, and one higher-resolution (~0.0011 cm-1) low pressure methane spectrum was obtained with the Bruker IFS-120HR FTS at the Pacific Northwestmore » National Laboratory, in Richland, Washington. All the spectra were obtained using high purity natural samples of CH 4 and lean mixtures of the same natural CH 4 in dry air. For the 12 spectra recorded at Kitt Peak, three different absorption cells (L= 5, 25 and 150 cm) were used while the methane spectrum at PNNL was obtained using a 19.95 cm long absorption cell. For the analysis, an interactive multispectrum nonlinear least squares fitting software was employed where all the 13 spectra were fitted simultaneously. An accurate and self-consistent set of line parameters were determined by constraining a few of those for severely blended transitions. Line mixing was measured for fourteen transition pairs for the CH 4-air collision system. Lastly, a constant speed dependence parameter, consistent with measured speed dependence values obtained in other methane bands, was applied to all the transitions included in the fitted region. The present measurements are compared to values reported in the literature.« less
Multispectrum analysis of air-broadened spectra in the ν 3 Q branch of 12CH4
Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; ...
2017-12-06
In this paper, we report experimental measurements of spectral line shape parameters (air-broadened width, shift, and line mixing coefficients) for several transitions in the ν 3 Q branch of methane in the 3000–3023 cm -1 region. 13 high-resolution, room temperature laboratory spectra of pure methane and air-broadened methane recorded with two different Fourier transform spectrometers are fitted. 12 of these spectra were acquired at 0.01 cm -1 resolution with the McMath-Pierce FTS at the National Solar Observatory on Kitt Peak, and one higher-resolution (~0.0011 cm-1) low pressure methane spectrum was obtained with the Bruker IFS-120HR FTS at the Pacific Northwestmore » National Laboratory, in Richland, Washington. All the spectra were obtained using high purity natural samples of CH 4 and lean mixtures of the same natural CH 4 in dry air. For the 12 spectra recorded at Kitt Peak, three different absorption cells (L= 5, 25 and 150 cm) were used while the methane spectrum at PNNL was obtained using a 19.95 cm long absorption cell. For the analysis, an interactive multispectrum nonlinear least squares fitting software was employed where all the 13 spectra were fitted simultaneously. An accurate and self-consistent set of line parameters were determined by constraining a few of those for severely blended transitions. Line mixing was measured for fourteen transition pairs for the CH 4-air collision system. Lastly, a constant speed dependence parameter, consistent with measured speed dependence values obtained in other methane bands, was applied to all the transitions included in the fitted region. The present measurements are compared to values reported in the literature.« less
Light Scattering by Marine Particles: Modeling with Non-Spherical Shapes
2007-09-30
huxleyi using disk-like shapes. Gordon and Du [2001] and Gordon [2004] found that the shape of the backscattering spectrum of detached coccoliths...from E. huxleyi could be well reproduced using a shape consisting of two parallel disks (diameter ~ 2.75 μm and thickness 0.05 μm) separated by 0.3...3886−3896. Gordon, H.R. and Tao Du., 2001, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
Statistical estimation of ultrasonic propagation path parameters for aberration correction.
Waag, Robert C; Astheimer, Jeffrey P
2005-05-01
Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.
A novel method for detecting airway narrowing using breath sound spectrum analysis in children.
Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki
2016-01-01
Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Lu; Davis, Philip; Dorell, Ian; Li, Kexin; Oncer, Onur; Wang, Lucy; Novick, Stewart E.; Kukolich, Stephen G.
2017-12-01
The rotational spectrum of the T-shaped cyanoacetylene carbon dioxide dimer, HCCCN⋯CO2, was measured using two Balle-Flygare Fourier transform microwave (FTMW) spectrometers between 1.4 GHz and 25 GHz. Only the Ka = 0, 2, 4 branches of spectrum from J‧ = 1 ← 0 to J″ = 16 ← 15 transitions were observed. The vanishing of the Ka = 1, 3, … transitions demonstrates a C2v symmetry complex with a T-shaped alignment of the subunits. The spectroscopic constants were fit using Pickett's SPFIT/SPCAT suite of programs obtaining: A0 = 11273(18) MHz, B0 = 764.088(21) MHz, C0 = 716.254(21) MHz, ΔJ = 0.50329(34) kHz, ΔJK = 0.120867(11) MHz, ΔK = -28.17(36) MHz, δJ = 0.0613(21) kHz, δK = 44.25(95) kHz, ΦJ = 0.0053(12) Hz, ΦJK = 9.820(55) Hz, ΦKJ = -0.59325(72) kHz, ΦK = -2.3719(53) MHz, ϕJ = 0.0398(42) Hz, ϕJK = 6.9(9) Hz, and ϕK = -3.592(13) kHz. The 14N nuclear quadrupole coupling constants were fit to χaa = -4.12753(38) MHz and χbb - χcc = 0.103(15) MHz. The small negative inertial defect, Δ0 = -0.66(12) u Å2, indicates a vibrationally averaged planar complex with non-negligible low frequency out-of-plane vibrations. While maintaining near-planar orientation, both binding partners exhibit large-amplitude bending vibrations within the plane. To deal with the intermolecular dynamics, a torsional oscillation model was developed in this work for the structural analysis. According to this model, the vibrational bending amplitude for HCCCN torsional angle is 10.(1)°, with the a-axis of complex; CO2 subtending a 5.4(5)° torsional oscillation angle with the b molecular axis. The van der Waals bond length is 3.0137(3) Å. The stretching force constant, ks = 3.9 N/m, and the stretching frequency, νs = 53 cm-1, for the van der Waals bond were calculated using the pseudo-diatomic model. High-level MP2 and DFT calculations of structural parameters, rotational constants, and 14N quadrupole coupling strengths were made and the results compared with experimental results.
Angular power spectrum of galaxies in the 2MASS Redshift Survey
NASA Astrophysics Data System (ADS)
Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro
2018-02-01
We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.
A New Goodness-of-Fit Test for the Weibull Distribution Based on Spacings
1993-03-01
Values for Z* test statistic: Samplesize N, shape parameter 1.0, a levels are 0.20 thru 0.01 ........................... .. 24 3. Skewness of the...parameter K=0.5, a levels are 0.20 thru 0.01 ....... ............................ 30 5. Power of the Test: Samplesize N=20, shape parameter K=1.0, a ...parameter 1.0, alpha level 0.01 ...... ... 36 12. Power of the Test: Samplesize N=30, shape parameter K=1.5, a levels are 0.20 thru 0.01
An inventory of bispectrum estimators for redshift space distortions
NASA Astrophysics Data System (ADS)
Regan, Donough
2017-12-01
In order to best improve constraints on cosmological parameters and on models of modified gravity using current and future galaxy surveys it is necessary maximally exploit the available data. As redshift-space distortions mean statistical translation invariance is broken for galaxy observations, this will require measurement of the monopole, quadrupole and hexadecapole of not just the galaxy power spectrum, but also the galaxy bispectrum. A recent (2015) paper by Scoccimarro demonstrated how the standard bispectrum estimator may be expressed in terms of Fast Fourier Transforms (FFTs) to afford an extremely efficient algorithm, allowing the bispectrum multipoles on all scales and triangle shapes to be measured in comparable time to those of the power spectrum. In this paper we present a suite of alternative proxies to measure the three-point correlation multipoles. In particular, we describe a modal (or plane wave) decomposition to capture the information in each multipole in a series of basis coefficients, and also describe three compressed estimators formed using the skew-spectrum, the line correlation function and the integrated bispectrum, respectively. As well as each of the estimators offering a different measurement channel, and thereby a robustness check, it is expected that some (especially the modal estimator) will offer a vast data compression, and so a much reduced covariance matrix. This compression may be vital to reduce the computational load involved in extracting the available three-point information.
MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique
2011-01-01
Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.
Amplitude spectrum distance: measuring the global shape divergence of protein fragments.
Galiez, Clovis; Coste, François
2015-08-14
In structural bioinformatics, there is an increasing interest in identifying and understanding the evolution of local protein structures regarded as key structural or functional protein building blocks. A central need is then to compare these, possibly short, fragments by measuring efficiently and accurately their (dis)similarity. Progress towards this goal has given rise to scores enabling to assess the strong similarity of fragments. Yet, there is still a lack of more progressive scores, with meaningful intermediate values, for the comparison, retrieval or clustering of distantly related fragments. We introduce here the Amplitude Spectrum Distance (ASD), a novel way of comparing protein fragments based on the discrete Fourier transform of their C(α) distance matrix. Defined as the distance between their amplitude spectra, ASD can be computed efficiently and provides a parameter-free measure of the global shape dissimilarity of two fragments. ASD inherits from nice theoretical properties, making it tolerant to shifts, insertions, deletions, circular permutations or sequence reversals while satisfying the triangle inequality. The practical interest of ASD with respect to RMSD, RMSDd, BC and TM scores is illustrated through zinc finger retrieval experiments and concrete structure examples. The benefits of ASD are also illustrated by two additional clustering experiments: domain linkers fragments and complementarity-determining regions of antibodies. Taking advantage of the Fourier transform to compare fragments at a global shape level, ASD is an objective and progressive measure taking into account the whole fragments. Its practical computation time and its properties make ASD particularly relevant for applications requiring meaningful measures on distantly related protein fragments, such as similar fragments retrieval asking for high recalls as shown in the experiments, or for any application taking also advantage of triangle inequality, such as fragments clustering. ASD program and source code are freely available at: http://www.irisa.fr/dyliss/public/ASD/.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
Spectral solution of the inverse Mie problem
NASA Astrophysics Data System (ADS)
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
Consistency relations for sharp features in the primordial spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c{sub s} (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result ofmore » the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c{sub s} and H) holds, including models in which features in the spectra are both sudden and resonant.« less
Validity of the Born approximation for beyond Gaussian weak lensing observables
Petri, Andrea; Haiman, Zoltan; May, Morgan
2017-06-06
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N-body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show thatmore » deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O(Φ 3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O(Φ 4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5σ. Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.« less
Validity of the Born approximation for beyond Gaussian weak lensing observables
NASA Astrophysics Data System (ADS)
Petri, Andrea; Haiman, Zoltán; May, Morgan
2017-06-01
Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N -body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show that deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O (Φ3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O (Φ4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5 σ . Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.
Reconstructing spectral cues for sound localization from responses to rippled noise stimuli.
Van Opstal, A John; Vliegen, Joyce; Van Esch, Thamar
2017-01-01
Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners' spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Imaging proportional counters for the stellar X-ray polarimeter. [on Soviet Spectrum X-Gamma mission
NASA Technical Reports Server (NTRS)
Watkins, R. B., Jr.; Kaaret, P.
1990-01-01
The xenon-filled IPCs being developed for the Stellar X-ray Polarimeter are described. The requirements placed on the IPCs by the design of the polarimeter are discussed and results on the performance of prototype counters are presented. The design of a prototype of the IPCs is described. Finally, the performance of the prototype is reported. Due to the extremely low count rates encountered in X-ray polarimetry, efficient background rejection is the most critical parameter of the IPCs. Using a background rejection scheme employing anticoincidence and pulse shape discrimination, a rejection efficiency of 99 percent has been achieved for Co-60-induced events over an energy range of 2 to 15 keV while retaining more than 80 percent of the X-ray efficiency.
Radial Photonic Crystal for detection of frequency and position of radiation sources.
Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J
2012-01-01
Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.
NASA Astrophysics Data System (ADS)
Simard, G.; Omori, Y.; Aylor, K.; Baxter, E. J.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Henning, J. W.; Holder, G. P.; Hou, Z.; Holzapfel, W. L.; Hrubes, J. D.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Wu, W. L. K.
2018-06-01
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 deg2 of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the lensing power spectrum to a model including cold dark matter and a cosmological constant ({{Λ }}{CDM}), and to models with single-parameter extensions to {{Λ }}{CDM}. We find constraints that are comparable to and consistent with those found using the full-sky Planck CMB lensing data, e.g., {σ }8{{{Ω }}}{{m}}0.25 = 0.598 ± 0.024 from the lensing data alone with weak priors placed on other parameters. Combining with primary CMB data, we explore single-parameter extensions to {{Λ }}{CDM}. We find {{{Ω }}}k =-{0.012}-0.023+0.021 or {M}ν < 0.70 eV at 95% confidence, in good agreement with results including the lensing potential as measured by Planck. We include two parameters that scale the effect of lensing on the CMB: {A}L, which scales the lensing power spectrum in both the lens reconstruction power and in the smearing of the acoustic peaks, and {A}φ φ , which scales only the amplitude of the lensing reconstruction power spectrum. We find {A}φ φ × {A}L = 1.01 ± 0.08 for the lensing map made from combined SPT and Planck data, indicating that the amount of lensing is in excellent agreement with expectations from the observed CMB angular power spectrum when not including the information from smearing of the acoustic peaks.
Investigation of organic light emitting diodes for interferometric purposes
NASA Astrophysics Data System (ADS)
Pakula, Anna; Zimak, Marzena; Sałbut, Leszek
2011-05-01
Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.
A comparative approach to closed-loop computation.
Roth, E; Sponberg, S; Cowan, N J
2014-04-01
Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sharp inflaton potentials and bi-spectra: effects of smoothening the discontinuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jérôme; Sriramkumar, L.; Hazra, Dhiraj Kumar, E-mail: jmartin@iap.fr, E-mail: sriram@physics.iitm.ac.in, E-mail: dhiraj@apctp.org
Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slowmore » roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.« less
Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy.
Bowling, Heather; Klann, Eric
2014-09-03
In this issue of Neuron, Tang et al. (2014) explore the relationship between developmental dendritic pruning, elevated mTORC1 signaling, macroautophagy, and autism spectrum disorder. The study provides valuable new insight into mTORC1-dependent cellular dysfunction and neurodevelopmental disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Perception of Shapes Targeting Local and Global Processes in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Grinter, Emma J.; Maybery, Murray T.; Pellicano, Elizabeth; Badcock, Johanna C.; Badcock, David R.
2010-01-01
Background: Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and…
Shaping the Future for Children with Foetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
Blackburn, Carolyn; Carpenter, Barry; Egerton, Jo
2010-01-01
This article describes work undertaken in connection with an ongoing research project funded by the Training and Development Agency for Schools. It illustrates the educational implications of foetal alcohol spectrum disorders (FASD) and its implications for the educational workforce in seeking to meet the needs of those children who are affected.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Millea, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Narimani, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Pettorino, V.; Piacentini, F.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.
2017-11-01
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment ℓ < 800 in the Planck temperature power spectrum) and an all angular-scale data set (ℓ < 2500Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected dispersion for each parameter, are { Δτ,ΔAse- 2τ,Δns,Δωm,Δωb,Δθ∗ } = { -1.7,-2.2,1.2,-2.0,1.1,0.9 }, with a χ2 value of 8.0. We find that this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing ℓ < 800 instead to ℓ> 800, or splitting at a different multipole, yields similar results. We examined the ℓ < 800 model residuals in the ℓ> 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is τ, which, at fixed Ase- 2τ, affects the ℓ> 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at ℓ < 800 that leads to somewhat different best-fit parameters than come from the full ℓ range?" We find that if we discard the data at ℓ < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full ℓ range, the ℓ < 800 best-fit parameters shift significantly towards the ℓ < 2500 best-fit parameters. In contrast, including ℓ < 30, this previously noted "low-ℓ deficit" drives ns up and impacts parameters correlated with ns, such as ωm and H0. As expected, the ℓ < 30 data have a much greater impact on the ℓ < 800 best fit than on the ℓ < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-ℓ residuals and the deficit in low-ℓ power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.
NASA Astrophysics Data System (ADS)
Zupančič, B.; Emri, I.
2009-11-01
This is the second paper in the series addressing the constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of such belts certain segments of the belt structure are loaded via tooth-like cyclical loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation (incrementation) process occurs. It was shown that the location of a critical rotation speed strongly depends on the distribution (shape) of the retardation spectrum, whereas the magnitude of the accumulated strain is governed by the strength of the corresponding spectrum lines. These interrelations are extremely non-linear. The strain accumulation process is most intensive at the beginning of the drive belt operation, and is less intensive for longer belts. The strain accumulation process is governed by the spectrum lines that are positioned within a certain region, which we call the Strain Accumulation Window (SAW). An SAW is always located to the right of the spectrum line, L i , at log ( ω λ i )=0, where ω is the operational angular velocity. The width of the SAW depends on the width of the material spectrum. Based on the following analysis a new designing criterion is proposed for use in engineering applications for selecting a proper material for general drive-belt operations.
Spectrum fatigue testing of T-shaped tension clips
NASA Astrophysics Data System (ADS)
Palmberg, Bjoern; Wallstenius, Bengt
1992-12-01
An investigation of strain distributions during static loading and crack propagation and fatigue lives under spectrum loading of T-shaped tension clips was carried out. Three slightly different, with respect to geometry, T shaped tension clips made of aluminum alloy 7010-T73651 were studied. The type 1 and 4 test specimens were different only with respect to the web thickness of the clamping end. The type 1 and 2 test specimens were different with repect to milled flat circular countersink around the holes in the type 2 specimens and with respect to the radius between the web and foot. The spectrum fatigue loading consisted of a load sequence representative for the wing root, lower side, of a fighter aircraft. Tests were made at two different load levels for each specimen type. The strain measurements show that the countersink in the type 2 specimens increases the stresses in the fatigue critical region. This is also manifested in the spectrum fatigue life results, where type 2 specimens show the shortest fatigue lives. The strain measurements show that the torque used for the bolts in joining two test specimens or one test specimen and a dummy has a rather large impact on the strain in the fatigue region. The strains decrease with increasing torque. The spectrum fatigue loading resulted in approximately an equal number of flights to obtain a 10.0 mm crack for specimens of type 1 and 4. This suggests that the type 1 configuration is superior since the web thickness is smaller for this type as compared to the type 4 specimens. In other words, the type 4 specimens have an unnecessary oversize of the clamping end web thickness.
Robust functional statistics applied to Probability Density Function shape screening of sEMG data.
Boudaoud, S; Rix, H; Al Harrach, M; Marin, F
2014-01-01
Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.
Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Burtovoi, A.; Zampieri, L.
2016-07-01
We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.
Recovering Parameters of Johnson's SB Distribution
Bernard R. Parresol
2003-01-01
A new parameter recovery model for Johnson's SB distribution is developed. This latest alternative approach permits recovery of the range and both shape parameters. Previous models recovered only the two shape parameters. Also, a simple procedure for estimating the distribution minimum from sample values is presented. The new methodology...
SPEXTRA: Optimal extraction code for long-slit spectra in crowded fields
NASA Astrophysics Data System (ADS)
Sarkisyan, A. N.; Vinokurov, A. S.; Solovieva, Yu. N.; Sholukhova, O. N.; Kostenkov, A. E.; Fabrika, S. N.
2017-10-01
We present a code for the optimal extraction of long-slit 2D spectra in crowded stellar fields. Its main advantage and difference from the existing spectrum extraction codes is the presence of a graphical user interface (GUI) and a convenient visualization system of data and extraction parameters. On the whole, the package is designed to study stars in crowded fields of nearby galaxies and star clusters in galaxies. Apart from the spectrum extraction for several stars which are closely located or superimposed, it allows the spectra of objects to be extracted with subtraction of superimposed nebulae of different shapes and different degrees of ionization. The package can also be used to study single stars in the case of a strong background. In the current version, the optimal extraction of 2D spectra with an aperture and the Gaussian function as PSF (point spread function) is proposed. In the future, the package will be supplemented with the possibility to build a PSF based on a Moffat function. We present the details of GUI, illustrate main features of the package, and show results of extraction of the several interesting spectra of objects from different telescopes.
Rogue waves and large deviations in deep sea.
Dematteis, Giovanni; Grafke, Tobias; Vanden-Eijnden, Eric
2018-01-30
The appearance of rogue waves in deep sea is investigated by using the modified nonlinear Schrödinger (MNLS) equation in one spatial dimension with random initial conditions that are assumed to be normally distributed, with a spectrum approximating realistic conditions of a unidirectional sea state. It is shown that one can use the incomplete information contained in this spectrum as prior and supplement this information with the MNLS dynamics to reliably estimate the probability distribution of the sea surface elevation far in the tail at later times. Our results indicate that rogue waves occur when the system hits unlikely pockets of wave configurations that trigger large disturbances of the surface height. The rogue wave precursors in these pockets are wave patterns of regular height, but with a very specific shape that is identified explicitly, thereby allowing for early detection. The method proposed here combines Monte Carlo sampling with tools from large deviations theory that reduce the calculation of the most likely rogue wave precursors to an optimization problem that can be solved efficiently. This approach is transferable to other problems in which the system's governing equations contain random initial conditions and/or parameters.
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Lin, Junxiu; Jia, Chunde; Wang, Rong
2003-12-01
In this paper, we attempt to find a valid method to distinguish gastric cancer and atrophic gastritis. Auto-fluorescence and Raman spectroscopy of laser induced (514.5 nm and 488.0 nm) was measured. The serum spectrum is different between normal and cancer. Average value of diagnosis parameter for normal serum, red shift is less than 12 nm and Raman relative intensity of peak C by 514.5 nm excited is stronger than that of 488.0 nm. To gastric cancer, its red shift of average is bigger than 12 nm and relative intensity of Raman peak C by 514.5 nm excited is weaker than that by 488.0 nm. To atrophic gastritis, the distribution state of Raman peaks is similar with normal serum and auto-fluorescence spectrum's shape is similar to that of gastric cancer. Its average Raman peak red shift is bigger than 12 nm and the relative intensity of peak C by 514.5 excited is stronger than that of by 488.0. We considered it as a criterion and got an accuracy of 85.6% for diagnosis of gastric cancer compared with the result of clinical diagnosis.
Design principles for morphologies of antireflection patterns for solar absorbing applications.
Moon, Yoon-Jong; Na, Jin-Young; Kim, Sun-Kyung
2015-07-01
Two-dimensional surface texturing is a widespread technology for imparting broadband antireflection, yet its design rules are not completely understood. The dependence of the reflectance spectrum of a periodically patterned glass film on various structural parameters (e.g., pitch, height, shape, and fill factor) has been investigated by means of full-vectorial numerical simulations. An average weighted reflectivity accounting for the AM1.5G solar spectrum (λ=300-1000 nm) was sinusoidally modulated by a rod pattern's height, and was minimized for pitches of 400-600 nm. When a rationally optimized cone pattern was used, the average weighted reflectivity was less than 0.5%, for incident angles of up to 40° off normal. The broadband antireflection of a cone pattern was reproduced well by a graded refractive index film model corresponding to its geometry, with the addition of a diffraction effect resulting from its periodicity. The broadband antireflection ability of optimized cone patterns is not limited to the glass material, but rather is generically applicable to other semiconductor materials, including Si and GaAs. The design rules developed herein represent a key step in the development of light-absorbing devices, such as solar cells.
Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei
2010-07-01
A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.
Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D
2018-05-01
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Diffraction analysis of customized illumination technique
NASA Astrophysics Data System (ADS)
Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.
2004-05-01
Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.
Investigations of gain redshift in high peak power Ti:sapphire laser systems
NASA Astrophysics Data System (ADS)
Wu, Fenxiang; Yu, Linpeng; Zhang, Zongxin; Li, Wenkai; Yang, Xiaojun; Wu, Yuanfeng; Li, Shuai; Wang, Cheng; Liu, Yanqi; Lu, Xiaoming; Xu, Yi; Leng, Yuxin
2018-07-01
Gain redshift in high peak power Ti:sapphire laser systems can result in narrowband spectral output and hence lengthen the compressed pulse duration. In order to realize broadband spectral output in 10 PW-class Ti:sapphire lasers, the influence on gain redshift induced by spectral pre-shaping, gain distribution of cascaded amplifiers and Extraction During Pumping (EDP) technique have been investigated. The theoretical and experimental results show that the redshift of output spectrum is sensitive to the spectral pre-shaping and the gain distribution of cascaded amplifiers, while insensitive to the pumping scheme with or without EDP. Moreover, the output spectrum from our future 10 PW Ti:sapphire laser is theoretically analyzed based on the investigations above, which indicates that a Fourier-transform limited (FTL) pulse duration of 21 fs can be achieved just by optimizing the spectral pre-shaping and gain distribution in 10 PW-class Ti:sapphire lasers.
NASA Astrophysics Data System (ADS)
Chen, Hui Chi; Shen, Wen-Tai; Kong, Yu-Han; Chuang, Chun-Hao
2008-02-01
Because of the softness of membrane, erythrocytes (red blood cell, RBC) have different shapes while being immersed in buffer with different osmotic pressure. While affecting by different viruses and illnesses, RBC may change its shape, or its membrane may become rigid. Moreover, RBC will ford and stretch when it is trapped by optical tweezers. Therefore, the behaviors of RBC in optical tweezers raise more discussion. In this report, we set up an optical tweezers to trap RBC of small animals like feline and canine. By adding a long working distance objective to collect the side-viewing image, a 3-D image system was constructed to detect the motion of trapped RBC. To improve the image quality for side-view, an aperture and narrow glass plate were used. From the video of these images and their spatial spectrum, the shape of trapped RBC was studied.
Fu, Lianguo; Wang, Haijun; Sun, Lili; Yang, Yide; Li, Xiaohui; Wang, Shuo; Meng, Xiangkun; Wang, Zhenghe; Ma, Jun
2015-04-01
To analyze the correlation between children and adolescents' body shape parameters and parent's dissatisfaction on it. Stratified cluster sampling method was used to select students and their parents, and height, weight, waist circumference (WC), hip circumference (HC), skinfold thichness of the students were measured. Body image from parents was studied through the 'Ma body figural shape'. Correlation between body shape parameters and dissatisfaction towards them from the parents was analyzed under both simple- and multiple-level methods. The overall prevalence of dissatisfaction on body-shapes from parents was 69.0%, including 28.6% of the parents expecting children to be fat (PEBF) while, 40.4% of the parents expecting their children to be thin (PEBT). In males, parameters as height, weight, WC, HC, skin fold thickness, BMI in PEBT were 1.9 cm, 11.9 kg, 13.2 cm, 8.8 cm, 32.3 mm, 4.7 kg/m² respectively, all higher than the satisfaction from the parents (PBIS) (all P < 0.05), and these parameters were 2.3 cm, 7.1 kg, 7.2 cm, 5.8 cm, 14.1 mm, 2.3 kg/m² higher in PBIS than that of PEBF, respectively (all P < 0.05). In females, parameters as weight, WC, HC, skinfold thickness, BMI in PEBT appeared to be 8.6 kg, 9.1 cm, 6.6 cm, 21.9 mm, 3.5 kg/m² higher than that of PBIS (all P < 0.01), and were 5.5 kg, 5.9 cm, 5.4 cm, 10.4 mm, 1.8 kg/m² higher in PBIS than that of PEBF, respectively, plus the difference of height was 3.6 cm more (P < 0.01). Differences of body shape on parameters between PEBT and PBIS were larger in primary school students than in middle school students. However, the differences of body shape parameters between PBIS and PEBF appeared higher in middle school students than in primary school male students, but were higher in female students in primary than in middle school students. The prevalence of body dissatisfaction related to children and adolscents' body shape parameters from parents was high. Parents in the PEBT group seemed to have paid more attention to children's body shape parameters at low age. However, parents in PEBF group might have paid more attention to children's body shape parameters at high age in males or at low age in females.
T(T,4He)2n and 3He(3He,4He)2p Reactions and the Energy Dependence of Their Mechanisms
NASA Astrophysics Data System (ADS)
Bacher, Andrew; McNabb, Dennis; Brune, Carl; Sayre, Dan; Hale, Gerry; Frenje, Johan; Gatu Johnson, Maria
2015-10-01
We have studied the T(T,alpha)2n reaction because it is the charge symmetric analog to the 3He(3He,alpha)2p reaction which completes the most direct mode of the p-p chain in stellar interiors. These reactions lead to three-body final states whose energy spectrum shapes are dominated by the strong nucleon-alpha interaction and the weaker nucleon-nucleon interaction. These experiments were done at OMEGA at the University of Rochester and at the NIF at Lawrence Livermore Lab. We will focus on two features: (1) the excitation energy dependence of the reaction mechanism and (2) the center-of-mass energy dependence of the reaction mechanism. At stellar energies (OMEGA and the NIF) we find that the shape of the neutron spectrum peaks in the middle. The n-alpha 1/2-excited state is about two times stronger than the n-alpha 3/2-ground state. For the 3He+3He reaction (at CalTech), the proton spectrum peaks at the high end. The p-alpha 3/2-state is about two times stronger than the 1/2-state. This difference in the spectrum shape is explained by theoretical models which include the interference between the two identical fermions in the final state. At CalTech we have angular distributions of the 3He+3He reaction from 2 MeV to 18 MeV. We see the p-wave strength increasing.
Redshift-space distortions with the halo occupation distribution - II. Analytic model
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.
2007-01-01
We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.
An interdisciplinary study of the timbre of the classical guitar
NASA Astrophysics Data System (ADS)
Traube, Caroline
This dissertation proposes an interdisciplinary approach for the study of the timbre of the classical guitar. We start by identifying the static; control parameters of timbre, relating to the structural components of the guitar and the dynamic control parameters of timbre, relating to the gestures applied by the performer on the instrument. From the plucked string physical model (obtained from the transverse wave equation), we derive a digital signal interpretation of the plucking effect which is a comb filtering. Then we investigate how subjective characteristics of sound, like timbre, are related to gesture parameters. The starting point for exploration is an inventory of verbal descriptors commonly used by professional musicians to describe the brightness, the colour, the shape and the texture of the sounds they produce on their instruments. An explanation for the voice-like nature of guitar tones is proposed based on the observation that the maxima of the comb-filter-shaped magnitude spectrum of guitar tones are located at frequencies similar to the formant frequencies of a subset of identifiable vowels. These analogies at the spectral level might account for the origin of some timbre descriptors such as open, oval, round, thin, closed, nasal and hollow, that seem to refer to phonetic gestures. In a experiment conducted to confirm these analogies, participants were asked to associate a consonant to the attack and a vowel to the decay of guitar tones. The results of this study support the idea that some perceptual dimensions of the guitar timbre space can be borrowed from phonetics. Finally, we address the problem of the indirect acquisition of instrumental gesture parameters. Pursuing previous research on the estimation of the plucking position from a recording, we propose a new estimation method based on an iterative weighted least-square algorithm, starting from a first approximation derived from a variant of the autocorrelation function of the signal.
NASA Astrophysics Data System (ADS)
Koshelev, Alexei
2013-03-01
Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.
Rodriguez-Florez, Naiara; Bruse, Jan L; Borghi, Alessandro; Vercruysse, Herman; Ong, Juling; James, Greg; Pennec, Xavier; Dunaway, David J; Jeelani, N U Owase; Schievano, Silvia
2017-10-01
Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical parameters and head shape features achieved following spring-assisted cranioplasty. The techniques described here could be extended to other cranio-maxillofacial procedures in order to assess post-operative outcomes and ultimately facilitate surgical decision making.
Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters
NASA Astrophysics Data System (ADS)
Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin
2015-11-01
The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.
Search for gamma-ray spectral modulations in Galactic pulsars
NASA Astrophysics Data System (ADS)
Majumdar, Jhilik; Calore, Francesca; Horns, Dieter
2018-04-01
Well-motivated extensions of the standard model predict ultra-light and fundamental pseudo-scalar particles (e.g., axions or axion-like particles: ALPs). Similarly to the Primakoff-effect for axions, ALPs can mix with photons and consequently be searched for in laboratory experiments and with astrophysical observations. Here, we search for energy-dependent modulations of high-energy gamma-ray spectra that are tell-tale signatures of photon-ALPs mixing. To this end, we analyze the data recorded with the Fermi-LAT from Galactic pulsars selected to have a line of sight crossing spiral arms at a large pitch angle. The large-scale Galactic magnetic field traces the shape of spiral arms, such that a sizable photon-ALP conversion probability is expected for the sources considered. For the nearby Vela pulsar, the energy spectrum is well described by a smooth model spectrum (a power-law with a sub-exponential cut-off) while for the six selected Galactic pulsars, a common fit of the ALPs parameters improves the goodness of fit in comparison to a smooth model spectrum with a significance of 4.6 σ. We determine the most-likely values for mass ma and coupling gaγγ to be ma=(3.6‑0.2 stat.+0.5 stat.± 0.2syst. ) neV and gaγγ=(2.3‑0.4stat.+0.3 stat.± 0.4syst.)× 10‑10 GeV‑1. In the error budget, we consider instrumental effects, scaling of the adopted Galactic magnetic field model (± 20 %), and uncertainties on the distance of individual sources. The best-fit parameters are by a factor of ≈ 3 larger than the current best limit on solar ALPs generation obtained with the CAST helioscope, although known modifications of the photon-ALP mixing in the high density solar environment could provide a plausible explanation for the apparent tension between the helioscope bound and the indication for photon-ALPs mixing reported here.
Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators
NASA Astrophysics Data System (ADS)
Wolszczak, W.; Dorenbos, P.
2017-06-01
Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.
Reconstructing spectral cues for sound localization from responses to rippled noise stimuli
Vliegen, Joyce; Van Esch, Thamar
2017-01-01
Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners’ spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle. PMID:28333967
Free Classification as a Window on Executive Functioning in Autism Spectrum Disorders
ERIC Educational Resources Information Center
McGonigle-Chalmers, Margaret; Alderson-Day, Ben
2010-01-01
Spontaneous classification was assessed using a free serial search task in 18 school-aged children at the high functioning end of the autistic spectrum and compared with results from age-matched typically developing controls. The task required participants to touch shapes in an exhaustive non-repetitive sequence. The positions of the items varied…
ERIC Educational Resources Information Center
Field, Charlotte; Allen, Melissa L.; Lewis, Charlie
2016-01-01
We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…
Stochastic subspace identification for operational modal analysis of an arch bridge
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien
2012-04-01
In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.
Pulse-parameter dependence of nuclear ``attosecond time delays''
NASA Astrophysics Data System (ADS)
Armstrong, Greg; Ursrey, D.; Hernandez, J. V.; Anis, F.; Severt, T.; Zohrabi, M.; Berry, Ben; Feizollah, Peyman; Jochim, Bethany; Kanaka Raju, P.; McKenna, J.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Esry, B. D.
2017-04-01
One of the main goals of strong-field photodissociation is the control of chemical reactions. Recent experiments have successfully controlled the spatial asymmetry in D2+using two-color interferometry. These experiments achieved vibrational resolution, and so were able to determine the spatial asymmetry of a number of vibrational states as a function of two-color delay. The relative phase in the delay-dependent spatial asymmetry obtained in these experiments may be used to define a time delay in dissociation from adjacent vibrational states - a technique used previously to produce relative time delays in atomic ionization from the photoelectron spectrum. Further two-color measurements in this direction are being planned. As a guide to these experiments, we aim to determine theoretically the dependence of such delays on laser intensity, pulse length, and pulse shape. We also identify the parameters that maximize the contrast in the delay-dependent spatial asymmetry. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under Contract No. DE-FG02-86ER13191.
NASA Astrophysics Data System (ADS)
Yang, H.-Y. K.; Ruszkowski, M.
2017-11-01
The Fermi bubbles are among the most important findings of the Fermi Gamma-ray Space Telescope; however, their origin is still elusive. One of the unique features of the bubbles is that their gamma-ray spectrum, including a high-energy cutoff at ˜110 GeV and the overall shape of the spectrum, is nearly spatially uniform. The high-energy spectral cutoff is suggestive of a leptonic origin due to synchrotron and inverse-Compton cooling of cosmic-ray (CR) electrons; however, even for a leptonic model, it is not obvious why the spectrum should be spatially uniform. In this work, we investigate the bubble formation in the leptonic active galactic nucleus (AGN) jet scenario using a new CRSPEC module in FLASH that allows us to track the evolution of a CR spectrum during the simulations. We show that the high-energy cutoff is caused by fast electron cooling near the Galactic center (GC) when the jets were launched. Afterwards, the dynamical timescale becomes the shortest among all relevant timescales, and therefore the spectrum is essentially advected with only mild cooling losses. This could explain why the bubble spectrum is nearly spatially uniform: the CRs from different parts of the bubbles as seen today all share the same origin near the GC at an early stage of the bubble expansion. We find that the predicted CR spatial and spectral distribution can simultaneously match the normalization, spectral shape, and high-energy cutoff of the observed gamma-ray spectrum and their spatial uniformity, suggesting that past AGN jet activity is a likely mechanism for the formation of the Fermi bubbles.
Mokkath, Junais Habeeb
2017-12-20
Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcioni, P.; Bressan, M.; Perregrini, L.
1995-08-01
Computer codes for the electromagnetic analysis of arbitrarily shaped cavities are very important for many applications, in particular for the design of interaction structures for particle accelerators. The design of accelerating cavities results in complicated shapes, that are obtained carrying on repeated analyses to optimize a number of parameters, such as Q-factors, beam coupling impedances, higher-order-mode spectrum, and so on. The interest in the calculation of many normalized modes derives also from the important role they play in the eigenvector expansion of the electromagnetic field in a closed region. The authors present an efficient algorithm to determine the resonant frequenciesmore » and the normalized modal fields of arbitrarily shaped cavity resonators filled with a lossless, isotropic, and homogeneous medium. The algorithm is based on the boundary integral method (BIM). The unknown current flowing on the cavity wall is considered inside a spherical resonator, rather than in free-space, as it is usual in the standard BIM. The electric field is expressed using the Green`s function of the spherical resonator, approximated by a real rational function of the frequency. Consequently, the discretized problem can be cast into the form of a real matrix linear eigenvalue problem, whose eigenvalues and eigenvectors yield the resonant frequencies and the associated modal currents. Since the algorithm does not require any frequency-by-frequency recalculation of the system matrices, computing time is much shorter than in the standard BIM, especially when many resonances must be found.« less
Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M
2017-09-28
The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.
Predicting Constraints on Ultra-Light Axion Parameters due to LSST Observations
NASA Astrophysics Data System (ADS)
Given, Gabriel; Grin, Daniel
2018-01-01
Ultra-light axions (ULAs) are a type of dark matter or dark energy candidate (depending on the mass) that are predicted to have a mass between $10^{‑33}$ and $10^{‑18}$ eV. The Large Synoptic Survey Telescope (LSST) is expected to provide a large number of weak lensing observations, which will lower the statistical uncertainty on the convergence power spectrum. I began work with Daniel Grin to predict how accurately the data from the LSST will be able to constrain ULA properties. I wrote Python code that takes a matter power spectrum calculated by axionCAMB and converts it to a convergence power spectrum. My code then takes derivatives of the convergence power spectrum with respect to several cosmological parameters; these derivatives will be used in Fisher Matrix analysis to determine the sensitivity of LSST observations to axion parameters.
Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode
NASA Astrophysics Data System (ADS)
Sojasi, A.
2018-01-01
In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .
NASA Astrophysics Data System (ADS)
Hiramatsu, Takashi; Komatsu, Eiichiro; Hazumi, Masashi; Sasaki, Misao
2018-06-01
Given observations of the B -mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. The shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wave numbers in the vicinity of k ≈6 ×10-4 and 5 ×10-3 Mpc-1 , which correspond to the "reionization bump" at ℓ≲6 and "recombination bump" at ℓ≈80 of the CMB B -mode power spectrum, respectively. The error bar between these two wave numbers is larger because of the lack of the signal between the reionization and recombination bumps. The error bars increase sharply toward smaller (larger) wave numbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate the utility of the reconstructed power spectra, we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation, and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available online.
Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios
NASA Astrophysics Data System (ADS)
Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.
2018-03-01
The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.
Beyond Jcrit: a critical curve for suppression of H2-cooling in protogalaxies
NASA Astrophysics Data System (ADS)
Wolcott-Green, J.; Haiman, Z.; Bryan, G. L.
2017-08-01
Suppression of H2-cooling in early protogalaxies has important implications for the formation of supermassive black hole seeds, the first generation of stars and the epoch of reionization. This suppression can occur via photodissociation of H2 (by ultraviolet Lyman-Werner [LW] photons) or by photodetachment of H-, a precursor in H2 formation (by infrared [IR] photons). Previous studies have typically adopted idealized spectra, with a blackbody or a power-law shape, in modelling the chemistry of metal-free protogalaxies, and utilized a single parameter, the critical UV flux, or Jcrit, to determine whether H2-cooling is prevented. This can be misleading, as independent of the spectral shape, there is a critical curve in the (k_LW,k_H^-) plane, where kLW and k_H^- are the H2-dissocation rates by LW and IR photons, which determines whether a protogalaxy can cool below ˜1000 K. We use a one-zone model to follow the chemical and thermal evolution of gravitationally collapsing protogalactic gas, to compute this critical curve and provide an accurate analytical fit for it. We improve on previous works by considering a variety of more realistic Pop III or Pop II-type spectra from population synthesis models and perform fully frequency-dependent calculations of the H2-photodissociation rates for each spectrum. We compute the ratio k_LW/k_H^- for each spectrum, as well as the minimum stellar mass M*, for various IMFs and metallicities, required to prevent cooling in a neighbouring halo a distance d away. We provide critical M*/d2 values for suppression of H2-cooling, with analytic fits, which can be used in future studies.
A Hard X-ray View on Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimer, A.; Costamente, L.; /Stanford U., HEPL /KIPAC, Menlo Park
2008-05-02
TeV-blazars are known as prominent non-thermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV-band. If distant, absorption of -ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV-blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in May and July 2006, respectively, including a quasi-simultaneous coverage with the state of the art Cherenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band, and set intomore » context to their historical behavior. During our campaign, we did not detect any significant X-ray or {gamma}-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point ({approx} 30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV-blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the {gamma}-ray absorption in the EBL.« less
The effects of clutter-rejection filtering on estimating weather spectrum parameters
NASA Technical Reports Server (NTRS)
Davis, W. T.
1989-01-01
The effects of clutter-rejection filtering on estimating the weather parameters from pulse Doppler radar measurement data are investigated. The pulse pair method of estimating the spectrum mean and spectrum width of the weather is emphasized. The loss of sensitivity, a measure of the signal power lost due to filtering, is also considered. A flexible software tool developed to investigate these effects is described. It allows for simulated weather radar data, in which the user specifies an underlying truncated Gaussian spectrum, as well as for externally generated data which may be real or simulated. The filter may be implemented in either the time or the frequency domain. The software tool is validated by comparing unfiltered spectrum mean and width estimates to their true values, and by reproducing previously published results. The effects on the weather parameter estimates using simulated weather-only data are evaluated for five filters: an ideal filter, two infinite impulse response filters, and two finite impulse response filters. Results considering external data, consisting of weather and clutter data, are evaluated on a range cell by range cell basis. Finally, it is shown theoretically and by computer simulation that a linear phase response is not required for a clutter rejection filter preceeding pulse-pair parameter estimation.
Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo
2015-10-23
Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.
Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun
2017-10-16
We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.
Electromagnetic sinc Schell-model beams and their statistical properties.
Mei, Zhangrong; Mao, Yonghua
2014-09-22
A class of electromagnetic sources with sinc Schell-model correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. The evolution behaviors of statistical properties for the electromagnetic stochastic beams generated by this new source on propagating in free space and in atmosphere turbulence are investigated with the help of the weighted superposition method and by numerical simulations. It is demonstrated that the intensity distributions of such beams exhibit unique features on propagating in free space and produce a double-layer flat-top profile of being shape-invariant in the far field. This feature makes this new beam particularly suitable for some special laser processing applications. The influences of the atmosphere turbulence with a non-Kolmogorov power spectrum on statistical properties of the new beams are analyzed in detail.
ERIC Educational Resources Information Center
Skuk, Verena G.; Schweinberger, Stefan R.
2014-01-01
Purpose: To determine the relative importance of acoustic parameters (fundamental frequency [F0], formant frequencies [FFs], aperiodicity, and spectrum level [SL]) on voice gender perception, the authors used a novel parameter-morphing approach that, unlike spectral envelope shifting, allows the application of nonuniform scale factors to transform…
Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis
NASA Astrophysics Data System (ADS)
Langdalen, Z.; Fagents, S. A.; Fitch, E. P.
2017-12-01
Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents because volcanic ash-grain morphologies differ substantially from simplified geometric shapes.
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Harun, Sulaiman W.
2018-05-01
A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.
NASA Astrophysics Data System (ADS)
Theodosiou, Antreas; Kalli, Kyriacos; Komodromos, Michael
2017-04-01
We report on the femtosecond laser inscription of a fibre Bragg grating array in multimode, gradient-index, CYTOP polymer optical fibre and its demonstration as a quasi-distributed sensor for cantilever health monitoring measurements. We exploit the key advantage of polymer optical fibres, having a significantly lower Young's modulus compared with silica fibres, for vibration measurements. We also modify the typical multi-mode Bragg grating spectrum through control of the femtosecond laser inscription process, thereby producing gratings having single peak wavelength spectra. The sensor array is used to recover the time-dependent, wavelength response from each Bragg grating sensor and extract the mode shape of the beam. The mode shapes of the beam were used to observe "damage" introduced to the cantilever by adding masses to its surface; adjusting the level of damage by using different weights and placing them at different point across the beam. We show that health monitoring measurements are feasible with polymer based fibre Bragg gratings. The accurate and rapid detection of damage points on structural beams and the damage level is an important parameter for improved maintenance and servicing of beams under load and for the prevention of long-term damage.
Fabric-based alkaline direct formate microfluidic fuel cells.
Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A
2017-04-01
Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm 2 ) and power (4.40 mW/cm 2 ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Optimal Bandwidth for Multitaper Spectrum Estimation
Haley, Charlotte L.; Anitescu, Mihai
2017-07-04
A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less
gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni
2017-08-01
The evolution of the shape of the electron spectra of 16 forbidden β- decays as a function of gA was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The β spectra of 94Nb(6+) →94Mo(4+) and 98Tc(6+) →98Ru(4+) were found to depend strongly on gA, which makes them excellent candidates for the determination of the effective value of gA with the spectrum-shape method (SSM). A strong gA dependence is also seen in the spectrum of 96Zr(0+) →96Nb(6+) . This decay could be used for determining the quenching of gA in sixth-forbidden decays in the future, when the measurement of the spectrum becomes experimentally feasible. The calculated shell-model electron spectra of the ground-state-to-ground-state decays of 87Rb, 99Tc, and 137Cs and the decay of 137Cs to the isomeric 11 /2- state in 137Ba were found to be in excellent agreement with the spectra previously calculated using the microscopic quasiparticle-phonon model. This is further evidence of the robust nature of the SSM observed in the previous studies.
Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.
A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less
High precision analytical description of the allowed β spectrum shape
NASA Astrophysics Data System (ADS)
Hayen, Leendert; Severijns, Nathal; Bodek, Kazimierz; Rozpedzik, Dagmara; Mougeot, Xavier
2018-01-01
A fully analytical description of the allowed β spectrum shape is given in view of ongoing and planned measurements. Its study forms an invaluable tool in the search for physics beyond the standard electroweak model and the weak magnetism recoil term. Contributions stemming from finite size corrections, mass effects, and radiative corrections are reviewed. Particular focus is placed on atomic and chemical effects, where the existing description is extended and analytically provided. The effects of QCD-induced recoil terms are discussed, and cross-checks were performed for different theoretical formalisms. Special attention was given to a comparison of the treatment of nuclear structure effects in different formalisms. Corrections were derived for both Fermi and Gamow-Teller transitions, and methods of analytical evaluation thoroughly discussed. In its integrated form, calculated f values were in agreement with the most precise numerical results within the aimed for precision. The need for an accurate evaluation of weak magnetism contributions was stressed, and the possible significance of the oft-neglected induced pseudoscalar interaction was noted. Together with improved atomic corrections, an analytical description was presented of the allowed β spectrum shape accurate to a few parts in 10-4 down to 1 keV for low to medium Z nuclei, thereby extending the work by previous authors by nearly an order of magnitude.
Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
NASA Astrophysics Data System (ADS)
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.
2018-01-01
A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.
Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; ...
2017-10-16
A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less
The necessity of recognizing all events in X-ray detection.
Papp, T; Maxwell, J A; Papp, A T
2010-01-01
In our work in studying properties of inner shell ionization, we are troubled that the experimental data used to determine the basic parameters of X-ray physics have a large and unexplainable scatter. As we looked into the problems we found that many of them contradict simple logic, elemental arithmetic, even parity and angular momentum conservation laws. We have identified that the main source of the problems, other than the human factor, is rooted in the signal processing electronics. To overcome these problems we have developed a fully digital signal processor, which not only has excellent resolution and line shape, but also allows proper accounting of all events. This is achieved by processing all events and separating them into two or more spectra (maximum 16), where the first spectrum is the accepted or good spectrum and the second spectrum is the spectrum of all rejected events. The availability of all the events allows one to see the other part of the spectrum. To our surprise the total information explains many of the shortcomings and contradictions of the X-ray database. The data processing methodology cannot be established on the partial and fractional information offered by other approaches. Comparing Monte Carlo detector modeling results with the partial spectra is ambiguous. It suggests that the metrology of calibration by radioactive sources as well as other X-ray measurements could be improved by the availability of the proper accounting of all events. It is not enough to know that an event was rejected and increment the input counter, it is necessary to know, what was rejected and why it happened, whether it was a noise or a disturbed event, a retarded event or a true event, or any pile up combination of these events. Such information is supplied by our processor reporting the events rejected by each discriminator in separate spectra. Several industrial applications of this quality assurance capable signal processor are presented. Copyright 2009 Elsevier Ltd. All rights reserved.
Advection-dominated Accretion Flow around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Manmoto, T.
2000-05-01
The effects of the spin of central black holes on the structure and the spectrum of optically thin, advection-dominated accretion flows (ADAFs) around rotating supermassive black holes are investigated. The global two-temperature structure of ADAFs in the Kerr metric is obtained numerically by solving the full relativistic hydrodynamical equations including the energy equations for the ions and for the electrons. The advected fraction of the dissipated energy is not treated as a parameter and the detailed radiation processes are calculated self-consistently. We find that the two-temperature structure of ADAFs is accurately calculated by setting the advected fraction of the dissipated energy to be unity. We find that the particles are hotter when a is positive than when a=0, while the particles are cooler when a is negative than when a=0. The changes in a have less effect on the electron temperature than on the ion temperature. The spectra of the emitted photons are also calculated by solving the equations of the general relativistic optics. The entire part of the spectra is enhanced when a is positive, while the entire part of the spectra is reduced when a is negative, in comparison with the case of a=0. The spectrum of the synchrotron photons and the Comptonized synchrotron photons are modified more largely by the black hole spin and the inclination angle than the spectrum of the bremsstrahlung photons. The effect of the inclination angle on the spectra increases as the value of a increases. In the case of a=-0.95, the inclination has little effect on the shape of the spectrum. The spectrum of Sgr A* from the radio band to the X-ray band is nicely reproduced with the model of an ADAF around a high-spin black hole. The existence of a high-spin black hole at the Galactic center is not ruled out by the ADAF model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru
2015-11-15
The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.
ERIC Educational Resources Information Center
Almeida, Renita A.; Dickinson, J. Edwin; Maybery, Murray T.; Badcock, Johanna C.; Badcock, David R.
2010-01-01
The Embedded Figures Test (EFT) requires detecting a shape within a complex background and individuals with autism or high Autism-spectrum Quotient (AQ) scores are faster and more accurate on this task than controls. This research aimed to uncover the visual processes producing this difference. Previously we developed a search task using radial…
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less
Cosmological implications of primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise
The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced withmore » the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.« less
Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm
NASA Astrophysics Data System (ADS)
Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu
2018-06-01
A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.
Electron impact contribution to infrared NO emissions in auroral conditions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-11-01
Infrared emissions from nitric oxide, other than nightglow, are observed in aurora, principally due to a chemiluminescent reaction between excited nitrogen atoms and oxygen molecules that produces vibrationally excited NO. The rates for this chemiluminescent reaction have recently been revised. Based on new measurements of electron impact vibrational excitation of NO, it has been suggested that electron impact may also be significant in producing auroral NO emissions. We show results of a detailed calculation which predicts the infrared spectrum observed in rocket measurements, using the revised chemiluminescent rates and including electron impact excitation. For emissions from the second vibrational level and above, the shape of the spectrum can be reproduced within the statistical errors of the analysis of the measurements, although there is an unexplained discrepancy in the absolute value of the emissions. The inclusion of electron impact improves the agreement of the shape of the predicted spectrum with the measurements by accounting for part of the previously unexplained peak in emissions from the first vibrational level.
NASA Astrophysics Data System (ADS)
Lawrence, Chris C.; Polack, J. K.; Febbraro, Michael; Kolata, J. J.; Flaska, Marek; Pozzi, S. A.; Becchetti, F. D.
2017-02-01
The literature discussing pulse-shape discrimination (PSD) in organic scintillators dates back several decades. However, little has been written about PSD techniques that are optimized for neutron spectrum unfolding. Variation in n-γ misclassification rates and in γ/n ratio of incident fields can distort the neutron pulse-height response of scintillators and these distortions can in turn cause large errors in unfolded spectra. New applications in arms-control verification call for detection of lower-energy neutrons, for which PSD is particularly problematic. In this article, we propose techniques for removing distortions on pulse-height response that result from the merging of PSD distributions in the low-pulse-height region. These techniques take advantage of the repeatable shapes of PSD distributions that are governed by the counting statistics of scintillation-photon populations. We validate the proposed techniques using accelerator-based time-of-flight measurements and then demonstrate them by unfolding the Watt spectrum from measurement with a 252Cf neutron source.
NASA Astrophysics Data System (ADS)
Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.
2015-07-01
For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.
NASA Astrophysics Data System (ADS)
Majumder, Himadri; Maity, Kalipada
2018-03-01
Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
Capabilities of electrodynamic shakers when used for mechanical shock testing
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1973-01-01
The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.
Fast radio bursts and the stochastic lifetime of black holes in quantum gravity
NASA Astrophysics Data System (ADS)
Barrau, Aurélien; Moulin, Flora; Martineau, Killian
2018-03-01
Nonperturbative quantum gravity effects might allow a black-to-white hole transition. We revisit this increasingly popular hypothesis by taking into account the fundamentally random nature of the bouncing time. We show that if the primordial mass spectrum of black holes is highly peaked, the expected signal can in fact match the wavelength of the observed fast radio bursts. On the other hand, if the primordial mass spectrum is wide and smooth, clear predictions are suggested and the sensitivity to the shape of the spectrum is studied.
The Atacama Cosmology Telescope: Two-season spectrum and parameters
NASA Astrophysics Data System (ADS)
Hlozek, Renée; Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Atacama Cosmology Telescope
2017-01-01
We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope polarimeter (ACTPol) over 548 deg^2 of sky on the celestial Equator, from nighttime data collected during 2013-14 using two kilo-detector arrays at 146 GHz. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP satellite data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature power spectrum, including the baryon density and the acoustic peak position angle, and the derived Hubble constant. Adding the new data to Planck temperature data tightens the limits on damping tail parameters, which we present here.
NASA Astrophysics Data System (ADS)
Sicot, G.; Lennon, M.; Miegebielle, V.; Dubucq, D.
2015-08-01
The thickness and the emulsion rate of an oil spill are two key parameters allowing to design a tailored response to an oil discharge. If estimated on per pixel basis at a high spatial resolution, the estimation of the oil thickness allows the volume of pollutant to be estimated, and that volume is needed in order to evaluate the magnitude of the pollution, and to determine the most adapted recovering means to use. The estimation of the spatial distribution of the thicknesses also allows the guidance of the recovering means at sea. The emulsion rate can guide the strategy to adopt in order to deal with an offshore oil spill: efficiency of dispersants is for example not identical on a pure oil or on an emulsion. Moreover, the thickness and emulsion rate allow the amount of the oil that has been discharged to be estimated. It appears that the shape of the reflectance spectrum of oil in the SWIR range (1000-2500nm) varies according to the emulsion rate and to the layer thickness. That shape still varies when the oil layer reaches a few millimetres, which is not the case in the visible range (400-700nm), where the spectral variation saturates around 200 μm (the upper limit of the Bonn agreement oil appearance code). In that context, hyperspectral imagery in the SWIR range shows a high potential to describe and characterize oil spills. Previous methods which intend to estimate those two parameters are based on the use of a spectral library. In that paper, we will present a method based on the inversion of a simple radiative transfer model in the oil layer. We will show that the proposed method is robust against another parameter that affects the reflectance spectrum: the size of water droplets in the emulsion. The method shows relevant results using measurements made in laboratory, equivalent to the ones obtained using methods based on the use of a spectral library. The method has the advantage to release the need of a spectral library, and to provide maps of thickness and emulsion rate values per pixel. The maps obtained are not composed of regions of thickness ranges, such as the ones obtained using discretized levels of measurements in the spectral library, or maps made from visual observations following the Bonn agreement oil appearance code.
Infrared spectra of C2H4 dimer and trimer
NASA Astrophysics Data System (ADS)
Barclay, A. J.; Esteki, K.; McKellar, A. R. W.; Moazzen-Ahmadi, N.
2018-05-01
Spectra of ethylene dimers and trimers are studied in the ν11 and (for the dimer) ν9 fundamental band regions of C2H4 (≈2990 and 3100 cm-1) using a tunable optical parametric oscillator source to probe a pulsed supersonic slit jet expansion. The deuterated trimer has been observed previously, but this represents the first rotationally resolved spectrum of (C2H4)3. The results support the previously determined cross-shaped (D2d) dimer and barrel-shaped (C3h or C3) trimer structures. However, the dimer spectrum in the ν9 fundamental region of C2H4 is apparently very perturbed and a previous rotational analysis is not well verified.
Excitons and photoluminescence in ZnO and Zn0.99Mn0.01O nanocrystals
NASA Astrophysics Data System (ADS)
Gruzdev, N. B.; Sokolov, V. I.; Ermakov, A. E.; Uimin, M. A.; Mysik, A. A.; Pustovarov, V. A.
2010-08-01
The photoluminescence and photoluminescence excitation spectra for Zn1- x Mn x O nanocrystals are presented. After annealing of powders in air, the intensity of the bands attributable to manganese decreases noticeably. This suggests that the oxygen vacancies affect the Zhang-Rice-like states appearing due to strong d- p-hybridization, which is confirmed by an increase in the band gap of Zn1- x Mn x O for low x. The origin of the 2.9-eV peak and the shape of its excitation spectrum are discussed qualitatively. For Zn1- x Mn x O nanocrystals, the shape of the excitation spectrum is as unusual as the intense absorption in the range (2.2-3.0) eV.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Cheng, Ken; Gallistel, C R
2005-04-01
In 2 recent studies on rats (J. M. Pearce, M. A. Good, P. M. Jones, & A. McGregor, see record 2004-12429-006) and chicks (L. Tommasi & C. Polli, see record 2004-15642-007), the animals were trained to search in 1 corner of a rectilinear space. When tested in transformed spaces of different shapes, the animals still showed systematic choices. Both articles rejected the global matching of shape in favor of local matching processes. The present authors show that although matching by shape congruence is unlikely, matching by the shape parameter of the 1st principal axis can explain all the data. Other shape parameters, such as symmetry axes, may do even better. Animals are likely to use some global matching to constrain and guide the use of local cues; such use keeps local matching processes from exploding in complexity.
NASA Astrophysics Data System (ADS)
Farley, Donald
2010-05-01
In 1958 W. E. Gordon first suggested that huge radars could probe the ionosphere via scattering from independent electrons, even though the radar cross section of a single electron is only 10-28 m2. This suggestion quickly led to the construction of two enormous radars in the early 1960s, one near Lima, Peru, and one near Arecibo, Puerto Rico. It soon became apparent that the theory of this scatter was more complicated than originally envisaged by Gordon. Although the new theory was more complicated, it was much richer: by measuring the detailed shape of the Doppler frequency spectrum (or alternatively the signal autocorrelation function, the ACF), a radar researcher could determine many, if not most, of the parameters of interest of the plasma. There is now a substantial network of major radar facilities scattered from the magnetic equator (Peru) to the high arctic latitudes (Svalbard and Resolute Bay), all doing important ionospheric research. The history of what is now called Incoherent Scatter (even though it is not truly incoherent) is fascinating, and I will touch on a few highlights. The sophisticated radar and data processing techniques that have been developed are also impressive. In this talk, however, I want to focus mainly on the details of the theory and on how the radar observations have confirmed the predictions of classical linear plasma kinetic theory to an amazingly high degree of precision, far higher than has any other technique that I am aware of. The theory can be, and has been, developed from two very different points of view. One starts with 'dressed particles,' or Coulomb 'clouds' around ions and electrons moving with a Maxwellian velocity distribution; the second starts by considering all the charged particles to be made up of a spectrum of density plane waves and then invokes a generalized version of the Nyquist Noise Theorem to calculate the thermal amplitudes of the waves. Both approaches give exactly the same results, results that allow us to predict exactly the scattered power and Doppler spectrum for any given set of plasma parameters (e.g., electron and ion temperatures, ionic composition, mean drifts and currents, the geomagnetic field, and particle collisions). So far, these predictions have not failed, although in recent years we have had to resort to numerical simulations to do a proper calculation of electron Coulomb collisions when the radar beam is pointed very nearly perpendicular to the magnetic field. This is because no analytic way has yet been found to properly apply the Fokker-Planck Coulomb collision model to the scattering process. Of course the theory predicts the spectrum, given all the plasma parameters, when what we really want to do in ionospheric research is the inverse, namely find the parameters, given the radar data. This inverse process can be quite difficult to do optimally if there are too many unknown parameters. Statistical inverse theory can require enormous computing power, but progress is being made.
NASA Astrophysics Data System (ADS)
Milla, M. A.; Kudeki, E.; Chau, J. L.
2012-12-01
Coulomb collision effects on incoherent scatter radar signals become important when radar beams are pointed perpendicular to the Earth's magnetic field (B). To study these effects, Milla and Kudeki [2011] developed a procedure to estimate the spectrum of plasma density fluctuations (also known as incoherent scatter spectrum) based on simulations of collisional particle trajectories in single-ion component plasmas. In these simulations, collision effects on the particle motion are modeled using the standard Fokker-Planck model of Rosenbluth et al. [1957]. We have recently generalized the procedure of Milla and Kudeki to consider the case of multiple ion components in order to study the characteristics of the incoherent scatter spectrum in O+, H+, and He+ ionospheric plasmas, which is needed for the analysis of topside perpendicular-to-B observations at the Jicamarca Radio Observatory. In this presentation, we will report on the development of this new approach and on the characteristics of the spectrum models that were developed. The simulation results show that the ion collision process can be fairly well approximated as a Gaussian motion process, a model that has been previously studied in the literature by different authors. However, in the case of electron collisions, the process is not Gaussian having a complicated dependence on plasma parameters. As it will be discussed, electron collisions have a significant impact on the shape of the incoherent scatter spectrum. The ultimate application of the models that were developed is the simultaneous estimation of plasma drifts, densities, and temperatures of the topside equatorial ionosphere in perpendicular-to-B experiments at Jicamarca. This experimental evaluation will have a broader impact since the accuracy of the Fokker-Planck collision model will be tested. References: Milla, M. A., and E. Kudeki (2011), Incoherent scatter spectral theories-Part II: Modeling the spectrum for modes propagating perpendicular to B, IEEE Transactions on Geoscience and Remote Sensing, 49(1), 329-345, doi:10.1109/TGRS.2010.2057253. Rosenbluth, M. N., W. M. MacDonald, and D. L. Judd (1957), Fokker-Planck equation for an inverse-square force, Physical Review, 107(1), 1-6, doi:10.1103/PhysRev.107.1.
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
NASA Astrophysics Data System (ADS)
Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.
2013-11-01
Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.
Verzhbitskiy, I A; Kouzov, A P; Rachet, F; Chrysos, M
2011-06-14
A line-mixing shape analysis of the isotropic remnant Raman spectrum of the 2ν(3) overtone of CO(2) is reported at room temperature and for densities, ρ, rising up to tens of amagats. The analysis, experimental and theoretical, employs tools of non-resonant light scattering spectroscopy and uses the extended strong collision model (ESCM) to simulate the strong line mixing effects and to evidence motional narrowing. Excellent agreement at any pressure is observed between the calculated spectra and our experiment, which, along with the easy numerical implementation of the ESCM, makes this model stand out clearly above other semiempirical models for band shape calculations. The hitherto undefined, explicit ρ-dependence of the vibrational relaxation rate is given. Our study intends to improve the understanding of pressure-induced phenomena in a gas that is still in the forefront of the news.
Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng
2015-01-01
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emritte, Mohammad Shehzad; Colafrancesco, Sergio; Marchegiani, Paolo, E-mail: Sergio.Colafrancesco@wits.ac.za, E-mail: emrittes@yahoo.com, E-mail: Paolo.Marchegiani@wits.ac.za
2016-07-01
Inverse Compton (IC) scattering of the anisotropic CMB fluctuations off cosmic electron plasmas generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. The polarized SZ effect has important applications in cosmology and in astrophysics of galaxy clusters. However, this signal has been studied so far mostly in the non-relativistic regime which is valid only in the very low electron temperature limit for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation to the IC scattering of a thermal electron plasma in the relativistic regime have been done but these cannot be appliedmore » to a more general or mildly relativistic electron distribution. In this paper we derive a general form of the SZ effect polarization that is valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population which can be co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole for both thermal and non-thermal electron populations, focussing in particular on the CMB quadrupole and octupole that provide the largest detectable signals in cosmic structures (like galaxy clusters). We found that the CMB quadrupole induced Stoke parameter Q is always positive with a maximum amplitude at a frequency ≈ 216 GHz which increases non-linearly with increasing cluster temperature. On the contrary, the CMB octupole induced Q spectrum shows a cross-over frequency which depends on the cluster electron temperature in a linear way, while it shows a non-linear dependence on the minimum momentum p {sub 1} of a non-thermal power-law spectrum as well as a linear dependence on the power-law spectral index of the non-thermal electron population. We discuss some of the possibilities to disentangle the quadrupole-induced Q spectrum from the octupole-induced one which will allow to measure these important cosmological quantities through the SZ effect polarization at different cluster locations in the universe. We finally apply our model to the Bullet cluster and derive the visibility windows of the total, quandrupole-induced and octupole-induced Stoke parameter Q in the frequency ranges accessible to SKA, ALMA, MILLIMETRON and CORE++ experiments.« less
Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.
2017-12-01
Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.
ERIC Educational Resources Information Center
Pickard, Katherine E.; Ingersoll, Brooke R.
2016-01-01
Research within the autism spectrum disorder field has emphasized the role of socioeconomic status in shaping parents' ability to access services for their child with autism spectrum disorder. However, research has yet to explore the possible mechanisms underlying this relationship. This study sought to address this research gap by examining the…
Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Dubovsky, S. V.
2016-07-01
Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.
NASA Astrophysics Data System (ADS)
Nasir, Ahmad Fakhri Ab; Suhaila Sabarudin, Siti; Majeed, Anwar P. P. Abdul; Ghani, Ahmad Shahrizan Abdul
2018-04-01
Chicken egg is a source of food of high demand by humans. Human operators cannot work perfectly and continuously when conducting egg grading. Instead of an egg grading system using weight measure, an automatic system for egg grading using computer vision (using egg shape parameter) can be used to improve the productivity of egg grading. However, early hypothesis has indicated that more number of egg classes will change when using egg shape parameter compared with using weight measure. This paper presents the comparison of egg classification by the two above-mentioned methods. Firstly, 120 images of chicken eggs of various grades (A–D) produced in Malaysia are captured. Then, the egg images are processed using image pre-processing techniques, such as image cropping, smoothing and segmentation. Thereafter, eight egg shape features, including area, major axis length, minor axis length, volume, diameter and perimeter, are extracted. Lastly, feature selection (information gain ratio) and feature extraction (principal component analysis) are performed using k-nearest neighbour classifier in the classification process. Two methods, namely, supervised learning (using weight measure as graded by egg supplier) and unsupervised learning (using egg shape parameters as graded by ourselves), are conducted to execute the experiment. Clustering results reveal many changes in egg classes after performing shape-based grading. On average, the best recognition results using shape-based grading label is 94.16% while using weight-based label is 44.17%. As conclusion, automated egg grading system using computer vision is better by implementing shape-based features since it uses image meanwhile the weight parameter is more suitable by using weight grading system.
Adaptive technique for matching the spectral response in skin lesions' images
NASA Astrophysics Data System (ADS)
Pavlova, P.; Borisova, E.; Pavlova, E.; Avramov, L.
2015-03-01
The suggested technique is a subsequent stage for data obtaining from diffuse reflectance spectra and images of diseased tissue with a final aim of skin cancer diagnostics. Our previous work allows us to extract patterns for some types of skin cancer, as a ratio between spectra, obtained from healthy and diseased tissue in the range of 380 - 780 nm region. The authenticity of the patterns depends on the tested point into the area of lesion, and the resulting diagnose could also be fixed with some probability. In this work, two adaptations are implemented to localize pixels of the image lesion, where the reflectance spectrum corresponds to pattern. First adapts the standard to the personal patient and second - translates the spectrum white point basis to the relative white point of the image. Since the reflectance spectra and the image pixels are regarding to different white points, a correction of the compared colours is needed. The latest is done using a standard method for chromatic adaptation. The technique follows the steps below: -Calculation the colorimetric XYZ parameters for the initial white point, fixed by reflectance spectrum from healthy tissue; -Calculation the XYZ parameters for the distant white point on the base of image of nondiseased tissue; -Transformation the XYZ parameters for the test-spectrum by obtained matrix; -Finding the RGB values of the XYZ parameters for the test-spectrum according sRGB; Finally, the pixels of the lesion's image, corresponding to colour from the test-spectrum and particular diagnostic pattern are marked with a specific colour.
Preliminary Investigation of Ice Shape Sensitivity to Parameter Variations
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Potapczuk, Mark G.; Langhals, Tammy J.
2005-01-01
A parameter sensitivity study was conducted at the NASA Glenn Research Center's Icing Research Tunnel (IRT) using a 36 in. chord (0.91 m) NACA-0012 airfoil. The objective of this preliminary work was to investigate the feasibility of using ice shape feature changes to define requirements for the simulation and measurement of SLD icing conditions. It was desired to identify the minimum change (threshold) in a parameter value, which yielded an observable change in the ice shape. Liquid Water Content (LWC), drop size distribution (MVD), and tunnel static temperature were varied about a nominal value, and the effects of these parameter changes on the resulting ice shapes were documented. The resulting differences in ice shapes were compared on the basis of qualitative and quantitative criteria (e.g., mass, ice horn thickness, ice horn angle, icing limits, and iced area). This paper will provide a description of the experimental method, present selected experimental results, and conclude with an evaluation of these results, followed by a discussion of recommendations for future research.
CORONAL FOURIER POWER SPECTRA: IMPLICATIONS FOR CORONAL SEISMOLOGY AND CORONAL HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ireland, J.; McAteer, R. T. J.; Inglis, A. R., E-mail: jack.ireland@nasa.gov
The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly 171 Å and 193 Å data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to a flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly held assumption that coronal time series are well describedmore » by the sum of a long timescale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of the observed spectral shape on the fields of coronal seismology and the automated detection of oscillations in the corona are discussed. The power-law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution of exponentially decaying emission events along the line of sight. This is consistent with the idea that the solar atmosphere is heated everywhere by small energy deposition events.« less
Temporal processing of speech in a time-feature space
NASA Astrophysics Data System (ADS)
Avendano, Carlos
1997-09-01
The performance of speech communication systems often degrades under realistic environmental conditions. Adverse environmental factors include additive noise sources, room reverberation, and transmission channel distortions. This work studies the processing of speech in the temporal-feature or modulation spectrum domain, aiming for alleviation of the effects of such disturbances. Speech reflects the geometry of the vocal organs, and the linguistically dominant component is in the shape of the vocal tract. At any given point in time, the shape of the vocal tract is reflected in the short-time spectral envelope of the speech signal. The rate of change of the vocal tract shape appears to be important for the identification of linguistic components. This rate of change, or the rate of change of the short-time spectral envelope can be described by the modulation spectrum, i.e. the spectrum of the time trajectories described by the short-time spectral envelope. For a wide range of frequency bands, the modulation spectrum of speech exhibits a maximum at about 4 Hz, the average syllabic rate. Disturbances often have modulation frequency components outside the speech range, and could in principle be attenuated without significantly affecting the range with relevant linguistic information. Early efforts for exploiting the modulation spectrum domain (temporal processing), such as the dynamic cepstrum or the RASTA processing, used ad hoc designed processing and appear to be suboptimal. As a major contribution, in this dissertation we aim for a systematic data-driven design of temporal processing. First we analytically derive and discuss some properties and merits of temporal processing for speech signals. We attempt to formalize the concept and provide a theoretical background which has been lacking in the field. In the experimental part we apply temporal processing to a number of problems including adaptive noise reduction in cellular telephone environments, reduction of reverberation for speech enhancement, and improvements on automatic recognition of speech degraded by linear distortions and reverberation.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-03-01
A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
Automatic energy calibration algorithm for an RBS setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala
2013-05-06
This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less
Inflation in the closed FLRW model and the CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu
2016-10-01
Recent cosmic microwave background (CMB) observations put strong constraints on the spatial curvature via estimation of the parameter Ω{sub k} assuming an almost scale invariant primordial power spectrum. We study the evolution of the background geometry and gauge-invariant scalar perturbations in an inflationary closed FLRW model and calculate the primordial power spectrum. We find that the inflationary dynamics is modified due to the presence of spatial curvature, leading to corrections to the nearly scale invariant power spectrum at the end of inflation. When evolved to the surface of last scattering, the resulting temperature anisotropy spectrum ( C {sup TT}{sub ℓ})more » shows deficit of power at low multipoles (ℓ < 20). By comparing our results with the recent Planck data we discuss the role of spatial curvature in accounting for CMB anomalies and in the estimation of the parameter Ω{sub k}. Since the curvature effects are limited to low multipoles, the Planck estimation of cosmological parameters remains robust under inclusion of positive spatial curvature.« less
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-06
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-01
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua
2017-01-01
The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.
The bias of the log power spectrum for discrete surveys
NASA Astrophysics Data System (ADS)
Repp, Andrew; Szapudi, István
2018-03-01
A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuhiro J.; Balashov, Sergei P.
2017-03-01
The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.
Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-11
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal shape deep learning: applications to pediatric lung field segmentation
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovany; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, local- ization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0:927 using only the four highest modes of variation (compared to 0:888 with classical ASM1 (p-value=0:01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-01-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects. PMID:28592911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Y.; Suzuki, T.; Takechi, M.
2015-07-15
For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in
2015-05-01
A number of studies of WMAP and Planck claimed the low multipole (specially quadrupole) power deficiency in CMB power spectrum. Anomaly in the orientations of the low multipoles have also been claimed. There is a possibility that the power deficiency at low multipoles may not be of primordial origin and is only an observation artifact coming from the scan procedure adapted in the WMAP or Planck satellites. Therefore, it is always important to investigate all the observational artifacts that can mimic them. The CMB dipole which is much higher than the quadrupole can leak to the higher multipoles due tomore » the non-symmetric beam shape of the WMAP or Planck. We observe that a non-negligible amount of power from the dipole can get transferred to the quadrupole and the higher multipoles due to the non-symmetric beam shapes and contaminate the observed measurements. The orientation of the quadrupole generated by this power transfer is surprisingly very close to the quadrupole observed from the WMAP and Planck maps. However, our analysis shows that the orientation of the quadrupole can not be explained using only the dipole power leakage. In this paper we calculate the amount of quadrupole power leakage for different WMAP bands. For Planck we present the results in terms of upper limits on asymmetric beam parameters that can lead to significant amount of power leakage.« less
Harnessing the polariton drag effect to design an electrically controlled optical switch.
Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V
2014-10-28
We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis. By considering the transient dynamics of the polariton condensate, we estimate the response speed of the switch as 9.1 GHz. We also propose a design of the polariton switch in a flat microcavity based on the geometrically identical Y-shaped quantum wells where the polariton flow is only induced by the drag force. The latter setup enables one to design a multiway switch that can act as an electrically controlled optical transistor with on and off functions. Finally, we performed the simulations for a microcavity with an embedded gapped graphene layer and demonstrated that in this case the response speed of the switch can be increased up to 14 GHz for the same switch size. The simulations also show that the energy gap in the quasiparticle spectrum in graphene can be utilized as an additional parameter that controls the propagation of the signals in the switch.
Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn
We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes lessmore » cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.« less
A virtual photon energy fluence model for Monte Carlo dose calculation.
Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan
2003-03-01
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.
Adapting Shape Parameters for Cubic Bezier Curves
NASA Technical Reports Server (NTRS)
Isacoff, D.; Bailey, M. J.
1985-01-01
Bezier curves are an established tool in Computer Aided Geometric Design. One of the drawbacks of the Bezier method is that the curves often bear little resemblance to their control polygons. As a result, it becomes increasingly difficult to obtain anything but a rough outline of the desired shape. One possible solution is tomanipulate the curve itself instead of the control polygon. The standard cubic Bezier curve form has introduced into it two shape parameters, gamma 1 and 2. These parameters give the user the ability to manipulate the curve while the control polygon retains its original form, thereby providing a more intuitive feel for the necessary changes to the curve in order to achieve the desired shape.
On the energy spectrum of cosmogenic neutrons
NASA Astrophysics Data System (ADS)
Malgin, A. S.
2017-11-01
The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.
Numerical simulations of recent proton acceleration experiments with sub-100 TW laser systems
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano
2016-09-01
Recent experiments carried out at the Italian National Research Center, National Optics Institute Department in Pisa, are showing interesting results regarding maximum proton energies achievable with sub-100 TW laser systems. While laser systems are being continuously upgraded in laboratories around the world, at the same time a new trend on stabilizing and making ion acceleration results reproducible is growing in importance. Almost all applications require a beam with fixed performance, so that the energy spectrum and the total charge exhibit moderate shot to shot variations. This result is surely far from being achieved, but many paths are being explored in order to reach it. Some of the reasons for this variability come from fluctuations in laser intensity and focusing, due to optics instability. Other variation sources come from small differences in the target structure. The target structure can vary substantially, when it is impacted by the main pulse, due to the prepulse duration and intensity, the shape of the main pulse and the total energy deposited. In order to qualitatively describe the prepulse effect, we will present a two dimensional parametric scan of its relevant parameters. A single case is also analyzed with a full three dimensional simulation, obtaining reasonable agreement between the numerical and the experimental energy spectrum.
Unidirectional emission in an all-dielectric nanoantenna
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Zhang, Wei; Liang, Zixian; Xu, Yi
2018-03-01
All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.
Weak-field multiphoton femtosecond coherent control in the single-cycle regime.
Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar
2011-03-28
Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.
Solar-phase-angle effects on the taxonomic classification of asteroids
NASA Astrophysics Data System (ADS)
Carvano, J.; Davallos, J.
2014-07-01
Asteroid taxonomy is the effort of grouping asteroids into classes based on similarities of a number of their observational properties. The most used properties include measurements of their spectral reflectance (by means of low-resolution spectra, spectro-photometry, or colors), and geometric albedo. The usefulness of asteroid taxonomic classes derived in this way relies on the assumption that the classes bear some correspondence to the mineralogy of the asteroids, and on the fact that such classification can be made using types of observations that presently are available to a large number of asteroids. Therefore, asteroid taxonomy can be used to infer trends in the distribution of compositions in the main belt and other populations, as an additional parameter in defining asteroid families, and as a selection tool to identify candidates for more detailed observations. However, the fact that the correspondence between taxonomic class and composition is far from perfect is still sometimes overlooked in the literature. Indeed, although a taxonomic classification narrows down the possible mineralogies of a given asteroid, it will seldom point univocally to one particular mineralogy. This happens for a number of reasons, some linked to the intrinsic difficulty involved in the remote characterization of the mineralogy of an asteroid, since it depends on the presence of absorption bands in its reflectance spectrum which may be absent or not completely sampled by the observations used to derive taxonomy. Other problem here is the exposure of the material on the surface of the asteroid to space-weathering effects, such as solar wind implantation and micro-meteorite bombardment, which can change the optical properties of the material. Finally, the overall shape of the reflectance spectrum of an asteroid is also affected by the geometry of the observation, as well as by its shape. In this work, we analyze how the classification of asteroids observed by the Sloan Digital Sky Survey is affected by the solar phase angle of the observation. It is found that the number of observations assigned to several taxonomic classes has a clear dependency on the solar phase angle of the asteroid at the moment of the observation. In order to understand how variations of phase angles affect the reflectance spectra of the individual asteroids listed in the SDSS with multiple observations, we use the reflectance spectra derived from the SDSS colors to define two parameters, which measure the spectral slope in the visible and the depth of the 1-micron band, if present. It is found that most asteroids in the sample tend to be redder at higher phase angles, and that, for the classes showing a 1-μ m band, most show increasing band depth with increasing phase angle. This predominance of positive correlations for both band depth and spectral slope might suffice to explain the offsets in the distribution of classes. However, for both parameters there is a significant fraction in each sample for which there seem to be no correlation at all, and a comparable number seem to display anti-correlation between the parameters and the phase angle. Therefore, although phase-reddening effects, as currently understood in the literature, can account for the offsets in the distribution of taxonomic classes with phase angle, it cannot explain all variability seen in the SDSS data. There is also a dependency on composition and also shape effects involved, which can be reproduced using Hapke reflectance models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerdeño, D.G.; Peiró, M.; Robles, S., E-mail: davidg.cerdeno@gmail.com, E-mail: miguel.peiro@uam.es, E-mail: sandra.robles@uam.es
2016-04-01
We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. Wemore » also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.« less
Impact of Neutrinos on Dark Matter Halo Environment
NASA Astrophysics Data System (ADS)
Court, Travis; Villaescusa-Navarro, Francisco
2018-01-01
The spatial clustering of galaxies is commonly used to infer the shape of the matter power spectrum and therefore to place constraints on the value of the cosmological parameters. In order to extract the maximum information from galaxy surveys it is required to provide accurate theoretical predictions. The first step to model galaxy clustering is to understand the spatial distribution of the structures where they reside: dark matter halos. I will show that the clustering of halos does not depend only on mass, but on other quantities like local matter overdensity. I will point out that halo clustering is also sensitive to the local overdensity of the cosmic neutrino background. I will show that splitting halos according to neutrino overdensity induces a very large scale-dependence bias, an effect that may lead to a new technique to constraint the sum of the neutrino masses.
NASA Astrophysics Data System (ADS)
Visalakshi, Talakokula; Bhalla, Suresh; Gupta, Ashok; Bhattacharjee, Bishwajit
2014-03-01
Reinforced concrete (RC) is an economical, versatile and successful construction material as it can be moulded into a variety of shapes and finishes. In most cases, it is durable and strong, performing well throughout its service life. However, in some cases, it does not perform adequately due to various reasons, one of which is the corrosion of the embedded steel bars used as reinforcement. . Although the electro-mechanical impedance (EMI) technique is well established for damage detection and quantification of civil, mechanical and aerospace structures, only limited studies have been reported of its application for rebar corrosion detection in RC structures. This paper presents the recent trends in corrosion assessment based on the model derived from the equivalent structural parameters extracted from the impedance spectrum of concrete-rebar system using the lead zirconate titanate (PZT) sensors via EMI technique.
Cosmological constraints from the convergence 1-point probability distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus
2017-06-29
Here, we examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast l-picola simulations and a Fisher analysis. We find competitive constraints in the Ωm–σ8 plane from the convergence PDF with 188 arcmin 2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is lessmore » susceptible, and improves the total figure of merit by a factor of 2–3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.« less
Experimental and theoretical infrared spectra of famotidine and its interaction with ofloxacin
NASA Astrophysics Data System (ADS)
Sagdinc, Seda; Bayarı, Sevgi
2005-06-01
We present FTIR spectrum of B polymorphic forms of famotidine (fam) that is a powerful histamine H2-receptor antagonist used in the treatment of peptic ulcer. Molecular mechanics and semi empirical AM1, PM3, MNDO and MINDO3 methods have been used to study the molecular geometry, and the harmonic vibrational spectra with the purpose to assist the experimental assignments of famotidine. The calculated geometric parameters have been compared to the corresponding X-ray structure of famotidine and it is found that AM1 structure in agreement with the crystal data. We are also investigated the interaction of famotidine with ofloxacin which is a synthetic antimicrobial agent. The changes observed in the some bands (wavenumber, shape) of interacted compound indicated that there is a weak interaction between two molecules. PM3 calculations are also carried out to determine the possible molecular structure of the interacted compound.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.
Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo
2015-01-01
Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693
Cosmological constraints from the convergence 1-point probability distribution
NASA Astrophysics Data System (ADS)
Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus; Huff, Eric; Melchior, Peter; Ross, Ashley J.; Suchyta, Eric
2017-11-01
We examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the Ωm-σ8 plane from the convergence PDF with 188 arcmin2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is less susceptible, and improves the total figure of merit by a factor of 2-3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2009-07-10
Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with anmore » integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.« less
Advanced injection seeder for various applications: form LIDARs to supercontinuum sources
NASA Astrophysics Data System (ADS)
Grzes, Pawel
2017-12-01
The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Phase-sensitive spectral estimation by the hybrid filter diagonalization method.
Celik, Hasan; Ridge, Clark D; Shaka, A J
2012-01-01
A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.
2018-04-01
Aims: We study γ-ray emission from the shell-type supernova remnant (SNR) RX J0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods: The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RX J0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results: An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of Ecut = (6.7 ± 1.2stat ± 1.2syst) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644. A FITS image of the region of interest and two text files describing the H.E.S.S. spectrum of RX J0852.0-4622 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A7
NASA Technical Reports Server (NTRS)
Venters, Tonia M.; Pavlidou, Vasiliki
2011-01-01
The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.
Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.
Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan
2017-06-01
Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.
ERIC Educational Resources Information Center
Lyall, Kristen; Pauls, David L.; Santangelo, Susan; Spiegelman, Donna; Ascherio, Alberto
2011-01-01
It is not known whether reproductive factors early in the mother's life influence risk of autism spectrum disorders (ASD). We assessed maternal age at menarche, menstrual cycle characteristics during adolescence, oral contraceptive use prior to first birth, body shape, and body mass index (BMI) in association with ASD using binomial regression in…
Simard, G.; et al.
2018-06-20
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, G.; et al.
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Chen, Jun; Doxaran, David
2016-03-01
We evaluated three key components in modeling hyperspectral remote-sensing reflectance in the visible to shortwave-infrared (Vis-SWIR) domain of high-sediment-load (HSL) waters, which are the relationship between remote-sensing reflectance (R(rs)) and inherent optical properties (IOPs), the absorption coefficient spectrum of pure water (a(w)) in the IR-SWIR region, and the spectral variation of sediment absorption coefficient (a(sed)). Results from this study indicate that it is necessary to use a more generalized R(rs)-IOP model to describe the spectral variation of R(rs) of HSL waters from Vis to SWIR; otherwise it may result in a spectrally distorted R(rs) spectrum if a constant model parameter is used. For hyperspectral a(w) in the IR-SWIR domain, the values reported in Kou et al. (1993) provided a much better match with the spectral variation of R(rs) in this spectral range compared to that of Segelstein (1981). For a(sed) spectrum, an empirical a(sed) spectral shape derived from sample measurements is found working much better than the traditional exponential-decay function of wavelength in modeling the spectral variation of R(rs) in the visible domain. These results would improve our understanding of the spectral signatures of R(rs) of HSL waters in the Vis-SWIR domain and subsequently improve the retrieval of IOPs from ocean color remote sensing, which could further help the estimation of sediment loading of such waters. Limitations in estimating chlorophyll concentration in such waters are also discussed.
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images
Shepherd, John A.; Fan, Bo; Schwartz, Ann V.; Cawthon, Peggy; Cummings, Steven R.; Kritchevsky, Stephen; Nevitt, Michael; Santanasto, Adam; Cootes, Timothy F.
2017-01-01
There is growing evidence that body shape and regional body composition are strong indicators of metabolic health. The purpose of this study was to develop statistical models that accurately describe holistic body shape, thickness, and leanness. We hypothesized that there are unique body shape features that are predictive of mortality beyond standard clinical measures. We developed algorithms to process whole-body dual-energy X-ray absorptiometry (DXA) scans into body thickness and leanness images. We performed statistical appearance modeling (SAM) and principal component analysis (PCA) to efficiently encode the variance of body shape, leanness, and thickness across sample of 400 older Americans from the Health ABC study. The sample included 200 cases and 200 controls based on 6-year mortality status, matched on sex, race and BMI. The final model contained 52 points outlining the torso, upper arms, thighs, and bony landmarks. Correlation analyses were performed on the PCA parameters to identify body shape features that vary across groups and with metabolic risk. Stepwise logistic regression was performed to identify sex and race, and predict mortality risk as a function of body shape parameters. These parameters are novel body composition features that uniquely identify body phenotypes of different groups and predict mortality risk. Three parameters from a SAM of body leanness and thickness accurately identified sex (training AUC = 0.99) and six accurately identified race (training AUC = 0.91) in the sample dataset. Three parameters from a SAM of only body thickness predicted mortality (training AUC = 0.66, validation AUC = 0.62). Further study is warranted to identify specific shape/composition features that predict other health outcomes. PMID:28423041
Hearing shapes of drums: Mathematical and physical aspects of isospectrality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraud, Olivier; Thas, Koen; LPT
2010-07-15
In a celebrated paper ''Can one hear the shape of a drum?'' M. Kac [Am. Math. Monthly 73, 1 (1966)] asked his famous question about the existence of nonisometric billiards having the same spectrum of the Laplacian. This question was eventually answered positively in 1992 by the construction of noncongruent planar isospectral pairs. This review highlights mathematical and physical aspects of isospectrality.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silant’ev, A. V., E-mail: kvvant@rambler.ru
2015-10-15
Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.
NASA Astrophysics Data System (ADS)
Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.
2017-02-01
Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, E V; Il'ichenko, S N; Kostin, Yu O
Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules themore » prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)« less
The shape of the extragalactic cosmic ray spectrum from galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harari, Diego; Mollerach, Silvia; Roulet, Esteban, E-mail: harari@cab.cnea.gov.ar, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar
2016-08-01
We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E / Z < 1 EeVmore » . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.« less
Dynamics in the Parameter Space of a Neuron Model
NASA Astrophysics Data System (ADS)
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensslin, Torsten A.; Frommert, Mona
2011-05-15
The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequentmore » reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.« less
GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B
NASA Astrophysics Data System (ADS)
Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.
2018-02-01
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.
NASA Astrophysics Data System (ADS)
Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.
2011-03-01
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
Liu, C.; Charpentier, R.R.; Su, J.
2011-01-01
Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.
[Passive ranging of infrared target using oxygen A-band and Elsasser model].
Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi
2014-09-01
Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.
Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor
NASA Astrophysics Data System (ADS)
Som, S.; Choubey, A.; Sharma, S. K.
2012-09-01
This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.
Huang, Xianwei; Deng, Zhixiang; Shi, Xiaohui; Bai, Yanfeng; Fu, Xiquan
2018-02-19
Based on the extended Huygens-Fresnel principle, we have derived the analytical expression of the average intensity of optical coherence lattices (OCLs) in oceanic turbulence with anisotropy, and then the beam quality parameters including the Strehl ratio (SR) and the power-in-the-bucket (PIB) are obtained. One can find that the OCLs will eventually evolve into Gaussian shape with the periodicity reciprocity gradually breaking down when propagating through the anisotropic ocean water, and that the trend of evolving into Gaussian can be accelerated for increasing the ratio of temperature and salinity contributions to the refractive index spectrum ω, the lattice constant a and the rate of dissipation of mean square temperature χT or decreasing the anisotropic factor ξ and the rate of dissipation of turbulent kinetic energy per unit mass of fluid ε. Further, the SR and PIB in the target plane under the effects of oceanic parameters are discussed in detail, and the SR and PIB can be increased for the larger ξ and ε or the smaller χT and ω, namely, the beam quality becomes better. Our results can find potential application in the future optical communication system in an oceanic environment.
Calibration of phoswich-based lung counting system using realistic chest phantom.
Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R
2011-03-01
A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration.
Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer
NASA Astrophysics Data System (ADS)
Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří
2014-10-01
Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.
Characterizing the behavior of scattered radiation in multi-energy x-ray imaging
NASA Astrophysics Data System (ADS)
Sossin, Artur; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.
2017-04-01
Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.
Measuring mass of neutrinos with {beta}-decays of tritium and rhenium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornicky, R.; Simkovic, F.; Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna
2009-11-09
Already long time ago the shape of the electron spectrum in {beta}-decays of {sup 3}H and {sup 187}Re has been recognized as an important tool for understanding of neutrino masses. The sensitivity of KATRIN (in preparation, tritium {beta}-decay) and the MARE (under consideration, {sup 187}Re{beta}-decay) experiments to neutrino mass will reach the sub eV domain. In view of this experimental progress there is a request for a highly accurate theoretical description of the electron endpoint spectra. By taking the advantage of the elementary particle treatment of {sup 3}H and {sup 3}He the relativistic form for {beta}-decay endpoint spectrum of tritiummore » is obtained by taking into account also the effect of nuclear recoil. Further, the currently unknown shape of the electron spectrum for the {beta}-decay of {sup 187}Re is presented. It is found that the first forbidden {sup 187}Re(5/2{sup +}){yields}{sup 187}Os(1/2{sup -}){beta}-decay transition is accompanied with emission of mostly p{sub 3/2}-state electrons.« less
Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.
Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J
2016-06-01
Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. Copyright © 2016. Published by Elsevier B.V.
Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.
Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang
2016-08-01
We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.
Power laws for gravity and topography of Solar System bodies
NASA Astrophysics Data System (ADS)
Ermakov, A.; Park, R. S.; Bills, B. G.
2017-12-01
When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the power law can be found by rescaling the values known for other bodies. Third, an ensemble of synthetic shapes that follow the defined power law can be generated and gravity-from-shape can be found. The averaged power spectrum can be used as an a priori constraint for the gravity field and variance of power can be computed for individual degrees.
Effect of quench on alpha/beta pulse shape discrimination of liquid scintillation cocktails.
DeVol, Timothy A; Theisen, Christopher D; DiPrete, David P
2007-05-01
The objectives of this paper are (1) to illustrate that knowledge of the external quench parameter is insufficient to properly setup a pulse shape discriminating liquid scintillation counter (LSC) for quantitative measurement, (2) to illustrate dependence on pulse shape discrimination on the radionuclide (more than just radiation and energy), and (3) to compare the pulse shape discrimination (PSD) of two commercial instruments. The effects various quenching agents, liquid scintillation cocktails, radionuclides, and LSCs have on alpha/beta pulse shape discriminating liquid scintillation counting were quantified. Alpha emitting radionuclides (239)Pu and (241)Am and beta emitter (90)Sr/(90)Y were investigated to quantify the nuclide dependence on alpha/beta pulse shape discrimination. Also, chemical and color quenching agents, nitromethane, nitric acid, and yellow dye impact on alpha/beta pulse shape discrimination using PerkinElmer Optiphase "HiSafe" 2 and 3, and Ultima Gold AB liquid scintillation cocktails were determined. The prepared samples were counted on the PerkinElmer Wallac WinSpectral 1414 alpha/beta pulse shape discriminating LSC. It was found that for the same level of quench, as measured by the external quench parameter, different quench agents influenced the pulse shape discrimination and the pulse shape discrimination parameters differently. The radionuclide also affects alpha/beta pulse shape discrimination. By comparison with the PerkinElmer Tri-carb 3150 TR/AB, the Wallac 1414 exhibited better pulse shape discrimination capability under the same experimental conditions.
Angular-spectrum representation of nondiffracting X waves
NASA Astrophysics Data System (ADS)
Fagerholm, Juha; Friberg, Ari T.; Huttunen, Juhani; Morgan, David P.; Salomaa, Martti M.
1996-10-01
We derive the nondiffracting X waves, first discussed within acoustics by Lu and Greenleaf [IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 19 (1992)], using the general mathematical formalism based on an angular spectrum of plane waves. This serves to provide a unified treatment of not only the fundamental zeroth-order X waves of Lu and Greenleaf, but also of the lesser-known higher-order derivative X waves, first discussed here in terms of a single, universal, angular spectrum. The characteristic crossed (letter-X-like) shape and the special properties of the X waves, as well as of their angular-spectrum representation, are discussed and illustrated in detail. Asymptotically, for increasing order, the appearance of the X waves is found to transform into a triangular wedgelike waveform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naito, O.
2015-08-15
An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, themore » diagnostics might be used to measure local electron current density in fusion plasmas.« less
Lika, Konstadia; Augustine, Starrlight; Pecquerie, Laure; Kooijman, Sebastiaan A L M
2014-08-07
The standard Dynamic Energy Budget (DEB) model assumes that food is converted to reserve and a fraction κ of mobilised reserve of an individual is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). The add_my_pet collection of over 300 animal species from most larger phyla, and all chordate classes, shows that this model fits energy data very well. Nine parameters determine nine data points at abundant food: dry/wet weight ratio, age at birth, puberty, death, weight at birth, metamorphosis, puberty, ultimate weight and ultimate reproduction rate. We demonstrate that, given a few other parameters, these nine data points also determine the nine parameters uniquely that are independent of food availability: maturity at birth, metamorphosis and puberty, specific assimilation, somatic maintenance and costs for structure, allocation fraction of mobilised reserve to soma, energy conductance, and ageing acceleration. We provide an efficient algorithm for mapping between data and parameter space in both directions and found expressions for the boundaries of the parameter and data spaces. One of them quantifies the position of species in the supply-demand spectrum, which reflects the internalisation of energetic control. We link eco-physiological properties of species to their position in this spectrum and discuss it in the context of homeostasis. Invertebrates and ray-finned fish turn out to be close to the supply end of the spectrum, while other vertebrates, including cartilaginous fish, have stronger demand tendencies. We explain why birds and mammals up-regulate metabolism during reproduction. We study some properties of the bijection using elasticity coefficients. The properties have applications in parameter estimation and in the analysis of evolutionary constraints on parameter values; the relationship between DEB parameters and data has similarities to that between genotype and phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies.more » They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.« less
Gender and autistic traits modulate implicit motor synchrony
Cheng, Miao; Kato, Masaharu
2017-01-01
Interpersonal motor synchrony during walking or dancing is universally observed across cultures, and this joint movement was modulated by physical and social parameters. However, human interactions are greatly shaped by our unique traits, and self-related factors are surprisingly little studied in the context of interpersonal motor synchrony. In this study, we investigated two such factors known to be highly associated with motor coordination: gender and autistic traits. We employed a real-world task extending our understanding beyond laboratory tasks. Participants of the same gender were paired up to walk and chat in a natural environment. A cover story was introduced so that participants would not know their walking steps were being recorded and instead believed that their location was being tracked by a global positioning system (GPS), so they would ignore the motor recording. We found that the female pairs’ steps were more synchronized than those of the males, and higher autistic tendencies (measured by the autism-spectrum quotient) attenuated synchronous steps. Those who synchronized better had higher impression rating increase for their walking partners (measured by interpersonal judgement scale) than those who synchronized less well. Our results indicated that the participants’ joint movements were shaped by predisposed traits and might share similar mechanism with social functions such as empathy. PMID:28873419
Photomatrix LED therapy of extensive cutaneous pathology
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Menyaev, Yulian A.; Zharova, I. Z.; Leviev, Dmitry O.; Tsarev, V. N.; Sarantsev, V. P.; Krusic, Joze
2000-05-01
Standard sources of radiation have not sufficient efficiency at treating spatially extended pathology, especially when pathologic areas involve opposite sides of the human being's body or when they are uneven in shape. The typical examples of such pathology are extensive burns, oedema, inflammatory processes, infectious wounds, actinic keratosis, psoriasis, arthritis and neurological diseases. Superbright LEDs gathered in a matrix and grasping the area of irradiation are the most suitable sources of radiation. This article presents the result of investigation of the effectiveness of various types of the blue-to-infrared spectrum range LED array that allow irradiating a surface with an area from several cm2 to several thousand cm2 including the whole human being's body with the intensity varying from 1 to 100 mW/cm2. Besides the matrixes, composed of separate light diodes, modular systems with separate monolithic hybrid chips with a high density of positioning the sources of radiation are considered. The peculiarities and results of applying such systems to treat oedema, cancer, weight regulation, neurological diseases, different infections diseases in combination with PDT, stomatitis and paradontosis are analyzed. The parameters of the photomatrix LED for different spectral regions and different geometry from flat shape to semispherical and cylindrical are presented. The perspective combination photomatrix LED with another therapeutical devices including photovacuum and photomagnetic therapy are considered.
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
NASA Astrophysics Data System (ADS)
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com
A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less
Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.
ERIC Educational Resources Information Center
Henderson, Giles; And Others
1982-01-01
Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)
Determining the Full Halo Coronal Mass Ejection Characteristics
NASA Astrophysics Data System (ADS)
Fainshtein, V. G.
2010-11-01
Observing halo coronal mass ejections (HCMEs) in the coronagraph field of view allows one to only determine the apparent parameters in the plane of the sky. Recently, several methods have been proposed allowing one to find some true geometrical and kinematical parameters of HCMEs. In most cases, a simple cone model was used to describe the CME shape. Observations show that various modifications of the cone model ("ice cream models") are most appropriate for describing the shapes of individual CMEs. This paper uses the method of determining full HCME parameters proposed by the author earlier, for determining the parameters of 45 full HCMEs, with various modifications of their shapes. I show that the determined CME characteristics depend significantly on the chosen CME shape. I conclude that the absence of criteria for a preliminary evaluation of the CME shape is a major source of error in determining the true parameters of a full HCME with any of the known methods. I show that, regardless of the chosen CME form, the trajectory of practically all the HCMEs in question deviate from the radial direction towards the Sun-Earth axis at the initial stage of their movement, and their angular size, on average, significantly exceeds that of all the observable CMEs.
Speech Spectrum's Correlation with Speakers' Eysenck Personality Traits
Hu, Chao; Wang, Qiandong; Short, Lindsey A.; Fu, Genyue
2012-01-01
The current study explored the correlation between speakers' Eysenck personality traits and speech spectrum parameters. Forty-six subjects completed the Eysenck Personality Questionnaire. They were instructed to verbally answer the questions shown on a computer screen and their responses were recorded by the computer. Spectrum parameters of /sh/ and /i/ were analyzed by Praat voice software. Formant frequencies of the consonant /sh/ in lying responses were significantly lower than that in truthful responses, whereas no difference existed on the vowel /i/ speech spectrum. The second formant bandwidth of the consonant /sh/ speech spectrum was significantly correlated with the personality traits of Psychoticism, Extraversion, and Neuroticism, and the correlation differed between truthful and lying responses, whereas the first formant frequency of the vowel /i/ speech spectrum was negatively correlated with Neuroticism in both response types. The results suggest that personality characteristics may be conveyed through the human voice, although the extent to which these effects are due to physiological differences in the organs associated with speech or to a general Pygmalion effect is yet unknown. PMID:22439014
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat
Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.
NASA Astrophysics Data System (ADS)
Schäfer, Björn Malte; Merkel, Philipp M.
2017-09-01
This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.
Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures
2015-11-17
34Imprintable, Bendable, and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium - Ion Batteries ," Advanced Materials, vol. 25, pp. 1395-1400...center; and (d) close-up of light aperture etched with a focused ion beam [104] ............ 22 Figure 16: (a) Conformal antenna patterned by...where the features are defined using focused ion beam milling (e.g. fishnet patterns) [20], standard micro-/nano- lithography processes that are
20F beta spectrum shape and weak interaction tests
NASA Astrophysics Data System (ADS)
Voytas, Paul; George, Elizabeth; Chuna, Thomas; Naviliat-Cuncic, Oscar; Hughes, Max; Huyan, Xueying; Minamisono, Kei; Paulauskas, Stanley
2016-09-01
Precision measurements of the shape of beta spectra can test our understanding of the weak interaction. We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. The primary motivation is to test the so-called strong form of the conserved vector current (CVC) hypothesis. The measurement should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. We aim to achieve a relative precision better than 3% on the linear contribution to the shape. This represents an order of magnitude improvement compared to previous experiments in 20F. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in scintillation detectors deeply enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the implantation beam. Ancillary detectors are used to identify the 1.633-MeV γ-rays following the 20F β decay for coincidence measurements in order to tag the transition of interest and to reduce backgrounds. We report on the status of the analysis. Supported in part with Awards from the NSCL PAC and the National Science Foundation under Grant No. PHY-1506084.
NASA Astrophysics Data System (ADS)
Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu
2017-05-01
In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.
The Absorption Spectrum of Iodine Vapour
ERIC Educational Resources Information Center
Tetlow, K. S.
1972-01-01
A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)
Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device.
Gu, Chenglin; Chang, Yina; Zhang, Dapeng; Cheng, Jiyi; Chen, Shih-Chi
2015-09-01
In this Letter, we present a scanner and digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., S-DUPS, for programmable ultrafast pulse modulation, achieving a shaping rate of 2 MHz. To our knowledge, the S-DUPS is the fastest programmable pulse shaper reported to date. In the S-DUPS, the frequency spectrum of the input pulsed laser is first spread horizontally, and then mapped to a thin stripe on the DMD programmed with phase modulation patterns. A galvanometric scanner, synchronized with the DMD, subsequently scans the spectrum vertically on the DMD to achieve a shaping rate up to 10 s MHz. A grating pair and a cylindrical lens in front of the DMD compensate for the temporal and spatial dispersion of the system. To verify the concept, experiments were conducted with the DMD and the galvanometric scanner operated at 2 kHz and 1 kHz, respectively, achieving a 2 MHz speed for continuous group velocity dispersion tuning, as well as 2% efficiency. Up to 5% efficiency of S-DUPS can be expected with high efficiency gratings and optical components of proper coatings.
[Dopplerography of the large hepatic veins in the diagnosis of tricuspid valve insufficiency].
Korytnikov, K I; Martyniuk, A D; Pustovit, L K
1991-01-01
During pulse dopplerography of the large hepatic veins in patients with tricuspid valve failure, the differences in the shape of the spectrum of Doppler's frequencies were revealed as dependent on cardiac rhythm. In sinus rhythm, the curve of the systolic flow is recordable beneath the baseline, in atrial fibrillation, over the baseline. In scanning of the large hepatic veins in patients with tricuspid valve failure, the shape of the curves of the spectrum of Doppler's frequencies coincides with the shape of the curves of liver pulsation. Tricuspid valve failure in sinus rhythm leads to a decrease of the maximum velocity of the systolic flow in the hepatic veins. There is a close correlation between the maximum velocity of the systolic flow of tricuspid regurgitation and the maximum velocity of the systolic flow in the large hepatic veins. Pulse dopplerography of the large hepatic veins is a safe enough method of the diagnosis of tricuspid valve failure and can be used in difficult cases when analysing the tricuspid blood flow from standard projections.
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.
1982-01-01
A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.
Observational tests of non-adiabatic Chaplygin gas
NASA Astrophysics Data System (ADS)
Carneiro, S.; Pigozzo, C.
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Maximal compression of the redshift-space galaxy power spectrum and bispectrum
NASA Astrophysics Data System (ADS)
Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer
2018-05-01
We explore two methods of compressing the redshift-space galaxy power spectrum and bispectrum with respect to a chosen set of cosmological parameters. Both methods involve reducing the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological parameters considered (e.g. seven ) using the Karhunen-Loève algorithm. In the first case, we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D posterior distributions. The second option, approximately 2000 times faster, works by orthogonalizing the parameter space through diagonalization of the Fisher information matrix before the compression, obtaining the posterior distributions without the need of MCMC sampling. Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS would drastically reduce the number of simulations needed to compute accurate covariance matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like experiment. Using the power spectrum combined with the bispectrum as a data vector, both compression methods on average recover the 68 {per cent} credible regions to within 0.7 {per cent} and 2 {per cent} of those resulting from standard MCMC sampling, respectively. These confidence intervals are also smaller than the ones obtained using only the power spectrum by 81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate f, and the scalar amplitude parameter As.
NASA Astrophysics Data System (ADS)
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-01
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changhong; Cheung, Yeuk-Kwan E., E-mail: chellifegood@gmail.com, E-mail: cheung@nju.edu.cn
2014-07-01
We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scalemore » invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.« less
Interactive spectral analyzer and comparator (ISAAC)
NASA Astrophysics Data System (ADS)
Latković, O.; Cséki, A.; Vince, I.
2003-10-01
We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.
Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.
2007-10-23
A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.
The effect of texture on the shaft surface on the sealing performance of radial lip seals
NASA Astrophysics Data System (ADS)
Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing
2014-07-01
On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.
Absolute instabilities of travelling wave solutions in a Keller-Segel model
NASA Astrophysics Data System (ADS)
Davis, P. N.; van Heijster, P.; Marangell, R.
2017-11-01
We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Poulin, Vivian; Serpico, Pasquale Dario
2015-03-06
The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
Impaired Eye Region Search Accuracy in Children with Autistic Spectrum Disorders
Pruett, John R.; Hoertel, Sarah; Constantino, John N.; LaMacchia Moll, Angela; McVey, Kelly; Squire, Emma; Feczko, Eric; Povinelli, Daniel J.; Petersen, Steven E.
2013-01-01
To explore mechanisms underlying reduced fixation of eyes in autism, children with Autistic Spectrum Disorders (ASD) and typically developing children were tested in five visual search experiments: simple color feature; color-shape conjunction; face in non-face objects; mouth region; and eye region. No group differences were found for reaction time profile shapes in any of the five experiments, suggesting intact basic search mechanics in children with ASD. Contrary to early reports in the literature, but consistent with other more recent findings, we observed no superiority for conjunction search in children with ASD. Importantly, children with ASD did show reduced accuracy for eye region search (p = .005), suggesting that eyes contribute less to high-level face representations in ASD or that there is an eye region-specific disruption to attentional processes engaged by search in ASD. PMID:23516446
Impaired eye region search accuracy in children with autistic spectrum disorders.
Pruett, John R; Hoertel, Sarah; Constantino, John N; Moll, Angela LaMacchia; McVey, Kelly; Squire, Emma; Feczko, Eric; Povinelli, Daniel J; Petersen, Steven E
2013-01-01
To explore mechanisms underlying reduced fixation of eyes in autism, children with autistic spectrum disorders (ASD) and typically developing children were tested in five visual search experiments: simple color feature; color-shape conjunction; face in non-face objects; mouth region; and eye region. No group differences were found for reaction time profile shapes in any of the five experiments, suggesting intact basic search mechanics in children with ASD. Contrary to early reports in the literature, but consistent with other more recent findings, we observed no superiority for conjunction search in children with ASD. Importantly, children with ASD did show reduced accuracy for eye region search (p = .005), suggesting that eyes contribute less to high-level face representations in ASD or that there is an eye region-specific disruption to attentional processes engaged by search in ASD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, D.
1985-03-01
A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrummore » to order ten are calculated both with respect to the origin and with respect to the mean.« less
Building test data from real outbreaks for evaluating detection algorithms.
Texier, Gaetan; Jackson, Michael L; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.
Building test data from real outbreaks for evaluating detection algorithms
Texier, Gaetan; Jackson, Michael L.; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals. PMID:28863159
Cosmological Parameters from the QUAD CMB Polarization Experiment
NASA Astrophysics Data System (ADS)
Castro, P. G.; Ade, P.; Bock, J.; Bowden, M.; Brown, M. L.; Cahill, G.; Church, S.; Culverhouse, T.; Friedman, R. B.; Ganga, K.; Gear, W. K.; Gupta, S.; Hinderks, J.; Kovac, J.; Lange, A. E.; Leitch, E.; Melhuish, S. J.; Memari, Y.; Murphy, J. A.; Orlando, A.; Pryke, C.; Schwarz, R.; O'Sullivan, C.; Piccirillo, L.; Rajguru, N.; Rusholme, B.; Taylor, A. N.; Thompson, K. L.; Turner, A. H.; Wu, E. Y. S.; Zemcov, M.; QUa D Collaboration
2009-08-01
In this paper, we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard six-parameter ΛCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard six-parameter ΛCDM analysis, we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data show some tension with ΛCDM. The origin of this 1σ-2σ tension remains unclear, and may point to new physics, residual systematics, or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS luminous red galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, αcdmi < 0.11 (95% confidence limit (CL)), neutrino density, αndi < 0.26 (95% CL), and neutrino velocity, αnvi < 0.23 (95% CL), modes. Our analysis sets a benchmark for future polarization experiments.
Observation and Study of Proton Aurora by using Scanning Photometer
NASA Astrophysics Data System (ADS)
Mochizuki, T.; Ono, T.; Kadokura, A.; Sato, N.
2009-12-01
The proton auroras have significant differences from electron auroras in their spectral shape. They show Doppler-shifted and broadened spectra: the spectra have Doppler-shifted (~0.5 nm shorter) peak and both bluewing (~2-4 nm) and redwing (~1.5 nm) extending. Energy spectra of precipitating protons have been estimated from this shape. Recently it is found that the intensity in the extent of the blue wing reflects more effectively by the change of the mean energy of precipitating protons than the shift of peak wavelength [Lanchester et al., 2003]. Another character of the H-beta aurora is that it is diffuse form because a proton becomes hydrogen atom due to a charge-exchange reaction with atmospheric constituent and then possible to move across the magnetic field line. By using a scanning photometer, the movement of the proton auroral belt and change of a spectrum shape associated with the variation of proton source region due to storm and substorm were reported, however, not discussed in detail yet [Deehr and Lummerzheim, 2001]. The purpose of this study is to obtain the detail characteristics of H-beta aurora for understanding of source region of energetic protons in the magnetosphere. For this purpose, a new meridian-scanning photometer (SPM) was installed at Husafell station in Iceland in last summer season and Syowa Station, Antarctica. It will contribute to investigate the distribution of energetic protons and plasma waves which cause the pitch angle scattering in the magnetosphere. The meridian-scanning photometer is able to observe at five wavelengths for H-beta emission. One channel is to measure the background level. By analyzing the data obtained by the SPM, the H-beta spectrum can be estimated by fitting a model function with it. Then it is possible to obtain distribution of precipitating protons in north-south direction. It is also possible to estimate an energy spectrum of precipitating proton, simultaneously. The instrumental parameters of the SPM is defined by the transmission characteristics of the interference filters; they are 485.7 nm (FWHM: 3.0 nm), 484.5 nm (0.6 nm), 485.5 nm (0.6 nm), 486.5 nm (0.6 nm) and 487.5 nm (0.6 nm) for H-beta auroras, and OI 630 nm (0.6 nm), N_2 1PG 670.5 nm (5.0 nm) and OI 844.6 nm (0.6 nm) for electron auroras. We analyzed the event at 2100 UT 23rd June, 2009 observed at Syowa station. This is typical auroral breakup event. And in this event, breakup occurred in FOV of the photometer and expanded to poleward. Then NS aurora appeared and pulsating aurora occurred. We calculated Doppler profile and each parameter is below. The peak intensity is 80 R/nm, wavelength at peak intensity is 486.0 nm, HWHM of bluewing is 1.7 nm and HWHM of redwing is 0.9 nm. These value are within past studies, although the Doppler shift of peak intensity is 0.1 nm and shorter than the average of past studies (0.5 nm). And intensity and Doppler profile of proton aurora changed with eqatorward moving in substorm growth phase. This suggests that the source of precipitating proton moves Earthward and its energy increases, and correspond to the result of Deehr and Lummerzheim, 2001. We are going to report the more detailed result of this event and new events of proton aurora.
Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.
NASA Technical Reports Server (NTRS)
Gilbert, D. W.
1972-01-01
Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
Computation of a spectrum from a single-beam fourier-transform infrared interferogram.
Ben-David, Avishai; Ifarraguerri, Agustin
2002-02-20
A new high-accuracy method has been developed to transform asymmetric single-sided interferograms into spectra. We used a fraction (short, double-sided) of the recorded interferogram and applied an iterative correction to the complete recorded interferogram for the linear part of the phase induced by the various optical elements. Iterative phase correction enhanced the symmetry in the recorded interferogram. We constructed a symmetric double-sided interferogram and followed the Mertz procedure [Infrared Phys. 7,17 (1967)] but with symmetric apodization windows and with a nonlinear phase correction deduced from this double-sided interferogram. In comparing the solution spectrum with the source spectrum we applied the Rayleigh resolution criterion with a Gaussian instrument line shape. The accuracy of the solution is excellent, ranging from better than 0.1% for a blackbody spectrum to a few percent for a complicated atmospheric radiance spectrum.
Validation of fast-ion D-alpha spectrum measurements during EAST neutral-beam heated plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J., E-mail: juan.huang@ipp.ac.cn; Wu, C. R.; Hou, Y. M.
2016-11-15
To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been installed on EAST. Fast ion features can be inferred from the Doppler shifted spectrum of Balmer-alpha light from energetic hydrogenic atoms. This paper will focus on the validation of FIDA measurements performed using MHD-quiescent discharges in 2015 campaign. Two codes have been applied to calculate the D{sub α} spectrum: one is a Monte Carlo code, Fortran 90 version FIDASIM, and the other is an analytical code, Simulation of Spectra (SOS). The predicted SOS fast-ion spectrum agrees well with the measurement; however, the level of fast-ionmore » part from FIDASIM is lower. The discrepancy is possibly due to the difference between FIDASIM and SOS velocity distribution function. The details will be presented in the paper to primarily address comparisons of predicted and observed spectrum shapes/amplitudes.« less
Spectrum transformation for divergent iterations
NASA Technical Reports Server (NTRS)
Gupta, Murli M.
1991-01-01
Certain spectrum transformation techniques are described that can be used to transform a diverging iteration into a converging one. Two techniques are considered called spectrum scaling and spectrum enveloping and how to obtain the optimum values of the transformation parameters is discussed. Numerical examples are given to show how this technique can be used to transform diverging iterations into converging ones; this technique can also be used to accelerate the convergence of otherwise convergent iterations.
Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data
NASA Astrophysics Data System (ADS)
Tunwal, M.; Mulchrone, K. F.; Meere, P. A.
2017-12-01
Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)
Infrared spectroscopic measurements and analysis
NASA Technical Reports Server (NTRS)
Birnbaum, G.
1976-01-01
The collision induced spectrum in equilibrium H2(eH2) and in equilibrium H2-He mixtures have been determined at densities below 120 amagat in the region 500 to 900 cm/1 at 293, 195, and 77K. The collision induced spectrum of normal H2 at 77K in the region 25 to 490 cm/1 has also been determined. The details of the experiment, experimental results, and comparison with previous results are presented. A report dealing with a new theory of the shape of pressure induced spectra with an application to the far infrared spectrum of eH2 at 77K is appended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisschoff, D.; Potgieter, M. S., E-mail: 20056950@nwu.ac.za
Cosmic-ray observations made by the Voyager 1 spacecraft outside the dominant modulating influence of the heliosphere finally allow the comparison of computed galactic spectra with experimental data at lower energies. These computed spectra, based on galactic propagation models, can now be compared with observations at low energies by Voyager 1 and at high energies by the PAMELA space detector at Earth. This improves understanding of basic propagation effects and also provides solar modulation studies with reliable input spectra from 1 MeV to 100 GeV. We set out to reproduce the Voyager 1 electron observations in the energy range of 6-60more » MeV, as well as the PAMELA electron spectrum above 10 GeV, using the GALPROP code. By varying the source spectrum and galactic diffusion parameters, specifically the rigidity dependence of spatial diffusion, we find local interstellar spectra that agree with both power-law spectra observed by Voyager 1 beyond the heliopause. The local interstellar spectrum between ∼1 MeV and 100 GeV indicates that it is the combination of two power laws, with E {sup –(1.45} {sup ±} {sup 0.15)} below ∼100 MeV and E {sup –(3.15} {sup ±} {sup 0.05)} above ∼100 MeV. A gradual turn in the spectral shape matching the power laws is found, between 2.0 ± 0.5) GeV and (100 ± 10) MeV. According to our simplified modeling, this transition is caused primarily by galactic propagation effects. We find that the intensity beyond the heliopause at 10 MeV is (350 ± 50) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1}, decreasing to (50 ± 5) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1} at 100 MeV.« less
Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum
NASA Astrophysics Data System (ADS)
Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco
2018-03-01
We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).
Dark energy constraints from the thermal Sunyaev-Zeldovich power spectrum
NASA Astrophysics Data System (ADS)
Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco
2018-07-01
We constrain the dark energy equation of state parameter, {w}, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalizing over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e. not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6 per cent precision, F = 0.460 ± 0.012 (68 per cent CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck cosmic microwave background (CMB) data, we find {w} = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68 per cent CL). Our limit on {w} is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ cold dark matter model, the mass bias of B = 1.71 ± 0.17, i.e. 1 - b = 0.58 ± 0.06 (68 per cent CL).
NASA Technical Reports Server (NTRS)
Israel, F. P.; Mahoney, M. J.; Howarth, N.
1992-01-01
We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.
Hu, Ben; Kuang, Zheng-Kun; Feng, Shi-Yu; Wang, Dong; He, Song-Bing; Kong, De-Xin
2016-11-17
The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.
Measurement of the inclusive electron spectrum from B meson decays and determination of | V u b |
Lees, J. P.; Poireau, V.; Tisserand, V.; ...
2017-04-01
Based on the full BABAR data sample of 466.5 millionmore » $$B\\bar{B}$$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X ueν decays from the CKM-favored B → X ceν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04 stat ± 0.2 6 syst)%, averaged over B ± and B 0 mesons. We determine the spectrum and branching fraction for charmless B → X ueν decays and extract the CKM element | V ub| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V ub| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V ub| using each of these different calculations and find, |V ub| = ( 3.794 ± 0.107 exp $$+ 0.292\\atop{ - 0.219 SF}$$ $$+ 0.078 \\atop{- 0.068 theory}$$ ) × 10 - 3 (De Fazio and Neubert), (4.563 ± 0.126 exp $$+ 0.230\\atop {- 0.208 SF}$$ $$+ 0.162\\atop{- 0.163 theory}$$ ) ×10 -3 (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104 exp $$+ 0.164\\atop{- 0.154 SF}$$ $$+ 0.042\\atop{ - 0.079 theory}$$ ) × 10 -3 (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108 exp $$+ 0.084\\atop{ - 0.070 theory}$$) × 10 -3 (dressed gluon exponentiation), where the stated uncertainties refer to the experimental uncertainties of the partial branching fraction measurement, the shape function parameters, and the theoretical calculations.« less
NASA Astrophysics Data System (ADS)
Alimi, J.-M.; Füzfa, A.; Boucher, V.; Rasera, Y.; Courtin, J.; Corasaniti, P.-S.
2010-01-01
Quintessence has been proposed to account for dark energy (DE) in the Universe. This component causes a typical modification of the background cosmic expansion, which, in addition to its clustering properties, can leave a potentially distinctive signature on large-scale structures. Many previous studies have investigated this topic, particularly in relation to the non-linear regime of structure formation. However, no careful pre-selection of viable quintessence models with high precision cosmological data was performed. Here we show that this has led to a misinterpretation (and underestimation) of the imprint of quintessence on the distribution of large-scale structures. To this purpose, we perform a likelihood analysis of the combined Supernova Ia UNION data set and Wilkinson Microwave Anisotropy Probe 5-yr data to identify realistic quintessence models. These are specified by different model parameter values, but still statistically indistinguishable from the vanilla Λ cold dark matter (ΛCDM). Differences are especially manifest in the predicted amplitude and shape of the linear matter power spectrum though these remain within the uncertainties of the Sloan Digital Sky Survey data. We use these models as a benchmark for studying the clustering properties of dark matter haloes by performing a series of high-resolution N-body simulations. In this first paper, we specifically focus on the non-linear matter power spectrum. We find that realistic quintessence models allow for relevant differences of the dark matter distribution with respect to the ΛCDM scenario well into the non-linear regime, with deviations of up to 40 per cent in the non-linear power spectrum. Such differences are shown to depend on the nature of DE, as well as the scale and epoch considered. At small scales (k ~ 1-5hMpc-1, depending on the redshift), the structure formation process is about 20 per cent more efficient than in ΛCDM. We show that these imprints are a specific record of the cosmic structure formation history in DE cosmologies and therefore cannot be accounted for in standard fitting functions of the non-linear matter power spectrum.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Technical Reports Server (NTRS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-01-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-03-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
A FORTRAN Computer Program to Perform Goodness of Fit Testing on Empirical Data.
1979-06-01
11 9. Mesokurtic Shape ....... ................. 1210. Platykurtic Shape ..... .. ................ 12 11. Leptokurtic Shape...distribution is platykurtic and if K is greater than 3, the distribution is described as leptokurtic. Figures 9, 10, and 11 illustrate mesokurtic... platykurtic , and leptokurtic shapes (8). Figure 9 Figure 10 Figure 11 Mesokurtic Shape Platykurtic Shape Leptokurtic Shape The population parameters for
System for determining the type of nuclear radiation from detector output pulse shape
Miller, William H.; Berliner, Ronald R.
1994-01-01
A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.
System for determining the type of nuclear radiation from detector output pulse shape
Miller, W.H.; Berliner, R.R.
1994-09-13
A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
VHF Omnidirectional Radio Range (VOR) Electromagnetic Spectrum Measurements.
1978-10-18
MAINTENANCE AND INSPECTION OF VOR, DVOR FACILITIES. 9-42 mouce & Io 10/18/78 Page 9-1 VHF OMNI-DIRECTIONAL RADIO RANGE (VOR) ELECTROMAGNETIC SPECTRUM...developed by the rotating sideband pattern 0r Pattern shown at North 00 North position Reference30 R--Variable ....uRlerent Cardioid-shaped Field Pattern...to their respective antenna pairs (which are 1800 out of phase with each other). This combination creates a two lobe field pattern rotating at 30 rps
Salomons, Erik M; Janssen, Sabine A
2011-06-01
In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.
NASA Technical Reports Server (NTRS)
Moser, D. T.
1972-01-01
The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.
NMR spectrum analysis for CrAs at ambient pressure
NASA Astrophysics Data System (ADS)
Kotegawa, H.; Nakahara, S.; Matsushima, K.; Tou, H.; Matsuoka, E.; Sugawara, H.; Harima, H.
2018-05-01
We report NMR spectrum analysis for CrAs, which was recently reported to be superconducting under pressure. The NMR spectrum obtained by the powdered single crystals shows a typical powder pattern reproduced by the electric field gradient (EFG) parameters and isotropic Knight shift, indicating anisotropy of Knight shift is not remarkable in CrAs. For the oriented sample, the spectrum can be understood by considering that the crystals are aligned for H ∥ b . The temperature dependence of Knight shift was successfully obtained from NMR spectrum with large nuclear quadrupole interaction.
Effect of water depth on wind-wave frequency spectrum I. Spectral form
NASA Astrophysics Data System (ADS)
Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo
1996-06-01
Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.
Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P
2007-11-28
Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10< or =n< or =20, exhibit significant non-Boltzmann variations. Using phase space theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias
3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.
Enseki, Mayumi; Nukaga, Mariko; Tabata, Hideyuki; Hirai, Kota; Matsuda, Shinichi; Mochizuki, Hiroyuki
2017-05-01
Using a breath sound analyzer, we investigated clinical parameters for detecting bronchial reversibility in infants. A total of 59 infants (4-39 months, mean age 7.8 months) were included. In Study 1, the intra- and inter-observer variability was measured in 23 of 59 infants. Breath sound parameters, the frequency at 99% of the maximum frequency (F 99 ), frequency at 25%, 50%, and 75% of the power spectrum (Q 25 , Q 50 , and Q 75 ), and highest frequency of inspiratory breath sounds (HFI), and parameters obtained using the ratio of parameters, i.e. spectrum curve indices, the ratio of the third and fourth area to total area (A 3 /A T and B 4 /A T , respectively) and ratio of power and frequency at F 75 and F 50 (RPF 75 and RPF 50 ), were calculated. In Study 2, the relationship between parameters of breath sounds and age and stature were studied. In Study 3, breath sounds were studied before and after β 2 agonist inhalation. In Study 1, the data showed statistical intra- and inter-observer reliability in A 3 /A T (p=0.042 and 0.034, respectively) and RPF 50 (p=0.001 and 0.001, respectively). In Study 2, there were no significant relationships between age, height, weight, and BMI. In Study 3, A 3 /A T and RPF 50 significantly changed after β 2 agonist inhalation (p=0.001 and p<0.001, respectively). Breath sound analysis can be performed in infants, as in older children, and the spectrum curve indices are not significantly affected by age-related factors. These sound parameters may play a role in the assessment of bronchial reversibility in infants. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Shantaram, S. Pai; Gyekenyesi, John P.
1989-01-01
The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
To construct a stable and tunable optical trap in the focal region of a high numerical aperture lens
NASA Astrophysics Data System (ADS)
Kandasamy, Gokulakrishnan; Ponnan, Suresh; Sivasubramonia Pillai, T. V.; Balasundaram, Rajesh K.
2014-05-01
Based on the diffraction theory, the focusing properties of a radially polarized quadratic Bessel-Gaussian beam (QBG) with on-axis radial phase variance wavefront are investigated theoretically in the focal region of a high numerical aperture (NA) objective lens. The phase wavefront C and pupil beam parameter μ of QBG are the functions of the radial coordinate. The detailed numerical calculation of the focusing property of a QBG beam is presented. The numerical calculation shows that the beam parameter μ and phase parameter C have greater effect on the total electric field intensity distribution. It is observed that under the condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. Also, some different focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, and triangle dark hollow focus, which find wide optical applications such as optical trapping and nanopatterning.
Wu, Yabei; Lu, Huanzhang; Zhao, Fei; Zhang, Zhiyong
2016-01-01
Shape serves as an important additional feature for space target classification, which is complementary to those made available. Since different shapes lead to different projection functions, the projection property can be regarded as one kind of shape feature. In this work, the problem of estimating the projection function from the infrared signature of the object is addressed. We show that the projection function of any rotationally symmetric object can be approximately represented as a linear combination of some base functions. Based on this fact, the signal model of the emissivity-area product sequence is constructed, which is a particular mathematical function of the linear coefficients and micro-motion parameters. Then, the least square estimator is proposed to estimate the projection function and micro-motion parameters jointly. Experiments validate the effectiveness of the proposed method. PMID:27763500
ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár
2017-05-01
We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).
Application of Electron Paramagnetic Resonance to Study of Gallstones
NASA Astrophysics Data System (ADS)
Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.
2014-03-01
We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.
The Impact of Non-Thermal Processes in the Intracluster Medium on Cosmological Cluster Observables
NASA Astrophysics Data System (ADS)
Battaglia, Nicholas Ambrose
In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission provides information on structure formation shocks, e.g., on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feed-back in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation-based methods for calculating the SZ power spectrum, and characterize their differences. All the methods must rely, one way or another, on high resolution large-scale hydrodynamical simulations with varying assumptions for modelling the gas of the sort presented here. We show how our results can be used to interpret the latest ACT and SPT power spectrum results. We provide an outlook for the future, describing follow-up work we are undertaking to further advance the theory of cluster science.
BINGO: a code for the efficient computation of the scalar bi-spectrum
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Sriramkumar, L.; Martin, Jérôme
2013-05-01
We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter fNL in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter fNL for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter fNL to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.
2012-08-01
This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.
NASA Astrophysics Data System (ADS)
Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.
2014-08-01
Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.
NASA Astrophysics Data System (ADS)
Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Ko, Pyungwon; Matsui, Toshinori
2017-03-01
We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.