Sample records for speech processing methods

  1. Speech processing using maximum likelihood continuity mapping

    DOEpatents

    Hogden, John E.

    2000-01-01

    Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.

  2. Speech processing using maximum likelihood continuity mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, J.E.

    Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.

  3. Comparison of formant detection methods used in speech processing applications

    NASA Astrophysics Data System (ADS)

    Belean, Bogdan

    2013-11-01

    The paper describes time frequency representations of speech signal together with the formant significance in speech processing applications. Speech formants can be used in emotion recognition, sex discrimination or diagnosing different neurological diseases. Taking into account the various applications of formant detection in speech signal, two methods for detecting formants are presented. First, the poles resulted after a complex analysis of LPC coefficients are used for formants detection. The second approach uses the Kalman filter for formant prediction along the speech signal. Results are presented for both approaches on real life speech spectrograms. A comparison regarding the features of the proposed methods is also performed, in order to establish which method is more suitable in case of different speech processing applications.

  4. Method and apparatus for obtaining complete speech signals for speech recognition applications

    NASA Technical Reports Server (NTRS)

    Abrash, Victor (Inventor); Cesari, Federico (Inventor); Franco, Horacio (Inventor); George, Christopher (Inventor); Zheng, Jing (Inventor)

    2009-01-01

    The present invention relates to a method and apparatus for obtaining complete speech signals for speech recognition applications. In one embodiment, the method continuously records an audio stream comprising a sequence of frames to a circular buffer. When a user command to commence or terminate speech recognition is received, the method obtains a number of frames of the audio stream occurring before or after the user command in order to identify an augmented audio signal for speech recognition processing. In further embodiments, the method analyzes the augmented audio signal in order to locate starting and ending speech endpoints that bound at least a portion of speech to be processed for recognition. At least one of the speech endpoints is located using a Hidden Markov Model.

  5. Loss tolerant speech decoder for telecommunications

    NASA Technical Reports Server (NTRS)

    Prieto, Jr., Jaime L. (Inventor)

    1999-01-01

    A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.

  6. Processing Electromyographic Signals to Recognize Words

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  7. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech from Speech Delay: III. Theoretical Coherence of the Pause Marker with Speech Processing Deficits in Childhood Apraxia of Speech

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Strand, Edythe A.; Fourakis, Marios; Jakielski, Kathy J.; Hall, Sheryl D.; Karlsson, Heather B.; Mabie, Heather L.; McSweeny, Jane L.; Tilkens, Christie M.; Wilson, David L.

    2017-01-01

    Purpose: Previous articles in this supplement described rationale for and development of the pause marker (PM), a diagnostic marker of childhood apraxia of speech (CAS), and studies supporting its validity and reliability. The present article assesses the theoretical coherence of the PM with speech processing deficits in CAS. Method: PM and other…

  8. Multilingual Phoneme Models for Rapid Speech Processing System Development

    DTIC Science & Technology

    2006-09-01

    processes are used to develop an Arabic speech recognition system starting from monolingual English models, In- ternational Phonetic Association (IPA...clusters. It was found that multilingual bootstrapping methods out- perform monolingual English bootstrapping methods on the Arabic evaluation data initially...International Phonetic Alphabet . . . . . . . . . 7 2.3.2 Multilingual vs. Monolingual Speech Recognition 7 2.3.3 Data-Driven Approaches

  9. Noise suppression methods for robust speech processing

    NASA Astrophysics Data System (ADS)

    Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.

    1980-05-01

    Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.

  10. Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope.

    PubMed

    Vanthornhout, Jonas; Decruy, Lien; Wouters, Jan; Simon, Jonathan Z; Francart, Tom

    2018-04-01

    Speech intelligibility is currently measured by scoring how well a person can identify a speech signal. The results of such behavioral measures reflect neural processing of the speech signal, but are also influenced by language processing, motivation, and memory. Very often, electrophysiological measures of hearing give insight in the neural processing of sound. However, in most methods, non-speech stimuli are used, making it hard to relate the results to behavioral measures of speech intelligibility. The use of natural running speech as a stimulus in electrophysiological measures of hearing is a paradigm shift which allows to bridge the gap between behavioral and electrophysiological measures. Here, by decoding the speech envelope from the electroencephalogram, and correlating it with the stimulus envelope, we demonstrate an electrophysiological measure of neural processing of running speech. We show that behaviorally measured speech intelligibility is strongly correlated with our electrophysiological measure. Our results pave the way towards an objective and automatic way of assessing neural processing of speech presented through auditory prostheses, reducing confounds such as attention and cognitive capabilities. We anticipate that our electrophysiological measure will allow better differential diagnosis of the auditory system, and will allow the development of closed-loop auditory prostheses that automatically adapt to individual users.

  11. The Downside of Greater Lexical Influences: Selectively Poorer Speech Perception in Noise

    PubMed Central

    Xie, Zilong; Tessmer, Rachel; Chandrasekaran, Bharath

    2017-01-01

    Purpose Although lexical information influences phoneme perception, the extent to which reliance on lexical information enhances speech processing in challenging listening environments is unclear. We examined the extent to which individual differences in lexical influences on phonemic processing impact speech processing in maskers containing varying degrees of linguistic information (2-talker babble or pink noise). Method Twenty-nine monolingual English speakers were instructed to ignore the lexical status of spoken syllables (e.g., gift vs. kift) and to only categorize the initial phonemes (/g/ vs. /k/). The same participants then performed speech recognition tasks in the presence of 2-talker babble or pink noise in audio-only and audiovisual conditions. Results Individuals who demonstrated greater lexical influences on phonemic processing experienced greater speech processing difficulties in 2-talker babble than in pink noise. These selective difficulties were present across audio-only and audiovisual conditions. Conclusion Individuals with greater reliance on lexical processes during speech perception exhibit impaired speech recognition in listening conditions in which competing talkers introduce audible linguistic interferences. Future studies should examine the locus of lexical influences/interferences on phonemic processing and speech-in-speech processing. PMID:28586824

  12. Speech and Language Skills of Parents of Children with Speech Sound Disorders

    ERIC Educational Resources Information Center

    Lewis, Barbara A.; Freebairn, Lisa A.; Hansen, Amy J.; Miscimarra, Lara; Iyengar, Sudha K.; Taylor, H. Gerry

    2007-01-01

    Purpose: This study compared parents with histories of speech sound disorders (SSD) to parents without known histories on measures of speech sound production, phonological processing, language, reading, and spelling. Familial aggregation for speech and language disorders was also examined. Method: The participants were 147 parents of children with…

  13. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    PubMed

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  14. Role of Visual Speech in Phonological Processing by Children with Hearing Loss

    ERIC Educational Resources Information Center

    Jerger, Susan; Tye-Murray, Nancy; Abdi, Herve

    2009-01-01

    Purpose: This research assessed the influence of visual speech on phonological processing by children with hearing loss (HL). Method: Children with HL and children with normal hearing (NH) named pictures while attempting to ignore auditory or audiovisual speech distractors whose onsets relative to the pictures were either congruent, conflicting in…

  15. Application of an auditory model to speech recognition.

    PubMed

    Cohen, J R

    1989-06-01

    Some aspects of auditory processing are incorporated in a front end for the IBM speech-recognition system [F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE 64 (4), 532-556 (1976)]. This new process includes adaptation, loudness scaling, and mel warping. Tests show that the design is an improvement over previous algorithms.

  16. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay: III. Theoretical Coherence of the Pause Marker with Speech Processing Deficits in Childhood Apraxia of Speech

    PubMed Central

    Strand, Edythe A.; Fourakis, Marios; Jakielski, Kathy J.; Hall, Sheryl D.; Karlsson, Heather B.; Mabie, Heather L.; McSweeny, Jane L.; Tilkens, Christie M.; Wilson, David L.

    2017-01-01

    Purpose Previous articles in this supplement described rationale for and development of the pause marker (PM), a diagnostic marker of childhood apraxia of speech (CAS), and studies supporting its validity and reliability. The present article assesses the theoretical coherence of the PM with speech processing deficits in CAS. Method PM and other scores were obtained for 264 participants in 6 groups: CAS in idiopathic, neurogenetic, and complex neurodevelopmental disorders; adult-onset apraxia of speech (AAS) consequent to stroke and primary progressive apraxia of speech; and idiopathic speech delay. Results Participants with CAS and AAS had significantly lower scores than typically speaking reference participants and speech delay controls on measures posited to assess representational and transcoding processes. Representational deficits differed between CAS and AAS groups, with support for both underspecified linguistic representations and memory/access deficits in CAS, but for only the latter in AAS. CAS–AAS similarities in the age–sex standardized percentages of occurrence of the most frequent type of inappropriate pauses (abrupt) and significant differences in the standardized occurrence of appropriate pauses were consistent with speech processing findings. Conclusions Results support the hypotheses of core representational and transcoding speech processing deficits in CAS and theoretical coherence of the PM's pause-speech elements with these deficits. PMID:28384751

  17. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  18. Automatic initial and final segmentation in cleft palate speech of Mandarin speakers

    PubMed Central

    Liu, Yin; Yin, Heng; Zhang, Junpeng; Zhang, Jing; Zhang, Jiang

    2017-01-01

    The speech unit segmentation is an important pre-processing step in the analysis of cleft palate speech. In Mandarin, one syllable is composed of two parts: initial and final. In cleft palate speech, the resonance disorders occur at the finals and the voiced initials, while the articulation disorders occur at the unvoiced initials. Thus, the initials and finals are the minimum speech units, which could reflect the characteristics of cleft palate speech disorders. In this work, an automatic initial/final segmentation method is proposed. It is an important preprocessing step in cleft palate speech signal processing. The tested cleft palate speech utterances are collected from the Cleft Palate Speech Treatment Center in the Hospital of Stomatology, Sichuan University, which has the largest cleft palate patients in China. The cleft palate speech data includes 824 speech segments, and the control samples contain 228 speech segments. The syllables are extracted from the speech utterances firstly. The proposed syllable extraction method avoids the training stage, and achieves a good performance for both voiced and unvoiced speech. Then, the syllables are classified into with “quasi-unvoiced” or with “quasi-voiced” initials. Respective initial/final segmentation methods are proposed to these two types of syllables. Moreover, a two-step segmentation method is proposed. The rough locations of syllable and initial/final boundaries are refined in the second segmentation step, in order to improve the robustness of segmentation accuracy. The experiments show that the initial/final segmentation accuracies for syllables with quasi-unvoiced initials are higher than quasi-voiced initials. For the cleft palate speech, the mean time error is 4.4ms for syllables with quasi-unvoiced initials, and 25.7ms for syllables with quasi-voiced initials, and the correct segmentation accuracy P30 for all the syllables is 91.69%. For the control samples, P30 for all the syllables is 91.24%. PMID:28926572

  19. Automatic initial and final segmentation in cleft palate speech of Mandarin speakers.

    PubMed

    He, Ling; Liu, Yin; Yin, Heng; Zhang, Junpeng; Zhang, Jing; Zhang, Jiang

    2017-01-01

    The speech unit segmentation is an important pre-processing step in the analysis of cleft palate speech. In Mandarin, one syllable is composed of two parts: initial and final. In cleft palate speech, the resonance disorders occur at the finals and the voiced initials, while the articulation disorders occur at the unvoiced initials. Thus, the initials and finals are the minimum speech units, which could reflect the characteristics of cleft palate speech disorders. In this work, an automatic initial/final segmentation method is proposed. It is an important preprocessing step in cleft palate speech signal processing. The tested cleft palate speech utterances are collected from the Cleft Palate Speech Treatment Center in the Hospital of Stomatology, Sichuan University, which has the largest cleft palate patients in China. The cleft palate speech data includes 824 speech segments, and the control samples contain 228 speech segments. The syllables are extracted from the speech utterances firstly. The proposed syllable extraction method avoids the training stage, and achieves a good performance for both voiced and unvoiced speech. Then, the syllables are classified into with "quasi-unvoiced" or with "quasi-voiced" initials. Respective initial/final segmentation methods are proposed to these two types of syllables. Moreover, a two-step segmentation method is proposed. The rough locations of syllable and initial/final boundaries are refined in the second segmentation step, in order to improve the robustness of segmentation accuracy. The experiments show that the initial/final segmentation accuracies for syllables with quasi-unvoiced initials are higher than quasi-voiced initials. For the cleft palate speech, the mean time error is 4.4ms for syllables with quasi-unvoiced initials, and 25.7ms for syllables with quasi-voiced initials, and the correct segmentation accuracy P30 for all the syllables is 91.69%. For the control samples, P30 for all the syllables is 91.24%.

  20. Speech planning happens before speech execution: online reaction time methods in the study of apraxia of speech.

    PubMed

    Maas, Edwin; Mailend, Marja-Liisa

    2012-10-01

    The purpose of this article is to present an argument for the use of online reaction time (RT) methods to the study of apraxia of speech (AOS) and to review the existing small literature in this area and the contributions it has made to our fundamental understanding of speech planning (deficits) in AOS. Following a brief description of limitations of offline perceptual methods, we provide a narrative review of various types of RT paradigms from the (speech) motor programming and psycholinguistic literatures and their (thus far limited) application with AOS. On the basis of the review of the literature, we conclude that with careful consideration of potential challenges and caveats, RT approaches hold great promise to advance our understanding of AOS, in particular with respect to the speech planning processes that generate the speech signal before initiation. A deeper understanding of the nature and time course of speech planning and its disruptions in AOS may enhance diagnosis and treatment for AOS. Only a handful of published studies on apraxia of speech have used reaction time methods. However, these studies have provided deeper insight into speech planning impairments in AOS based on a variety of experimental paradigms.

  1. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  2. Functional Brain Activation Differences in School-Age Children with Speech Sound Errors: Speech and Print Processing

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Felsenfeld, Susan; Frost, Stephen J.; Mencl, W. Einar; Fulbright, Robert K.; Grigorenko, Elena L.; Landi, Nicole; Seki, Ayumi; Pugh, Kenneth R.

    2012-01-01

    Purpose: To examine neural response to spoken and printed language in children with speech sound errors (SSE). Method: Functional magnetic resonance imaging was used to compare processing of auditorily and visually presented words and pseudowords in 17 children with SSE, ages 8;6[years;months] through 10;10, with 17 matched controls. Results: When…

  3. Mismatch Negativity with Visual-only and Audiovisual Speech

    PubMed Central

    Ponton, Curtis W.; Bernstein, Lynne E.; Auer, Edward T.

    2009-01-01

    The functional organization of cortical speech processing is thought to be hierarchical, increasing in complexity and proceeding from primary sensory areas centrifugally. The current study used the mismatch negativity (MMN) obtained with electrophysiology (EEG) to investigate the early latency period of visual speech processing under both visual-only (VO) and audiovisual (AV) conditions. Current density reconstruction (CDR) methods were used to model the cortical MMN generator locations. MMNs were obtained with VO and AV speech stimuli at early latencies (approximately 82-87 ms peak in time waveforms relative to the acoustic onset) and in regions of the right lateral temporal and parietal cortices. Latencies were consistent with bottom-up processing of the visible stimuli. We suggest that a visual pathway extracts phonetic cues from visible speech, and that previously reported effects of AV speech in classical early auditory areas, given later reported latencies, could be attributable to modulatory feedback from visual phonetic processing. PMID:19404730

  4. Research on oral test modeling based on multi-feature fusion

    NASA Astrophysics Data System (ADS)

    Shi, Yuliang; Tao, Yiyue; Lei, Jun

    2018-04-01

    In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.

  5. Advancements in robust algorithm formulation for speaker identification of whispered speech

    NASA Astrophysics Data System (ADS)

    Fan, Xing

    Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural conversational scenarios to protect privacy and to avoid certain content from being overheard/made public. Due to the profound differences between whispered and neutral speech in production mechanism and the absence of whispered adaptation data, the performance of speaker identification systems trained with neutral speech degrades significantly. This dissertation therefore focuses on developing a robust closed-set speaker recognition system for whispered speech by using no or limited whispered adaptation data from non-target speakers. This dissertation proposes the concept of "High''/"Low'' performance whispered data for the purpose of speaker identification. A variety of acoustic properties are identified that contribute to the quality of whispered data. An acoustic analysis is also conducted to compare the phoneme/speaker dependency of the differences between whispered and neutral data in the feature domain. The observations from those acoustic analysis are new in this area and also serve as a guidance for developing robust speaker identification systems for whispered speech. This dissertation further proposes two systems for speaker identification of whispered speech. One system focuses on front-end processing. A two-dimensional feature space is proposed to search for "Low''-quality performance based whispered utterances and separate feature mapping functions are applied to vowels and consonants respectively in order to retain the speaker's information shared between whispered and neutral speech. The other system focuses on speech-mode-independent model training. The proposed method generates pseudo whispered features from neutral features by using the statistical information contained in a whispered Universal Background model (UBM) trained from extra collected whispered data from non-target speakers. Four modeling methods are proposed for the transformation estimation in order to generate the pseudo whispered features. Both of the above two systems demonstrate a significant improvement over the baseline system on the evaluation data. This dissertation has therefore contributed to providing a scientific understanding of the differences between whispered and neutral speech as well as improved front-end processing and modeling method for speaker identification of whispered speech. Such advancements will ultimately contribute to improve the robustness of speech processing systems.

  6. A Deep Ensemble Learning Method for Monaural Speech Separation.

    PubMed

    Zhang, Xiao-Lei; Wang, DeLiang

    2016-03-01

    Monaural speech separation is a fundamental problem in robust speech processing. Recently, deep neural network (DNN)-based speech separation methods, which predict either clean speech or an ideal time-frequency mask, have demonstrated remarkable performance improvement. However, a single DNN with a given window length does not leverage contextual information sufficiently, and the differences between the two optimization objectives are not well understood. In this paper, we propose a deep ensemble method, named multicontext networks, to address monaural speech separation. The first multicontext network averages the outputs of multiple DNNs whose inputs employ different window lengths. The second multicontext network is a stack of multiple DNNs. Each DNN in a module of the stack takes the concatenation of original acoustic features and expansion of the soft output of the lower module as its input, and predicts the ratio mask of the target speaker; the DNNs in the same module employ different contexts. We have conducted extensive experiments with three speech corpora. The results demonstrate the effectiveness of the proposed method. We have also compared the two optimization objectives systematically and found that predicting the ideal time-frequency mask is more efficient in utilizing clean training speech, while predicting clean speech is less sensitive to SNR variations.

  7. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  8. Speech Restoration: An Interactive Process

    ERIC Educational Resources Information Center

    Grataloup, Claire; Hoen, Michael; Veuillet, Evelyne; Collet, Lionel; Pellegrino, Francois; Meunier, Fanny

    2009-01-01

    Purpose: This study investigates the ability to understand degraded speech signals and explores the correlation between this capacity and the functional characteristics of the peripheral auditory system. Method: The authors evaluated the capability of 50 normal-hearing native French speakers to restore time-reversed speech. The task required them…

  9. Cognitive-Perceptual Examination of Remediation Approaches to Hypokinetic Dysarthria

    ERIC Educational Resources Information Center

    McAuliffe, Megan J.; Kerr, Sarah E.; Gibson, Elizabeth M. R.; Anderson, Tim; LaShell, Patrick J.

    2014-01-01

    Purpose: To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Method: Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals…

  10. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  11. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    PubMed Central

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  12. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    PubMed Central

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  13. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    PubMed

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  14. Phonological Processing and Reading in Children with Speech Sound Disorders

    ERIC Educational Resources Information Center

    Rvachew, Susan

    2007-01-01

    Purpose: To examine the relationship between phonological processing skills prior to kindergarten entry and reading skills at the end of 1st grade, in children with speech sound disorders (SSD). Method: The participants were 17 children with SSD and poor phonological processing skills (SSD-low PP), 16 children with SSD and good phonological…

  15. Don’t speak too fast! Processing of fast rate speech in children with specific language impairment

    PubMed Central

    Bedoin, Nathalie; Krifi-Papoz, Sonia; Herbillon, Vania; Caillot-Bascoul, Aurélia; Gonzalez-Monge, Sibylle; Boulenger, Véronique

    2018-01-01

    Background Perception of speech rhythm requires the auditory system to track temporal envelope fluctuations, which carry syllabic and stress information. Reduced sensitivity to rhythmic acoustic cues has been evidenced in children with Specific Language Impairment (SLI), impeding syllabic parsing and speech decoding. Our study investigated whether these children experience specific difficulties processing fast rate speech as compared with typically developing (TD) children. Method Sixteen French children with SLI (8–13 years old) with mainly expressive phonological disorders and with preserved comprehension and 16 age-matched TD children performed a judgment task on sentences produced 1) at normal rate, 2) at fast rate or 3) time-compressed. Sensitivity index (d′) to semantically incongruent sentence-final words was measured. Results Overall children with SLI perform significantly worse than TD children. Importantly, as revealed by the significant Group × Speech Rate interaction, children with SLI find it more challenging than TD children to process both naturally or artificially accelerated speech. The two groups do not significantly differ in normal rate speech processing. Conclusion In agreement with rhythm-processing deficits in atypical language development, our results suggest that children with SLI face difficulties adjusting to rapid speech rate. These findings are interpreted in light of temporal sampling and prosodic phrasing frameworks and of oscillatory mechanisms underlying speech perception. PMID:29373610

  16. Speech-Language Dissociations, Distractibility, and Childhood Stuttering

    PubMed Central

    Conture, Edward G.; Walden, Tedra A.; Lambert, Warren E.

    2015-01-01

    Purpose This study investigated the relation among speech-language dissociations, attentional distractibility, and childhood stuttering. Method Participants were 82 preschool-age children who stutter (CWS) and 120 who do not stutter (CWNS). Correlation-based statistics (Bates, Appelbaum, Salcedo, Saygin, & Pizzamiglio, 2003) identified dissociations across 5 norm-based speech-language subtests. The Behavioral Style Questionnaire Distractibility subscale measured attentional distractibility. Analyses addressed (a) between-groups differences in the number of children exhibiting speech-language dissociations; (b) between-groups distractibility differences; (c) the relation between distractibility and speech-language dissociations; and (d) whether interactions between distractibility and dissociations predicted the frequency of total, stuttered, and nonstuttered disfluencies. Results More preschool-age CWS exhibited speech-language dissociations compared with CWNS, and more boys exhibited dissociations compared with girls. In addition, male CWS were less distractible than female CWS and female CWNS. For CWS, but not CWNS, less distractibility (i.e., greater attention) was associated with more speech-language dissociations. Last, interactions between distractibility and dissociations did not predict speech disfluencies in CWS or CWNS. Conclusions The present findings suggest that for preschool-age CWS, attentional processes are associated with speech-language dissociations. Future investigations are warranted to better understand the directionality of effect of this association (e.g., inefficient attentional processes → speech-language dissociations vs. inefficient attentional processes ← speech-language dissociations). PMID:26126203

  17. Spectral analysis method and sample generation for real time visualization of speech

    NASA Astrophysics Data System (ADS)

    Hobohm, Klaus

    A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.

  18. Speech and phonology in Swedish-speaking 3-year-olds with unilateral complete cleft lip and palate following different methods for primary palatal surgery.

    PubMed

    Klintö, Kristina; Svensson, Henry; Elander, Anna; Lohmander, Anette

    2014-05-01

    Objective : To describe and compare speech and phonology at age 3 years in children born with unilateral complete cleft lip and palate treated with three different methods for primary palatal surgery. Design : Prospective study. Setting : Primary care university hospitals. Participants : Twenty-eight Swedish-speaking children born with nonsyndromic unilateral complete cleft lip and palate. Interventions : Three methods for primary palatal surgery: two-stage closure with soft palate closure between 3.4 and 6.4 months and hard palate closure at mean age 12.3 months (n = 9) or 36.2 months (n = 9) or one-stage closure at mean age 13.6 months (n = 10). Main Outcome Measures : Based on independent judgments performed by two speech-language pathologists from standardized video recordings: percent correct consonants adjusted for age, percent active cleft speech characteristics, total number of phonological processes, number of different phonological processes, hypernasality, and audible nasal air leakage. The hard palate was unrepaired in nine of the children treated with two-stage closure. Results : The group treated with one-stage closure showed significantly better results than the group with an unoperated hard palate regarding percent active cleft speech characteristics and total number of phonological processes. Conclusions : Early primary palatal surgery in one or two stages did not result in any significant differences in speech production at age 3 years. However, children with an unoperated hard palate had significantly poorer speech and phonology than peers who had been treated with one-stage palatal closure at about 13 months of age.

  19. Eyes and ears: Using eye tracking and pupillometry to understand challenges to speech recognition.

    PubMed

    Van Engen, Kristin J; McLaughlin, Drew J

    2018-05-04

    Although human speech recognition is often experienced as relatively effortless, a number of common challenges can render the task more difficult. Such challenges may originate in talkers (e.g., unfamiliar accents, varying speech styles), the environment (e.g. noise), or in listeners themselves (e.g., hearing loss, aging, different native language backgrounds). Each of these challenges can reduce the intelligibility of spoken language, but even when intelligibility remains high, they can place greater processing demands on listeners. Noisy conditions, for example, can lead to poorer recall for speech, even when it has been correctly understood. Speech intelligibility measures, memory tasks, and subjective reports of listener difficulty all provide critical information about the effects of such challenges on speech recognition. Eye tracking and pupillometry complement these methods by providing objective physiological measures of online cognitive processing during listening. Eye tracking records the moment-to-moment direction of listeners' visual attention, which is closely time-locked to unfolding speech signals, and pupillometry measures the moment-to-moment size of listeners' pupils, which dilate in response to increased cognitive load. In this paper, we review the uses of these two methods for studying challenges to speech recognition. Copyright © 2018. Published by Elsevier B.V.

  20. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing.

    PubMed

    Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis G; Atkins, David C; Narayanan, Shrikanth S

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy-observational coding-has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies.

  1. Role of Visual Speech in Phonological Processing by Children With Hearing Loss

    PubMed Central

    Jerger, Susan; Tye-Murray, Nancy; Abdi, Hervé

    2011-01-01

    Purpose This research assessed the influence of visual speech on phonological processing by children with hearing loss (HL). Method Children with HL and children with normal hearing (NH) named pictures while attempting to ignore auditory or audiovisual speech distractors whose onsets relative to the pictures were either congruent, conflicting in place of articulation, or conflicting in voicing—for example, the picture “pizza” coupled with the distractors “peach,” “teacher,” or “beast,” respectively. Speed of picture naming was measured. Results The conflicting conditions slowed naming, and phonological processing by children with HL displayed the age-related shift in sensitivity to visual speech seen in children with NH, although with developmental delay. Younger children with HL exhibited a disproportionately large influence of visual speech and a negligible influence of auditory speech, whereas older children with HL showed a robust influence of auditory speech with no benefit to performance from adding visual speech. The congruent conditions did not speed naming in children with HL, nor did the addition of visual speech influence performance. Unexpectedly, the /∧/-vowel congruent distractors slowed naming in children with HL and decreased articulatory proficiency. Conclusions Results for the conflicting conditions are consistent with the hypothesis that speech representations in children with HL (a) are initially disproportionally structured in terms of visual speech and (b) become better specified with age in terms of auditorily encoded information. PMID:19339701

  2. Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2016-02-01

    Sound processing in the inner ear involves separation of the constituent frequencies along the length of the cochlea. Frequencies relevant to human speech (100 to 500 Hz) are processed in the apex region. Among mammals, the guinea pig cochlear apex processes similar frequencies and is thus relevant for the study of speech processing in the cochlea. However, the requirement for extensive surgery has challenged the optical accessibility of this area to investigate cochlear processing of signals without significant intrusion. A simple method is developed to provide optical access to the guinea pig cochlear apex in two directions with minimal surgery. Furthermore, all prior vibration measurements in the guinea pig apex involved opening an observation hole in the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here, this limitation is overcome by measuring the vibrations through the unopened otic capsule using phase-sensitive Fourier domain optical coherence tomography. The optically and surgically advanced method described here lays the foundation to perform minimally invasive investigation of speech-related signal processing in the cochlea.

  3. Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans.

    PubMed

    Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth

    2006-10-01

    This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given.

  4. Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans (L)

    PubMed Central

    Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth

    2007-01-01

    This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given. PMID:17069275

  5. An eye-tracking paradigm for analyzing the processing time of sentences with different linguistic complexities.

    PubMed

    Wendt, Dorothea; Brand, Thomas; Kollmeier, Birger

    2014-01-01

    An eye-tracking paradigm was developed for use in audiology in order to enable online analysis of the speech comprehension process. This paradigm should be useful in assessing impediments in speech processing. In this paradigm, two scenes, a target picture and a competitor picture, were presented simultaneously with an aurally presented sentence that corresponded to the target picture. At the same time, eye fixations were recorded using an eye-tracking device. The effect of linguistic complexity on language processing time was assessed from eye fixation information by systematically varying linguistic complexity. This was achieved with a sentence corpus containing seven German sentence structures. A novel data analysis method computed the average tendency to fixate the target picture as a function of time during sentence processing. This allowed identification of the point in time at which the participant understood the sentence, referred to as the decision moment. Systematic differences in processing time were observed as a function of linguistic complexity. These differences in processing time may be used to assess the efficiency of cognitive processes involved in resolving linguistic complexity. Thus, the proposed method enables a temporal analysis of the speech comprehension process and has potential applications in speech audiology and psychoacoustics.

  6. An Eye-Tracking Paradigm for Analyzing the Processing Time of Sentences with Different Linguistic Complexities

    PubMed Central

    Wendt, Dorothea; Brand, Thomas; Kollmeier, Birger

    2014-01-01

    An eye-tracking paradigm was developed for use in audiology in order to enable online analysis of the speech comprehension process. This paradigm should be useful in assessing impediments in speech processing. In this paradigm, two scenes, a target picture and a competitor picture, were presented simultaneously with an aurally presented sentence that corresponded to the target picture. At the same time, eye fixations were recorded using an eye-tracking device. The effect of linguistic complexity on language processing time was assessed from eye fixation information by systematically varying linguistic complexity. This was achieved with a sentence corpus containing seven German sentence structures. A novel data analysis method computed the average tendency to fixate the target picture as a function of time during sentence processing. This allowed identification of the point in time at which the participant understood the sentence, referred to as the decision moment. Systematic differences in processing time were observed as a function of linguistic complexity. These differences in processing time may be used to assess the efficiency of cognitive processes involved in resolving linguistic complexity. Thus, the proposed method enables a temporal analysis of the speech comprehension process and has potential applications in speech audiology and psychoacoustics. PMID:24950184

  7. Speech-Processing Fatigue in Children: Auditory Event-Related Potential and Behavioral Measures

    ERIC Educational Resources Information Center

    Key, Alexandra P.; Gustafson, Samantha J.; Rentmeester, Lindsey; Hornsby, Benjamin W. Y.; Bess, Fred H.

    2017-01-01

    Purpose: Fatigue related to speech processing is an understudied area that may have significant negative effects, especially in children who spend the majority of their school days listening to classroom instruction. Method: This study examined the feasibility of using auditory P300 responses and behavioral indices (lapses of attention and…

  8. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing

    PubMed Central

    Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis G.; Atkins, David C.; Narayanan, Shrikanth S.

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy–observational coding–has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies. PMID:26630392

  9. [A modified speech enhancement algorithm for electronic cochlear implant and its digital signal processing realization].

    PubMed

    Wang, Yulin; Tian, Xuelong

    2014-08-01

    In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.

  10. Characterizing Speech Intelligibility in Noise After Wide Dynamic Range Compression.

    PubMed

    Rhebergen, Koenraad S; Maalderink, Thijs H; Dreschler, Wouter A

    The effects of nonlinear signal processing on speech intelligibility in noise are difficult to evaluate. Often, the effects are examined by comparing speech intelligibility scores with and without processing measured at fixed signal to noise ratios (SNRs) or by comparing the adaptive measured speech reception thresholds corresponding to 50% intelligibility (SRT50) with and without processing. These outcome measures might not be optimal. Measuring at fixed SNRs can be affected by ceiling or floor effects, because the range of relevant SNRs is not know in advance. The SRT50 is less time consuming, has a fixed performance level (i.e., 50% correct), but the SRT50 could give a limited view, because we hypothesize that the effect of most nonlinear signal processing algorithms at the SRT50 cannot be generalized to other points of the psychometric function. In this article, we tested the value of estimating the entire psychometric function. We studied the effect of wide dynamic range compression (WDRC) on speech intelligibility in stationary, and interrupted speech-shaped noise in normal-hearing subjects, using a fast method-based local linear fitting approach and by two adaptive procedures. The measured performance differences for conditions with and without WDRC for the psychometric functions in stationary noise and interrupted speech-shaped noise show that the effects of WDRC on speech intelligibility are SNR dependent. We conclude that favorable and unfavorable effects of WDRC on speech intelligibility can be missed if the results are presented in terms of SRT50 values only.

  11. Asynchronous sampling of speech with some vocoder experimental results

    NASA Technical Reports Server (NTRS)

    Babcock, M. L.

    1972-01-01

    The method of asynchronously sampling speech is based upon the derivatives of the acoustical speech signal. The following results are apparent from experiments to date: (1) It is possible to represent speech by a string of pulses of uniform amplitude, where the only information contained in the string is the spacing of the pulses in time; (2) the string of pulses may be produced in a simple analog manner; (3) the first derivative of the original speech waveform is the most important for the encoding process; (4) the resulting pulse train can be utilized to control an acoustical signal production system to regenerate the intelligence of the original speech.

  12. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory.

    PubMed

    Besson, Mireille; Chobert, Julie; Marie, Céline

    2011-01-01

    After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing.

  13. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory

    PubMed Central

    Besson, Mireille; Chobert, Julie; Marie, Céline

    2011-01-01

    After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing. PMID:21738519

  14. Relation between Speech-in-Noise Threshold, Hearing Loss and Cognition from 40–69 Years of Age

    PubMed Central

    Moore, David R.; Edmondson-Jones, Mark; Dawes, Piers; Fortnum, Heather; McCormack, Abby; Pierzycki, Robert H.; Munro, Kevin J.

    2014-01-01

    Background Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40–69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition. Methods and Findings About half a million volunteers were recruited through NHS registers. Respondents completed ‘whole-body’ testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing. Conclusions Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports of hearing difficulty generally show a higher prevalence than objective measures, suggesting that current objective methods could be extended further. PMID:25229622

  15. Dual Key Speech Encryption Algorithm Based Underdetermined BSS

    PubMed Central

    Zhao, Huan; Chen, Zuo; Zhang, Xixiang

    2014-01-01

    When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality. PMID:24955430

  16. Digital signal processing at Bell Labs-Foundations for speech and acoustics research

    NASA Astrophysics Data System (ADS)

    Rabiner, Lawrence R.

    2004-05-01

    Digital signal processing (DSP) is a fundamental tool for much of the research that has been carried out of Bell Labs in the areas of speech and acoustics research. The fundamental bases for DSP include the sampling theorem of Nyquist, the method for digitization of analog signals by Shannon et al., methods of spectral analysis by Tukey, the cepstrum by Bogert et al., and the FFT by Tukey (and Cooley of IBM). Essentially all of these early foundations of DSP came out of the Bell Labs Research Lab in the 1930s, 1940s, 1950s, and 1960s. This fundamental research was motivated by fundamental applications (mainly in the areas of speech, sonar, and acoustics) that led to novel design methods for digital filters (Kaiser, Golden, Rabiner, Schafer), spectrum analysis methods (Rabiner, Schafer, Allen, Crochiere), fast convolution methods based on the FFT (Helms, Bergland), and advanced digital systems used to implement telephony channel banks (Jackson, McDonald, Freeny, Tewksbury). This talk summarizes the key contributions to DSP made at Bell Labs, and illustrates how DSP was utilized in the areas of speech and acoustics research. It also shows the vast, worldwide impact of this DSP research on modern consumer electronics.

  17. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  18. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  19. Real-time spectrum estimation–based dual-channel speech-enhancement algorithm for cochlear implant

    PubMed Central

    2012-01-01

    Background Improvement of the cochlear implant (CI) front-end signal acquisition is needed to increase speech recognition in noisy environments. To suppress the directional noise, we introduce a speech-enhancement algorithm based on microphone array beamforming and spectral estimation. The experimental results indicate that this method is robust to directional mobile noise and strongly enhances the desired speech, thereby improving the performance of CI devices in a noisy environment. Methods The spectrum estimation and the array beamforming methods were combined to suppress the ambient noise. The directivity coefficient was estimated in the noise-only intervals, and was updated to fit for the mobile noise. Results The proposed algorithm was realized in the CI speech strategy. For actual parameters, we use Maxflat filter to obtain fractional sampling points and cepstrum method to differentiate the desired speech frame and the noise frame. The broadband adjustment coefficients were added to compensate the energy loss in the low frequency band. Discussions The approximation of the directivity coefficient is tested and the errors are discussed. We also analyze the algorithm constraint for noise estimation and distortion in CI processing. The performance of the proposed algorithm is analyzed and further be compared with other prevalent methods. Conclusions The hardware platform was constructed for the experiments. The speech-enhancement results showed that our algorithm can suppresses the non-stationary noise with high SNR. Excellent performance of the proposed algorithm was obtained in the speech enhancement experiments and mobile testing. And signal distortion results indicate that this algorithm is robust with high SNR improvement and low speech distortion. PMID:23006896

  20. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.

    PubMed

    Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D

    2006-01-01

    This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.

  1. The Auditory-Brainstem Response to Continuous, Non-repetitive Speech Is Modulated by the Speech Envelope and Reflects Speech Processing

    PubMed Central

    Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias

    2016-01-01

    The auditory-brainstem response (ABR) to short and simple acoustical signals is an important clinical tool used to diagnose the integrity of the brainstem. The ABR is also employed to investigate the auditory brainstem in a multitude of tasks related to hearing, such as processing speech or selectively focusing on one speaker in a noisy environment. Such research measures the response of the brainstem to short speech signals such as vowels or words. Because the voltage signal of the ABR has a tiny amplitude, several hundred to a thousand repetitions of the acoustic signal are needed to obtain a reliable response. The large number of repetitions poses a challenge to assessing cognitive functions due to neural adaptation. Here we show that continuous, non-repetitive speech, lasting several minutes, may be employed to measure the ABR. Because the speech is not repeated during the experiment, the precise temporal form of the ABR cannot be determined. We show, however, that important structural features of the ABR can nevertheless be inferred. In particular, the brainstem responds at the fundamental frequency of the speech signal, and this response is modulated by the envelope of the voiced parts of speech. We accordingly introduce a novel measure that assesses the ABR as modulated by the speech envelope, at the fundamental frequency of speech and at the characteristic latency of the response. This measure has a high signal-to-noise ratio and can hence be employed effectively to measure the ABR to continuous speech. We use this novel measure to show that the ABR is weaker to intelligible speech than to unintelligible, time-reversed speech. The methods presented here can be employed for further research on speech processing in the auditory brainstem and can lead to the development of future clinical diagnosis of brainstem function. PMID:27303286

  2. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John; Nix, David

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less

  3. A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems

    PubMed Central

    Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.

    2008-01-01

    Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352

  4. Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.

    PubMed

    Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R

    1999-04-06

    Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.

  5. Encoding, Memory, and Transcoding Deficits in Childhood Apraxia of Speech

    PubMed Central

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Strand, Edythe A.; Jakielski, Kathy J.

    2013-01-01

    Purpose A central question in Childhood Apraxia of Speech (CAS) is whether the core phenotype is limited to transcoding (planning/programming) deficits or if speakers with CAS also have deficits in auditory-perceptual encoding (representational) and/or memory (storage and retrieval of representations) processes. We addressed this and other questions using responses to the Syllable Repetition Task (SRT: Shriberg et al., 2009). Method The SRT was administered to 369 individuals in four groups: (a) Typical Speech-Language (119), (b) Speech Delay-Typical Language (140), (c) Speech Delay-Language Impairment (70), and (d) idiopathic or neurogenetic CAS (40). Results CAS participants had significantly lower SRT competence, encoding, memory, and transcoding scores than controls. They were 8.3 times more likely than controls to have SRT transcoding scores below 80%. Conclusions Speakers with CAS have speech processing deficits in encoding, memory, and transcoding. The SRT currently has moderate diagnostic accuracy to identify transcoding deficits, the signature feature of CAS. PMID:22489736

  6. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  7. Connected word recognition using a cascaded neuro-computational model

    NASA Astrophysics Data System (ADS)

    Hoya, Tetsuya; van Leeuwen, Cees

    2016-10-01

    We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.

  8. Neuroscience-inspired computational systems for speech recognition under noisy conditions

    NASA Astrophysics Data System (ADS)

    Schafer, Phillip B.

    Humans routinely recognize speech in challenging acoustic environments with background music, engine sounds, competing talkers, and other acoustic noise. However, today's automatic speech recognition (ASR) systems perform poorly in such environments. In this dissertation, I present novel methods for ASR designed to approach human-level performance by emulating the brain's processing of sounds. I exploit recent advances in auditory neuroscience to compute neuron-based representations of speech, and design novel methods for decoding these representations to produce word transcriptions. I begin by considering speech representations modeled on the spectrotemporal receptive fields of auditory neurons. These representations can be tuned to optimize a variety of objective functions, which characterize the response properties of a neural population. I propose an objective function that explicitly optimizes the noise invariance of the neural responses, and find that it gives improved performance on an ASR task in noise compared to other objectives. The method as a whole, however, fails to significantly close the performance gap with humans. I next consider speech representations that make use of spiking model neurons. The neurons in this method are feature detectors that selectively respond to spectrotemporal patterns within short time windows in speech. I consider a number of methods for training the response properties of the neurons. In particular, I present a method using linear support vector machines (SVMs) and show that this method produces spikes that are robust to additive noise. I compute the spectrotemporal receptive fields of the neurons for comparison with previous physiological results. To decode the spike-based speech representations, I propose two methods designed to work on isolated word recordings. The first method uses a classical ASR technique based on the hidden Markov model. The second method is a novel template-based recognition scheme that takes advantage of the neural representation's invariance in noise. The scheme centers on a speech similarity measure based on the longest common subsequence between spike sequences. The combined encoding and decoding scheme outperforms a benchmark system in extremely noisy acoustic conditions. Finally, I consider methods for decoding spike representations of continuous speech. To help guide the alignment of templates to words, I design a syllable detection scheme that robustly marks the locations of syllabic nuclei. The scheme combines SVM-based training with a peak selection algorithm designed to improve noise tolerance. By incorporating syllable information into the ASR system, I obtain strong recognition results in noisy conditions, although the performance in noiseless conditions is below the state of the art. The work presented here constitutes a novel approach to the problem of ASR that can be applied in the many challenging acoustic environments in which we use computer technologies today. The proposed spike-based processing methods can potentially be exploited in effcient hardware implementations and could significantly reduce the computational costs of ASR. The work also provides a framework for understanding the advantages of spike-based acoustic coding in the human brain.

  9. Assessing Auditory Discrimination Skill of Malay Children Using Computer-based Method.

    PubMed

    Ting, H; Yunus, J; Mohd Nordin, M Z

    2005-01-01

    The purpose of this paper is to investigate the auditory discrimination skill of Malay children using computer-based method. Currently, most of the auditory discrimination assessments are conducted manually by Speech-Language Pathologist. These conventional tests are actually general tests of sound discrimination, which do not reflect the client's specific speech sound errors. Thus, we propose computer-based Malay auditory discrimination test to automate the whole process of assessment as well as to customize the test according to the specific speech error sounds of the client. The ability in discriminating voiced and unvoiced Malay speech sounds was studied for the Malay children aged between 7 and 10 years old. The study showed no major difficulty for the children in discriminating the Malay speech sounds except differentiating /g/-/k/ sounds. Averagely the children of 7 years old failed to discriminate /g/-/k/ sounds.

  10. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    ERIC Educational Resources Information Center

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  11. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  12. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  13. Emotion Recognition from Chinese Speech for Smart Affective Services Using a Combination of SVM and DBN

    PubMed Central

    Zhu, Lianzhang; Chen, Leiming; Zhao, Dehai

    2017-01-01

    Accurate emotion recognition from speech is important for applications like smart health care, smart entertainment, and other smart services. High accuracy emotion recognition from Chinese speech is challenging due to the complexities of the Chinese language. In this paper, we explore how to improve the accuracy of speech emotion recognition, including speech signal feature extraction and emotion classification methods. Five types of features are extracted from a speech sample: mel frequency cepstrum coefficient (MFCC), pitch, formant, short-term zero-crossing rate and short-term energy. By comparing statistical features with deep features extracted by a Deep Belief Network (DBN), we attempt to find the best features to identify the emotion status for speech. We propose a novel classification method that combines DBN and SVM (support vector machine) instead of using only one of them. In addition, a conjugate gradient method is applied to train DBN in order to speed up the training process. Gender-dependent experiments are conducted using an emotional speech database created by the Chinese Academy of Sciences. The results show that DBN features can reflect emotion status better than artificial features, and our new classification approach achieves an accuracy of 95.8%, which is higher than using either DBN or SVM separately. Results also show that DBN can work very well for small training databases if it is properly designed. PMID:28737705

  14. Speech recovery and language plasticity can be facilitated by Sensori-Motor Fusion training in chronic non-fluent aphasia. A case report study.

    PubMed

    Haldin, Célise; Acher, Audrey; Kauffmann, Louise; Hueber, Thomas; Cousin, Emilie; Badin, Pierre; Perrier, Pascal; Fabre, Diandra; Perennou, Dominic; Detante, Olivier; Jaillard, Assia; Lœvenbruck, Hélène; Baciu, Monica

    2017-11-17

    The rehabilitation of speech disorders benefits from providing visual information which may improve speech motor plans in patients. We tested the proof of concept of a rehabilitation method (Sensori-Motor Fusion, SMF; Ultraspeech player) in one post-stroke patient presenting chronic non-fluent aphasia. SMF allows visualisation by the patient of target tongue and lips movements using high-speed ultrasound and video imaging. This can improve the patient's awareness of his/her own lingual and labial movements, which can, in turn, improve the representation of articulatory movements and increase the ability to coordinate and combine articulatory gestures. The auditory and oro-sensory feedback received by the patient as a result of his/her own pronunciation can be integrated with the target articulatory movements they watch. Thus, this method is founded on sensorimotor integration during speech. The SMF effect on this patient was assessed through qualitative comparison of language scores and quantitative analysis of acoustic parameters measured in a speech production task, before and after rehabilitation. We also investigated cerebral patterns of language reorganisation for rhyme detection and syllable repetition, to evaluate the influence of SMF on phonological-phonetic processes. Our results showed that SMF had a beneficial effect on this patient who qualitatively improved in naming, reading, word repetition and rhyme judgment tasks. Quantitative measurements of acoustic parameters indicate that the patient's production of vowels and syllables also improved. Compared with pre-SMF, the fMRI data in the post-SMF session revealed the activation of cerebral regions related to articulatory, auditory and somatosensory processes, which were expected to be recruited by SMF. We discuss neurocognitive and linguistic mechanisms which may explain speech improvement after SMF, as well as the advantages of using this speech rehabilitation method.

  15. The analysis of verbal interaction sequences in dyadic clinical communication: a review of methods.

    PubMed

    Connor, Martin; Fletcher, Ian; Salmon, Peter

    2009-05-01

    To identify methods available for sequential analysis of dyadic verbal clinical communication and to review their methodological and conceptual differences. Critical review, based on literature describing sequential analyses of clinical and other relevant social interaction. Dominant approaches are based on analysis of communication according to its precise position in the series of utterances that constitute event-coded dialogue. For practical reasons, methods focus on very short-term processes, typically the influence of one party's speech on what the other says next. Studies of longer-term influences are rare. Some analyses have statistical limitations, particularly in disregarding heterogeneity between consultations, patients or practitioners. Additional techniques, including ones that can use information about timing and duration of speech from interval-coding are becoming available. There is a danger that constraints of commonly used methods shape research questions and divert researchers from potentially important communication processes including ones that operate over a longer-term than one or two speech turns. Given that no one method can model the complexity of clinical communication, multiple methods, both quantitative and qualitative, are necessary. Broadening the range of methods will allow the current emphasis on exploratory studies to be balanced by tests of hypotheses about clinically important communication processes.

  16. Quadcopter Control Using Speech Recognition

    NASA Astrophysics Data System (ADS)

    Malik, H.; Darma, S.; Soekirno, S.

    2018-04-01

    This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).

  17. Audio-Visual Speaker Diarization Based on Spatiotemporal Bayesian Fusion.

    PubMed

    Gebru, Israel D; Ba, Sileye; Li, Xiaofei; Horaud, Radu

    2018-05-01

    Speaker diarization consists of assigning speech signals to people engaged in a dialogue. An audio-visual spatiotemporal diarization model is proposed. The model is well suited for challenging scenarios that consist of several participants engaged in multi-party interaction while they move around and turn their heads towards the other participants rather than facing the cameras and the microphones. Multiple-person visual tracking is combined with multiple speech-source localization in order to tackle the speech-to-person association problem. The latter is solved within a novel audio-visual fusion method on the following grounds: binaural spectral features are first extracted from a microphone pair, then a supervised audio-visual alignment technique maps these features onto an image, and finally a semi-supervised clustering method assigns binaural spectral features to visible persons. The main advantage of this method over previous work is that it processes in a principled way speech signals uttered simultaneously by multiple persons. The diarization itself is cast into a latent-variable temporal graphical model that infers speaker identities and speech turns, based on the output of an audio-visual association process, executed at each time slice, and on the dynamics of the diarization variable itself. The proposed formulation yields an efficient exact inference procedure. A novel dataset, that contains audio-visual training data as well as a number of scenarios involving several participants engaged in formal and informal dialogue, is introduced. The proposed method is thoroughly tested and benchmarked with respect to several state-of-the art diarization algorithms.

  18. Perceived live interaction modulates the developing social brain.

    PubMed

    Rice, Katherine; Moraczewski, Dustin; Redcay, Elizabeth

    2016-09-01

    Although children's social development is embedded in social interaction, most developmental neuroscience studies have examined responses to non-interactive social stimuli (e.g. photographs of faces). The neural mechanisms of real-world social behavior are of special interest during middle childhood (roughly ages 7-13), a time of increased social complexity and competence coinciding with structural and functional social brain development. Evidence from adult neuroscience studies suggests that social interaction may alter neural processing, but no neuroimaging studies in children have directly examined the effects of live social-interactive context on social cognition. In the current study of middle childhood, we compare the processing of two types of speech: speech that children believed was presented over a real-time audio-feed by a social partner and speech that they believed was recorded. Although in reality all speech was prerecorded, perceived live speech resulted in significantly greater neural activation in regions associated with social cognitive processing. These findings underscore the importance of using ecologically-valid and interactive methods to understand the developing social brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Facial Speech Gestures: The Relation between Visual Speech Processing, Phonological Awareness, and Developmental Dyslexia in 10-Year-Olds

    ERIC Educational Resources Information Center

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.

    2016-01-01

    Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…

  20. Relation between speech-in-noise threshold, hearing loss and cognition from 40-69 years of age.

    PubMed

    Moore, David R; Edmondson-Jones, Mark; Dawes, Piers; Fortnum, Heather; McCormack, Abby; Pierzycki, Robert H; Munro, Kevin J

    2014-01-01

    Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40-69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition. About half a million volunteers were recruited through NHS registers. Respondents completed 'whole-body' testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing. Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports of hearing difficulty generally show a higher prevalence than objective measures, suggesting that current objective methods could be extended further.

  1. Speech motor development: Integrating muscles, movements, and linguistic units.

    PubMed

    Smith, Anne

    2006-01-01

    A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in language production models. A review of the literature on adult speakers suggests that they engage complex, parallel processes involving many units, including sentence, phrase, syllable, and phoneme levels. Infants must develop multilayered interactions among language and motor systems. This discussion describes recent studies of speech motor performance relative to varying linguistic goals during the childhood, teenage, and young adult years. Studies of the developing interactions between speech motor and language systems reveal both qualitative and quantitative differences between the developing and the mature systems. These studies provide an experimental basis for a more comprehensive theoretical account of how mappings between units of language and units of action are formed and how they function. Readers will be able to: (1) understand the theoretical differences between models of speech motor control and models of language processing, as well as the nature of the concepts used in the two different kinds of models, (2) explain the concept of coarticulation and state why this phenomenon has confounded attempts to determine the role of linguistic units, such as syllables and phonemes, in speech production, (3) describe the development of speech motor performance skills and specify quantitative and qualitative differences between speech motor performance in children and adults, and (4) describe experimental methods that allow scientists to study speech and limb motor control, as well as compare units of action used to study non-speech and speech movements.

  2. Orthography and Modality Influence Speech Production in Adults and Children

    PubMed Central

    Goffman, Lisa; Hogan, Tiffany P.

    2016-01-01

    Purpose The acquisition of literacy skills influences the perception and production of spoken language. We examined if orthography influences implicit processing in speech production in child readers and in adult readers with low and high reading proficiency. Method Children (n = 17), adults with typical reading skills (n = 17), and adults demonstrating low reading proficiency (n = 18) repeated or read aloud nonwords varying in orthographic transparency. Analyses of implicit linguistic processing (segmental accuracy and speech movement stability) were conducted. The accuracy and articulatory stability of productions of the nonwords were assessed before and after repetition or reading. Results Segmental accuracy results indicate that all 3 groups demonstrated greater learning when they were able to read, rather than just hear, the nonwords. Speech movement results indicate that, for adults with poor reading skills, exposure to the nonwords in a transparent spelling reduces the articulatory variability of speech production. Reading skill was correlated with speech movement stability in the groups of adults. Conclusions In children and adults, orthography interacts with speech production; all participants integrate orthography into their lexical representations. Adults with poor reading skills do not use the same reading or speaking strategies as children with typical reading skills. PMID:27942710

  3. Method for detection and correction of errors in speech pitch period estimates

    NASA Technical Reports Server (NTRS)

    Bhaskar, Udaya (Inventor)

    1989-01-01

    A method of detecting and correcting received values of a pitch period estimate of a speech signal for use in a speech coder or the like. An average is calculated of the nonzero values of received pitch period estimate since the previous reset. If a current pitch period estimate is within a range of 0.75 to 1.25 times the average, it is assumed correct, while if not, a correction process is carried out. If correction is required successively for more than a preset number of times, which will most likely occur when the speaker changes, the average is discarded and a new average calculated.

  4. Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Wrench, Alan A.

    Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).

  5. Automatic concept extraction from spoken medical reports.

    PubMed

    Happe, André; Pouliquen, Bruno; Burgun, Anita; Cuggia, Marc; Le Beux, Pierre

    2003-07-01

    The objective of this project is to investigate methods whereby a combination of speech recognition and automated indexing methods substitute for current transcription and indexing practices. We based our study on existing speech recognition software programs and on NOMINDEX, a tool that extracts MeSH concepts from medical text in natural language and that is mainly based on a French medical lexicon and on the UMLS. For each document, the process consists of three steps: (1) dictation and digital audio recording, (2) speech recognition, (3) automatic indexing. The evaluation consisted of a comparison between the set of concepts extracted by NOMINDEX after the speech recognition phase and the set of keywords manually extracted from the initial document. The method was evaluated on a set of 28 patient discharge summaries extracted from the MENELAS corpus in French, corresponding to in-patients admitted for coronarography. The overall precision was 73% and the overall recall was 90%. Indexing errors were mainly due to word sense ambiguity and abbreviations. A specific issue was the fact that the standard French translation of MeSH terms lacks diacritics. A preliminary evaluation of speech recognition tools showed that the rate of accurate recognition was higher than 98%. Only 3% of the indexing errors were generated by inadequate speech recognition. We discuss several areas to focus on to improve this prototype. However, the very low rate of indexing errors due to speech recognition errors highlights the potential benefits of combining speech recognition techniques and automatic indexing.

  6. Application of independent component analysis for speech-music separation using an efficient score function estimation

    NASA Astrophysics Data System (ADS)

    Pishravian, Arash; Aghabozorgi Sahaf, Masoud Reza

    2012-12-01

    In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time

  7. Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications.

    PubMed

    VanDam, Mark; Silbert, Noah H

    2016-01-01

    Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output.

  8. Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications

    PubMed Central

    2016-01-01

    Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output. PMID:27529813

  9. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.

    PubMed

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  10. Visual Information Can Hinder Working Memory Processing of Speech

    ERIC Educational Resources Information Center

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Ronnberg, Jerker; Rudner, Mary

    2013-01-01

    Purpose: The purpose of the present study was to evaluate the new Cognitive Spare Capacity Test (CSCT), which measures aspects of working memory capacity for heard speech in the audiovisual and auditory-only modalities of presentation. Method: In Experiment 1, 20 young adults with normal hearing performed the CSCT and an independent battery of…

  11. Orthography and Modality Influence Speech Production in Adults and Children

    ERIC Educational Resources Information Center

    Saletta, Meredith; Goffman, Lisa; Hogan, Tiffany P.

    2016-01-01

    Purpose: The acquisition of literacy skills influences the perception and production of spoken language. We examined if orthography influences implicit processing in speech production in child readers and in adult readers with low and high reading proficiency. Method: Children (n = 17), adults with typical reading skills (n = 17), and adults…

  12. Experienced Speech-Language Pathologists' Responses to Ethical Dilemmas: An Integrated Approach to Ethical Reasoning

    ERIC Educational Resources Information Center

    Kenny, Belinda; Lincoln, Michelle; Balandin, Susan

    2010-01-01

    Purpose: To investigate the approaches of experienced speech-language pathologists (SLPs) to ethical reasoning and the processes they use to resolve ethical dilemmas. Method: Ten experienced SLPs participated in in-depth interviews. A narrative approach was used to guide participants' descriptions of how they resolved ethical dilemmas. Individual…

  13. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    PubMed

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  14. Audiovisual speech perception development at varying levels of perceptual processing

    PubMed Central

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318

  15. Audiovisual speech perception development at varying levels of perceptual processing.

    PubMed

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  16. Automated analysis of free speech predicts psychosis onset in high-risk youths

    PubMed Central

    Bedi, Gillinder; Carrillo, Facundo; Cecchi, Guillermo A; Slezak, Diego Fernández; Sigman, Mariano; Mota, Natália B; Ribeiro, Sidarta; Javitt, Daniel C; Copelli, Mauro; Corcoran, Cheryl M

    2015-01-01

    Background/Objectives: Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals. AIMS: In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis. Methods: Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed. Results: Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms. Conclusions: Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry. PMID:27336038

  17. Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis

    PubMed Central

    Vielsmeier, Veronika; Kreuzer, Peter M.; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R. O.; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin

    2016-01-01

    Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments (“How would you rate your ability to understand speech?”; “How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?”). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role. PMID:28018209

  18. Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis.

    PubMed

    Vielsmeier, Veronika; Kreuzer, Peter M; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R O; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin

    2016-01-01

    Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments ("How would you rate your ability to understand speech?"; "How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?"). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role.

  19. Automatic analysis of slips of the tongue: Insights into the cognitive architecture of speech production.

    PubMed

    Goldrick, Matthew; Keshet, Joseph; Gustafson, Erin; Heller, Jordana; Needle, Jeremy

    2016-04-01

    Traces of the cognitive mechanisms underlying speaking can be found within subtle variations in how we pronounce sounds. While speech errors have traditionally been seen as categorical substitutions of one sound for another, acoustic/articulatory analyses show they partially reflect the intended sound. When "pig" is mispronounced as "big," the resulting /b/ sound differs from correct productions of "big," moving towards intended "pig"-revealing the role of graded sound representations in speech production. Investigating the origins of such phenomena requires detailed estimation of speech sound distributions; this has been hampered by reliance on subjective, labor-intensive manual annotation. Computational methods can address these issues by providing for objective, automatic measurements. We develop a novel high-precision computational approach, based on a set of machine learning algorithms, for measurement of elicited speech. The algorithms are trained on existing manually labeled data to detect and locate linguistically relevant acoustic properties with high accuracy. Our approach is robust, is designed to handle mis-productions, and overall matches the performance of expert coders. It allows us to analyze a very large dataset of speech errors (containing far more errors than the total in the existing literature), illuminating properties of speech sound distributions previously impossible to reliably observe. We argue that this provides novel evidence that two sources both contribute to deviations in speech errors: planning processes specifying the targets of articulation and articulatory processes specifying the motor movements that execute this plan. These findings illustrate how a much richer picture of speech provides an opportunity to gain novel insights into language processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Automatic detection of articulation disorders in children with cleft lip and palate.

    PubMed

    Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria

    2009-11-01

    Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.

  1. Deep learning

    NASA Astrophysics Data System (ADS)

    Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-01

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  2. Deep learning.

    PubMed

    LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-28

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  3. Subcortical processing of speech regularities underlies reading and music aptitude in children

    PubMed Central

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation. PMID:22005291

  4. Comparison of single-microphone noise reduction schemes: can hearing impaired listeners tell the difference?

    PubMed

    Huber, Rainer; Bisitz, Thomas; Gerkmann, Timo; Kiessling, Jürgen; Meister, Hartmut; Kollmeier, Birger

    2018-06-01

    The perceived qualities of nine different single-microphone noise reduction (SMNR) algorithms were to be evaluated and compared in subjective listening tests with normal hearing and hearing impaired (HI) listeners. Speech samples added with traffic noise or with party noise were processed by the SMNR algorithms. Subjects rated the amount of speech distortions, intrusiveness of background noise, listening effort and overall quality, using a simplified MUSHRA (ITU-R, 2003 ) assessment method. 18 normal hearing and 18 moderately HI subjects participated in the study. Significant differences between the rating behaviours of the two subject groups were observed: While normal hearing subjects clearly differentiated between different SMNR algorithms, HI subjects rated all processed signals very similarly. Moreover, HI subjects rated speech distortions of the unprocessed, noisier signals as being more severe than the distortions of the processed signals, in contrast to normal hearing subjects. It seems harder for HI listeners to distinguish between additive noise and speech distortions or/and they might have a different understanding of the term "speech distortion" than normal hearing listeners have. The findings confirm that the evaluation of SMNR schemes for hearing aids should always involve HI listeners.

  5. Effects of Hearing and Aging on Sentence-Level Time-Gated Word Recognition

    ERIC Educational Resources Information Center

    Molis, Michelle R.; Kampel, Sean D.; McMillan, Garnett P.; Gallun, Frederick J.; Dann, Serena M.; Konrad-Martin, Dawn

    2015-01-01

    Purpose: Aging is known to influence temporal processing, but its relationship to speech perception has not been clearly defined. To examine listeners' use of contextual and phonetic information, the Revised Speech Perception in Noise test (R-SPIN) was used to develop a time-gated word (TGW) task. Method: In Experiment 1, R-SPIN sentence lists…

  6. What Factors Place Children with Speech Sound Disorders at Risk for Reading Problems?

    ERIC Educational Resources Information Center

    Anthony, Jason L.; Aghara, Rachel Greenblatt; Dunkelberger, Martha J.; Anthony, Teresa I.; Williams, Jeffrey M.; Zhang, Zhou

    2011-01-01

    Purpose: To identify weaknesses in print awareness and phonological processing that place children with speech sound disorders (SSDs) at increased risk for reading difficulties. Method: Language, literacy, and phonological skills of 3 groups of preschool-age children were compared: a group of 68 children with SSDs, a group of 68 peers with normal…

  7. Transferring of speech movements from video to 3D face space.

    PubMed

    Pei, Yuru; Zha, Hongbin

    2007-01-01

    We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models.

  8. Intentional Voice Command Detection for Trigger-Free Speech Interface

    NASA Astrophysics Data System (ADS)

    Obuchi, Yasunari; Sumiyoshi, Takashi

    In this paper we introduce a new framework of audio processing, which is essential to achieve a trigger-free speech interface for home appliances. If the speech interface works continually in real environments, it must extract occasional voice commands and reject everything else. It is extremely important to reduce the number of false alarms because the number of irrelevant inputs is much larger than the number of voice commands even for heavy users of appliances. The framework, called Intentional Voice Command Detection, is based on voice activity detection, but enhanced by various speech/audio processing techniques such as emotion recognition. The effectiveness of the proposed framework is evaluated using a newly-collected large-scale corpus. The advantages of combining various features were tested and confirmed, and the simple LDA-based classifier demonstrated acceptable performance. The effectiveness of various methods of user adaptation is also discussed.

  9. Influence of musical expertise and musical training on pitch processing in music and language.

    PubMed

    Besson, Mireille; Schön, Daniele; Moreno, Sylvain; Santos, Andréia; Magne, Cyrille

    2007-01-01

    We review a series of experiments aimed at studying pitch processing in music and speech. These studies were conducted with musician and non musician adults and children. We found that musical expertise improved pitch processing not only in music but also in speech. Demonstrating transfer of training between music and language has interesting applications for second language learning. We also addressed the issue of whether the positive effects of musical expertise are linked with specific predispositions for music or with extensive musical practice. Results of longitudinal studies argue for the later. Finally, we also examined pitch processing in dyslexic children and found that they had difficulties discriminating strong pitch changes that are easily discriminate by normal readers. These results argue for a strong link between basic auditory perception abilities and reading abilities. We used conjointly the behavioral method (Reaction Times and error rates) and the electrophysiological method (recording of the changes in brain electrical activity time-locked to stimulus presentation, Event-Related brain Potentials or ERPs). A set of common processes may be responsible for pitch processing in music and in speech and these processes are shaped by musical practice. These data add evidence in favor of brain plasticity and open interesting perspectives for the remediation of dyslexia using musical training.

  10. Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images

    PubMed Central

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies. PMID:27295428

  11. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  12. Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech , Instrumentation for Its Investigation, and Practical Applications, 1 October-31 December 1971.

    ERIC Educational Resources Information Center

    Turney, Michael T.; And Others

    This report on speech research contains papers describing experiments involving both information processing and speech production. The papers concerned with information processing cover such topics as peripheral and central processes in vision, separate speech and nonspeech processing in dichotic listening, and dichotic fusion along an acoustic…

  13. Neurophysiological Influence of Musical Training on Speech Perception

    PubMed Central

    Shahin, Antoine J.

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL. PMID:21716639

  14. Neurophysiological influence of musical training on speech perception.

    PubMed

    Shahin, Antoine J

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL.

  15. Self-organizing map classifier for stressed speech recognition

    NASA Astrophysics Data System (ADS)

    Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2016-05-01

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.

  16. Robust Speaker Authentication Based on Combined Speech and Voiceprint Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, Mario

    2009-08-01

    Personal authentication is becoming increasingly important in many applications that have to protect proprietary data. Passwords and personal identification numbers (PINs) prove not to be robust enough to ensure that unauthorized people do not use them. Biometric authentication technology may offer a secure, convenient, accurate solution but sometimes fails due to its intrinsically fuzzy nature. This research aims to demonstrate that combining two basic speech processing methods, voiceprint identification and speech recognition, can provide a very high degree of robustness, especially if fuzzy decision logic is used.

  17. Implicit prosody mining based on the human eye image capture technology

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.

  18. Robot Command Interface Using an Audio-Visual Speech Recognition System

    NASA Astrophysics Data System (ADS)

    Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy

    In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.

  19. An optimization method for speech enhancement based on deep neural network

    NASA Astrophysics Data System (ADS)

    Sun, Haixia; Li, Sikun

    2017-06-01

    Now, this document puts forward a deep neural network (DNN) model with more credible data set and more robust structure. First, we take two regularization skills, dropout and sparsity constraint to strengthen the generalization ability of the model. In this way, not only the model is able to reach the consistency between the pre-training model and the fine-tuning model, but also it reduce resource consumption. Then network compression by weights sharing and quantization is allowed to reduce storage cost. In the end, we evaluate the quality of the reconstructed speech according to different criterion. The result proofs that the improved framework has good performance on speech enhancement and meets the requirement of speech processing.

  20. Speech-Enabled Interfaces for Travel Information Systems with Large Grammars

    NASA Astrophysics Data System (ADS)

    Zhao, Baoli; Allen, Tony; Bargiela, Andrzej

    This paper introduces three grammar-segmentation methods capable of handling the large grammar issues associated with producing a real-time speech-enabled VXML bus travel application for London. Large grammars tend to produce relatively slow recognition interfaces and this work shows how this limitation can be successfully addressed. Comparative experimental results show that the novel last-word recognition based grammar segmentation method described here achieves an optimal balance between recognition rate, speed of processing and naturalness of interaction.

  1. Phonological processes in the speech of school-age children with hearing loss: Comparisons with children with normal hearing.

    PubMed

    Asad, Areej Nimer; Purdy, Suzanne C; Ballard, Elaine; Fairgray, Liz; Bowen, Caroline

    2018-04-27

    In this descriptive study, phonological processes were examined in the speech of children aged 5;0-7;6 (years; months) with mild to profound hearing loss using hearing aids (HAs) and cochlear implants (CIs), in comparison to their peers. A second aim was to compare phonological processes of HA and CI users. Children with hearing loss (CWHL, N = 25) were compared to children with normal hearing (CWNH, N = 30) with similar age, gender, linguistic, and socioeconomic backgrounds. Speech samples obtained from a list of 88 words, derived from three standardized speech tests, were analyzed using the CASALA (Computer Aided Speech and Language Analysis) program to evaluate participants' phonological systems, based on lax (a process appeared at least twice in the speech of at least two children) and strict (a process appeared at least five times in the speech of at least two children) counting criteria. Developmental phonological processes were eliminated in the speech of younger and older CWNH while eleven developmental phonological processes persisted in the speech of both age groups of CWHL. CWHL showed a similar trend of age of elimination to CWNH, but at a slower rate. Children with HAs and CIs produced similar phonological processes. Final consonant deletion, weak syllable deletion, backing, and glottal replacement were present in the speech of HA users, affecting their overall speech intelligibility. Developmental and non-developmental phonological processes persist in the speech of children with mild to profound hearing loss compared to their peers with typical hearing. The findings indicate that it is important for clinicians to consider phonological assessment in pre-school CWHL and the use of evidence-based speech therapy in order to reduce non-developmental and non-age-appropriate developmental processes, thereby enhancing their speech intelligibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay: III. Theoretical Coherence of the Pause Marker with Speech Processing Deficits in Childhood Apraxia of Speech.

    PubMed

    Shriberg, Lawrence D; Strand, Edythe A; Fourakis, Marios; Jakielski, Kathy J; Hall, Sheryl D; Karlsson, Heather B; Mabie, Heather L; McSweeny, Jane L; Tilkens, Christie M; Wilson, David L

    2017-04-14

    Previous articles in this supplement described rationale for and development of the pause marker (PM), a diagnostic marker of childhood apraxia of speech (CAS), and studies supporting its validity and reliability. The present article assesses the theoretical coherence of the PM with speech processing deficits in CAS. PM and other scores were obtained for 264 participants in 6 groups: CAS in idiopathic, neurogenetic, and complex neurodevelopmental disorders; adult-onset apraxia of speech (AAS) consequent to stroke and primary progressive apraxia of speech; and idiopathic speech delay. Participants with CAS and AAS had significantly lower scores than typically speaking reference participants and speech delay controls on measures posited to assess representational and transcoding processes. Representational deficits differed between CAS and AAS groups, with support for both underspecified linguistic representations and memory/access deficits in CAS, but for only the latter in AAS. CAS-AAS similarities in the age-sex standardized percentages of occurrence of the most frequent type of inappropriate pauses (abrupt) and significant differences in the standardized occurrence of appropriate pauses were consistent with speech processing findings. Results support the hypotheses of core representational and transcoding speech processing deficits in CAS and theoretical coherence of the PM's pause-speech elements with these deficits.

  3. Significance of parametric spectral ratio methods in detection and recognition of whispered speech

    NASA Astrophysics Data System (ADS)

    Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.

    2012-12-01

    In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.

  4. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  5. A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception

    PubMed Central

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E.; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z.

    2015-01-01

    In the last decade, the debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. However, the exact role of the motor system in auditory speech processing remains elusive. Here we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. The patient’s spontaneous speech was marked by frequent phonological/articulatory errors, and those errors were caused, at least in part, by motor-level impairments with speech production. We found that the patient showed a normal phonemic categorical boundary when discriminating two nonwords that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the nonword stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labeling impairment. These data suggest that the identification (i.e. labeling) of nonword speech sounds may involve the speech motor system, but that the perception of speech sounds (i.e., discrimination) does not require the motor system. This means that motor processes are not causally involved in perception of the speech signal, and suggest that the motor system may be used when other cues (e.g., meaning, context) are not available. PMID:25951749

  6. Normative Topographic ERP Analyses of Speed of Speech Processing and Grammar Before and After Grammatical Treatment

    PubMed Central

    Yoder, Paul J.; Molfese, Dennis; Murray, Micah M.; Key, Alexandra P. F.

    2013-01-01

    Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Post-treatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group. PMID:24219693

  7. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  8. White noise speech illusion and psychosis expression: An experimental investigation of psychosis liability.

    PubMed

    Pries, Lotta-Katrin; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Wichers, Marieke; Simons, Claudia J P; Rutten, Bart P F; van Os, Jim

    2017-01-01

    An association between white noise speech illusion and psychotic symptoms has been reported in patients and their relatives. This supports the theory that bottom-up and top-down perceptual processes are involved in the mechanisms underlying perceptual abnormalities. However, findings in nonclinical populations have been conflicting. The aim of this study was to examine the association between white noise speech illusion and subclinical expression of psychotic symptoms in a nonclinical sample. Findings were compared to previous results to investigate potential methodology dependent differences. In a general population adolescent and young adult twin sample (n = 704), the association between white noise speech illusion and subclinical psychotic experiences, using the Structured Interview for Schizotypy-Revised (SIS-R) and the Community Assessment of Psychic Experiences (CAPE), was analyzed using multilevel logistic regression analyses. Perception of any white noise speech illusion was not associated with either positive or negative schizotypy in the general population twin sample, using the method by Galdos et al. (2011) (positive: ORadjusted: 0.82, 95% CI: 0.6-1.12, p = 0.217; negative: ORadjusted: 0.75, 95% CI: 0.56-1.02, p = 0.065) and the method by Catalan et al. (2014) (positive: ORadjusted: 1.11, 95% CI: 0.79-1.57, p = 0.557). No association was found between CAPE scores and speech illusion (ORadjusted: 1.25, 95% CI: 0.88-1.79, p = 0.220). For the Catalan et al. (2014) but not the Galdos et al. (2011) method, a negative association was apparent between positive schizotypy and speech illusion with positive or negative affective valence (ORadjusted: 0.44, 95% CI: 0.24-0.81, p = 0.008). Contrary to findings in clinical populations, white noise speech illusion may not be associated with psychosis proneness in nonclinical populations.

  9. Reaction times of normal listeners to laryngeal, alaryngeal, and synthetic speech.

    PubMed

    Evitts, Paul M; Searl, Jeff

    2006-12-01

    The purpose of this study was to compare listener processing demands when decoding alaryngeal compared to laryngeal speech. Fifty-six listeners were presented with single words produced by 1 proficient speaker from 5 different modes of speech: normal, tracheosophageal (TE), esophageal (ES), electrolaryngeal (EL), and synthetic speech (SS). Cognitive processing load was indexed by listener reaction time (RT). To account for significant durational differences among the modes of speech, an RT ratio was calculated (stimulus duration divided by RT). Results indicated that the cognitive processing load was greater for ES and EL relative to normal speech. TE and normal speech did not differ in terms of RT ratio, suggesting fairly comparable cognitive demands placed on the listener. SS required greater cognitive processing load than normal and alaryngeal speech. The results are discussed relative to alaryngeal speech intelligibility and the role of the listener. Potential clinical applications and directions for future research are also presented.

  10. Detection of cardiac activity changes from human speech

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  11. Hidden Markov models in automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Wrzoskowicz, Adam

    1993-11-01

    This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.

  12. The Cortical Organization of Speech Processing: Feedback Control and Predictive Coding the Context of a Dual-Stream Model

    ERIC Educational Resources Information Center

    Hickok, Gregory

    2012-01-01

    Speech recognition is an active process that involves some form of predictive coding. This statement is relatively uncontroversial. What is less clear is the source of the prediction. The dual-stream model of speech processing suggests that there are two possible sources of predictive coding in speech perception: the motor speech system and the…

  13. The Timing and Effort of Lexical Access in Natural and Degraded Speech

    PubMed Central

    Wagner, Anita E.; Toffanin, Paolo; Başkent, Deniz

    2016-01-01

    Understanding speech is effortless in ideal situations, and although adverse conditions, such as caused by hearing impairment, often render it an effortful task, they do not necessarily suspend speech comprehension. A prime example of this is speech perception by cochlear implant users, whose hearing prostheses transmit speech as a significantly degraded signal. It is yet unknown how mechanisms of speech processing deal with such degraded signals, and whether they are affected by effortful processing of speech. This paper compares the automatic process of lexical competition between natural and degraded speech, and combines gaze fixations, which capture the course of lexical disambiguation, with pupillometry, which quantifies the mental effort involved in processing speech. Listeners’ ocular responses were recorded during disambiguation of lexical embeddings with matching and mismatching durational cues. Durational cues were selected due to their substantial role in listeners’ quick limitation of the number of lexical candidates for lexical access in natural speech. Results showed that lexical competition increased mental effort in processing natural stimuli in particular in presence of mismatching cues. Signal degradation reduced listeners’ ability to quickly integrate durational cues in lexical selection, and delayed and prolonged lexical competition. The effort of processing degraded speech was increased overall, and because it had its sources at the pre-lexical level this effect can be attributed to listening to degraded speech rather than to lexical disambiguation. In sum, the course of lexical competition was largely comparable for natural and degraded speech, but showed crucial shifts in timing, and different sources of increased mental effort. We argue that well-timed progress of information from sensory to pre-lexical and lexical stages of processing, which is the result of perceptual adaptation during speech development, is the reason why in ideal situations speech is perceived as an undemanding task. Degradation of the signal or the receiver channel can quickly bring this well-adjusted timing out of balance and lead to increase in mental effort. Incomplete and effortful processing at the early pre-lexical stages has its consequences on lexical processing as it adds uncertainty to the forming and revising of lexical hypotheses. PMID:27065901

  14. Seeing the Talker's Face Improves Free Recall of Speech for Young Adults with Normal Hearing but Not Older Adults with Hearing Loss

    ERIC Educational Resources Information Center

    Rudner, Mary; Mishra, Sushmit; Stenfelt, Stefan; Lunner, Thomas; Rönnberg, Jerker

    2016-01-01

    Purpose: Seeing the talker's face improves speech understanding in noise, possibly releasing resources for cognitive processing. We investigated whether it improves free recall of spoken two-digit numbers. Method: Twenty younger adults with normal hearing and 24 older adults with hearing loss listened to and subsequently recalled lists of 13…

  15. Speech systems research at Texas Instruments

    NASA Technical Reports Server (NTRS)

    Doddington, George R.

    1977-01-01

    An assessment of automatic speech processing technology is presented. Fundamental problems in the development and the deployment of automatic speech processing systems are defined and a technology forecast for speech systems is presented.

  16. Did you or I say pretty, rude or brief? An ERP study of the effects of speaker's identity on emotional word processing.

    PubMed

    Pinheiro, Ana P; Rezaii, Neguine; Nestor, Paul G; Rauber, Andréia; Spencer, Kevin M; Niznikiewicz, Margaret

    2016-02-01

    During speech comprehension, multiple cues need to be integrated at a millisecond speed, including semantic information, as well as voice identity and affect cues. A processing advantage has been demonstrated for self-related stimuli when compared with non-self stimuli, and for emotional relative to neutral stimuli. However, very few studies investigated self-other speech discrimination and, in particular, how emotional valence and voice identity interactively modulate speech processing. In the present study we probed how the processing of words' semantic valence is modulated by speaker's identity (self vs. non-self voice). Sixteen healthy subjects listened to 420 prerecorded adjectives differing in voice identity (self vs. non-self) and semantic valence (neutral, positive and negative), while electroencephalographic data were recorded. Participants were instructed to decide whether the speech they heard was their own (self-speech condition), someone else's (non-self speech), or if they were unsure. The ERP results demonstrated interactive effects of speaker's identity and emotional valence on both early (N1, P2) and late (Late Positive Potential - LPP) processing stages: compared with non-self speech, self-speech with neutral valence elicited more negative N1 amplitude, self-speech with positive valence elicited more positive P2 amplitude, and self-speech with both positive and negative valence elicited more positive LPP. ERP differences between self and non-self speech occurred in spite of similar accuracy in the recognition of both types of stimuli. Together, these findings suggest that emotion and speaker's identity interact during speech processing, in line with observations of partially dependent processing of speech and speaker information. Copyright © 2016. Published by Elsevier Inc.

  17. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID:24672438

  18. White noise speech illusion and psychosis expression: An experimental investigation of psychosis liability

    PubMed Central

    Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Wichers, Marieke; Simons, Claudia J. P.; Rutten, Bart P. F.; van Os, Jim

    2017-01-01

    Background An association between white noise speech illusion and psychotic symptoms has been reported in patients and their relatives. This supports the theory that bottom-up and top-down perceptual processes are involved in the mechanisms underlying perceptual abnormalities. However, findings in nonclinical populations have been conflicting. Objectives The aim of this study was to examine the association between white noise speech illusion and subclinical expression of psychotic symptoms in a nonclinical sample. Findings were compared to previous results to investigate potential methodology dependent differences. Methods In a general population adolescent and young adult twin sample (n = 704), the association between white noise speech illusion and subclinical psychotic experiences, using the Structured Interview for Schizotypy—Revised (SIS-R) and the Community Assessment of Psychic Experiences (CAPE), was analyzed using multilevel logistic regression analyses. Results Perception of any white noise speech illusion was not associated with either positive or negative schizotypy in the general population twin sample, using the method by Galdos et al. (2011) (positive: ORadjusted: 0.82, 95% CI: 0.6–1.12, p = 0.217; negative: ORadjusted: 0.75, 95% CI: 0.56–1.02, p = 0.065) and the method by Catalan et al. (2014) (positive: ORadjusted: 1.11, 95% CI: 0.79–1.57, p = 0.557). No association was found between CAPE scores and speech illusion (ORadjusted: 1.25, 95% CI: 0.88–1.79, p = 0.220). For the Catalan et al. (2014) but not the Galdos et al. (2011) method, a negative association was apparent between positive schizotypy and speech illusion with positive or negative affective valence (ORadjusted: 0.44, 95% CI: 0.24–0.81, p = 0.008). Conclusion Contrary to findings in clinical populations, white noise speech illusion may not be associated with psychosis proneness in nonclinical populations. PMID:28832672

  19. A Proposed Process for Managing the First Amendment Aspects of Campus Hate Speech.

    ERIC Educational Resources Information Center

    Kaplan, William A.

    1992-01-01

    A carefully structured process for campus administrative decision making concerning hate speech is proposed and suggestions for implementation are offered. In addition, criteria for evaluating hate speech processes are outlined, and First Amendment principles circumscribing the institution's discretion to regulate hate speech are discussed.…

  20. Transcranial electric stimulation for the investigation of speech perception and comprehension

    PubMed Central

    Zoefel, Benedikt; Davis, Matthew H.

    2017-01-01

    ABSTRACT Transcranial electric stimulation (tES), comprising transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), involves applying weak electrical current to the scalp, which can be used to modulate membrane potentials and thereby modify neural activity. Critically, behavioural or perceptual consequences of this modulation provide evidence for a causal role of neural activity in the stimulated brain region for the observed outcome. We present tES as a tool for the investigation of which neural responses are necessary for successful speech perception and comprehension. We summarise existing studies, along with challenges that need to be overcome, potential solutions, and future directions. We conclude that, although standardised stimulation parameters still need to be established, tES is a promising tool for revealing the neural basis of speech processing. Future research can use this method to explore the causal role of brain regions and neural processes for the perception and comprehension of speech. PMID:28670598

  1. Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech Sounds

    ERIC Educational Resources Information Center

    Ito, Takayuki; Johns, Alexis R.; Ostry, David J.

    2013-01-01

    Purpose: Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory…

  2. An acoustic feature-based similarity scoring system for speech rehabilitation assistance.

    PubMed

    Syauqy, Dahnial; Wu, Chao-Min; Setyawati, Onny

    2016-08-01

    The purpose of this study is to develop a tool to assist speech therapy and rehabilitation, which focused on automatic scoring based on the comparison of the patient's speech with another normal speech on several aspects including pitch, vowel, voiced-unvoiced segments, strident fricative and sound intensity. The pitch estimation employed the use of cepstrum-based algorithm for its robustness; the vowel classification used multilayer perceptron (MLP) to classify vowel from pitch and formants; and the strident fricative detection was based on the major peak spectral intensity, location and the pitch existence in the segment. In order to evaluate the performance of the system, this study analyzed eight patient's speech recordings (four males, four females; 4-58-years-old), which had been recorded in previous study in cooperation with Taipei Veterans General Hospital and Taoyuan General Hospital. The experiment result on pitch algorithm showed that the cepstrum method had 5.3% of gross pitch error from a total of 2086 frames. On the vowel classification algorithm, MLP method provided 93% accuracy (men), 87% (women) and 84% (children). In total, the overall results showed that 156 tool's grading results (81%) were consistent compared to 192 audio and visual observations done by four experienced respondents. Implication for Rehabilitation Difficulties in communication may limit the ability of a person to transfer and exchange information. The fact that speech is one of the primary means of communication has encouraged the needs of speech diagnosis and rehabilitation. The advances of technology in computer-assisted speech therapy (CAST) improve the quality, time efficiency of the diagnosis and treatment of the disorders. The present study attempted to develop tool to assist speech therapy and rehabilitation, which provided simple interface to let the assessment be done even by the patient himself without the need of particular knowledge of speech processing while at the same time, also provided further deep analysis of the speech, which can be useful for the speech therapist.

  3. Analysis of Parent, Teacher, and Consultant Speech Exchanges and Educational Outcomes of Students With Autism During COMPASS Consultation.

    PubMed

    Ruble, Lisa; Birdwhistell, Jessie; Toland, Michael D; McGrew, John H

    2011-01-01

    The significant increase in the numbers of students with autism combined with the need for better trained teachers (National Research Council, 2001) call for research on the effectiveness of alternative methods, such as consultation, that have the potential to improve service delivery. Data from 2 randomized controlled single-blind trials indicate that an autism-specific consultation planning framework known as the collaborative model for promoting competence and success (COMPASS) is effective in increasing child Individual Education Programs (IEP) outcomes (Ruble, Dal-rymple, & McGrew, 2010; Ruble, McGrew, & Toland, 2011). In this study, we describe the verbal interactions, defined as speech acts and speech act exchanges that take place during COMPASS consultation, and examine the associations between speech exchanges and child outcomes. We applied the Psychosocial Processes Coding Scheme (Leaper, 1991) to code speech acts. Speech act exchanges were overwhelmingly affiliative, failed to show statistically significant relationships with child IEP outcomes and teacher adherence, but did correlate positively with IEP quality.

  4. Analysis of Parent, Teacher, and Consultant Speech Exchanges and Educational Outcomes of Students With Autism During COMPASS Consultation

    PubMed Central

    RUBLE, LISA; BIRDWHISTELL, JESSIE; TOLAND, MICHAEL D.; MCGREW, JOHN H.

    2011-01-01

    The significant increase in the numbers of students with autism combined with the need for better trained teachers (National Research Council, 2001) call for research on the effectiveness of alternative methods, such as consultation, that have the potential to improve service delivery. Data from 2 randomized controlled single-blind trials indicate that an autism-specific consultation planning framework known as the collaborative model for promoting competence and success (COMPASS) is effective in increasing child Individual Education Programs (IEP) outcomes (Ruble, Dal-rymple, & McGrew, 2010; Ruble, McGrew, & Toland, 2011). In this study, we describe the verbal interactions, defined as speech acts and speech act exchanges that take place during COMPASS consultation, and examine the associations between speech exchanges and child outcomes. We applied the Psychosocial Processes Coding Scheme (Leaper, 1991) to code speech acts. Speech act exchanges were overwhelmingly affiliative, failed to show statistically significant relationships with child IEP outcomes and teacher adherence, but did correlate positively with IEP quality. PMID:22639523

  5. Speech Processing and Recognition (SPaRe)

    DTIC Science & Technology

    2011-01-01

    results in the areas of automatic speech recognition (ASR), speech processing, machine translation (MT), natural language processing ( NLP ), and...Processing ( NLP ), Information Retrieval (IR) 16. SECURITY CLASSIFICATION OF: UNCLASSIFED 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...Figure 9, the IOC was only expected to provide document submission and search; automatic speech recognition (ASR) for English, Spanish, Arabic , and

  6. Using the Self-Select Paradigm to Delineate the Nature of Speech Motor Programming

    PubMed Central

    Wright, David L.; Robin, Don A.; Rhee, Jooyhun; Vaculin, Amber; Jacks, Adam; Guenther, Frank H.; Fox, Peter T.

    2015-01-01

    Purpose The authors examined the involvement of 2 speech motor programming processes identified by S. T. Klapp (1995, 2003) during the articulation of utterances differing in syllable and sequence complexity. According to S. T. Klapp, 1 process, INT, resolves the demands of the programmed unit, whereas a second process, SEQ, oversees the serial order demands of longer sequences. Method A modified reaction time paradigm was used to assess INT and SEQ demands. Specifically, syllable complexity was dependent on syllable structure, whereas sequence complexity involved either repeated or unique syllabi within an utterance. Results INT execution was slowed when articulating single syllables in the form CCCV compared to simpler CV syllables. Planning unique syllables within a multisyllabic utterance rather than repetitions of the same syllable slowed INT but not SEQ. Conclusions The INT speech motor programming process, important for mental syllabary access, is sensitive to changes in both syllable structure and the number of unique syllables in an utterance. PMID:19474396

  7. Cleft audit protocol for speech (CAPS-A): a comprehensive training package for speech analysis.

    PubMed

    Sell, D; John, A; Harding-Bell, A; Sweeney, T; Hegarty, F; Freeman, J

    2009-01-01

    The previous literature has largely focused on speech analysis systems and ignored process issues, such as the nature of adequate speech samples, data acquisition, recording and playback. Although there has been recognition of the need for training on tools used in speech analysis associated with cleft palate, little attention has been paid to this issue. To design, execute, and evaluate a training programme for speech and language therapists on the systematic and reliable use of the Cleft Audit Protocol for Speech-Augmented (CAPS-A), addressing issues of standardized speech samples, data acquisition, recording, playback, and listening guidelines. Thirty-six specialist speech and language therapists undertook the training programme over four days. This consisted of two days' training on the CAPS-A tool followed by a third day, making independent ratings and transcriptions on ten new cases which had been previously recorded during routine audit data collection. This task was repeated on day 4, a minimum of one month later. Ratings were made using the CAPS-A record form with the CAPS-A definition table. An analysis was made of the speech and language therapists' CAPS-A ratings at occasion 1 and occasion 2 and the intra- and inter-rater reliability calculated. Trained therapists showed consistency in individual judgements on specific sections of the tool. Intraclass correlation coefficients were calculated for each section with good agreement on eight of 13 sections. There were only fair levels of agreement on anterior oral cleft speech characteristics, non-cleft errors/immaturities and voice. This was explained, at least in part, by their low prevalence which affects the calculation of the intraclass correlation coefficient statistic. Speech and language therapists benefited from training on the CAPS-A, focusing on specific aspects of speech using definitions of parameters and scalar points, in order to apply the tool systematically and reliably. Ratings are enhanced by ensuring a high degree of attention to the nature of the data, standardizing the speech sample, data acquisition, the listening process together with the use of high-quality recording and playback equipment. In addition, a method is proposed for maintaining listening skills following training as part of an individual's continuing education.

  8. Speech endpoint detection with non-language speech sounds for generic speech processing applications

    NASA Astrophysics Data System (ADS)

    McClain, Matthew; Romanowski, Brian

    2009-05-01

    Non-language speech sounds (NLSS) are sounds produced by humans that do not carry linguistic information. Examples of these sounds are coughs, clicks, breaths, and filled pauses such as "uh" and "um" in English. NLSS are prominent in conversational speech, but can be a significant source of errors in speech processing applications. Traditionally, these sounds are ignored by speech endpoint detection algorithms, where speech regions are identified in the audio signal prior to processing. The ability to filter NLSS as a pre-processing step can significantly enhance the performance of many speech processing applications, such as speaker identification, language identification, and automatic speech recognition. In order to be used in all such applications, NLSS detection must be performed without the use of language models that provide knowledge of the phonology and lexical structure of speech. This is especially relevant to situations where the languages used in the audio are not known apriori. We present the results of preliminary experiments using data from American and British English speakers, in which segments of audio are classified as language speech sounds (LSS) or NLSS using a set of acoustic features designed for language-agnostic NLSS detection and a hidden-Markov model (HMM) to model speech generation. The results of these experiments indicate that the features and model used are capable of detection certain types of NLSS, such as breaths and clicks, while detection of other types of NLSS such as filled pauses will require future research.

  9. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians.

    PubMed

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2014-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  10. Time-Frequency Masking for Speech Separation and Its Potential for Hearing Aid Design

    PubMed Central

    Wang, DeLiang

    2008-01-01

    A new approach to the separation of speech from speech-in-noise mixtures is the use of time-frequency (T-F) masking. Originated in the field of computational auditory scene analysis, T-F masking performs separation in the time-frequency domain. This article introduces the T-F masking concept and reviews T-F masking algorithms that separate target speech from either monaural or binaural mixtures, as well as microphone-array recordings. The review emphasizes techniques that are promising for hearing aid design. This article also surveys recent studies that evaluate the perceptual effects of T-F masking techniques, particularly their effectiveness in improving human speech recognition in noise. An assessment is made of the potential benefits of T-F masking methods for the hearing impaired in light of the processing constraints of hearing aids. Finally, several issues pertinent to T-F masking are discussed. PMID:18974204

  11. The influence of speech rate and accent on access and use of semantic information.

    PubMed

    Sajin, Stanislav M; Connine, Cynthia M

    2017-04-01

    Circumstances in which the speech input is presented in sub-optimal conditions generally lead to processing costs affecting spoken word recognition. The current study indicates that some processing demands imposed by listening to difficult speech can be mitigated by feedback from semantic knowledge. A set of lexical decision experiments examined how foreign accented speech and word duration impact access to semantic knowledge in spoken word recognition. Results indicate that when listeners process accented speech, the reliance on semantic information increases. Speech rate was not observed to influence semantic access, except in the setting in which unusually slow accented speech was presented. These findings support interactive activation models of spoken word recognition in which attention is modulated based on speech demands.

  12. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.

    PubMed

    Lai, Ying-Hui; Chen, Fei; Wang, Syu-Siang; Lu, Xugang; Tsao, Yu; Lee, Chin-Hui

    2017-07-01

    In a cochlear implant (CI) speech processor, noise reduction (NR) is a critical component for enabling CI users to attain improved speech perception under noisy conditions. Identifying an effective NR approach has long been a key topic in CI research. Recently, a deep denoising autoencoder (DDAE) based NR approach was proposed and shown to be effective in restoring clean speech from noisy observations. It was also shown that DDAE could provide better performance than several existing NR methods in standardized objective evaluations. Following this success with normal speech, this paper further investigated the performance of DDAE-based NR to improve the intelligibility of envelope-based vocoded speech, which simulates speech signal processing in existing CI devices. We compared the performance of speech intelligibility between DDAE-based NR and conventional single-microphone NR approaches using the noise vocoder simulation. The results of both objective evaluations and listening test showed that, under the conditions of nonstationary noise distortion, DDAE-based NR yielded higher intelligibility scores than conventional NR approaches. This study confirmed that DDAE-based NR could potentially be integrated into a CI processor to provide more benefits to CI users under noisy conditions.

  13. Visual speech information: a help or hindrance in perceptual processing of dysarthric speech.

    PubMed

    Borrie, Stephanie A

    2015-03-01

    This study investigated the influence of visual speech information on perceptual processing of neurologically degraded speech. Fifty listeners identified spastic dysarthric speech under both audio (A) and audiovisual (AV) conditions. Condition comparisons revealed that the addition of visual speech information enhanced processing of the neurologically degraded input in terms of (a) acuity (percent phonemes correct) of vowels and consonants and (b) recognition (percent words correct) of predictive and nonpredictive phrases. Listeners exploited stress-based segmentation strategies more readily in AV conditions, suggesting that the perceptual benefit associated with adding visual speech information to the auditory signal-the AV advantage-has both segmental and suprasegmental origins. Results also revealed that the magnitude of the AV advantage can be predicted, to some degree, by the extent to which an individual utilizes syllabic stress cues to inform word recognition in AV conditions. Findings inform the development of a listener-specific model of speech perception that applies to processing of dysarthric speech in everyday communication contexts.

  14. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  15. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  16. Rhythmic Priming Enhances the Phonological Processing of Speech

    ERIC Educational Resources Information Center

    Cason, Nia; Schon, Daniele

    2012-01-01

    While natural speech does not possess the same degree of temporal regularity found in music, there is recent evidence to suggest that temporal regularity enhances speech processing. The aim of this experiment was to examine whether speech processing would be enhanced by the prior presentation of a rhythmical prime. We recorded electrophysiological…

  17. Prediction of psychosis across protocols and risk cohorts using automated language analysis

    PubMed Central

    Corcoran, Cheryl M.; Carrillo, Facundo; Fernández‐Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C.; Bearden, Carrie E.; Cecchi, Guillermo A.

    2018-01-01

    Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer‐based natural language processing analyses, we previously showed that, among English‐speaking clinical (e.g., ultra) high‐risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross‐validate these automated linguistic analytic methods in a second larger risk cohort, also English‐speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine‐learning speech classifier – comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns – that had an 83% accuracy in predicting psychosis onset (intra‐protocol), a cross‐validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross‐protocol), and a 72% accuracy in discriminating the speech of recent‐onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at‐risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. PMID:29352548

  18. Prediction of psychosis across protocols and risk cohorts using automated language analysis.

    PubMed

    Corcoran, Cheryl M; Carrillo, Facundo; Fernández-Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C; Bearden, Carrie E; Cecchi, Guillermo A

    2018-02-01

    Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer-based natural language processing analyses, we previously showed that, among English-speaking clinical (e.g., ultra) high-risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross-validate these automated linguistic analytic methods in a second larger risk cohort, also English-speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine-learning speech classifier - comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns - that had an 83% accuracy in predicting psychosis onset (intra-protocol), a cross-validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross-protocol), and a 72% accuracy in discriminating the speech of recent-onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at-risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. © 2018 World Psychiatric Association.

  19. Visual and Auditory Input in Second-Language Speech Processing

    ERIC Educational Resources Information Center

    Hardison, Debra M.

    2010-01-01

    The majority of studies in second-language (L2) speech processing have involved unimodal (i.e., auditory) input; however, in many instances, speech communication involves both visual and auditory sources of information. Some researchers have argued that multimodal speech is the primary mode of speech perception (e.g., Rosenblum 2005). Research on…

  20. A hybrid technique for speech segregation and classification using a sophisticated deep neural network

    PubMed Central

    Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan

    2018-01-01

    Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485

  1. THE COMPREHENSION OF RAPID SPEECH BY THE BLIND, PART III.

    ERIC Educational Resources Information Center

    FOULKE, EMERSON

    A REVIEW OF THE RESEARCH ON THE COMPREHENSION OF RAPID SPEECH BY THE BLIND IDENTIFIES FIVE METHODS OF SPEECH COMPRESSION--SPEECH CHANGING, ELECTROMECHANICAL SAMPLING, COMPUTER SAMPLING, SPEECH SYNTHESIS, AND FREQUENCY DIVIDING WITH THE HARMONIC COMPRESSOR. THE SPEECH CHANGING AND ELECTROMECHANICAL SAMPLING METHODS AND THE NECESSARY APPARATUS HAVE…

  2. Open-Source Multi-Language Audio Database for Spoken Language Processing Applications

    DTIC Science & Technology

    2012-12-01

    Mandarin, and Russian . Approximately 30 hours of speech were collected for each language. Each passage has been carefully transcribed at the...manual and automatic methods. The Russian passages have not yet been marked at the phonetic level. Another phase of the work was to explore...You Tube. 300 passages were collected in each of three languages—English, Mandarin, and Russian . Approximately 30 hours of speech were

  3. Use of Speech Analyses within a Mobile Application for the Assessment of Cognitive Impairment in Elderly People.

    PubMed

    Konig, Alexandra; Satt, Aharon; Sorin, Alex; Hoory, Ran; Derreumaux, Alexandre; David, Renaud; Robert, Phillippe H

    2018-01-01

    Various types of dementia and Mild Cognitive Impairment (MCI) are manifested as irregularities in human speech and language, which have proven to be strong predictors for the disease presence and progress ion. Therefore, automatic speech analytics provided by a mobile application may be a useful tool in providing additional indicators for assessment and detection of early stage dementia and MCI. 165 participants (subjects with subjective cognitive impairment (SCI), MCI patients, Alzheimer's disease (AD) and mixed dementia (MD) patients) were recorded with a mobile application while performing several short vocal cognitive tasks during a regular consultation. These tasks included verbal fluency, picture description, counting down and a free speech task. The voice recordings were processed in two steps: in the first step, vocal markers were extracted using speech signal processing techniques; in the second, the vocal markers were tested to assess their 'power' to distinguish between SCI, MCI, AD and MD. The second step included training automatic classifiers for detecting MCI and AD, based on machine learning methods, and testing the detection accuracy. The fluency and free speech tasks obtain the highest accuracy rates of classifying AD vs. MD vs. MCI vs. SCI. Using the data, we demonstrated classification accuracy as follows: SCI vs. AD = 92% accuracy; SCI vs. MD = 92% accuracy; SCI vs. MCI = 86% accuracy and MCI vs. AD = 86%. Our results indicate the potential value of vocal analytics and the use of a mobile application for accurate automatic differentiation between SCI, MCI and AD. This tool can provide the clinician with meaningful information for assessment and monitoring of people with MCI and AD based on a non-invasive, simple and low-cost method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    PubMed

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  5. Do not throw out the baby with the bath water: choosing an effective baseline for a functional localizer of speech processing.

    PubMed

    Stoppelman, Nadav; Harpaz, Tamar; Ben-Shachar, Michal

    2013-05-01

    Speech processing engages multiple cortical regions in the temporal, parietal, and frontal lobes. Isolating speech-sensitive cortex in individual participants is of major clinical and scientific importance. This task is complicated by the fact that responses to sensory and linguistic aspects of speech are tightly packed within the posterior superior temporal cortex. In functional magnetic resonance imaging (fMRI), various baseline conditions are typically used in order to isolate speech-specific from basic auditory responses. Using a short, continuous sampling paradigm, we show that reversed ("backward") speech, a commonly used auditory baseline for speech processing, removes much of the speech responses in frontal and temporal language regions of adult individuals. On the other hand, signal correlated noise (SCN) serves as an effective baseline for removing primary auditory responses while maintaining strong signals in the same language regions. We show that the response to reversed speech in left inferior frontal gyrus decays significantly faster than the response to speech, thus suggesting that this response reflects bottom-up activation of speech analysis followed up by top-down attenuation once the signal is classified as nonspeech. The results overall favor SCN as an auditory baseline for speech processing.

  6. Temporal plasticity in auditory cortex improves neural discrimination of speech sounds

    PubMed Central

    Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.

    2017-01-01

    Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520

  7. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians

    PubMed Central

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2015-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes. PMID:25688196

  8. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.; Ng, L.C.

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less

  9. Cortical oscillations and entrainment in speech processing during working memory load.

    PubMed

    Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten

    2018-02-02

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The influence of (central) auditory processing disorder in speech sound disorders.

    PubMed

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy.

    PubMed

    Pollonini, Luca; Olds, Cristen; Abaya, Homer; Bortfeld, Heather; Beauchamp, Michael S; Oghalai, John S

    2014-03-01

    The primary goal of most cochlear implant procedures is to improve a patient's ability to discriminate speech. To accomplish this, cochlear implants are programmed so as to maximize speech understanding. However, programming a cochlear implant can be an iterative, labor-intensive process that takes place over months. In this study, we sought to determine whether functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging method which is safe to use repeatedly and for extended periods of time, can provide an objective measure of whether a subject is hearing normal speech or distorted speech. We used a 140 channel fNIRS system to measure activation within the auditory cortex in 19 normal hearing subjects while they listed to speech with different levels of intelligibility. Custom software was developed to analyze the data and compute topographic maps from the measured changes in oxyhemoglobin and deoxyhemoglobin concentration. Normal speech reliably evoked the strongest responses within the auditory cortex. Distorted speech produced less region-specific cortical activation. Environmental sounds were used as a control, and they produced the least cortical activation. These data collected using fNIRS are consistent with the fMRI literature and thus demonstrate the feasibility of using this technique to objectively detect differences in cortical responses to speech of different intelligibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Suppression of the µ Rhythm during Speech and Non-Speech Discrimination Revealed by Independent Component Analysis: Implications for Sensorimotor Integration in Speech Processing

    PubMed Central

    Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan

    2013-01-01

    Background Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.) Methods Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80–100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Results ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13–30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Conclusions Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed. PMID:23991030

  13. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  14. Atypical speech versus non-speech detection and discrimination in 4- to 6- yr old children with autism spectrum disorder: An ERP study.

    PubMed

    Galilee, Alena; Stefanidou, Chrysi; McCleery, Joseph P

    2017-01-01

    Previous event-related potential (ERP) research utilizing oddball stimulus paradigms suggests diminished processing of speech versus non-speech sounds in children with an Autism Spectrum Disorder (ASD). However, brain mechanisms underlying these speech processing abnormalities, and to what extent they are related to poor language abilities in this population remain unknown. In the current study, we utilized a novel paired repetition paradigm in order to investigate ERP responses associated with the detection and discrimination of speech and non-speech sounds in 4- to 6-year old children with ASD, compared with gender and verbal age matched controls. ERPs were recorded while children passively listened to pairs of stimuli that were either both speech sounds, both non-speech sounds, speech followed by non-speech, or non-speech followed by speech. Control participants exhibited N330 match/mismatch responses measured from temporal electrodes, reflecting speech versus non-speech detection, bilaterally, whereas children with ASD exhibited this effect only over temporal electrodes in the left hemisphere. Furthermore, while the control groups exhibited match/mismatch effects at approximately 600 ms (central N600, temporal P600) when a non-speech sound was followed by a speech sound, these effects were absent in the ASD group. These findings suggest that children with ASD fail to activate right hemisphere mechanisms, likely associated with social or emotional aspects of speech detection, when distinguishing non-speech from speech stimuli. Together, these results demonstrate the presence of atypical speech versus non-speech processing in children with ASD when compared with typically developing children matched on verbal age.

  15. Atypical speech versus non-speech detection and discrimination in 4- to 6- yr old children with autism spectrum disorder: An ERP study

    PubMed Central

    Stefanidou, Chrysi; McCleery, Joseph P.

    2017-01-01

    Previous event-related potential (ERP) research utilizing oddball stimulus paradigms suggests diminished processing of speech versus non-speech sounds in children with an Autism Spectrum Disorder (ASD). However, brain mechanisms underlying these speech processing abnormalities, and to what extent they are related to poor language abilities in this population remain unknown. In the current study, we utilized a novel paired repetition paradigm in order to investigate ERP responses associated with the detection and discrimination of speech and non-speech sounds in 4- to 6—year old children with ASD, compared with gender and verbal age matched controls. ERPs were recorded while children passively listened to pairs of stimuli that were either both speech sounds, both non-speech sounds, speech followed by non-speech, or non-speech followed by speech. Control participants exhibited N330 match/mismatch responses measured from temporal electrodes, reflecting speech versus non-speech detection, bilaterally, whereas children with ASD exhibited this effect only over temporal electrodes in the left hemisphere. Furthermore, while the control groups exhibited match/mismatch effects at approximately 600 ms (central N600, temporal P600) when a non-speech sound was followed by a speech sound, these effects were absent in the ASD group. These findings suggest that children with ASD fail to activate right hemisphere mechanisms, likely associated with social or emotional aspects of speech detection, when distinguishing non-speech from speech stimuli. Together, these results demonstrate the presence of atypical speech versus non-speech processing in children with ASD when compared with typically developing children matched on verbal age. PMID:28738063

  16. Visual feedback in stuttering therapy

    NASA Astrophysics Data System (ADS)

    Smolka, Elzbieta

    1997-02-01

    The aim of this paper is to present the results concerning the influence of visual echo and reverberation on the speech process of stutterers. Visual stimuli along with the influence of acoustic and visual-acoustic stimuli have been compared. Following this the methods of implementing visual feedback with the aid of electroluminescent diodes directed by speech signals have been presented. The concept of a computerized visual echo based on the acoustic recognition of Polish syllabic vowels has been also presented. All the research nd trials carried out at our center, aside from cognitive aims, generally aim at the development of new speech correctors to be utilized in stuttering therapy.

  17. Processing changes when listening to foreign-accented speech

    PubMed Central

    Romero-Rivas, Carlos; Martin, Clara D.; Costa, Albert

    2015-01-01

    This study investigates the mechanisms responsible for fast changes in processing foreign-accented speech. Event Related brain Potentials (ERPs) were obtained while native speakers of Spanish listened to native and foreign-accented speakers of Spanish. We observed a less positive P200 component for foreign-accented speech relative to native speech comprehension. This suggests that the extraction of spectral information and other important acoustic features was hampered during foreign-accented speech comprehension. However, the amplitude of the N400 component for foreign-accented speech comprehension decreased across the experiment, suggesting the use of a higher level, lexical mechanism. Furthermore, during native speech comprehension, semantic violations in the critical words elicited an N400 effect followed by a late positivity. During foreign-accented speech comprehension, semantic violations only elicited an N400 effect. Overall, our results suggest that, despite a lack of improvement in phonetic discrimination, native listeners experience changes at lexical-semantic levels of processing after brief exposure to foreign-accented speech. Moreover, these results suggest that lexical access, semantic integration and linguistic re-analysis processes are permeable to external factors, such as the accent of the speaker. PMID:25859209

  18. The Hierarchical Cortical Organization of Human Speech Processing

    PubMed Central

    de Heer, Wendy A.; Huth, Alexander G.; Griffiths, Thomas L.

    2017-01-01

    Speech comprehension requires that the brain extract semantic meaning from the spectral features represented at the cochlea. To investigate this process, we performed an fMRI experiment in which five men and two women passively listened to several hours of natural narrative speech. We then used voxelwise modeling to predict BOLD responses based on three different feature spaces that represent the spectral, articulatory, and semantic properties of speech. The amount of variance explained by each feature space was then assessed using a separate validation dataset. Because some responses might be explained equally well by more than one feature space, we used a variance partitioning analysis to determine the fraction of the variance that was uniquely explained by each feature space. Consistent with previous studies, we found that speech comprehension involves hierarchical representations starting in primary auditory areas and moving laterally on the temporal lobe: spectral features are found in the core of A1, mixtures of spectral and articulatory in STG, mixtures of articulatory and semantic in STS, and semantic in STS and beyond. Our data also show that both hemispheres are equally and actively involved in speech perception and interpretation. Further, responses as early in the auditory hierarchy as in STS are more correlated with semantic than spectral representations. These results illustrate the importance of using natural speech in neurolinguistic research. Our methodology also provides an efficient way to simultaneously test multiple specific hypotheses about the representations of speech without using block designs and segmented or synthetic speech. SIGNIFICANCE STATEMENT To investigate the processing steps performed by the human brain to transform natural speech sound into meaningful language, we used models based on a hierarchical set of speech features to predict BOLD responses of individual voxels recorded in an fMRI experiment while subjects listened to natural speech. Both cerebral hemispheres were actively involved in speech processing in large and equal amounts. Also, the transformation from spectral features to semantic elements occurs early in the cortical speech-processing stream. Our experimental and analytical approaches are important alternatives and complements to standard approaches that use segmented speech and block designs, which report more laterality in speech processing and associated semantic processing to higher levels of cortex than reported here. PMID:28588065

  19. Barista: A Framework for Concurrent Speech Processing by USC-SAIL

    PubMed Central

    Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G.; Narayanan, Shrikanth S.

    2016-01-01

    We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0. PMID:27610047

  20. Barista: A Framework for Concurrent Speech Processing by USC-SAIL.

    PubMed

    Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G; Narayanan, Shrikanth S

    2014-05-01

    We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0.

  1. Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s)

    PubMed Central

    Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal

    2016-01-01

    Introduction  Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. Objective  This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. Methods  This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Results  Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. Conclusion  The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users. PMID:27413404

  2. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  3. Eye’m talking to you: speakers’ gaze direction modulates co-speech gesture processing in the right MTG

    PubMed Central

    Toni, Ivan; Hagoort, Peter; Kelly, Spencer D.; Özyürek, Aslı

    2015-01-01

    Recipients process information from speech and co-speech gestures, but it is currently unknown how this processing is influenced by the presence of other important social cues, especially gaze direction, a marker of communicative intent. Such cues may modulate neural activity in regions associated either with the processing of ostensive cues, such as eye gaze, or with the processing of semantic information, provided by speech and gesture. Participants were scanned (fMRI) while taking part in triadic communication involving two recipients and a speaker. The speaker uttered sentences that were and were not accompanied by complementary iconic gestures. Crucially, the speaker alternated her gaze direction, thus creating two recipient roles: addressed (direct gaze) vs unaddressed (averted gaze) recipient. The comprehension of Speech&Gesture relative to SpeechOnly utterances recruited middle occipital, middle temporal and inferior frontal gyri, bilaterally. The calcarine sulcus and posterior cingulate cortex were sensitive to differences between direct and averted gaze. Most importantly, Speech&Gesture utterances, but not SpeechOnly utterances, produced additional activity in the right middle temporal gyrus when participants were addressed. Marking communicative intent with gaze direction modulates the processing of speech–gesture utterances in cerebral areas typically associated with the semantic processing of multi-modal communicative acts. PMID:24652857

  4. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  5. Two Dimensional Processing Of Speech And Ecg Signals Using The Wigner-Ville Distribution

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Abeysekera, Saman S.

    1986-12-01

    The Wigner-Ville Distribution (WVD) has been shown to be a valuable tool for the analysis of non-stationary signals such as speech and Electrocardiogram (ECG) data. The one-dimensional real data are first transformed into a complex analytic signal using the Hilbert Transform and then a 2-dimensional image is formed using the Wigner-Ville Transform. For speech signals, a contour plot is determined and used as a basic feature. for a pattern recognition algorithm. This method is compared with the classical Short Time Fourier Transform (STFT) and is shown, to be able to recognize isolated words better in a noisy environment. The same method together with the concept of instantaneous frequency of the signal is applied to the analysis of ECG signals. This technique allows one to classify diseased heart-beat signals. Examples are shown.

  6. Methods of Improving Speech Intelligibility for Listeners with Hearing Resolution Deficit

    PubMed Central

    2012-01-01

    Abstract Methods developed for real-time time scale modification (TSM) of speech signal are presented. They are based on the non-uniform, speech rate depended SOLA algorithm (Synchronous Overlap and Add). Influence of the proposed method on the intelligibility of speech was investigated for two separate groups of listeners, i.e. hearing impaired children and elderly listeners. It was shown that for the speech with average rate equal to or higher than 6.48 vowels/s, all of the proposed methods have statistically significant impact on the improvement of speech intelligibility for hearing impaired children with reduced hearing resolution and one of the proposed methods significantly improves comprehension of speech in the group of elderly listeners with reduced hearing resolution. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2065486371761991 PMID:23009662

  7. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    PubMed

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Speech Planning Happens before Speech Execution: Online Reaction Time Methods in the Study of Apraxia of Speech

    ERIC Educational Resources Information Center

    Maas, Edwin; Mailend, Marja-Liisa

    2012-01-01

    Purpose: The purpose of this article is to present an argument for the use of online reaction time (RT) methods to the study of apraxia of speech (AOS) and to review the existing small literature in this area and the contributions it has made to our fundamental understanding of speech planning (deficits) in AOS. Method: Following a brief…

  9. Articulatory speech synthesis and speech production modelling

    NASA Astrophysics Data System (ADS)

    Huang, Jun

    This dissertation addresses the problem of speech synthesis and speech production modelling based on the fundamental principles of human speech production. Unlike the conventional source-filter model, which assumes the independence of the excitation and the acoustic filter, we treat the entire vocal apparatus as one system consisting of a fluid dynamic aspect and a mechanical part. We model the vocal tract by a three-dimensional moving geometry. We also model the sound propagation inside the vocal apparatus as a three-dimensional nonplane-wave propagation inside a viscous fluid described by Navier-Stokes equations. In our work, we first propose a combined minimum energy and minimum jerk criterion to estimate the dynamic vocal tract movements during speech production. Both theoretical error bound analysis and experimental results show that this method can achieve very close match at the target points and avoid the abrupt change in articulatory trajectory at the same time. Second, a mechanical vocal fold model is used to compute the excitation signal of the vocal tract. The advantage of this model is that it is closely coupled with the vocal tract system based on fundamental aerodynamics. As a result, we can obtain an excitation signal with much more detail than the conventional parametric vocal fold excitation model. Furthermore, strong evidence of source-tract interaction is observed. Finally, we propose a computational model of the fricative and stop types of sounds based on the physical principles of speech production. The advantage of this model is that it uses an exogenous process to model the additional nonsteady and nonlinear effects due to the flow mode, which are ignored by the conventional source- filter speech production model. A recursive algorithm is used to estimate the model parameters. Experimental results show that this model is able to synthesize good quality fricative and stop types of sounds. Based on our dissertation work, we carefully argue that the articulatory speech production model has the potential to flexibly synthesize natural-quality speech sounds and to provide a compact computational model for speech production that can be beneficial to a wide range of areas in speech signal processing.

  10. Speech enhancement using the modified phase-opponency model.

    PubMed

    Deshmukh, Om D; Espy-Wilson, Carol Y; Carney, Laurel H

    2007-06-01

    In this paper we present a model called the Modified Phase-Opponency (MPO) model for single-channel speech enhancement when the speech is corrupted by additive noise. The MPO model is based on the auditory PO model, proposed for detection of tones in noise. The PO model includes a physiologically realistic mechanism for processing the information in neural discharge times and exploits the frequency-dependent phase properties of the tuned filters in the auditory periphery by using a cross-auditory-nerve-fiber coincidence detection for extracting temporal cues. The MPO model alters the components of the PO model such that the basic functionality of the PO model is maintained but the properties of the model can be analyzed and modified independently. The MPO-based speech enhancement scheme does not need to estimate the noise characteristics nor does it assume that the noise satisfies any statistical model. The MPO technique leads to the lowest value of the LPC-based objective measures and the highest value of the perceptual evaluation of speech quality measure compared to other methods when the speech signals are corrupted by fluctuating noise. Combining the MPO speech enhancement technique with our aperiodicity, periodicity, and pitch detector further improves its performance.

  11. Investigating speech perception in children with dyslexia: is there evidence of a consistent deficit in individuals?

    PubMed Central

    Messaoud-Galusi, Souhila; Hazan, Valerie; Rosen, Stuart

    2012-01-01

    Purpose The claim that speech perception abilities are impaired in dyslexia was investigated in a group of 62 dyslexic children and 51 average readers matched in age. Method To test whether there was robust evidence of speech perception deficits in children with dyslexia, speech perception in noise and quiet was measured using eight different tasks involving the identification and discrimination of a complex and highly natural synthetic ‘pea’-‘bee’ contrast (copy synthesised from natural models) and the perception of naturally-produced words. Results Children with dyslexia, on average, performed more poorly than average readers in the synthetic syllables identification task in quiet and in across-category discrimination (but not when tested using an adaptive procedure). They did not differ from average readers on two tasks of word recognition in noise or identification of synthetic syllables in noise. For all tasks, a majority of individual children with dyslexia performed within norms. Finally, speech perception generally did not correlate with pseudo-word reading or phonological processing, the core skills related to dyslexia. Conclusions On the tasks and speech stimuli we used, most children with dyslexia do not appear to show a consistent deficit in speech perception. PMID:21930615

  12. Rhythm as a Coordinating Device: Entrainment With Disordered Speech

    PubMed Central

    Borrie, Stephanie A.; Liss, Julie M.

    2014-01-01

    Purpose The rhythmic entrainment (coordination) of behavior during human interaction is a powerful phenomenon, considered essential for successful communication, supporting social and emotional connection, and facilitating sense-making and information exchange. Disruption in entrainment likely occurs in conversations involving those with speech and language impairment, but its contribution to communication disorders has not been defined. As a first step to exploring this phenomenon in clinical populations, the present investigation examined the influence of disordered speech on the speech production properties of healthy interactants. Method Twenty-nine neurologically healthy interactants participated in a quasi-conversational paradigm, in which they read sentences (response) in response to hearing prerecorded sentences (exposure) from speakers with dysarthria (n = 4) and healthy controls (n = 4). Recordings of read sentences prior to the task were also collected (habitual). Results Findings revealed that interactants modified their speaking rate and pitch variation to align more closely with the disordered speech. Production shifts in these rhythmic properties, however, remained significantly different from corresponding properties in dysarthric speech. Conclusion Entrainment offers a new avenue for exploring speech and language impairment, addressing a communication process not currently explained by existing frameworks. This article offers direction for advancing this line of inquiry. PMID:24686410

  13. Simulated learning environments in speech-language pathology: an Australian response.

    PubMed

    MacBean, Naomi; Theodoros, Deborah; Davidson, Bronwyn; Hill, Anne E

    2013-06-01

    The rising demand for health professionals to service the Australian population is placing pressure on traditional approaches to clinical education in the allied health professions. Existing research suggests that simulated learning environments (SLEs) have the potential to increase student placement capacity while providing quality learning experiences with comparable or superior outcomes to traditional methods. This project investigated the current use of SLEs in Australian speech-language pathology curricula, and the potential future applications of SLEs to the clinical education curricula through an extensive consultative process with stakeholders (all 10 Australian universities offering speech-language pathology programs in 2010, Speech Pathology Australia, members of the speech-language pathology profession, and current student body). Current use of SLEs in speech-language pathology education was found to be limited, with additional resources required to further develop SLEs and maintain their use within the curriculum. Perceived benefits included: students' increased clinical skills prior to workforce placement, additional exposure to specialized areas of speech-language pathology practice, inter-professional learning, and richer observational experiences for novice students. Stakeholders perceived SLEs to have considerable potential for clinical learning. A nationally endorsed recommendation for SLE development and curricula integration was prepared.

  14. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    ERIC Educational Resources Information Center

    Elman, Jeffrey L.; McClelland, James L.

    Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…

  16. Automatic Speech Acquisition and Recognition for Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Ye, Sherry

    2015-01-01

    NASA has a widely recognized but unmet need for novel human-machine interface technologies that can facilitate communication during astronaut extravehicular activities (EVAs), when loud noises and strong reverberations inside spacesuits make communication challenging. WeVoice, Inc., has developed a multichannel signal-processing method for speech acquisition in noisy and reverberant environments that enables automatic speech recognition (ASR) technology inside spacesuits. The technology reduces noise by exploiting differences between the statistical nature of signals (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, ASR accuracy can be improved to the level at which crewmembers will find the speech interface useful. System components and features include beam forming/multichannel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, and ASR decoding. Arithmetic complexity models were developed and will help designers of real-time ASR systems select proper tasks when confronted with constraints in computational resources. In Phase I of the project, WeVoice validated the technology. The company further refined the technology in Phase II and developed a prototype for testing and use by suited astronauts.

  17. Status Report on Speech Research. A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    DTIC Science & Technology

    1983-09-30

    determines, in part, what the infant says; and if perception is to guide production, the two processes must be, in some sense, isomorphic. An artificial speech ...influences on speech perception processes . Perception & Psychophysics, 24, 253-257. MacKain, K. S., Studdert-Kennedy, M., Spieker, S., & Stern, D. (1983...sentence contexts. In A. Cohen & S. E. G. Nooteboom (Eds.), Structure and process in speech perception (pp. 69-89). New York: Springer- Verlag. Larkey

  18. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726

  19. At what time is the cocktail party? A late locus of selective attention to natural speech.

    PubMed

    Power, Alan J; Foxe, John J; Forde, Emma-Jane; Reilly, Richard B; Lalor, Edmund C

    2012-05-01

    Distinguishing between speakers and focusing attention on one speaker in multi-speaker environments is extremely important in everyday life. Exactly how the brain accomplishes this feat and, in particular, the precise temporal dynamics of this attentional deployment are as yet unknown. A long history of behavioral research using dichotic listening paradigms has debated whether selective attention to speech operates at an early stage of processing based on the physical characteristics of the stimulus or at a later stage during semantic processing. With its poor temporal resolution fMRI has contributed little to the debate, while EEG-ERP paradigms have been hampered by the need to average the EEG in response to discrete stimuli which are superimposed onto ongoing speech. This presents a number of problems, foremost among which is that early attention effects in the form of endogenously generated potentials can be so temporally broad as to mask later attention effects based on the higher level processing of the speech stream. Here we overcome this issue by utilizing the AESPA (auditory evoked spread spectrum analysis) method which allows us to extract temporally detailed responses to two concurrently presented speech streams in natural cocktail-party-like attentional conditions without the need for superimposed probes. We show attentional effects on exogenous stimulus processing in the 200-220 ms range in the left hemisphere. We discuss these effects within the context of research on auditory scene analysis and in terms of a flexible locus of attention that can be deployed at a particular processing stage depending on the task. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. A Comparative Analysis of Pitch Detection Methods Under the Influence of Different Noise Conditions.

    PubMed

    Sukhostat, Lyudmila; Imamverdiyev, Yadigar

    2015-07-01

    Pitch is one of the most important components in various speech processing systems. The aim of this study was to evaluate different pitch detection methods in terms of various noise conditions. Prospective study. For evaluation of pitch detection algorithms, time-domain, frequency-domain, and hybrid methods were considered by using Keele and CSTR speech databases. Each of them has its own advantages and disadvantages. Experiments have shown that BaNa method achieves the highest pitch detection accuracy. The development of methods for pitch detection, which are robust to additive noise at different signal-to-noise ratio, is an important field of research with many opportunities for enhancement the modern methods. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Creating speech-synchronized animation.

    PubMed

    King, Scott A; Parent, Richard E

    2005-01-01

    We present a facial model designed primarily to support animated speech. Our facial model takes facial geometry as input and transforms it into a parametric deformable model. The facial model uses a muscle-based parameterization, allowing for easier integration between speech synchrony and facial expressions. Our facial model has a highly deformable lip model that is grafted onto the input facial geometry to provide the necessary geometric complexity needed for creating lip shapes and high-quality renderings. Our facial model also includes a highly deformable tongue model that can represent the shapes the tongue undergoes during speech. We add teeth, gums, and upper palate geometry to complete the inner mouth. To decrease the processing time, we hierarchically deform the facial surface. We also present a method to animate the facial model over time to create animated speech using a model of coarticulation that blends visemes together using dominance functions. We treat visemes as a dynamic shaping of the vocal tract by describing visemes as curves instead of keyframes. We show the utility of the techniques described in this paper by implementing them in a text-to-audiovisual-speech system that creates animation of speech from unrestricted text. The facial and coarticulation models must first be interactively initialized. The system then automatically creates accurate real-time animated speech from the input text. It is capable of cheaply producing tremendous amounts of animated speech with very low resource requirements.

  2. Data-Driven Subclassification of Speech Sound Disorders in Preschool Children

    PubMed Central

    Vick, Jennell C.; Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Truemper, Klaus; Rusiewicz, Heather Leavy; Moore, Christopher A.

    2015-01-01

    Purpose The purpose of the study was to determine whether distinct subgroups of preschool children with speech sound disorders (SSD) could be identified using a subgroup discovery algorithm (SUBgroup discovery via Alternate Random Processes, or SUBARP). Of specific interest was finding evidence of a subgroup of SSD exhibiting performance consistent with atypical speech motor control. Method Ninety-seven preschool children with SSD completed speech and nonspeech tasks. Fifty-three kinematic, acoustic, and behavioral measures from these tasks were input to SUBARP. Results Two distinct subgroups were identified from the larger sample. The 1st subgroup (76%; population prevalence estimate = 67.8%–84.8%) did not have characteristics that would suggest atypical speech motor control. The 2nd subgroup (10.3%; population prevalence estimate = 4.3%– 16.5%) exhibited significantly higher variability in measures of articulatory kinematics and poor ability to imitate iambic lexical stress, suggesting atypical speech motor control. Both subgroups were consistent with classes of SSD in the Speech Disorders Classification System (SDCS; Shriberg et al., 2010a). Conclusion Characteristics of children in the larger subgroup were consistent with the proportionally large SDCS class termed speech delay; characteristics of children in the smaller subgroup were consistent with the SDCS subtype termed motor speech disorder—not otherwise specified. The authors identified candidate measures to identify children in each of these groups. PMID:25076005

  3. Action planning and predictive coding when speaking

    PubMed Central

    Wang, Jun; Mathalon, Daniel H.; Roach, Brian J.; Reilly, James; Keedy, Sarah; Sweeney, John A.; Ford, Judith M.

    2014-01-01

    Across the animal kingdom, sensations resulting from an animal's own actions are processed differently from sensations resulting from external sources, with self-generated sensations being suppressed. A forward model has been proposed to explain this process across sensorimotor domains. During vocalization, reduced processing of one's own speech is believed to result from a comparison of speech sounds to corollary discharges of intended speech production generated from efference copies of commands to speak. Until now, anatomical and functional evidence validating this model in humans has been indirect. Using EEG with anatomical MRI to facilitate source localization, we demonstrate that inferior frontal gyrus activity during the 300ms before speaking was associated with suppressed processing of speech sounds in auditory cortex around 100ms after speech onset (N1). These findings indicate that an efference copy from speech areas in prefrontal cortex is transmitted to auditory cortex, where it is used to suppress processing of anticipated speech sounds. About 100ms after N1, a subsequent auditory cortical component (P2) was not suppressed during talking. The combined N1 and P2 effects suggest that although sensory processing is suppressed as reflected in N1, perceptual gaps are filled as reflected in the lack of P2 suppression, explaining the discrepancy between sensory suppression and preserved sensory experiences. These findings, coupled with the coherence between relevant brain regions before and during speech, provide new mechanistic understanding of the complex interactions between action planning and sensory processing that provide for differentiated tagging and monitoring of one's own speech, processes disrupted in neuropsychiatric disorders. PMID:24423729

  4. A causal test of the motor theory of speech perception: a case of impaired speech production and spared speech perception.

    PubMed

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z

    2015-01-01

    The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available.

  5. Visual Feedback of Tongue Movement for Novel Speech Sound Learning

    PubMed Central

    Katz, William F.; Mehta, Sonya

    2015-01-01

    Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV) information. Second language (L2) learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals). However, little is known about the role of viewing one's own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker's learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA) was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ/; a voiced, coronal, palatal stop) before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers' productions were evaluated using kinematic (tongue-tip spatial positioning) and acoustic (burst spectra) measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing. PMID:26635571

  6. Is complex signal processing for bone conduction hearing aids useful?

    PubMed

    Kompis, Martin; Kurz, Anja; Pfiffner, Flurin; Senn, Pascal; Arnold, Andreas; Caversaccio, Marco

    2014-05-01

    To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.

  7. Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications, 1 July-31 December 1972.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    This report on speech research contains 21 papers describing research conducted on a variety of topics concerning speech perception, processing, and production. The initial two reports deal with brain function in speech; several others concern ear function, both in terms of perception and information processing. A number of reports describe…

  8. Perception of temporally modified speech in auditory neuropathy.

    PubMed

    Hassan, Dalia Mohamed

    2011-01-01

    Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

  9. Grounded theory as a method for research in speech and language therapy.

    PubMed

    Skeat, J; Perry, A

    2008-01-01

    The use of qualitative methodologies in speech and language therapy has grown over the past two decades, and there is now a body of literature, both generally describing qualitative research, and detailing its applicability to health practice(s). However, there has been only limited profession-specific discussion of qualitative methodologies and their potential application to speech and language therapy. To describe the methodology of grounded theory, and to explain how it might usefully be applied to areas of speech and language research where theoretical frameworks or models are lacking. Grounded theory as a methodology for inductive theory-building from qualitative data is explained and discussed. Some differences between 'modes' of grounded theory are clarified and areas of controversy within the literature are highlighted. The past application of grounded theory to speech and language therapy, and its potential for informing research and clinical practice, are examined. This paper provides an in-depth critique of a qualitative research methodology, including an overview of the main difference between two major 'modes'. The article supports the application of a theory-building approach in the profession, which is sometimes complex to learn and apply, but worthwhile in its results. Grounded theory as a methodology has much to offer speech and language therapists and researchers. Although the majority of research and discussion around this methodology has rested within sociology and nursing, grounded theory can be applied by researchers in any field, including speech and language therapists. The benefit of the grounded theory method to researchers and practitioners lies in its application to social processes and human interactions. The resulting theory may support further research in the speech and language therapy profession.

  10. Sensitivity to Structure in the Speech Signal by Children with Speech Sound Disorder and Reading Disability

    PubMed Central

    Johnson, Erin Phinney; Pennington, Bruce F.; Lowenstein, Joanna H.; Nittrouer, Susan

    2011-01-01

    Purpose Children with speech sound disorder (SSD) and reading disability (RD) have poor phonological awareness, a problem believed to arise largely from deficits in processing the sensory information in speech, specifically individual acoustic cues. However, such cues are details of acoustic structure. Recent theories suggest that listeners also need to be able to integrate those details to perceive linguistically relevant form. This study examined abilities of children with SSD, RD, and SSD+RD not only to process acoustic cues but also to recover linguistically relevant form from the speech signal. Method Ten- to 11-year-olds with SSD (n = 17), RD (n = 16), SSD+RD (n = 17), and Controls (n = 16) were tested to examine their sensitivity to (1) voice onset times (VOT); (2) spectral structure in fricative-vowel syllables; and (3) vocoded sentences. Results Children in all groups performed similarly with VOT stimuli, but children with disorders showed delays on other tasks, although the specifics of their performance varied. Conclusion Children with poor phonemic awareness not only lack sensitivity to acoustic details, but are also less able to recover linguistically relevant forms. This is contrary to one of the main current theories of the relation between spoken and written language development. PMID:21329941

  11. Slowed Speech Input has a Differential Impact on On-line and Off-line Processing in Children’s Comprehension of Pronouns

    PubMed Central

    Walenski, Matthew; Swinney, David

    2009-01-01

    The central question underlying this study revolves around how children process co-reference relationships—such as those evidenced by pronouns (him) and reflexives (himself)—and how a slowed rate of speech input may critically affect this process. Previous studies of child language processing have demonstrated that typical language developing (TLD) children as young as 4 years of age process co-reference relations in a manner similar to adults on-line. In contrast, off-line measures of pronoun comprehension suggest a developmental delay for pronouns (relative to reflexives). The present study examines dependency relations in TLD children (ages 5–13) and investigates how a slowed rate of speech input affects the unconscious (on-line) and conscious (off-line) parsing of these constructions. For the on-line investigations (using a cross-modal picture priming paradigm), results indicate that at a normal rate of speech TLD children demonstrate adult-like syntactic reflexes. At a slowed rate of speech the typical language developing children displayed a breakdown in automatic syntactic parsing (again, similar to the pattern seen in unimpaired adults). As demonstrated in the literature, our off-line investigations (sentence/picture matching task) revealed that these children performed much better on reflexives than on pronouns at a regular speech rate. However, at the slow speech rate, performance on pronouns was substantially improved, whereas performance on reflexives was not different than at the regular speech rate. We interpret these results in light of a distinction between fast automatic processes (relied upon for on-line processing in real time) and conscious reflective processes (relied upon for off-line processing), such that slowed speech input disrupts the former, yet improves the latter. PMID:19343495

  12. On the Use of Evolutionary Algorithms to Improve the Robustness of Continuous Speech Recognition Systems in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    2003-12-01

    Limiting the decrease in performance due to acoustic environment changes remains a major challenge for continuous speech recognition (CSR) systems. We propose a novel approach which combines the Karhunen-Loève transform (KLT) in the mel-frequency domain with a genetic algorithm (GA) to enhance the data representing corrupted speech. The idea consists of projecting noisy speech parameters onto the space generated by the genetically optimized principal axis issued from the KLT. The enhanced parameters increase the recognition rate for highly interfering noise environments. The proposed hybrid technique, when included in the front-end of an HTK-based CSR system, outperforms that of the conventional recognition process in severe interfering car noise environments for a wide range of signal-to-noise ratios (SNRs) varying from 16 dB to[InlineEquation not available: see fulltext.] dB. We also showed the effectiveness of the KLT-GA method in recognizing speech subject to telephone channel degradations.

  13. Engaged listeners: shared neural processing of powerful political speeches

    PubMed Central

    Häcker, Frank E. K.; Honey, Christopher J.; Hasson, Uri

    2015-01-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners’ brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. PMID:25653012

  14. Processing of speech signals for physical and sensory disabilities.

    PubMed Central

    Levitt, H

    1995-01-01

    Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities. Images Fig. 4 PMID:7479816

  15. Processing of Speech Signals for Physical and Sensory Disabilities

    NASA Astrophysics Data System (ADS)

    Levitt, Harry

    1995-10-01

    Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.

  16. Modeling Driving Performance Using In-Vehicle Speech Data From a Naturalistic Driving Study.

    PubMed

    Kuo, Jonny; Charlton, Judith L; Koppel, Sjaan; Rudin-Brown, Christina M; Cross, Suzanne

    2016-09-01

    We aimed to (a) describe the development and application of an automated approach for processing in-vehicle speech data from a naturalistic driving study (NDS), (b) examine the influence of child passenger presence on driving performance, and (c) model this relationship using in-vehicle speech data. Parent drivers frequently engage in child-related secondary behaviors, but the impact on driving performance is unknown. Applying automated speech-processing techniques to NDS audio data would facilitate the analysis of in-vehicle driver-child interactions and their influence on driving performance. Speech activity detection and speaker diarization algorithms were applied to audio data from a Melbourne-based NDS involving 42 families. Multilevel models were developed to evaluate the effect of speech activity and the presence of child passengers on driving performance. Speech activity was significantly associated with velocity and steering angle variability. Child passenger presence alone was not associated with changes in driving performance. However, speech activity in the presence of two child passengers was associated with the most variability in driving performance. The effects of in-vehicle speech on driving performance in the presence of child passengers appear to be heterogeneous, and multiple factors may need to be considered in evaluating their impact. This goal can potentially be achieved within large-scale NDS through the automated processing of observational data, including speech. Speech-processing algorithms enable new perspectives on driving performance to be gained from existing NDS data, and variables that were once labor-intensive to process can be readily utilized in future research. © 2016, Human Factors and Ergonomics Society.

  17. Visemic Processing in Audiovisual Discrimination of Natural Speech: A Simultaneous fMRI-EEG Study

    ERIC Educational Resources Information Center

    Dubois, Cyril; Otzenberger, Helene; Gounot, Daniel; Sock, Rudolph; Metz-Lutz, Marie-Noelle

    2012-01-01

    In a noisy environment, visual perception of articulatory movements improves natural speech intelligibility. Parallel to phonemic processing based on auditory signal, visemic processing constitutes a counterpart based on "visemes", the distinctive visual units of speech. Aiming at investigating the neural substrates of visemic processing in a…

  18. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    PubMed

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  19. Issues in Perceptual Speech Analysis in Cleft Palate and Related Disorders: A Review

    ERIC Educational Resources Information Center

    Sell, Debbie

    2005-01-01

    Perceptual speech assessment is central to the evaluation of speech outcomes associated with cleft palate and velopharyngeal dysfunction. However, the complexity of this process is perhaps sometimes underestimated. To draw together the many different strands in the complex process of perceptual speech assessment and analysis, and make…

  20. The Processing and Interpretation of Verb Phrase Ellipsis Constructions by Children at Normal and Slowed Speech Rates

    PubMed Central

    Callahan, Sarah M.; Walenski, Matthew; Love, Tracy

    2013-01-01

    Purpose To examine children’s comprehension of verb phrase (VP) ellipsis constructions in light of their automatic, online structural processing abilities and conscious, metalinguistic reflective skill. Method Forty-two children ages 5 through 12 years listened to VP ellipsis constructions involving the strict/sloppy ambiguity (e.g., “The janitor untangled himself from the rope and the fireman in the elementary school did too after the accident.”) in which the ellipsis phrase (“did too”) had 2 interpretations: (a) strict (“untangled the janitor”) and (b) sloppy (“untangled the fireman”). We examined these sentences at a normal speech rate with an online cross-modal picture priming task (n = 14) and an offline sentence–picture matching task (n = 11). Both tasks were also given with slowed speech input (n = 17). Results Children showed priming for both the strict and sloppy interpretations at a normal speech rate but only for the strict interpretation with slowed input. Offline, children displayed an adultlike preference for the sloppy interpretation with normal-rate input but a divergent pattern with slowed speech. Conclusions Our results suggest that children and adults rely on a hybrid syntax-discourse model for the online comprehension and offline interpretation of VP ellipsis constructions. This model incorporates a temporally sensitive syntactic process of VP reconstruction (disrupted with slow input) and a temporally protracted discourse effect attributed to parallelism (preserved with slow input). PMID:22223886

  1. The right hemisphere is highlighted in connected natural speech production and perception.

    PubMed

    Alexandrou, Anna Maria; Saarinen, Timo; Mäkelä, Sasu; Kujala, Jan; Salmelin, Riitta

    2017-05-15

    Current understanding of the cortical mechanisms of speech perception and production stems mostly from studies that focus on single words or sentences. However, it has been suggested that processing of real-life connected speech may rely on additional cortical mechanisms. In the present study, we examined the neural substrates of natural speech production and perception with magnetoencephalography by modulating three central features related to speech: amount of linguistic content, speaking rate and social relevance. The amount of linguistic content was modulated by contrasting natural speech production and perception to speech-like non-linguistic tasks. Meaningful speech was produced and perceived at three speaking rates: normal, slow and fast. Social relevance was probed by having participants attend to speech produced by themselves and an unknown person. These speech-related features were each associated with distinct spatiospectral modulation patterns that involved cortical regions in both hemispheres. Natural speech processing markedly engaged the right hemisphere in addition to the left. In particular, the right temporo-parietal junction, previously linked to attentional processes and social cognition, was highlighted in the task modulations. The present findings suggest that its functional role extends to active generation and perception of meaningful, socially relevant speech. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Review of Visual Speech Perception by Hearing and Hearing-Impaired People: Clinical Implications

    ERIC Educational Resources Information Center

    Woodhouse, Lynn; Hickson, Louise; Dodd, Barbara

    2009-01-01

    Background: Speech perception is often considered specific to the auditory modality, despite convincing evidence that speech processing is bimodal. The theoretical and clinical roles of speech-reading for speech perception, however, have received little attention in speech-language therapy. Aims: The role of speech-read information for speech…

  3. Varying acoustic-phonemic ambiguity reveals that talker normalization is obligatory in speech processing.

    PubMed

    Choi, Ja Young; Hu, Elly R; Perrachione, Tyler K

    2018-04-01

    The nondeterministic relationship between speech acoustics and abstract phonemic representations imposes a challenge for listeners to maintain perceptual constancy despite the highly variable acoustic realization of speech. Talker normalization facilitates speech processing by reducing the degrees of freedom for mapping between encountered speech and phonemic representations. While this process has been proposed to facilitate the perception of ambiguous speech sounds, it is currently unknown whether talker normalization is affected by the degree of potential ambiguity in acoustic-phonemic mapping. We explored the effects of talker normalization on speech processing in a series of speeded classification paradigms, parametrically manipulating the potential for inconsistent acoustic-phonemic relationships across talkers for both consonants and vowels. Listeners identified words with varying potential acoustic-phonemic ambiguity across talkers (e.g., beet/boat vs. boot/boat) spoken by single or mixed talkers. Auditory categorization of words was always slower when listening to mixed talkers compared to a single talker, even when there was no potential acoustic ambiguity between target sounds. Moreover, the processing cost imposed by mixed talkers was greatest when words had the most potential acoustic-phonemic overlap across talkers. Models of acoustic dissimilarity between target speech sounds did not account for the pattern of results. These results suggest (a) that talker normalization incurs the greatest processing cost when disambiguating highly confusable sounds and (b) that talker normalization appears to be an obligatory component of speech perception, taking place even when the acoustic-phonemic relationships across sounds are unambiguous.

  4. EEG oscillations entrain their phase to high-level features of speech sound.

    PubMed

    Zoefel, Benedikt; VanRullen, Rufin

    2016-01-01

    Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Scaling and universality in the human voice.

    PubMed

    Luque, Jordi; Luque, Bartolo; Lacasa, Lucas

    2015-04-06

    Speech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work, we empirically analyse the statistics of large human speech datasets ranging several languages. We first show that during speech, the energy is unevenly released and power-law distributed, reporting a universal robust Gutenberg-Richter-like law in speech. We further show that such 'earthquakes in speech' show temporal correlations, as the interevent statistics are again power-law distributed. As this feature takes place in the intraphoneme range, we conjecture that the process responsible for this complex phenomenon is not cognitive, but it resides in the physiological (mechanical) mechanisms of speech production. Moreover, we show that these waiting time distributions are scale invariant under a renormalization group transformation, suggesting that the process of speech generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards a universal pattern and yet another hint of complexity in human speech. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Oral reading fluency analysis in patients with Alzheimer disease and asymptomatic control subjects.

    PubMed

    Martínez-Sánchez, F; Meilán, J J G; García-Sevilla, J; Carro, J; Arana, J M

    2013-01-01

    Many studies highlight that an impaired ability to communicate is one of the key clinical features of Alzheimer disease (AD). To study temporal organisation of speech in an oral reading task in patients with AD and in matched healthy controls using a semi-automatic method, and evaluate that method's ability to discriminate between the 2 groups. A test with an oral reading task was administered to 70 subjects, comprising 35 AD patients and 35 controls. Before speech samples were recorded, participants completed a battery of neuropsychological tests. There were no differences between groups with regard to age, sex, or educational level. All of the study variables showed impairment in the AD group. According to the results, AD patients' oral reading was marked by reduced speech and articulation rates, low effectiveness of phonation time, and increases in the number and proportion of pauses. Signal processing algorithms applied to reading fluency recordings were shown to be capable of differentiating between AD patients and controls with an accuracy of 80% (specificity 74.2%, sensitivity 77.1%) based on speech rate. Analysis of oral reading fluency may be useful as a tool for the objective study and quantification of speech deficits in AD. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Implications of diadochokinesia in children with speech sound disorder.

    PubMed

    Wertzner, Haydée Fiszbein; Pagan-Neves, Luciana de Oliveira; Alves, Renata Ramos; Barrozo, Tatiane Faria

    2013-01-01

    To verify the performance of children with and without speech sound disorder in oral motor skills measured by oral diadochokinesia according to age and gender and to compare the results by two different methods of analysis. Participants were 72 subjects aged from 5 years to 7 years and 11 months divided into four subgroups according to the presence of speech sound disorder (Study Group and Control Group) and age (<6 years and 5 months and >6 years and 5 months). Diadochokinesia skills were assessed by the repetition of the sequences 'pa', 'ta', 'ka' and 'pataka' measured both manually and by the software Motor Speech Profile®. Gender was statistically different for both groups but it did not influence on the number of sequences per second produced. Correlation between the number of sequences per second and age was observed for all sequences (except for 'ka') only for the control group children. Comparison between groups did not indicate differences between the number of sequences per second and age. Results presented strong agreement between the values of oral diadochokinesia measured manually and by MSP. This research demonstrated the importance of using different methods of analysis on the functional evaluation of oro-motor processing aspects of children with speech sound disorder and evidenced the oro-motor difficulties on children aged under than eight years old.

  8. Language Comprehension in Language-Learning Impaired Children Improved with Acoustically Modified Speech

    NASA Astrophysics Data System (ADS)

    Tallal, Paula; Miller, Steve L.; Bedi, Gail; Byma, Gary; Wang, Xiaoqin; Nagarajan, Srikantan S.; Schreiner, Christoph; Jenkins, William M.; Merzenich, Michael M.

    1996-01-01

    A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children. LLI children received extensive daily training, over a 4-week period, with listening exercises in which all speech was translated into this synthetic form. They also received daily training with computer "games" designed to adaptively drive improvements in temporal processing thresholds. Significant improvements in speech discrimination and language comprehension abilities were demonstrated in two independent groups of LLI children.

  9. Mental imagery and post-event processing in anticipation of a speech performance among socially anxious individuals.

    PubMed

    Brozovich, Faith A; Heimberg, Richard G

    2013-12-01

    The present study investigated whether post-event processing (PEP) involving mental imagery about a past speech is particularly detrimental for socially anxious individuals who are currently anticipating giving a speech. One hundred fourteen high and low socially anxious participants were told they would give a 5 min impromptu speech at the end of the experimental session. They were randomly assigned to one of three manipulation conditions: post-event processing about a past speech incorporating imagery (PEP-Imagery), semantic post-event processing about a past speech (PEP-Semantic), or a control condition, (n=19 per experimental group, per condition [high vs low socially anxious]). After the condition inductions, individuals' anxiety, their predictions of performance in the anticipated speech, and their interpretations of other ambiguous social events were measured. Consistent with predictions, high socially anxious individuals in the PEP-Imagery condition displayed greater anxiety than individuals in the other conditions immediately following the induction and before the anticipated speech task. They also interpreted ambiguous social scenarios in a more socially anxious manner than socially anxious individuals in the control condition. High socially anxious individuals made more negative predictions about their upcoming speech performance than low anxious participants in all conditions. The impact of imagery during post-event processing in social anxiety and its implications are discussed. © 2013.

  10. Central Presbycusis: A Review and Evaluation of the Evidence

    PubMed Central

    Humes, Larry E.; Dubno, Judy R.; Gordon-Salant, Sandra; Lister, Jennifer J.; Cacace, Anthony T.; Cruickshanks, Karen J.; Gates, George A.; Wilson, Richard H.; Wingfield, Arthur

    2018-01-01

    Background The authors reviewed the evidence regarding the existence of age-related declines in central auditory processes and the consequences of any such declines for everyday communication. Purpose This report summarizes the review process and presents its findings. Data Collection and Analysis The authors reviewed 165 articles germane to central presbycusis. Of the 165 articles, 132 articles with a focus on human behavioral measures for either speech or nonspeech stimuli were selected for further analysis. Results For 76 smaller-scale studies of speech understanding in older adults reviewed, the following findings emerged: (1) the three most commonly studied behavioral measures were speech in competition, temporally distorted speech, and binaural speech perception (especially dichotic listening); (2) for speech in competition and temporally degraded speech, hearing loss proved to have a significant negative effect on performance in most of the laboratory studies; (3) significant negative effects of age, unconfounded by hearing loss, were observed in most of the studies of speech in competing speech, time-compressed speech, and binaural speech perception; and (4) the influence of cognitive processing on speech understanding has been examined much less frequently, but when included, significant positive associations with speech understanding were observed. For 36 smaller-scale studies of the perception of nonspeech stimuli by older adults reviewed, the following findings emerged: (1) the three most frequently studied behavioral measures were gap detection, temporal discrimination, and temporal-order discrimination or identification; (2) hearing loss was seldom a significant factor; and (3) negative effects of age were almost always observed. For 18 studies reviewed that made use of test batteries and medium-to-large sample sizes, the following findings emerged: (1) all studies included speech-based measures of auditory processing; (2) 4 of the 18 studies included nonspeech stimuli; (3) for the speech-based measures, monaural speech in a competing-speech background, dichotic speech, and monaural time-compressed speech were investigated most frequently; (4) the most frequently used tests were the Synthetic Sentence Identification (SSI) test with Ipsilateral Competing Message (ICM), the Dichotic Sentence Identification (DSI) test, and time-compressed speech; (5) many of these studies using speech-based measures reported significant effects of age, but most of these studies were confounded by declines in hearing, cognition, or both; (6) for nonspeech auditory-processing measures, the focus was on measures of temporal processing in all four studies; (7) effects of cognition on nonspeech measures of auditory processing have been studied less frequently, with mixed results, whereas the effects of hearing loss on performance were minimal due to judicious selection of stimuli; and (8) there is a paucity of observational studies using test batteries and longitudinal designs. Conclusions Based on this review of the scientific literature, there is insufficient evidence to confirm the existence of central presbycusis as an isolated entity. On the other hand, recent evidence has been accumulating in support of the existence of central presbycusis as a multifactorial condition that involves age- and/or disease-related changes in the auditory system and in the brain. Moreover, there is a clear need for additional research in this area. PMID:22967738

  11. Speech emotion recognition methods: A literature review

    NASA Astrophysics Data System (ADS)

    Basharirad, Babak; Moradhaseli, Mohammadreza

    2017-10-01

    Recently, attention of the emotional speech signals research has been boosted in human machine interfaces due to availability of high computation capability. There are many systems proposed in the literature to identify the emotional state through speech. Selection of suitable feature sets, design of a proper classifications methods and prepare an appropriate dataset are the main key issues of speech emotion recognition systems. This paper critically analyzed the current available approaches of speech emotion recognition methods based on the three evaluating parameters (feature set, classification of features, accurately usage). In addition, this paper also evaluates the performance and limitations of available methods. Furthermore, it highlights the current promising direction for improvement of speech emotion recognition systems.

  12. Aphasia

    MedlinePlus

    ... of speech-generating applications on mobile devices like tablets can also provide an alternative way to communicate ... on using advanced imaging methods, such as functional magnetic resonance imaging (fMRI), to explore how language is processed in ...

  13. Relationships between Lexical Processing Speed, Language Skills, and Autistic Traits in Children

    ERIC Educational Resources Information Center

    Abrigo, Erin

    2012-01-01

    According to current models of spoken word recognition listeners understand speech as it unfolds over time. Eye tracking provides a non-invasive, on-line method to monitor attention, providing insight into the processing of spoken language. In the current project a spoken lexical processing assessment (LPA) confirmed current theories of spoken…

  14. Automatic Speech Recognition from Neural Signals: A Focused Review.

    PubMed

    Herff, Christian; Schultz, Tanja

    2016-01-01

    Speech interfaces have become widely accepted and are nowadays integrated in various real-life applications and devices. They have become a part of our daily life. However, speech interfaces presume the ability to produce intelligible speech, which might be impossible due to either loud environments, bothering bystanders or incapabilities to produce speech (i.e., patients suffering from locked-in syndrome). For these reasons it would be highly desirable to not speak but to simply envision oneself to say words or sentences. Interfaces based on imagined speech would enable fast and natural communication without the need for audible speech and would give a voice to otherwise mute people. This focused review analyzes the potential of different brain imaging techniques to recognize speech from neural signals by applying Automatic Speech Recognition technology. We argue that modalities based on metabolic processes, such as functional Near Infrared Spectroscopy and functional Magnetic Resonance Imaging, are less suited for Automatic Speech Recognition from neural signals due to low temporal resolution but are very useful for the investigation of the underlying neural mechanisms involved in speech processes. In contrast, electrophysiologic activity is fast enough to capture speech processes and is therefor better suited for ASR. Our experimental results indicate the potential of these signals for speech recognition from neural data with a focus on invasively measured brain activity (electrocorticography). As a first example of Automatic Speech Recognition techniques used from neural signals, we discuss the Brain-to-text system.

  15. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  16. Near-Term Fetuses Process Temporal Features of Speech

    ERIC Educational Resources Information Center

    Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie

    2011-01-01

    The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…

  17. The Downside of Greater Lexical Influences: Selectively Poorer Speech Perception in Noise

    ERIC Educational Resources Information Center

    Lam, Boji P. W.; Xie, Zilong; Tessmer, Rachel; Chandrasekaran, Bharath

    2017-01-01

    Purpose: Although lexical information influences phoneme perception, the extent to which reliance on lexical information enhances speech processing in challenging listening environments is unclear. We examined the extent to which individual differences in lexical influences on phonemic processing impact speech processing in maskers containing…

  18. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.

    PubMed

    Makov, Shiri; Sharon, Omer; Ding, Nai; Ben-Shachar, Michal; Nir, Yuval; Zion Golumbic, Elana

    2017-08-09

    The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep. SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech parsing are also preserved. We used a novel approach for studying the depth of speech processing across wakefulness and sleep while tracking neuronal activity with EEG. We found that responses to the auditory sound stream remained intact; however, the sleeping brain did not show signs of hierarchical parsing of the continuous stream of syllables into words, phrases, and sentences. The results suggest that sleep imposes a functional barrier between basic sensory processing and high-level cognitive processing. This paradigm also holds promise for studying residual cognitive abilities in a wide array of unresponsive states. Copyright © 2017 the authors 0270-6474/17/377772-10$15.00/0.

  19. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    ERIC Educational Resources Information Center

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  20. Temporal processing of speech in a time-feature space

    NASA Astrophysics Data System (ADS)

    Avendano, Carlos

    1997-09-01

    The performance of speech communication systems often degrades under realistic environmental conditions. Adverse environmental factors include additive noise sources, room reverberation, and transmission channel distortions. This work studies the processing of speech in the temporal-feature or modulation spectrum domain, aiming for alleviation of the effects of such disturbances. Speech reflects the geometry of the vocal organs, and the linguistically dominant component is in the shape of the vocal tract. At any given point in time, the shape of the vocal tract is reflected in the short-time spectral envelope of the speech signal. The rate of change of the vocal tract shape appears to be important for the identification of linguistic components. This rate of change, or the rate of change of the short-time spectral envelope can be described by the modulation spectrum, i.e. the spectrum of the time trajectories described by the short-time spectral envelope. For a wide range of frequency bands, the modulation spectrum of speech exhibits a maximum at about 4 Hz, the average syllabic rate. Disturbances often have modulation frequency components outside the speech range, and could in principle be attenuated without significantly affecting the range with relevant linguistic information. Early efforts for exploiting the modulation spectrum domain (temporal processing), such as the dynamic cepstrum or the RASTA processing, used ad hoc designed processing and appear to be suboptimal. As a major contribution, in this dissertation we aim for a systematic data-driven design of temporal processing. First we analytically derive and discuss some properties and merits of temporal processing for speech signals. We attempt to formalize the concept and provide a theoretical background which has been lacking in the field. In the experimental part we apply temporal processing to a number of problems including adaptive noise reduction in cellular telephone environments, reduction of reverberation for speech enhancement, and improvements on automatic recognition of speech degraded by linear distortions and reverberation.

  1. Multi-sensory learning and learning to read.

    PubMed

    Blomert, Leo; Froyen, Dries

    2010-09-01

    The basis of literacy acquisition in alphabetic orthographies is the learning of the associations between the letters and the corresponding speech sounds. In spite of this primacy in learning to read, there is only scarce knowledge on how this audiovisual integration process works and which mechanisms are involved. Recent electrophysiological studies of letter-speech sound processing have revealed that normally developing readers take years to automate these associations and dyslexic readers hardly exhibit automation of these associations. It is argued that the reason for this effortful learning may reside in the nature of the audiovisual process that is recruited for the integration of in principle arbitrarily linked elements. It is shown that letter-speech sound integration does not resemble the processes involved in the integration of natural audiovisual objects such as audiovisual speech. The automatic symmetrical recruitment of the assumedly uni-sensory visual and auditory cortices in audiovisual speech integration does not occur for letter and speech sound integration. It is also argued that letter-speech sound integration only partly resembles the integration of arbitrarily linked unfamiliar audiovisual objects. Letter-sound integration and artificial audiovisual objects share the necessity of a narrow time window for integration to occur. However, they differ from these artificial objects, because they constitute an integration of partly familiar elements which acquire meaning through the learning of an orthography. Although letter-speech sound pairs share similarities with audiovisual speech processing as well as with unfamiliar, arbitrary objects, it seems that letter-speech sound pairs develop into unique audiovisual objects that furthermore have to be processed in a unique way in order to enable fluent reading and thus very likely recruit other neurobiological learning mechanisms than the ones involved in learning natural or arbitrary unfamiliar audiovisual associations. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Temporal factors affecting somatosensory–auditory interactions in speech processing

    PubMed Central

    Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.

    2014-01-01

    Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733

  3. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  4. Auditory detection of non-speech and speech stimuli in noise: Effects of listeners' native language background.

    PubMed

    Liu, Chang; Jin, Su-Hyun

    2015-11-01

    This study investigated whether native listeners processed speech differently from non-native listeners in a speech detection task. Detection thresholds of Mandarin Chinese and Korean vowels and non-speech sounds in noise, frequency selectivity, and the nativeness of Mandarin Chinese and Korean vowels were measured for Mandarin Chinese- and Korean-native listeners. The two groups of listeners exhibited similar non-speech sound detection and frequency selectivity; however, the Korean listeners had better detection thresholds of Korean vowels than Chinese listeners, while the Chinese listeners performed no better at Chinese vowel detection than the Korean listeners. Moreover, thresholds predicted from an auditory model highly correlated with behavioral thresholds of the two groups of listeners, suggesting that detection of speech sounds not only depended on listeners' frequency selectivity, but also might be affected by their native language experience. Listeners evaluated their native vowels with higher nativeness scores than non-native listeners. Native listeners may have advantages over non-native listeners when processing speech sounds in noise, even without the required phonetic processing; however, such native speech advantages might be offset by Chinese listeners' lower sensitivity to vowel sounds, a characteristic possibly resulting from their sparse vowel system and their greater cognitive and attentional demands for vowel processing.

  5. Language/Culture Modulates Brain and Gaze Processes in Audiovisual Speech Perception.

    PubMed

    Hisanaga, Satoko; Sekiyama, Kaoru; Igasaki, Tomohiko; Murayama, Nobuki

    2016-10-13

    Several behavioural studies have shown that the interplay between voice and face information in audiovisual speech perception is not universal. Native English speakers (ESs) are influenced by visual mouth movement to a greater degree than native Japanese speakers (JSs) when listening to speech. However, the biological basis of these group differences is unknown. Here, we demonstrate the time-varying processes of group differences in terms of event-related brain potentials (ERP) and eye gaze for audiovisual and audio-only speech perception. On a behavioural level, while congruent mouth movement shortened the ESs' response time for speech perception, the opposite effect was observed in JSs. Eye-tracking data revealed a gaze bias to the mouth for the ESs but not the JSs, especially before the audio onset. Additionally, the ERP P2 amplitude indicated that ESs processed multisensory speech more efficiently than auditory-only speech; however, the JSs exhibited the opposite pattern. Taken together, the ESs' early visual attention to the mouth was likely to promote phonetic anticipation, which was not the case for the JSs. These results clearly indicate the impact of language and/or culture on multisensory speech processing, suggesting that linguistic/cultural experiences lead to the development of unique neural systems for audiovisual speech perception.

  6. Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.

    PubMed

    Patel, Aniruddh D

    2011-01-01

    Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.

  7. Speech Recognition as a Transcription Aid: A Randomized Comparison With Standard Transcription

    PubMed Central

    Mohr, David N.; Turner, David W.; Pond, Gregory R.; Kamath, Joseph S.; De Vos, Cathy B.; Carpenter, Paul C.

    2003-01-01

    Objective. Speech recognition promises to reduce information entry costs for clinical information systems. It is most likely to be accepted across an organization if physicians can dictate without concerning themselves with real-time recognition and editing; assistants can then edit and process the computer-generated document. Our objective was to evaluate the use of speech-recognition technology in a randomized controlled trial using our institutional infrastructure. Design. Clinical note dictations from physicians in two specialty divisions were randomized to either a standard transcription process or a speech-recognition process. Secretaries and transcriptionists also were assigned randomly to each of these processes. Measurements. The duration of each dictation was measured. The amount of time spent processing a dictation to yield a finished document also was measured. Secretarial and transcriptionist productivity, defined as hours of secretary work per minute of dictation processed, was determined for speech recognition and standard transcription. Results. Secretaries in the endocrinology division were 87.3% (confidence interval, 83.3%, 92.3%) as productive with the speech-recognition technology as implemented in this study as they were using standard transcription. Psychiatry transcriptionists and secretaries were similarly less productive. Author, secretary, and type of clinical note were significant (p < 0.05) predictors of productivity. Conclusion. When implemented in an organization with an existing document-processing infrastructure (which included training and interfaces of the speech-recognition editor with the existing document entry application), speech recognition did not improve the productivity of secretaries or transcriptionists. PMID:12509359

  8. Engaged listeners: shared neural processing of powerful political speeches.

    PubMed

    Schmälzle, Ralf; Häcker, Frank E K; Honey, Christopher J; Hasson, Uri

    2015-08-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.

    PubMed

    Jørgensen, Søren; Dau, Torsten

    2011-09-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The model estimates the speech-to-noise envelope power ratio, SNR(env), at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech-shaped noise. The model was further tested in conditions with noisy speech subjected to reverberation and spectral subtraction. Good agreement between predictions and data was found in all cases. For spectral subtraction, an analysis of the model's internal representation of the stimuli revealed that the predicted decrease of intelligibility was caused by the estimated noise envelope power exceeding that of the speech. The classical concept of the speech transmission index fails in this condition. The results strongly suggest that the signal-to-noise ratio at the output of a modulation frequency selective process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America

  10. Robust Speech Processing & Recognition: Speaker ID, Language ID, Speech Recognition/Keyword Spotting, Diarization/Co-Channel/Environmental Characterization, Speaker State Assessment

    DTIC Science & Technology

    2015-10-01

    Scoring, Gaussian Backend , etc.) as shown in Fig. 39. The methods in this domain also emphasized the ability to perform data purification for both...investigation using the same infrastructure was undertaken to explore Lombard effect “flavor” detection for improved speaker ID. The study The presence of...dimension selection and compared to a common N-gram frequency based selection. 2.1.2: Exploration on NN/DBN backend : Since Deep Neural Networks (DNN) have

  11. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    PubMed

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  12. [Detection of Weak Speech Signals from Strong Noise Background Based on Adaptive Stochastic Resonance].

    PubMed

    Lu, Huanhuan; Wang, Fuzhong; Zhang, Huichun

    2016-04-01

    Traditional speech detection methods regard the noise as a jamming signal to filter,but under the strong noise background,these methods lost part of the original speech signal while eliminating noise.Stochastic resonance can use noise energy to amplify the weak signal and suppress the noise.According to stochastic resonance theory,a new method based on adaptive stochastic resonance to extract weak speech signals is proposed.This method,combined with twice sampling,realizes the detection of weak speech signals from strong noise.The parameters of the systema,b are adjusted adaptively by evaluating the signal-to-noise ratio of the output signal,and then the weak speech signal is optimally detected.Experimental simulation analysis showed that under the background of strong noise,the output signal-to-noise ratio increased from the initial value-7dB to about 0.86 dB,with the gain of signalto-noise ratio is 7.86 dB.This method obviously raises the signal-to-noise ratio of the output speech signals,which gives a new idea to detect the weak speech signals in strong noise environment.

  13. How visual timing and form information affect speech and non-speech processing.

    PubMed

    Kim, Jeesun; Davis, Chris

    2014-10-01

    Auditory speech processing is facilitated when the talker's face/head movements are seen. This effect is typically explained in terms of visual speech providing form and/or timing information. We determined the effect of both types of information on a speech/non-speech task (non-speech stimuli were spectrally rotated speech). All stimuli were presented paired with the talker's static or moving face. Two types of moving face stimuli were used: full-face versions (both spoken form and timing information available) and modified face versions (only timing information provided by peri-oral motion available). The results showed that the peri-oral timing information facilitated response time for speech and non-speech stimuli compared to a static face. An additional facilitatory effect was found for full-face versions compared to the timing condition; this effect only occurred for speech stimuli. We propose the timing effect was due to cross-modal phase resetting; the form effect to cross-modal priming. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Quantifying the intelligibility of speech in noise for non-native listeners.

    PubMed

    van Wijngaarden, Sander J; Steeneken, Herman J M; Houtgast, Tammo

    2002-04-01

    When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the underlying perceptual and linguistic processing. An easy method is sought to extend these quantitative findings to other listener populations. Dutch subjects listening to Germans and English speech, ranging from reasonable to excellent proficiency in these languages, were found to require a 1-7 dB better speech-to-noise ratio to obtain 50% sentence intelligibility than native listeners. Also, the psychometric function for sentence recognition in noise was found to be shallower for non-native than for native listeners (worst-case slope around the 50% point of 7.5%/dB, compared to 12.6%/dB for native listeners). Differences between native and non-native speech intelligibility are largely predicted by linguistic entropy estimates as derived from a letter guessing task. Less effective use of context effects (especially semantic redundancy) explains the reduced speech intelligibility for non-native listeners. While measuring speech intelligibility for many different populations of listeners (languages, linguistic experience) may be prohibitively time consuming, obtaining predictions of non-native intelligibility from linguistic entropy may help to extend the results of this study to other listener populations.

  15. Quantifying the intelligibility of speech in noise for non-native listeners

    NASA Astrophysics Data System (ADS)

    van Wijngaarden, Sander J.; Steeneken, Herman J. M.; Houtgast, Tammo

    2002-04-01

    When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the underlying perceptual and linguistic processing. An easy method is sought to extend these quantitative findings to other listener populations. Dutch subjects listening to Germans and English speech, ranging from reasonable to excellent proficiency in these languages, were found to require a 1-7 dB better speech-to-noise ratio to obtain 50% sentence intelligibility than native listeners. Also, the psychometric function for sentence recognition in noise was found to be shallower for non-native than for native listeners (worst-case slope around the 50% point of 7.5%/dB, compared to 12.6%/dB for native listeners). Differences between native and non-native speech intelligibility are largely predicted by linguistic entropy estimates as derived from a letter guessing task. Less effective use of context effects (especially semantic redundancy) explains the reduced speech intelligibility for non-native listeners. While measuring speech intelligibility for many different populations of listeners (languages, linguistic experience) may be prohibitively time consuming, obtaining predictions of non-native intelligibility from linguistic entropy may help to extend the results of this study to other listener populations.

  16. Robust estimators for speech enhancement in real environments

    NASA Astrophysics Data System (ADS)

    Sandoval-Ibarra, Yuma; Diaz-Ramirez, Victor H.; Kober, Vitaly

    2015-09-01

    Common statistical estimators for speech enhancement rely on several assumptions about stationarity of speech signals and noise. These assumptions may not always valid in real-life due to nonstationary characteristics of speech and noise processes. We propose new estimators based on existing estimators by incorporation of computation of rank-order statistics. The proposed estimators are better adapted to non-stationary characteristics of speech signals and noise processes. Through computer simulations we show that the proposed estimators yield a better performance in terms of objective metrics than that of known estimators when speech signals are contaminated with airport, babble, restaurant, and train-station noise.

  17. [The progress in the rehabilitation of dysarthria in Parkinson disease using LSVT (Lee Silverman Voice Treatment)].

    PubMed

    Kamińska, Ilona; Zebryk-Stopa, Anna; Pruszewicz, Antoni; Dziubalska-Kołaczyk, Katarzyna; Połczyńska-Fiszer, Monika; Pietrala, Dawid; Przedpelska-Ober, Elzbieta

    2007-01-01

    Parkison's disease causes damage to the central nervous system resulting in bradykinesia, muscle rigidity, rest tremor and dysarthric speech. In clinical terms dysarthria denotes the dysfunction of articulation, phonation and respiration. It is brought about by the impairment of neural paths innervating the speech apparatus, thus causing a decreased ability to communicate. The study was conducted by the Center for Speech and Language Processing (CSLP), Adam Mickiewicz University, Poznań and the Chair and Department of Phoniatrics and Audiology, the Medical University, Poznań within the interdisciplinary research project grant called "Speech and Language Virtual Therapist for Individuals with Parkinson's Disease". Apart from traditional voice and speech therapies, one of the ways of treating speech disturbances accompanying Parkinson's disease is an innovative Lee Silverman Voice Treatment (LSVT). The purpose of this innovative method introduced by dr L. Ramig and colleagues in 1987-1988, is to teach the patient to speak loud. As a result of co-operation between CLSP and the Center for Spoken Language Research (CSLR) at the University of Colorado, Boulder, USA, a Polish version of LSVT Virtual Therapist computer programme was created (LSVTVT). The programme is based on the principles of LSVT. The positive outcomes of the therapy give hope to Parkinson's disease patients with dysarthria, as well as to speech therapists.

  18. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users

    PubMed Central

    Newman, Rochelle S.; Goupell, Matthew J.

    2017-01-01

    Purpose Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Method Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. Results CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. Conclusion CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal. PMID:28395319

  19. Speech Perception in Noise by Children With Cochlear Implants

    PubMed Central

    Caldwell, Amanda; Nittrouer, Susan

    2013-01-01

    Purpose Common wisdom suggests that listening in noise poses disproportionately greater difficulty for listeners with cochlear implants (CIs) than for peers with normal hearing (NH). The purpose of this study was to examine phonological, language, and cognitive skills that might help explain speech-in-noise abilities for children with CIs. Method Three groups of kindergartners (NH, hearing aid wearers, and CI users) were tested on speech recognition in quiet and noise and on tasks thought to underlie the abilities that fit into the domains of phonological awareness, general language, and cognitive skills. These last measures were used as predictor variables in regression analyses with speech-in-noise scores as dependent variables. Results Compared to children with NH, children with CIs did not perform as well on speech recognition in noise or on most other measures, including recognition in quiet. Two surprising results were that (a) noise effects were consistent across groups and (b) scores on other measures did not explain any group differences in speech recognition. Conclusions Limitations of implant processing take their primary toll on recognition in quiet and account for poor speech recognition and language/phonological deficits in children with CIs. Implications are that teachers/clinicians need to teach language/phonology directly and maximize signal-to-noise levels in the classroom. PMID:22744138

  20. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    PubMed Central

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2010-01-01

    Purpose Conceptual and methodological confounds occur when non(sense) repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. We describe a nonword repetition task, the Syllable Repetiton Task (SRT) that eliminates this confound and report findings from three validity studies. Method Ninety-five preschool children with Speech Delay and 63 with Typical Speech, completed an assessment battery that included the Nonword Repetition Task (NRT: Dollaghan & Campbell, 1998) and the SRT. SRT stimuli include only four of the earliest occurring consonants and one early occurring vowel. Results Study 1 findings indicated that the SRT eliminated the speech confound in nonword testing with speakers who misarticulate. Study 2 findings indicated that the accuracy of the SRT to identify expressive language impairment was comparable to findings for the NRT. Study 3 findings illustrated the SRT’s potential to interrogate speech processing constraints underlying poor nonword repetition accuracy. Results supported both memorial and auditory-perceptual encoding constraints underlying nonword repetition errors in children with speech-language impairment. Conclusion The SRT appears to be a psychometrically stable and substantively informative nonword repetition task for emerging genetic and other research with speakers who misarticulate. PMID:19635944

  1. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  2. Status Report on Speech Research. A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    DTIC Science & Technology

    1985-10-01

    speech errors. References Anderson, V. A. (1942). Training the speaking voice. New York: Oxford University Press. 50...is only about speech perception , in contrast to some t.at deal with other perceptual processes (e.g., Berkeley, 1709; Fest- inger, Burnham, Ono...there a process of learned equivalence. An example is the claim that the 66 * ° - . . Liberman & Mattingly: The Motor Theory of Speech Perception Revised

  3. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  4. Relatively effortless listening promotes understanding and recall of medical instructions in older adults

    PubMed Central

    DiDonato, Roberta M.; Surprenant, Aimée M.

    2015-01-01

    Communication success under adverse conditions requires efficient and effective recruitment of both bottom-up (sensori-perceptual) and top-down (cognitive-linguistic) resources to decode the intended auditory-verbal message. Employing these limited capacity resources has been shown to vary across the lifespan, with evidence indicating that younger adults out-perform older adults for both comprehension and memory of the message. This study examined how sources of interference arising from the speaker (message spoken with conversational vs. clear speech technique), the listener (hearing-listening and cognitive-linguistic factors), and the environment (in competing speech babble noise vs. quiet) interact and influence learning and memory performance using more ecologically valid methods than has been done previously. The results suggest that when older adults listened to complex medical prescription instructions with “clear speech,” (presented at audible levels through insertion earphones) their learning efficiency, immediate, and delayed memory performance improved relative to their performance when they listened with a normal conversational speech rate (presented at audible levels in sound field). This better learning and memory performance for clear speech listening was maintained even in the presence of speech babble noise. The finding that there was the largest learning-practice effect on 2nd trial performance in the conversational speech when the clear speech listening condition was first is suggestive of greater experience-dependent perceptual learning or adaptation to the speaker's speech and voice pattern in clear speech. This suggests that experience-dependent perceptual learning plays a role in facilitating the language processing and comprehension of a message and subsequent memory encoding. PMID:26106353

  5. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    PubMed

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  6. Start/End Delays of Voiced and Unvoiced Speech Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrnstein, A

    Recent experiments using low power EM-radar like sensors (e.g, GEMs) have demonstrated a new method for measuring vocal fold activity and the onset times of voiced speech, as vocal fold contact begins to take place. Similarly the end time of a voiced speech segment can be measured. Secondly it appears that in most normal uses of American English speech, unvoiced-speech segments directly precede or directly follow voiced-speech segments. For many applications, it is useful to know typical duration times of these unvoiced speech segments. A corpus, assembled earlier of spoken ''Timit'' words, phrases, and sentences and recorded using simultaneously measuredmore » acoustic and EM-sensor glottal signals, from 16 male speakers, was used for this study. By inspecting the onset (or end) of unvoiced speech, using the acoustic signal, and the onset (or end) of voiced speech using the EM sensor signal, the average duration times for unvoiced segments preceding onset of vocalization were found to be 300ms, and for following segments, 500ms. An unvoiced speech period is then defined in time, first by using the onset of the EM-sensed glottal signal, as the onset-time marker for the voiced speech segment and end marker for the unvoiced segment. Then, by subtracting 300ms from the onset time mark of voicing, the unvoiced speech segment start time is found. Similarly, the times for a following unvoiced speech segment can be found. While data of this nature have proven to be useful for work in our laboratory, a great deal of additional work remains to validate such data for use with general populations of users. These procedures have been useful for applying optimal processing algorithms over time segments of unvoiced, voiced, and non-speech acoustic signals. For example, these data appear to be of use in speaker validation, in vocoding, and in denoising algorithms.« less

  7. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers.

    PubMed

    Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia

    2018-01-17

    During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech.

    PubMed

    Broderick, Michael P; Anderson, Andrew J; Di Liberto, Giovanni M; Crosse, Michael J; Lalor, Edmund C

    2018-03-05

    People routinely hear and understand speech at rates of 120-200 words per minute [1, 2]. Thus, speech comprehension must involve rapid, online neural mechanisms that process words' meanings in an approximately time-locked fashion. However, electrophysiological evidence for such time-locked processing has been lacking for continuous speech. Although valuable insights into semantic processing have been provided by the "N400 component" of the event-related potential [3-6], this literature has been dominated by paradigms using incongruous words within specially constructed sentences, with less emphasis on natural, narrative speech comprehension. Building on the discovery that cortical activity "tracks" the dynamics of running speech [7-9] and psycholinguistic work demonstrating [10-12] and modeling [13-15] how context impacts on word processing, we describe a new approach for deriving an electrophysiological correlate of natural speech comprehension. We used a computational model [16] to quantify the meaning carried by words based on how semantically dissimilar they were to their preceding context and then regressed this measure against electroencephalographic (EEG) data recorded from subjects as they listened to narrative speech. This produced a prominent negativity at a time lag of 200-600 ms on centro-parietal EEG channels, characteristics common to the N400. Applying this approach to EEG datasets involving time-reversed speech, cocktail party attention, and audiovisual speech-in-noise demonstrated that this response was very sensitive to whether or not subjects understood the speech they heard. These findings demonstrate that, when successfully comprehending natural speech, the human brain responds to the contextual semantic content of each word in a relatively time-locked fashion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Speech communications in noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  10. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  11. The influence of visual and auditory information on the perception of speech and non-speech oral movements in patients with left hemisphere lesions.

    PubMed

    Schmid, Gabriele; Thielmann, Anke; Ziegler, Wolfram

    2009-03-01

    Patients with lesions of the left hemisphere often suffer from oral-facial apraxia, apraxia of speech, and aphasia. In these patients, visual features often play a critical role in speech and language therapy, when pictured lip shapes or the therapist's visible mouth movements are used to facilitate speech production and articulation. This demands audiovisual processing both in speech and language treatment and in the diagnosis of oral-facial apraxia. The purpose of this study was to investigate differences in audiovisual perception of speech as compared to non-speech oral gestures. Bimodal and unimodal speech and non-speech items were used and additionally discordant stimuli constructed, which were presented for imitation. This study examined a group of healthy volunteers and a group of patients with lesions of the left hemisphere. Patients made substantially more errors than controls, but the factors influencing imitation accuracy were more or less the same in both groups. Error analyses in both groups suggested different types of representations for speech as compared to the non-speech domain, with speech having a stronger weight on the auditory modality and non-speech processing on the visual modality. Additionally, this study was able to show that the McGurk effect is not limited to speech.

  12. On the use of the distortion-sensitivity approach in examining the role of linguistic abilities in speech understanding in noise.

    PubMed

    Goverts, S Theo; Huysmans, Elke; Kramer, Sophia E; de Groot, Annette M B; Houtgast, Tammo

    2011-12-01

    Researchers have used the distortion-sensitivity approach in the psychoacoustical domain to investigate the role of auditory processing abilities in speech perception in noise (van Schijndel, Houtgast, & Festen, 2001; Goverts & Houtgast, 2010). In this study, the authors examined the potential applicability of the distortion-sensitivity approach for investigating the role of linguistic abilities in speech understanding in noise. The authors applied the distortion-sensitivity approach by measuring the processing of visually presented masked text in a condition with manipulated syntactic, lexical, and semantic cues and while using the Text Reception Threshold (George et al., 2007; Kramer, Zekveld, & Houtgast, 2009; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) method. Two groups that differed in linguistic abilities were studied: 13 native and 10 non-native speakers of Dutch, all typically hearing university students. As expected, the non-native subjects showed substantially reduced performance. The results of the distortion-sensitivity approach yielded differentiated results on the use of specific linguistic cues in the 2 groups. The results show the potential value of the distortion-sensitivity approach in studying the role of linguistic abilities in speech understanding in noise of individuals with hearing impairment.

  13. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  14. Distributed Fusion in Sensor Networks with Information Genealogy

    DTIC Science & Technology

    2011-06-28

    image processing [2], acoustic and speech recognition [3], multitarget tracking [4], distributed fusion [5], and Bayesian inference [6-7]. For...Adaptation for Distant-Talking Speech Recognition." in Proc Acoustics. Speech , and Signal Processing, 2004 |4| Y Bar-Shalom and T 1-. Fortmann...used in speech recognition and other classification applications [8]. But their use in underwater mine classification is limited. In this paper, we

  15. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions.

    PubMed

    Zheng, Yingjun; Wu, Chao; Li, Juanhua; Li, Ruikeng; Peng, Hongjun; She, Shenglin; Ning, Yuping; Li, Liang

    2018-04-04

    Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.

  16. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.

    PubMed

    Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind

    2015-01-01

    This study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean = 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener's intelligibility scores for binary mask processing applied to speech in babble. Degree of hearing loss and working memory capacity did not predict listeners' quality ratings. The results indicate that envelope fidelity is a primary factor in determining the combined effects of noise and binary mask processing for intelligibility and quality of speech presented in babble noise. Degree of hearing loss and working memory capacity are significant factors in explaining variability in listeners' speech intelligibility scores but not in quality ratings.

  17. Iconic gestures prime words: comparison of priming effects when gestures are presented alone and when they are accompanying speech

    PubMed Central

    So, Wing-Chee; Yi-Feng, Alvan Low; Yap, De-Fu; Kheng, Eugene; Yap, Ju-Min Melvin

    2013-01-01

    Previous studies have shown that iconic gestures presented in an isolated manner prime visually presented semantically related words. Since gestures and speech are almost always produced together, this study examined whether iconic gestures accompanying speech would prime words and compared the priming effect of iconic gestures with speech to that of iconic gestures presented alone. Adult participants (N = 180) were randomly assigned to one of three conditions in a lexical decision task: Gestures-Only (the primes were iconic gestures presented alone); Speech-Only (the primes were auditory tokens conveying the same meaning as the iconic gestures); Gestures-Accompanying-Speech (the primes were the simultaneous coupling of iconic gestures and their corresponding auditory tokens). Our findings revealed significant priming effects in all three conditions. However, the priming effect in the Gestures-Accompanying-Speech condition was comparable to that in the Speech-Only condition and was significantly weaker than that in the Gestures-Only condition, suggesting that the facilitatory effect of iconic gestures accompanying speech may be constrained by the level of language processing required in the lexical decision task where linguistic processing of words forms is more dominant than semantic processing. Hence, the priming effect afforded by the co-speech iconic gestures was weakened. PMID:24155738

  18. Potential interactions among linguistic, autonomic, and motor factors in speech.

    PubMed

    Kleinow, Jennifer; Smith, Anne

    2006-05-01

    Though anecdotal reports link certain speech disorders to increases in autonomic arousal, few studies have described the relationship between arousal and speech processes. Additionally, it is unclear how increases in arousal may interact with other cognitive-linguistic processes to affect speech motor control. In this experiment we examine potential interactions between autonomic arousal, linguistic processing, and speech motor coordination in adults and children. Autonomic responses (heart rate, finger pulse volume, tonic skin conductance, and phasic skin conductance) were recorded simultaneously with upper and lower lip movements during speech. The lip aperture variability (LA variability index) across multiple repetitions of sentences that varied in length and syntactic complexity was calculated under low- and high-arousal conditions. High arousal conditions were elicited by performance of the Stroop color word task. Children had significantly higher lip aperture variability index values across all speaking tasks, indicating more variable speech motor coordination. Increases in syntactic complexity and utterance length were associated with increases in speech motor coordination variability in both speaker groups. There was a significant effect of Stroop task, which produced increases in autonomic arousal and increased speech motor variability in both adults and children. These results provide novel evidence that high arousal levels can influence speech motor control in both adults and children. (c) 2006 Wiley Periodicals, Inc.

  19. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar

    PubMed Central

    Shin, Young Hoon; Seo, Jiwon

    2016-01-01

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker’s vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing. PMID:27801867

  20. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    PubMed

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  1. Research in speech communication.

    PubMed

    Flanagan, J

    1995-10-24

    Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker.

  2. Poor Speech Perception Is Not a Core Deficit of Childhood Apraxia of Speech: Preliminary Findings

    ERIC Educational Resources Information Center

    Zuk, Jennifer; Iuzzini-Seigel, Jenya; Cabbage, Kathryn; Green, Jordan R.; Hogan, Tiffany P.

    2018-01-01

    Purpose: Childhood apraxia of speech (CAS) is hypothesized to arise from deficits in speech motor planning and programming, but the influence of abnormal speech perception in CAS on these processes is debated. This study examined speech perception abilities among children with CAS with and without language impairment compared to those with…

  3. A Speech Recognition-based Solution for the Automatic Detection of Mild Cognitive Impairment from Spontaneous Speech

    PubMed Central

    Tóth, László; Hoffmann, Ildikó; Gosztolya, Gábor; Vincze, Veronika; Szatlóczki, Gréta; Bánréti, Zoltán; Pákáski, Magdolna; Kálmán, János

    2018-01-01

    Background: Even today the reliable diagnosis of the prodromal stages of Alzheimer’s disease (AD) remains a great challenge. Our research focuses on the earliest detectable indicators of cognitive de-cline in mild cognitive impairment (MCI). Since the presence of language impairment has been reported even in the mild stage of AD, the aim of this study is to develop a sensitive neuropsychological screening method which is based on the analysis of spontaneous speech production during performing a memory task. In the future, this can form the basis of an Internet-based interactive screening software for the recognition of MCI. Methods: Participants were 38 healthy controls and 48 clinically diagnosed MCI patients. The provoked spontaneous speech by asking the patients to recall the content of 2 short black and white films (one direct, one delayed), and by answering one question. Acoustic parameters (hesitation ratio, speech tempo, length and number of silent and filled pauses, length of utterance) were extracted from the recorded speech sig-nals, first manually (using the Praat software), and then automatically, with an automatic speech recogni-tion (ASR) based tool. First, the extracted parameters were statistically analyzed. Then we applied machine learning algorithms to see whether the MCI and the control group can be discriminated automatically based on the acoustic features. Results: The statistical analysis showed significant differences for most of the acoustic parameters (speech tempo, articulation rate, silent pause, hesitation ratio, length of utterance, pause-per-utterance ratio). The most significant differences between the two groups were found in the speech tempo in the delayed recall task, and in the number of pauses for the question-answering task. The fully automated version of the analysis process – that is, using the ASR-based features in combination with machine learning - was able to separate the two classes with an F1-score of 78.8%. Conclusion: The temporal analysis of spontaneous speech can be exploited in implementing a new, auto-matic detection-based tool for screening MCI for the community. PMID:29165085

  4. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task.

    PubMed

    Brumberg, Jonathan S; Krusienski, Dean J; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain.

  5. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task

    PubMed Central

    Brumberg, Jonathan S.; Krusienski, Dean J.; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L.; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain. PMID:27875590

  6. Evidence of degraded representation of speech in noise, in the aging midbrain and cortex

    PubMed Central

    Simon, Jonathan Z.; Anderson, Samira

    2016-01-01

    Humans have a remarkable ability to track and understand speech in unfavorable conditions, such as in background noise, but speech understanding in noise does deteriorate with age. Results from several studies have shown that in younger adults, low-frequency auditory cortical activity reliably synchronizes to the speech envelope, even when the background noise is considerably louder than the speech signal. However, cortical speech processing may be limited by age-related decreases in the precision of neural synchronization in the midbrain. To understand better the neural mechanisms contributing to impaired speech perception in older adults, we investigated how aging affects midbrain and cortical encoding of speech when presented in quiet and in the presence of a single-competing talker. Our results suggest that central auditory temporal processing deficits in older adults manifest in both the midbrain and in the cortex. Specifically, midbrain frequency following responses to a speech syllable are more degraded in noise in older adults than in younger adults. This suggests a failure of the midbrain auditory mechanisms needed to compensate for the presence of a competing talker. Similarly, in cortical responses, older adults show larger reductions than younger adults in their ability to encode the speech envelope when a competing talker is added. Interestingly, older adults showed an exaggerated cortical representation of speech in both quiet and noise conditions, suggesting a possible imbalance between inhibitory and excitatory processes, or diminished network connectivity that may impair their ability to encode speech efficiently. PMID:27535374

  7. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  8. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods.

  9. The effect of simultaneous text on the recall of noise-degraded speech.

    PubMed

    Grossman, Irina; Rajan, Ramesh

    2017-05-01

    Written and spoken language utilize the same processing system, enabling text to modulate speech processing. We investigated how simultaneously presented text affected speech recall in babble noise using a retrospective recall task. Participants were presented with text-speech sentence pairs in multitalker babble noise and then prompted to recall what they heard or what they read. In Experiment 1, sentence pairs were either congruent or incongruent and they were presented in silence or at 1 of 4 noise levels. Audio and Visual control groups were also tested with sentences presented in only 1 modality. Congruent text facilitated accurate recall of degraded speech; incongruent text had no effect. Text and speech were seldom confused for each other. A consideration of the effects of the language background found that monolingual English speakers outperformed early multilinguals at recalling degraded speech; however the effects of text on speech processing were analogous. Experiment 2 considered if the benefit provided by matching text was maintained when the congruency of the text and speech becomes more ambiguous because of the addition of partially mismatching text-speech sentence pairs that differed only on their final keyword and because of the use of low signal-to-noise ratios. The experiment focused on monolingual English speakers; the results showed that even though participants commonly confused text-for-speech during incongruent text-speech pairings, these confusions could not fully account for the benefit provided by matching text. Thus, we uniquely demonstrate that congruent text benefits the recall of noise-degraded speech. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Perceptual restoration of degraded speech is preserved with advancing age.

    PubMed

    Saija, Jefta D; Akyürek, Elkan G; Andringa, Tjeerd C; Başkent, Deniz

    2014-02-01

    Cognitive skills, such as processing speed, memory functioning, and the ability to divide attention, are known to diminish with aging. The present study shows that, despite these changes, older adults can successfully compensate for degradations in speech perception. Critically, the older participants of this study were not pre-selected for high performance on cognitive tasks, but only screened for normal hearing. We measured the compensation for speech degradation using phonemic restoration, where intelligibility of degraded speech is enhanced using top-down repair mechanisms. Linguistic knowledge, Gestalt principles of perception, and expectations based on situational and linguistic context are used to effectively fill in the inaudible masked speech portions. A positive compensation effect was previously observed only with young normal hearing people, but not with older hearing-impaired populations, leaving the question whether the lack of compensation was due to aging or due to age-related hearing problems. Older participants in the present study showed poorer intelligibility of degraded speech than the younger group, as expected from previous reports of aging effects. However, in conditions that induce top-down restoration, a robust compensation was observed. Speech perception by the older group was enhanced, and the enhancement effect was similar to that observed with the younger group. This effect was even stronger with slowed-down speech, which gives more time for cognitive processing. Based on previous research, the likely explanations for these observations are that older adults can overcome age-related cognitive deterioration by relying on linguistic skills and vocabulary that they have accumulated over their lifetime. Alternatively, or simultaneously, they may use different cerebral activation patterns or exert more mental effort. This positive finding on top-down restoration skills by the older individuals suggests that new cognitive training methods can teach older adults to effectively use compensatory mechanisms to cope with the complex listening environments of everyday life.

  11. Talking to children matters: Early language experience strengthens processing and builds vocabulary

    PubMed Central

    Weisleder, Adriana; Fernald, Anne

    2016-01-01

    Infants differ substantially in their rates of language growth, and slower growth predicts later academic difficulties. This study explored how the amount of speech to infants in Spanish-speaking families low in socioeconomic status (SES) influenced the development of children's skill in real-time language processing and vocabulary learning. All-day recordings of parent-infant interactions at home revealed striking variability among families in how much speech caregivers addressed to their child. Infants who experienced more child-directed speech became more efficient in processing familiar words in real time and had larger expressive vocabularies by 24 months, although speech simply overheard by the child was unrelated to vocabulary outcomes. Mediation analyses showed that the effect of child-directed speech on expressive vocabulary was explained by infants’ language-processing efficiency, suggesting that richer language experience strengthens processing skills that facilitate language growth. PMID:24022649

  12. Microphone Array

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.

  13. A comparison of orthogonal transformations for digital speech processing.

    NASA Technical Reports Server (NTRS)

    Campanella, S. J.; Robinson, G. S.

    1971-01-01

    Discrete forms of the Fourier, Hadamard, and Karhunen-Loeve transforms are examined for their capacity to reduce the bit rate necessary to transmit speech signals. To rate their effectiveness in accomplishing this goal the quantizing error (or noise) resulting for each transformation method at various bit rates is computed and compared with that for conventional companded PCM processing. Based on this comparison, it is found that Karhunen-Loeve provides a reduction in bit rate of 13.5 kbits/s, Fourier 10 kbits/s, and Hadamard 7.5 kbits/s as compared with the bit rate required for companded PCM. These bit-rate reductions are shown to be somewhat independent of the transmission bit rate.

  14. Selective spatial attention modulates bottom-up informational masking of speech

    PubMed Central

    Carlile, Simon; Corkhill, Caitlin

    2015-01-01

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention. PMID:25727100

  15. Selective spatial attention modulates bottom-up informational masking of speech.

    PubMed

    Carlile, Simon; Corkhill, Caitlin

    2015-03-02

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention.

  16. Phonemic Characteristics of Apraxia of Speech Resulting from Subcortical Hemorrhage

    ERIC Educational Resources Information Center

    Peach, Richard K.; Tonkovich, John D.

    2004-01-01

    Reports describing subcortical apraxia of speech (AOS) have received little consideration in the development of recent speech processing models because the speech characteristics of patients with this diagnosis have not been described precisely. We describe a case of AOS with aphasia secondary to basal ganglia hemorrhage. Speech-language symptoms…

  17. The Effectiveness of Clear Speech as a Masker

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Van Engen, Kristin; Dhar, Sumitrajit; Bradlow, Ann R.

    2010-01-01

    Purpose: It is established that speaking clearly is an effective means of enhancing intelligibility. Because any signal-processing scheme modeled after known acoustic-phonetic features of clear speech will likely affect both target and competing speech, it is important to understand how speech recognition is affected when a competing speech signal…

  18. ON THE NATURE OF SPEECH SCIENCE.

    ERIC Educational Resources Information Center

    PETERSON, GORDON E.

    IN THIS ARTICLE THE NATURE OF THE DISCIPLINE OF SPEECH SCIENCE IS CONSIDERED AND THE VARIOUS BASIC AND APPLIED AREAS OF THE DISCIPLINE ARE DISCUSSED. THE BASIC AREAS ENCOMPASS THE VARIOUS PROCESSES OF THE PHYSIOLOGY OF SPEECH PRODUCTION, THE ACOUSTICAL CHARACTERISTICS OF SPEECH, INCLUDING THE SPEECH WAVE TYPES AND THE INFORMATION-BEARING ACOUSTIC…

  19. Attention Is Required for Knowledge-Based Sequential Grouping: Insights from the Integration of Syllables into Words.

    PubMed

    Ding, Nai; Pan, Xunyi; Luo, Cheng; Su, Naifei; Zhang, Wen; Zhang, Jianfeng

    2018-01-31

    How the brain groups sequential sensory events into chunks is a fundamental question in cognitive neuroscience. This study investigates whether top-down attention or specific tasks are required for the brain to apply lexical knowledge to group syllables into words. Neural responses tracking the syllabic and word rhythms of a rhythmic speech sequence were concurrently monitored using electroencephalography (EEG). The participants performed different tasks, attending to either the rhythmic speech sequence or a distractor, which was another speech stream or a nonlinguistic auditory/visual stimulus. Attention to speech, but not a lexical-meaning-related task, was required for reliable neural tracking of words, even when the distractor was a nonlinguistic stimulus presented cross-modally. Neural tracking of syllables, however, was reliably observed in all tested conditions. These results strongly suggest that neural encoding of individual auditory events (i.e., syllables) is automatic, while knowledge-based construction of temporal chunks (i.e., words) crucially relies on top-down attention. SIGNIFICANCE STATEMENT Why we cannot understand speech when not paying attention is an old question in psychology and cognitive neuroscience. Speech processing is a complex process that involves multiple stages, e.g., hearing and analyzing the speech sound, recognizing words, and combining words into phrases and sentences. The current study investigates which speech-processing stage is blocked when we do not listen carefully. We show that the brain can reliably encode syllables, basic units of speech sounds, even when we do not pay attention. Nevertheless, when distracted, the brain cannot group syllables into multisyllabic words, which are basic units for speech meaning. Therefore, the process of converting speech sound into meaning crucially relies on attention. Copyright © 2018 the authors 0270-6474/18/381178-11$15.00/0.

  20. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  1. Eliciting Spontaneous Speech in Bilingual Students: Methods & Techniques.

    ERIC Educational Resources Information Center

    Cornejo, Ricardo J.; And Others

    Intended to provide practical information pertaining to methods and techniques for speech elicitation and production, the monograph offers specific methods and techniques to elicit spontaneous speech in bilingual students. Chapter 1, "Traditional Methodologies for Language Production and Recording," presents an overview of studies using…

  2. Successful and rapid response of speech bulb reduction program combined with speech therapy in velopharyngeal dysfunction: a case report.

    PubMed

    Shin, Yu-Jeong; Ko, Seung-O

    2015-12-01

    Velopharyngeal dysfunction in cleft palate patients following the primary palate repair may result in nasal air emission, hypernasality, articulation disorder and poor intelligibility of speech. Among conservative treatment methods, speech aid prosthesis combined with speech therapy is widely used method. However because of its long time of treatment more than a year and low predictability, some clinicians prefer a surgical intervention. Thus, the purpose of this report was to increase an attention on the effectiveness of speech aid prosthesis by introducing a case that was successfully treated. In this clinical report, speech bulb reduction program with intensive speech therapy was applied for a patient with velopharyngeal dysfunction and it was rapidly treated by 5months which was unusually short period for speech aid therapy. Furthermore, advantages of pre-operative speech aid therapy were discussed.

  3. Voice technology and BBN

    NASA Technical Reports Server (NTRS)

    Wolf, Jared J.

    1977-01-01

    The following research was discussed: (1) speech signal processing; (2) automatic speech recognition; (3) continuous speech understanding; (4) speaker recognition; (5) speech compression; (6) subjective and objective evaluation of speech communication system; (7) measurement of the intelligibility and quality of speech when degraded by noise or other masking stimuli; (8) speech synthesis; (9) instructional aids for second-language learning and for training of the deaf; and (10) investigation of speech correlates of psychological stress. Experimental psychology, control systems, and human factors engineering, which are often relevant to the proper design and operation of speech systems are described.

  4. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  5. Processing new and repeated names: Effects of coreference on repetition priming with speech and fast RSVP

    PubMed Central

    Camblin, C. Christine; Ledoux, Kerry; Boudewyn, Megan; Gordon, Peter C.; Swaab, Tamara Y.

    2006-01-01

    Previous research has shown that the process of establishing coreference with a repeated name can affect basic repetition priming. Specifically, repetition priming on some measures can be eliminated for repeated names that corefer with an entity that is prominent in the discourse model. However, the exact nature and timing of this modulating effect of discourse are not yet understood. Here, we present two ERP studies that further probe the nature of repeated name coreference by using naturally produced connected speech and fast-rate RSVP methods of presentation. With speech we found that repetition priming was eliminated for repeated names that coreferred with a prominent antecedent. In contrast, with fast-rate RSVP, we found a main effect of repetition that did not interact with sentence context. This indicates that the creation of a discourse model during comprehension can affect repetition priming, but the nature of this effect may depend on input speed. PMID:16904078

  6. Effects of cognitive impairment on prosodic parameters of speech production planning in multiple sclerosis.

    PubMed

    De Looze, Céline; Moreau, Noémie; Renié, Laurent; Kelly, Finnian; Ghio, Alain; Rico, Audrey; Audoin, Bertrand; Viallet, François; Pelletier, Jean; Petrone, Caterina

    2017-05-24

    Cognitive impairment (CI) affects 40-65% of patients with multiple sclerosis (MS). CI can have a negative impact on a patient's everyday activities, such as engaging in conversations. Speech production planning ability is crucial for successful verbal interactions and thus for preserving social and occupational skills. This study investigates the effect of cognitive-linguistic demand and CI on speech production planning in MS, as reflected in speech prosody. A secondary aim is to explore the clinical potential of prosodic features for the prediction of an individual's cognitive status in MS. A total of 45 subjects, that is 22 healthy controls (HC) and 23 patients in early stages of relapsing-remitting MS, underwent neuropsychological tests probing specific cognitive processes involved in speech production planning. All subjects also performed a read speech task, in which they had to read isolated sentences manipulated as for phonological length. Results show that the speech of MS patients with CI is mainly affected at the temporal level (articulation and speech rate, pause duration). Regression analyses further indicate that rate measures are correlated with working memory scores. In addition, linear discriminant analysis shows the ROC AUC of identifying MS patients with CI is 0.70 (95% confidence interval: 0.68-0.73). Our findings indicate that prosodic planning is deficient in patients with MS-CI and that the scope of planning depends on patients' cognitive abilities. We discuss how speech-based approaches could be used as an ecological method for the assessment and monitoring of CI in MS. © 2017 The British Psychological Society.

  7. Cohesive and coherent connected speech deficits in mild stroke.

    PubMed

    Barker, Megan S; Young, Breanne; Robinson, Gail A

    2017-05-01

    Spoken language production theories and lesion studies highlight several important prelinguistic conceptual preparation processes involved in the production of cohesive and coherent connected speech. Cohesion and coherence broadly connect sentences with preceding ideas and the overall topic. Broader cognitive mechanisms may mediate these processes. This study aims to investigate (1) whether stroke patients without aphasia exhibit impairments in cohesion and coherence in connected speech, and (2) the role of attention and executive functions in the production of connected speech. Eighteen stroke patients (8 right hemisphere stroke [RHS]; 6 left [LHS]) and 21 healthy controls completed two self-generated narrative tasks to elicit connected speech. A multi-level analysis of within and between-sentence processing ability was conducted. Cohesion and coherence impairments were found in the stroke group, particularly RHS patients, relative to controls. In the whole stroke group, better performance on the Hayling Test of executive function, which taps verbal initiation/suppression, was related to fewer propositional repetitions and global coherence errors. Better performance on attention tasks was related to fewer propositional repetitions, and decreased global coherence errors. In the RHS group, aspects of cohesive and coherent speech were associated with better performance on attention tasks. Better Hayling Test scores were related to more cohesive and coherent speech in RHS patients, and more coherent speech in LHS patients. Thus, we documented connected speech deficits in a heterogeneous stroke group without prominent aphasia. Our results suggest that broader cognitive processes may play a role in producing connected speech at the early conceptual preparation stage. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Speaking legibly: Qualitative perceptions of altered voice among oral tongue cancer survivors

    PubMed Central

    Philiponis, Genevieve; Kagan, Sarah H.

    2015-01-01

    Objective: Treatment for oral tongue cancer poses unique challenges to restoring and maintaining personally acceptable, intelligible speech. Methods: We report how oral tongue cancer survivors describe their speech after treatment in a qualitative descriptive approach using constant comparative technique to complete a focal analysis of interview data from a larger grounded theory study of oral tongue cancer survivorship. Interviews were completed with 16 tongue cancer survivors 3 months to 12 years postdiagnosis with stage I-IV disease and treated with surgery alone, surgery and radiotherapy, or chemo-radiation. All interview data from the main study were analyzed for themes describing perceptions of speech as oral tongue cancer survivors. Results: Actual speech impairments varied among survivors. None experienced severe impairments that inhibited their daily lives. However, all expressed some level of concern about speech. Concerns about altered speech began when survivors heard their treatment plans and continued through to survivorship without being fully resolved. The overarching theme, maintaining a pattern and character of speech acceptable to the survivor, was termed “speaking legibly” using one survivor's vivid in vivo statement. Speaking legibly integrate the sub-themes of “fears of sounding unusual”, “learning to talk again”, “problems and adjustments”, and “social impact”. Conclusions: Clinical and scientific efforts to further understand and address concerns about speech, personal presentation, and identity among those diagnosed with oral tongue are important to improving care processes and patient-centered experience. PMID:27981121

  9. Predicting Speech Intelligibility with a Multiple Speech Subsystems Approach in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Lee, Jimin; Hustad, Katherine C.; Weismer, Gary

    2014-01-01

    Purpose: Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystems approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems. Method: Nine acoustic variables reflecting different subsystems, and…

  10. Noise Suppression Methods for Robust Speech Processing

    DTIC Science & Technology

    1981-04-01

    1]. Techniques available for voice processor modification to account for noise contamination are being developed [4]. Preprocessor noise reduction...analysis window function. Principles governing discrete implementation of the transform pair are discussed, and relationships are formalized which specify

  11. Extensions to the Speech Disorders Classification System (SDCS)

    PubMed Central

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    This report describes three extensions to a classification system for pediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). Part I describes a classification extension to the SDCS to differentiate motor speech disorders from speech delay and to differentiate among three subtypes of motor speech disorders. Part II describes the Madison Speech Assessment Protocol (MSAP), an approximately two-hour battery of 25 measures that includes 15 speech tests and tasks. Part III describes the Competence, Precision, and Stability Analytics (CPSA) framework, a current set of approximately 90 perceptual- and acoustic-based indices of speech, prosody, and voice used to quantify and classify subtypes of Speech Sound Disorders (SSD). A companion paper, Shriberg, Fourakis, et al. (2010) provides reliability estimates for the perceptual and acoustic data reduction methods used in the SDCS. The agreement estimates in the companion paper support the reliability of SDCS methods and illustrate the complementary roles of perceptual and acoustic methods in diagnostic analyses of SSD of unknown origin. Examples of research using the extensions to the SDCS described in the present report include diagnostic findings for a sample of youth with motor speech disorders associated with galactosemia (Shriberg, Potter, & Strand, 2010) and a test of the hypothesis of apraxia of speech in a group of children with autism spectrum disorders (Shriberg, Paul, Black, & van Santen, 2010). All SDCS methods and reference databases running in the PEPPER (Programs to Examine Phonetic and Phonologic Evaluation Records; [Shriberg, Allen, McSweeny, & Wilson, 2001]) environment will be disseminated without cost when complete. PMID:20831378

  12. Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study

    PubMed Central

    Lu, Xuejing; Ho, Hao Tam; Liu, Fang; Wu, Daxing; Thompson, William F.

    2015-01-01

    Background: Congenital amusia is a disorder that is known to affect the processing of musical pitch. Although individuals with amusia rarely show language deficits in daily life, a number of findings point to possible impairments in speech prosody that amusic individuals may compensate for by drawing on linguistic information. Using EEG, we investigated (1) whether the processing of speech prosody is impaired in amusia and (2) whether emotional linguistic information can compensate for this impairment. Method: Twenty Chinese amusics and 22 matched controls were presented pairs of emotional words spoken with either statement or question intonation while their EEG was recorded. Their task was to judge whether the intonations were the same. Results: Amusics exhibited impaired performance on the intonation-matching task for emotional linguistic information, as their performance was significantly worse than that of controls. EEG results showed a reduced N2 response to incongruent intonation pairs in amusics compared with controls, which likely reflects impaired conflict processing in amusia. However, our EEG results also indicated that amusics were intact in early sensory auditory processing, as revealed by a comparable N1 modulation in both groups. Conclusion: We propose that the impairment in discriminating speech intonation observed among amusic individuals may arise from an inability to access information extracted at early processing stages. This, in turn, could reflect a disconnection between low-level and high-level processing. PMID:25914659

  13. Automatic Method of Pause Measurement for Normal and Dysarthric Speech

    ERIC Educational Resources Information Center

    Rosen, Kristin; Murdoch, Bruce; Folker, Joanne; Vogel, Adam; Cahill, Louise; Delatycki, Martin; Corben, Louise

    2010-01-01

    This study proposes an automatic method for the detection of pauses and identification of pause types in conversational speech for the purpose of measuring the effects of Friedreich's Ataxia (FRDA) on speech. Speech samples of [approximately] 3 minutes were recorded from 13 speakers with FRDA and 18 healthy controls. Pauses were measured from the…

  14. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  15. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  16. How does cognitive load influence speech perception? An encoding hypothesis.

    PubMed

    Mitterer, Holger; Mattys, Sven L

    2017-01-01

    Two experiments investigated the conditions under which cognitive load exerts an effect on the acuity of speech perception. These experiments extend earlier research by using a different speech perception task (four-interval oddity task) and by implementing cognitive load through a task often thought to be modular, namely, face processing. In the cognitive-load conditions, participants were required to remember two faces presented before the speech stimuli. In Experiment 1, performance in the speech-perception task under cognitive load was not impaired in comparison to a no-load baseline condition. In Experiment 2, we modified the load condition minimally such that it required encoding of the two faces simultaneously with the speech stimuli. As a reference condition, we also used a visual search task that in earlier experiments had led to poorer speech perception. Both concurrent tasks led to decrements in the speech task. The results suggest that speech perception is affected even by loads thought to be processed modularly, and that, critically, encoding in working memory might be the locus of interference.

  17. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    PubMed Central

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  18. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  19. Processing load induced by informational masking is related to linguistic abilities.

    PubMed

    Koelewijn, Thomas; Zekveld, Adriana A; Festen, Joost M; Rönnberg, Jerker; Kramer, Sophia E

    2012-01-01

    It is often assumed that the benefit of hearing aids is not primarily reflected in better speech performance, but that it is reflected in less effortful listening in the aided than in the unaided condition. Before being able to assess such a hearing aid benefit the present study examined how processing load while listening to masked speech relates to inter-individual differences in cognitive abilities relevant for language processing. Pupil dilation was measured in thirty-two normal hearing participants while listening to sentences masked by fluctuating noise or interfering speech at either 50% and 84% intelligibility. Additionally, working memory capacity, inhibition of irrelevant information, and written text reception was tested. Pupil responses were larger during interfering speech as compared to fluctuating noise. This effect was independent of intelligibility level. Regression analysis revealed that high working memory capacity, better inhibition, and better text reception were related to better speech reception thresholds. Apart from a positive relation to speech recognition, better inhibition and better text reception are also positively related to larger pupil dilation in the single-talker masker conditions. We conclude that better cognitive abilities not only relate to better speech perception, but also partly explain higher processing load in complex listening conditions.

  20. Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    PubMed Central

    Paulmann, Silke; Ott, Derek V. M.; Kotz, Sonja A.

    2011-01-01

    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages. PMID:21437277

  1. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C [Livermore, CA; Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  2. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  3. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  4. Perception of Melodic Contour and Intonation in Autism Spectrum Disorder: Evidence From Mandarin Speakers.

    PubMed

    Jiang, Jun; Liu, Fang; Wan, Xuan; Jiang, Cunmei

    2015-07-01

    Tone language experience benefits pitch processing in music and speech for typically developing individuals. No known studies have examined pitch processing in individuals with autism who speak a tone language. This study investigated discrimination and identification of melodic contour and speech intonation in a group of Mandarin-speaking individuals with high-functioning autism. Individuals with autism showed superior melodic contour identification but comparable contour discrimination relative to controls. In contrast, these individuals performed worse than controls on both discrimination and identification of speech intonation. These findings provide the first evidence for differential pitch processing in music and speech in tone language speakers with autism, suggesting that tone language experience may not compensate for speech intonation perception deficits in individuals with autism.

  5. The Impacts of Language Background and Language-Related Disorders in Auditory Processing Assessment

    ERIC Educational Resources Information Center

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Rosen, Stuart

    2013-01-01

    Purpose: To examine the impact of language background and language-related disorders (LRDs--dyslexia and/or language impairment) on performance in English speech and nonspeech tests of auditory processing (AP) commonly used in the clinic. Method: A clinical database concerning 133 multilingual children (mostly with English as an additional…

  6. The Diagnosis and Management of Auditory Processing Disorder

    ERIC Educational Resources Information Center

    Moore, David R.

    2011-01-01

    Purpose: To provide a personal perspective on auditory processing disorder (APD), with reference to the recent clinical forum on APD and the needs of clinical speech-language pathologists and audiologists. Method: The Medical Research Council-Institute of Hearing Research (MRC-IHR) has been engaged in research into APD and auditory learning for 8…

  7. Brainstem transcription of speech is disrupted in children with autism spectrum disorders

    PubMed Central

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083

  8. Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis.

    PubMed

    Tryfon, Ana; Foster, Nicholas E V; Sharda, Megha; Hyde, Krista L

    2018-02-15

    Autism spectrum disorder (ASD) is often characterized by atypical language profiles and auditory and speech processing. These can contribute to aberrant language and social communication skills in ASD. The study of the neural basis of speech perception in ASD can serve as a potential neurobiological marker of ASD early on, but mixed results across studies renders it difficult to find a reliable neural characterization of speech processing in ASD. To this aim, the present study examined the functional neural basis of speech perception in ASD versus typical development (TD) using an activation likelihood estimation (ALE) meta-analysis of 18 qualifying studies. The present study included separate analyses for TD and ASD, which allowed us to examine patterns of within-group brain activation as well as both common and distinct patterns of brain activation across the ASD and TD groups. Overall, ASD and TD showed mostly common brain activation of speech processing in bilateral superior temporal gyrus (STG) and left inferior frontal gyrus (IFG). However, the results revealed trends for some distinct activation in the TD group showing additional activation in higher-order brain areas including left superior frontal gyrus (SFG), left medial frontal gyrus (MFG), and right IFG. These results provide a more reliable neural characterization of speech processing in ASD relative to previous single neuroimaging studies and motivate future work to investigate how these brain signatures relate to behavioral measures of speech processing in ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing

    PubMed Central

    Dietz, Mathias; Hohmann, Volker; Jürgens, Tim

    2015-01-01

    For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918

  10. The influence of cochlear spectral processing on the timing and amplitude of the speech-evoked auditory brain stem response

    PubMed Central

    Nuttall, Helen E.; Moore, David R.; Barry, Johanna G.; Krumbholz, Katrin

    2015-01-01

    The speech-evoked auditory brain stem response (speech ABR) is widely considered to provide an index of the quality of neural temporal encoding in the central auditory pathway. The aim of the present study was to evaluate the extent to which the speech ABR is shaped by spectral processing in the cochlea. High-pass noise masking was used to record speech ABRs from delimited octave-wide frequency bands between 0.5 and 8 kHz in normal-hearing young adults. The latency of the frequency-delimited responses decreased from the lowest to the highest frequency band by up to 3.6 ms. The observed frequency-latency function was compatible with model predictions based on wave V of the click ABR. The frequency-delimited speech ABR amplitude was largest in the 2- to 4-kHz frequency band and decreased toward both higher and lower frequency bands despite the predominance of low-frequency energy in the speech stimulus. We argue that the frequency dependence of speech ABR latency and amplitude results from the decrease in cochlear filter width with decreasing frequency. The results suggest that the amplitude and latency of the speech ABR may reflect interindividual differences in cochlear, as well as central, processing. The high-pass noise-masking technique provides a useful tool for differentiating between peripheral and central effects on the speech ABR. It can be used for further elucidating the neural basis of the perceptual speech deficits that have been associated with individual differences in speech ABR characteristics. PMID:25787954

  11. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  12. The neural processing of foreign-accented speech and its relationship to listener bias

    PubMed Central

    Yi, Han-Gyol; Smiljanic, Rajka; Chandrasekaran, Bharath

    2014-01-01

    Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners' perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013). Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI) study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants' Asian-foreign association was measured using an implicit association test (IAT), conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1) foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2) face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3) implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing. PMID:25339883

  13. Prosody and Semantics Are Separate but Not Separable Channels in the Perception of Emotional Speech: Test for Rating of Emotions in Speech.

    PubMed

    Ben-David, Boaz M; Multani, Namita; Shakuf, Vered; Rudzicz, Frank; van Lieshout, Pascal H H M

    2016-02-01

    Our aim is to explore the complex interplay of prosody (tone of speech) and semantics (verbal content) in the perception of discrete emotions in speech. We implement a novel tool, the Test for Rating of Emotions in Speech. Eighty native English speakers were presented with spoken sentences made of different combinations of 5 discrete emotions (anger, fear, happiness, sadness, and neutral) presented in prosody and semantics. Listeners were asked to rate the sentence as a whole, integrating both speech channels, or to focus on one channel only (prosody or semantics). We observed supremacy of congruency, failure of selective attention, and prosodic dominance. Supremacy of congruency means that a sentence that presents the same emotion in both speech channels was rated highest; failure of selective attention means that listeners were unable to selectively attend to one channel when instructed; and prosodic dominance means that prosodic information plays a larger role than semantics in processing emotional speech. Emotional prosody and semantics are separate but not separable channels, and it is difficult to perceive one without the influence of the other. Our findings indicate that the Test for Rating of Emotions in Speech can reveal specific aspects in the processing of emotional speech and may in the future prove useful for understanding emotion-processing deficits in individuals with pathologies.

  14. Effect of technological advances on cochlear implant performance in adults.

    PubMed

    Lenarz, Minoo; Joseph, Gert; Sönmez, Hasibe; Büchner, Andreas; Lenarz, Thomas

    2011-12-01

    To evaluate the effect of technological advances in the past 20 years on the hearing performance of a large cohort of adult cochlear implant (CI) patients. Individual, retrospective, cohort study. According to technological developments in electrode design and speech-processing strategies, we defined five virtual intervals on the time scale between 1984 and 2008. A cohort of 1,005 postlingually deafened adults was selected for this study, and their hearing performance with a CI was evaluated retrospectively according to these five technological intervals. The test battery was composed of four standard German speech tests: Freiburger monosyllabic test, speech tracking test, Hochmair-Schulz-Moser (HSM) sentence test in quiet, and HSM sentence test in 10 dB noise. The direct comparison of the speech perception in postlingually deafened adults, who were implanted during different technological periods, reveals an obvious improvement in the speech perception in patients who benefited from the recent electrode designs and speech-processing strategies. The major influence of technological advances on CI performance seems to be on speech perception in noise. Better speech perception in noisy surroundings is strong proof for demonstrating the success rate of new electrode designs and speech-processing strategies. Standard (internationally comparable) speech tests in noise should become an obligatory part of the postoperative test battery for adult CI patients. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  15. Getting the cocktail party started: masking effects in speech perception

    PubMed Central

    Evans, S; McGettigan, C; Agnew, ZK; Rosen, S; Scott, SK

    2016-01-01

    Spoken conversations typically take place in noisy environments and different kinds of masking sounds place differing demands on cognitive resources. Previous studies, examining the modulation of neural activity associated with the properties of competing sounds, have shown that additional speech streams engage the superior temporal gyrus. However, the absence of a condition in which target speech was heard without additional masking made it difficult to identify brain networks specific to masking and to ascertain the extent to which competing speech was processed equivalently to target speech. In this study, we scanned young healthy adults with continuous functional Magnetic Resonance Imaging (fMRI), whilst they listened to stories masked by sounds that differed in their similarity to speech. We show that auditory attention and control networks are activated during attentive listening to masked speech in the absence of an overt behavioural task. We demonstrate that competing speech is processed predominantly in the left hemisphere within the same pathway as target speech but is not treated equivalently within that stream, and that individuals who perform better in speech in noise tasks activate the left mid-posterior superior temporal gyrus more. Finally, we identify neural responses associated with the onset of sounds in the auditory environment, activity was found within right lateralised frontal regions consistent with a phasic alerting response. Taken together, these results provide a comprehensive account of the neural processes involved in listening in noise. PMID:26696297

  16. Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production.

    PubMed

    Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S

    2010-08-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.

  17. Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production

    PubMed Central

    Zheng, Zane Z.; Munhall, Kevin G; Johnsrude, Ingrid S

    2009-01-01

    The fluency and reliability of speech production suggests a mechanism that links motor commands and sensory feedback. Here, we examine the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not, and examining the overlap with the network recruited during passive listening to speech sounds. We use real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word (‘Ted’) and either heard this clearly, or heard voice-gated masking noise. We compare this to when they listened to yoked stimuli (identical recordings of ‘Ted’ or noise) without speaking. Activity along the superior temporal sulcus (STS) and superior temporal gyrus (STG) bilaterally was significantly greater if the auditory stimulus was a) processed as the auditory concomitant of speaking and b) did not match the predicted outcome (noise). The network exhibiting this Feedback type by Production/Perception interaction includes an STG/MTG region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts, and that processes an error signal in speech-sensitive regions when this and the sensory data do not match. PMID:19642886

  18. Random Deep Belief Networks for Recognizing Emotions from Speech Signals.

    PubMed

    Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  19. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    PubMed Central

    Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition. PMID:28356908

  20. Research in speech communication.

    PubMed Central

    Flanagan, J

    1995-01-01

    Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker. Images Fig. 1 Fig. 2 Fig. 5 Fig. 8 Fig. 11 Fig. 12 Fig. 13 PMID:7479806

  1. Speech Clarity Index (Ψ): A Distance-Based Speech Quality Indicator and Recognition Rate Prediction for Dysarthric Speakers with Cerebral Palsy

    NASA Astrophysics Data System (ADS)

    Kayasith, Prakasith; Theeramunkong, Thanaruk

    It is a tedious and subjective task to measure severity of a dysarthria by manually evaluating his/her speech using available standard assessment methods based on human perception. This paper presents an automated approach to assess speech quality of a dysarthric speaker with cerebral palsy. With the consideration of two complementary factors, speech consistency and speech distinction, a speech quality indicator called speech clarity index (Ψ) is proposed as a measure of the speaker's ability to produce consistent speech signal for a certain word and distinguished speech signal for different words. As an application, it can be used to assess speech quality and forecast speech recognition rate of speech made by an individual dysarthric speaker before actual exhaustive implementation of an automatic speech recognition system for the speaker. The effectiveness of Ψ as a speech recognition rate predictor is evaluated by rank-order inconsistency, correlation coefficient, and root-mean-square of difference. The evaluations had been done by comparing its predicted recognition rates with ones predicted by the standard methods called the articulatory and intelligibility tests based on the two recognition systems (HMM and ANN). The results show that Ψ is a promising indicator for predicting recognition rate of dysarthric speech. All experiments had been done on speech corpus composed of speech data from eight normal speakers and eight dysarthric speakers.

  2. A Model for Speech Processing in Second Language Listening Activities

    ERIC Educational Resources Information Center

    Zoghbor, Wafa Shahada

    2016-01-01

    Teachers' understanding of the process of speech perception could inform practice in listening classrooms. Catford (1950) developed a model for speech perception taking into account the influence of the acoustic features of the linguistic forms used by the speaker, whereby the listener "identifies" and "interprets" these…

  3. Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.

    ERIC Educational Resources Information Center

    Miyamoto, Richard T.; Wong, Donald

    2001-01-01

    Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…

  4. Differences in Talker Recognition by Preschoolers and Adults

    ERIC Educational Resources Information Center

    Creel, Sarah C.; Jimenez, Sofia R.

    2012-01-01

    Talker variability in speech influences language processing from infancy through adulthood and is inextricably embedded in the very cues that identify speech sounds. Yet little is known about developmental changes in the processing of talker information. On one account, children have not yet learned to separate speech sound variability from…

  5. Masked Speech Recognition and Reading Ability in School-Age Children: Is There a Relationship?

    ERIC Educational Resources Information Center

    Miller, Gabrielle; Lewis, Barbara; Benchek, Penelope; Buss, Emily; Calandruccio, Lauren

    2018-01-01

    Purpose: The relationship between reading (decoding) skills, phonological processing abilities, and masked speech recognition in typically developing children was explored. This experiment was designed to evaluate the relationship between phonological processing and decoding abilities and 2 aspects of masked speech recognition in typically…

  6. Impact of human emotions on physiological characteristics

    NASA Astrophysics Data System (ADS)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  7. Status Report on Speech Research, No. 27, July-September 1971.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    This report contains fourteen papers on a wide range of current topics and experiments in speech research, ranging from the relationship between speech and reading to questions of memory and perception of speech sounds. The following papers are included: "How Is Language Conveyed by Speech?;""Reading, the Linguistic Process, and Linguistic…

  8. Musical intervention enhances infants’ neural processing of temporal structure in music and speech

    PubMed Central

    Zhao, T. Christina; Kuhl, Patricia K.

    2016-01-01

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512

  9. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    PubMed

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  10. How Does Reading Performance Modulate the Impact of Orthographic Knowledge on Speech Processing? A Comparison of Normal Readers and Dyslexic Adults

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Nelis, Aubéline; Kolinsky, Régine

    2014-01-01

    Studies on proficient readers showed that speech processing is affected by knowledge of the orthographic code. Yet, the automaticity of the orthographic influence depends on task demand. Here, we addressed this automaticity issue in normal and dyslexic adult readers by comparing the orthographic effects obtained in two speech processing tasks that…

  11. The Relationship between Spoken Language and Speech and Nonspeech Processing in Children with Autism: A Magnetic Event-Related Field Study

    ERIC Educational Resources Information Center

    Yau, Shu Hui; Brock, Jon; McArthur, Genevieve

    2016-01-01

    It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to…

  12. The Role of Audiovisual Speech in the Early Stages of Lexical Processing as Revealed by the ERP Word Repetition Effect

    ERIC Educational Resources Information Center

    Basirat, Anahita; Brunellière, Angèle; Hartsuiker, Robert

    2018-01-01

    Numerous studies suggest that audiovisual speech influences lexical processing. However, it is not clear which stages of lexical processing are modulated by audiovisual speech. In this study, we examined the time course of the access to word representations in long-term memory when they were presented in auditory-only and audiovisual modalities.…

  13. A Comparison of LBG and ADPCM Speech Compression Techniques

    NASA Astrophysics Data System (ADS)

    Bachu, Rajesh G.; Patel, Jignasa; Barkana, Buket D.

    Speech compression is the technology of converting human speech into an efficiently encoded representation that can later be decoded to produce a close approximation of the original signal. In all speech there is a degree of predictability and speech coding techniques exploit this to reduce bit rates yet still maintain a suitable level of quality. This paper is a study and implementation of Linde-Buzo-Gray Algorithm (LBG) and Adaptive Differential Pulse Code Modulation (ADPCM) algorithms to compress speech signals. In here we implemented the methods using MATLAB 7.0. The methods we used in this study gave good results and performance in compressing the speech and listening tests showed that efficient and high quality coding is achieved.

  14. The prevalence of stuttering, voice, and speech-sound disorders in primary school students in Australia.

    PubMed

    McKinnon, David H; McLeod, Sharynne; Reilly, Sheena

    2007-01-01

    The aims of this study were threefold: to report teachers' estimates of the prevalence of speech disorders (specifically, stuttering, voice, and speech-sound disorders); to consider correspondence between the prevalence of speech disorders and gender, grade level, and socioeconomic status; and to describe the level of support provided to schoolchildren with speech disorders. Students with speech disorders were identified from 10,425 students in Australia using a 4-stage process: training in the data collection process, teacher identification, confirmation by a speech-language pathologist, and consultation with district special needs advisors. The prevalence of students with speech disorders was estimated; specifically, 0.33% of students were identified as stuttering, 0.12% as having a voice disorder, and 1.06% as having a speech-sound disorder. There was a higher prevalence of speech disorders in males than in females. As grade level increased, the prevalence of speech disorders decreased. There was no significant difference in the pattern of prevalence across the three speech disorders and four socioeconomic groups; however, students who were identified with a speech disorder were more likely to be in the higher socioeconomic groups. Finally, there was a difference between the perceived and actual level of support that was provided to these students. These prevalence figures are lower than those using initial identification by speech-language pathologists and similar to those using parent report.

  15. Role of contextual cues on the perception of spectrally reduced interrupted speech.

    PubMed

    Patro, Chhayakanta; Mendel, Lisa Lucks

    2016-08-01

    Understanding speech within an auditory scene is constantly challenged by interfering noise in suboptimal listening environments when noise hinders the continuity of the speech stream. In such instances, a typical auditory-cognitive system perceptually integrates available speech information and "fills in" missing information in the light of semantic context. However, individuals with cochlear implants (CIs) find it difficult and effortful to understand interrupted speech compared to their normal hearing counterparts. This inefficiency in perceptual integration of speech could be attributed to further degradations in the spectral-temporal domain imposed by CIs making it difficult to utilize the contextual evidence effectively. To address these issues, 20 normal hearing adults listened to speech that was spectrally reduced and spectrally reduced interrupted in a manner similar to CI processing. The Revised Speech Perception in Noise test, which includes contextually rich and contextually poor sentences, was used to evaluate the influence of semantic context on speech perception. Results indicated that listeners benefited more from semantic context when they listened to spectrally reduced speech alone. For the spectrally reduced interrupted speech, contextual information was not as helpful under significant spectral reductions, but became beneficial as the spectral resolution improved. These results suggest top-down processing facilitates speech perception up to a point, and it fails to facilitate speech understanding when the speech signals are significantly degraded.

  16. Motor Speech Phenotypes of Frontotemporal Dementia, Primary Progressive Aphasia, and Progressive Apraxia of Speech

    ERIC Educational Resources Information Center

    Poole, Matthew L.; Brodtmann, Amy; Darby, David; Vogel, Adam P.

    2017-01-01

    Purpose: Our purpose was to create a comprehensive review of speech impairment in frontotemporal dementia (FTD), primary progressive aphasia (PPA), and progressive apraxia of speech in order to identify the most effective measures for diagnosis and monitoring, and to elucidate associations between speech and neuroimaging. Method: Speech and…

  17. Cognitive Spare Capacity and Speech Communication: A Narrative Overview

    PubMed Central

    2014-01-01

    Background noise can make speech communication tiring and cognitively taxing, especially for individuals with hearing impairment. It is now well established that better working memory capacity is associated with better ability to understand speech under adverse conditions as well as better ability to benefit from the advanced signal processing in modern hearing aids. Recent work has shown that although such processing cannot overcome hearing handicap, it can increase cognitive spare capacity, that is, the ability to engage in higher level processing of speech. This paper surveys recent work on cognitive spare capacity and suggests new avenues of investigation. PMID:24971355

  18. Processing of speech and non-speech stimuli in children with specific language impairment

    NASA Astrophysics Data System (ADS)

    Basu, Madhavi L.; Surprenant, Aimee M.

    2003-10-01

    Specific Language Impairment (SLI) is a developmental language disorder in which children demonstrate varying degrees of difficulties in acquiring a spoken language. One possible underlying cause is that children with SLI have deficits in processing sounds that are of short duration or when they are presented rapidly. Studies so far have compared their performance on speech and nonspeech sounds of unequal complexity. Hence, it is still unclear whether the deficit is specific to the perception of speech sounds or whether it more generally affects the auditory function. The current study aims to answer this question by comparing the performance of children with SLI on speech and nonspeech sounds synthesized from sine-wave stimuli. The children will be tested using the classic categorical perception paradigm that includes both the identification and discrimination of stimuli along a continuum. If there is a deficit in the performance on both speech and nonspeech tasks, it will show that these children have a deficit in processing complex sounds. Poor performance on only the speech sounds will indicate that the deficit is more related to language. The findings will offer insights into the exact nature of the speech perception deficits in children with SLI. [Work supported by ASHF.

  19. The pupil response is sensitive to divided attention during speech processing.

    PubMed

    Koelewijn, Thomas; Shinn-Cunningham, Barbara G; Zekveld, Adriana A; Kramer, Sophia E

    2014-06-01

    Dividing attention over two streams of speech strongly decreases performance compared to focusing on only one. How divided attention affects cognitive processing load as indexed with pupillometry during speech recognition has so far not been investigated. In 12 young adults the pupil response was recorded while they focused on either one or both of two sentences that were presented dichotically and masked by fluctuating noise across a range of signal-to-noise ratios. In line with previous studies, the performance decreases when processing two target sentences instead of one. Additionally, dividing attention to process two sentences caused larger pupil dilation and later peak pupil latency than processing only one. This suggests an effect of attention on cognitive processing load (pupil dilation) during speech processing in noise. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Cognitive processing specificity of anxious apprehension: impact on distress and performance during speech exposure.

    PubMed

    Philippot, Pierre; Vrielynck, Nathalie; Muller, Valérie

    2010-12-01

    The present study examined the impact of different modes of processing anxious apprehension on subsequent anxiety and performance in a stressful speech task. Participants were informed that they would have to give a speech on a difficult topic while being videotaped and evaluated on their performance. They were then randomly assigned to one of three conditions. In a specific processing condition, they were encouraged to explore in detail all the specific aspects (thoughts, emotions, sensations) they experienced while anticipating giving the speech; in a general processing condition, they had to focus on the generic aspects that they would typically experience during anxious anticipation; and in a control, no-processing condition, participants were distracted. Results revealed that at the end of the speech, participants in the specific processing condition reported less anxiety than those in the two other conditions. They were also evaluated by judges to have performed better than those in the control condition, who in turn did better than those in the general processing condition. Copyright © 2010. Published by Elsevier Ltd.

  1. Neural integration of iconic and unrelated coverbal gestures: a functional MRI study.

    PubMed

    Green, Antonia; Straube, Benjamin; Weis, Susanne; Jansen, Andreas; Willmes, Klaus; Konrad, Kerstin; Kircher, Tilo

    2009-10-01

    Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.

  2. Noise-robust speech triage.

    PubMed

    Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav

    2018-04-01

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

  3. The effect of hearing aid technologies on listening in an automobile.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A; Stanziola, Rachel W

    2013-06-01

    Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile/road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the listener/driver, conventional directional processing that places the directivity beam toward the listener's front may not be helpful and, in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener's speech recognition performance and preference for communication in a traveling automobile. A single-blinded, repeated-measures design was used. Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 yr participated in the study. The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 mph on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound-treated booth to assess speech recognition performance and preference with each programmed condition. Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants' preferences for a given processing scheme were generally consistent with speech recognition results. The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. American Academy of Audiology.

  4. V2S: Voice to Sign Language Translation System for Malaysian Deaf People

    NASA Astrophysics Data System (ADS)

    Mean Foong, Oi; Low, Tang Jung; La, Wai Wan

    The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.

  5. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  6. Sound and speech detection and classification in a Health Smart Home.

    PubMed

    Fleury, A; Noury, N; Vacher, M; Glasson, H; Seri, J F

    2008-01-01

    Improvements in medicine increase life expectancy in the world and create a new bottleneck at the entrance of specialized and equipped institutions. To allow elderly people to stay at home, researchers work on ways to monitor them in their own environment, with non-invasive sensors. To meet this goal, smart homes, equipped with lots of sensors, deliver information on the activities of the person and can help detect distress situations. In this paper, we present a global speech and sound recognition system that can be set-up in a flat. We placed eight microphones in the Health Smart Home of Grenoble (a real living flat of 47m(2)) and we automatically analyze and sort out the different sounds recorded in the flat and the speech uttered (to detect normal or distress french sentences). We introduce the methods for the sound and speech recognition, the post-processing of the data and finally the experimental results obtained in real conditions in the flat.

  7. Intelligibility as a clinical outcome measure following intervention with children with phonologically based speech-sound disorders.

    PubMed

    Lousada, M; Jesus, Luis M T; Hall, A; Joffe, V

    2014-01-01

    The effectiveness of two treatment approaches (phonological therapy and articulation therapy) for treatment of 14 children, aged 4;0-6;7 years, with phonologically based speech-sound disorder (SSD) has been previously analysed with severity outcome measures (percentage of consonants correct score, percentage occurrence of phonological processes and phonetic inventory). Considering that the ultimate goal of intervention for children with phonologically based SSD is to improve intelligibility, it is curious that intervention studies focusing on children's phonology do not routinely use intelligibility as an outcome measure. It is therefore important that the impact of interventions on speech intelligibility is explored. This paper investigates the effectiveness of the two treatment approaches (phonological therapy and articulation therapy) using intelligibility measures, both in single words and in continuous speech, as the primary outcome. Fourteen children with phonologically based SSD participated in the intervention. The children were randomly assigned to phonological therapy or articulation therapy (seven children in each group). Two assessment methods were used for measuring intelligibility: a word identification task (for single words) and a rating scale (for continuous speech). Twenty-one unfamiliar adults listened and judged the children's intelligibility. Reliability analyses showed overall high agreement between listeners across both methods. Significant improvements were noted in intelligibility in both single words (paired t(6)=4.409, p=0.005) and continuous speech (asymptotic Z=2.371, p=0.018) for the group receiving phonology therapy pre- to post-treatment, but no differences in intelligibility were found for those receiving the articulation therapy pre- to post-treatment, either for single words (paired t(6)=1.763, p=0.128) or continuous speech (asymptotic Z=1.442, p=0.149). Intelligibility measures were sensitive enough to show changes in the phonological therapy group but not in the articulation therapy group. These findings emphasize the importance of using intelligibility as an outcome measure to complement the results obtained with other severity measures when exploring the effectiveness of speech interventions. This study presents new evidence for the effectiveness of phonological therapy in improving intelligibility with children with SSD. © 2014 Royal College of Speech and Language Therapists.

  8. The Mechanism of Speech Processing in Congenital Amusia: Evidence from Mandarin Speakers

    PubMed Central

    Liu, Fang; Jiang, Cunmei; Thompson, William Forde; Xu, Yi; Yang, Yufang; Stewart, Lauren

    2012-01-01

    Congenital amusia is a neuro-developmental disorder of pitch perception that causes severe problems with music processing but only subtle difficulties in speech processing. This study investigated speech processing in a group of Mandarin speakers with congenital amusia. Thirteen Mandarin amusics and thirteen matched controls participated in a set of tone and intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on word discrimination in natural speech and their gliding tone analogs. They also performed worse than controls on discriminating gliding tone sequences derived from statements and questions, and showed elevated thresholds for pitch change detection and pitch direction discrimination. However, they performed as well as controls on word identification, and on statement-question identification and discrimination in natural speech. Overall, tasks that involved multiple acoustic cues to communicative meaning were not impacted by amusia. Only when the tasks relied mainly on pitch sensitivity did amusics show impaired performance compared to controls. These findings help explain why amusia only affects speech processing in subtle ways. Further studies on a larger sample of Mandarin amusics and on amusics of other language backgrounds are needed to consolidate these results. PMID:22347374

  9. Relationship between individual differences in speech processing and cognitive functions.

    PubMed

    Ou, Jinghua; Law, Sam-Po; Fung, Roxana

    2015-12-01

    A growing body of research has suggested that cognitive abilities may play a role in individual differences in speech processing. The present study took advantage of a widespread linguistic phenomenon of sound change to systematically assess the relationships between speech processing and various components of attention and working memory in the auditory and visual modalities among typically developed Cantonese-speaking individuals. The individual variations in speech processing are captured in an ongoing sound change-tone merging in Hong Kong Cantonese, in which typically developed native speakers are reported to lose the distinctions between some tonal contrasts in perception and/or production. Three groups of participants were recruited, with a first group of good perception and production, a second group of good perception but poor production, and a third group of good production but poor perception. Our findings revealed that modality-independent abilities of attentional switching/control and working memory might contribute to individual differences in patterns of speech perception and production as well as discrimination latencies among typically developed speakers. The findings not only have the potential to generalize to speech processing in other languages, but also broaden our understanding of the omnipresent phenomenon of language change in all languages.

  10. The mechanism of speech processing in congenital amusia: evidence from Mandarin speakers.

    PubMed

    Liu, Fang; Jiang, Cunmei; Thompson, William Forde; Xu, Yi; Yang, Yufang; Stewart, Lauren

    2012-01-01

    Congenital amusia is a neuro-developmental disorder of pitch perception that causes severe problems with music processing but only subtle difficulties in speech processing. This study investigated speech processing in a group of Mandarin speakers with congenital amusia. Thirteen Mandarin amusics and thirteen matched controls participated in a set of tone and intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on word discrimination in natural speech and their gliding tone analogs. They also performed worse than controls on discriminating gliding tone sequences derived from statements and questions, and showed elevated thresholds for pitch change detection and pitch direction discrimination. However, they performed as well as controls on word identification, and on statement-question identification and discrimination in natural speech. Overall, tasks that involved multiple acoustic cues to communicative meaning were not impacted by amusia. Only when the tasks relied mainly on pitch sensitivity did amusics show impaired performance compared to controls. These findings help explain why amusia only affects speech processing in subtle ways. Further studies on a larger sample of Mandarin amusics and on amusics of other language backgrounds are needed to consolidate these results.

  11. The Effect of Lexical Content on Dichotic Speech Recognition in Older Adults.

    PubMed

    Findlen, Ursula M; Roup, Christina M

    2016-01-01

    Age-related auditory processing deficits have been shown to negatively affect speech recognition for older adult listeners. In contrast, older adults gain benefit from their ability to make use of semantic and lexical content of the speech signal (i.e., top-down processing), particularly in complex listening situations. Assessment of auditory processing abilities among aging adults should take into consideration semantic and lexical content of the speech signal. The purpose of this study was to examine the effects of lexical and attentional factors on dichotic speech recognition performance characteristics for older adult listeners. A repeated measures design was used to examine differences in dichotic word recognition as a function of lexical and attentional factors. Thirty-five older adults (61-85 yr) with sensorineural hearing loss participated in this study. Dichotic speech recognition was evaluated using consonant-vowel-consonant (CVC) word and nonsense CVC syllable stimuli administered in the free recall, directed recall right, and directed recall left response conditions. Dichotic speech recognition performance for nonsense CVC syllables was significantly poorer than performance for CVC words. Dichotic recognition performance varied across response condition for both stimulus types, which is consistent with previous studies on dichotic speech recognition. Inspection of individual results revealed that five listeners demonstrated an auditory-based left ear deficit for one or both stimulus types. Lexical content of stimulus materials affects performance characteristics for dichotic speech recognition tasks in the older adult population. The use of nonsense CVC syllable material may provide a way to assess dichotic speech recognition performance while potentially lessening the effects of lexical content on performance (i.e., measuring bottom-up auditory function both with and without top-down processing). American Academy of Audiology.

  12. Quantified acoustic-optical speech signal incongruity identifies cortical sites of audiovisual speech processing

    PubMed Central

    Bernstein, Lynne E.; Lu, Zhong-Lin; Jiang, Jintao

    2008-01-01

    A fundamental question about human perception is how the speech perceiving brain combines auditory and visual phonetic stimulus information. We assumed that perceivers learn the normal relationship between acoustic and optical signals. We hypothesized that when the normal relationship is perturbed by mismatching the acoustic and optical signals, cortical areas responsible for audiovisual stimulus integration respond as a function of the magnitude of the mismatch. To test this hypothesis, in a previous study, we developed quantitative measures of acoustic-optical speech stimulus incongruity that correlate with perceptual measures. In the current study, we presented low incongruity (LI, matched), medium incongruity (MI, moderately mismatched), and high incongruity (HI, highly mismatched) audiovisual nonsense syllable stimuli during fMRI scanning. Perceptual responses differed as a function of the incongruity level, and BOLD measures were found to vary regionally and quantitatively with perceptual and quantitative incongruity levels. Each increase in level of incongruity resulted in an increase in overall levels of cortical activity and in additional activations. However, the only cortical region that demonstrated differential sensitivity to the three stimulus incongruity levels (HI > MI > LI) was a subarea of the left supramarginal gyrus (SMG). The left SMG might support a fine-grained analysis of the relationship between audiovisual phonetic input in comparison with stored knowledge, as hypothesized here. The methods here show that quantitative manipulation of stimulus incongruity is a new and powerful tool for disclosing the system that processes audiovisual speech stimuli. PMID:18495091

  13. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  14. Cleft Audit Protocol for Speech (CAPS-A): A Comprehensive Training Package for Speech Analysis

    ERIC Educational Resources Information Center

    Sell, D.; John, A.; Harding-Bell, A.; Sweeney, T.; Hegarty, F.; Freeman, J.

    2009-01-01

    Background: The previous literature has largely focused on speech analysis systems and ignored process issues, such as the nature of adequate speech samples, data acquisition, recording and playback. Although there has been recognition of the need for training on tools used in speech analysis associated with cleft palate, little attention has been…

  15. Speech processing and production in two-year-old children acquiring isiXhosa: A tale of two children

    PubMed Central

    Rossouw, Kate; Fish, Laura; Jansen, Charne; Manley, Natalie; Powell, Michelle; Rosen, Loren

    2016-01-01

    We investigated the speech processing and production of 2-year-old children acquiring isiXhosa in South Africa. Two children (2 years, 5 months; 2 years, 8 months) are presented as single cases. Speech input processing, stored phonological knowledge and speech output are described, based on data from auditory discrimination, naming, and repetition tasks. Both children were approximating adult levels of accuracy in their speech output, although naming was constrained by vocabulary. Performance across tasks was variable: One child showed a relative strength with repetition, and experienced most difficulties with auditory discrimination. The other performed equally well in naming and repetition, and obtained 100% for her auditory task. There is limited data regarding typical development of isiXhosa, and the focus has mainly been on speech production. This exploratory study describes typical development of isiXhosa using a variety of tasks understood within a psycholinguistic framework. We describe some ways in which speech and language therapists can devise and carry out assessment with children in situations where few formal assessments exist, and also detail the challenges of such work. PMID:27245131

  16. Perceptual learning for speech in noise after application of binary time-frequency masks

    PubMed Central

    Ahmadi, Mahnaz; Gross, Vauna L.; Sinex, Donal G.

    2013-01-01

    Ideal time-frequency (TF) masks can reject noise and improve the recognition of speech-noise mixtures. An ideal TF mask is constructed with prior knowledge of the target speech signal. The intelligibility of a processed speech-noise mixture depends upon the threshold criterion used to define the TF mask. The study reported here assessed the effect of training on the recognition of speech in noise after processing by ideal TF masks that did not restore perfect speech intelligibility. Two groups of listeners with normal hearing listened to speech-noise mixtures processed by TF masks calculated with different threshold criteria. For each group, a threshold criterion that initially produced word recognition scores between 0.56–0.69 was chosen for training. Listeners practiced with one set of TF-masked sentences until their word recognition performance approached asymptote. Perceptual learning was quantified by comparing word-recognition scores in the first and last training sessions. Word recognition scores improved with practice for all listeners with the greatest improvement observed for the same materials used in training. PMID:23464038

  17. Early infant diet and ERP Correlates of Speech Stimuli Discrimination in 9 month old infants

    USDA-ARS?s Scientific Manuscript database

    Processing and discrimination of speech stimuli were examined during the initial period of weaning in infants enrolled in a longitudinal study of infant diet and development (the Beginnings Study). Event-related potential measures (ERP; 128 sites) were used to compare the processing of speech stimul...

  18. Brainstem Transcription of Speech Is Disrupted in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or…

  19. Hemispheric Differences in Processing Dichotic Meaningful and Non-Meaningful Words

    ERIC Educational Resources Information Center

    Yasin, Ifat

    2007-01-01

    Classic dichotic-listening paradigms reveal a right-ear advantage (REA) for speech sounds as compared to non-speech sounds. This REA is assumed to be associated with a left-hemisphere dominance for meaningful speech processing. This study objectively probed the relationship between ear advantage and hemispheric dominance in a dichotic-listening…

  20. The Functional Neuroanatomy of Prelexical Processing in Speech Perception

    ERIC Educational Resources Information Center

    Scott, Sophie K.; Wise, Richard J. S.

    2004-01-01

    In this paper we attempt to relate the prelexical processing of speech, with particular emphasis on functional neuroimaging studies, to the study of auditory perceptual systems by disciplines in the speech and hearing sciences. The elaboration of the sound-to-meaning pathways in the human brain enables their integration into models of the human…

  1. L'indirection: Procede d'expression et de persuasion en communication publique (Indirection: Process of Expression and Persuasion in Public Communication).

    ERIC Educational Resources Information Center

    Gauthier, Gilles

    2001-01-01

    Focuses on the indirection process presented in Searle's and Vanderveken's theory of speech acts: the performance of a primary speech act by means of the accomplishment of a secondary speech act. Discusses indirection mechanisms used in advertising and in political communication. (Author/VWL)

  2. Audiovisual Matching in Speech and Nonspeech Sounds: A Neurodynamical Model

    ERIC Educational Resources Information Center

    Loh, Marco; Schmid, Gabriele; Deco, Gustavo; Ziegler, Wolfram

    2010-01-01

    Audiovisual speech perception provides an opportunity to investigate the mechanisms underlying multimodal processing. By using nonspeech stimuli, it is possible to investigate the degree to which audiovisual processing is specific to the speech domain. It has been shown in a match-to-sample design that matching across modalities is more difficult…

  3. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Six characteristics of effective structured reporting and the inevitable integration with speech recognition.

    PubMed

    Liu, David; Zucherman, Mark; Tulloss, William B

    2006-03-01

    The reporting of radiological images is undergoing dramatic changes due to the introduction of two new technologies: structured reporting and speech recognition. Each technology has its own unique advantages. The highly organized content of structured reporting facilitates data mining and billing, whereas speech recognition offers a natural succession from the traditional dictation-transcription process. This article clarifies the distinction between the process and outcome of structured reporting, describes fundamental requirements for any effective structured reporting system, and describes the potential development of a novel, easy-to-use, customizable structured reporting system that incorporates speech recognition. This system should have all the advantages derived from structured reporting, accommodate a wide variety of user needs, and incorporate speech recognition as a natural component and extension of the overall reporting process.

  5. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  6. Cognitive processing load during listening is reduced more by decreasing voice similarity than by increasing spatial separation between target and masker speech.

    PubMed

    Zekveld, Adriana A; Rudner, Mary; Kramer, Sophia E; Lyzenga, Johannes; Rönnberg, Jerker

    2014-01-01

    We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data.

  7. Cognitive processing load during listening is reduced more by decreasing voice similarity than by increasing spatial separation between target and masker speech

    PubMed Central

    Zekveld, Adriana A.; Rudner, Mary; Kramer, Sophia E.; Lyzenga, Johannes; Rönnberg, Jerker

    2014-01-01

    We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data. PMID:24808818

  8. Visual Context Enhanced: The Joint Contribution of Iconic Gestures and Visible Speech to Degraded Speech Comprehension

    ERIC Educational Resources Information Center

    Drijvers, Linda; Ozyurek, Asli

    2017-01-01

    Purpose: This study investigated whether and to what extent iconic co-speech gestures contribute to information from visible speech to enhance degraded speech comprehension at different levels of noise-vocoding. Previous studies of the contributions of these 2 visual articulators to speech comprehension have only been performed separately. Method:…

  9. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  10. Prediction and constraint in audiovisual speech perception.

    PubMed

    Peelle, Jonathan E; Sommers, Mitchell S

    2015-07-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multi-modal highlight generation for sports videos using an information-theoretic excitability measure

    NASA Astrophysics Data System (ADS)

    Hasan, Taufiq; Bořil, Hynek; Sangwan, Abhijeet; L Hansen, John H.

    2013-12-01

    The ability to detect and organize `hot spots' representing areas of excitement within video streams is a challenging research problem when techniques rely exclusively on video content. A generic method for sports video highlight selection is presented in this study which leverages both video/image structure as well as audio/speech properties. Processing begins where the video is partitioned into small segments and several multi-modal features are extracted from each segment. Excitability is computed based on the likelihood of the segmental features residing in certain regions of their joint probability density function space which are considered both exciting and rare. The proposed measure is used to rank order the partitioned segments to compress the overall video sequence and produce a contiguous set of highlights. Experiments are performed on baseball videos based on signal processing advancements for excitement assessment in the commentators' speech, audio energy, slow motion replay, scene cut density, and motion activity as features. Detailed analysis on correlation between user excitability and various speech production parameters is conducted and an effective scheme is designed to estimate the excitement level of commentator's speech from the sports videos. Subjective evaluation of excitability and ranking of video segments demonstrate a higher correlation with the proposed measure compared to well-established techniques indicating the effectiveness of the overall approach.

  12. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  13. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech from Speech Delay: IV. the Pause Marker Index

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Strand, Edythe A.; Fourakis, Marios; Jakielski, Kathy J.; Hall, Sheryl D.; Karlsson, Heather B.; Mabie, Heather L.; McSweeny, Jane L.; Tilkens, Christie M.; Wilson, David L.

    2017-01-01

    Purpose: Three previous articles provided rationale, methods, and several forms of validity support for a diagnostic marker of childhood apraxia of speech (CAS), termed the pause marker (PM). Goals of the present article were to assess the validity and stability of the PM Index (PMI) to scale CAS severity. Method: PM scores and speech, prosody,…

  14. Speech processing in children with functional articulation disorders.

    PubMed

    Gósy, Mária; Horváth, Viktória

    2015-03-01

    This study explored auditory speech processing and comprehension abilities in 5-8-year-old monolingual Hungarian children with functional articulation disorders (FADs) and their typically developing peers. Our main hypothesis was that children with FAD would show co-existing auditory speech processing disorders, with different levels of these skills depending on the nature of the receptive processes. The tasks included (i) sentence and non-word repetitions, (ii) non-word discrimination and (iii) sentence and story comprehension. Results suggest that the auditory speech processing of children with FAD is underdeveloped compared with that of typically developing children, and largely varies across task types. In addition, there are differences between children with FAD and controls in all age groups from 5 to 8 years. Our results have several clinical implications.

  15. Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information.

    PubMed

    Kempe, Vera; Bublitz, Dennis; Brooks, Patricia J

    2015-05-01

    Is the observed link between musical ability and non-native speech-sound processing due to enhanced sensitivity to acoustic features underlying both musical and linguistic processing? To address this question, native English speakers (N = 118) discriminated Norwegian tonal contrasts and Norwegian vowels. Short tones differing in temporal, pitch, and spectral characteristics were used to measure sensitivity to the various acoustic features implicated in musical and speech processing. Musical ability was measured using Gordon's Advanced Measures of Musical Audiation. Results showed that sensitivity to specific acoustic features played a role in non-native speech-sound processing: Controlling for non-verbal intelligence, prior foreign language-learning experience, and sex, sensitivity to pitch and spectral information partially mediated the link between musical ability and discrimination of non-native vowels and lexical tones. The findings suggest that while sensitivity to certain acoustic features partially mediates the relationship between musical ability and non-native speech-sound processing, complex tests of musical ability also tap into other shared mechanisms. © 2014 The British Psychological Society.

  16. Simulation of talking faces in the human brain improves auditory speech recognition

    PubMed Central

    von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.

    2008-01-01

    Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648

  17. Communicating by Language: The Speech Process.

    ERIC Educational Resources Information Center

    House, Arthur S., Ed.

    This document reports on a conference focused on speech problems. The main objective of these discussions was to facilitate a deeper understanding of human communication through interaction of conference participants with colleagues in other disciplines. Topics discussed included speech production, feedback, speech perception, and development of…

  18. Speech Databases of Typical Children and Children with SLI

    PubMed Central

    Grill, Pavel; Tučková, Jana

    2016-01-01

    The extent of research on children’s speech in general and on disordered speech specifically is very limited. In this article, we describe the process of creating databases of children’s speech and the possibilities for using such databases, which have been created by the LANNA research group in the Faculty of Electrical Engineering at Czech Technical University in Prague. These databases have been principally compiled for medical research but also for use in other areas, such as linguistics. Two databases were recorded: one for healthy children’s speech (recorded in kindergarten and in the first level of elementary school) and the other for pathological speech of children with a Specific Language Impairment (recorded at a surgery of speech and language therapists and at the hospital). Both databases were sub-divided according to specific demands of medical research. Their utilization can be exoteric, specifically for linguistic research and pedagogical use as well as for studies of speech-signal processing. PMID:26963508

  19. Consequences of Stimulus Type on Higher-Order Processing in Single-Sided Deaf Cochlear Implant Users.

    PubMed

    Finke, Mareike; Sandmann, Pascale; Bönitz, Hanna; Kral, Andrej; Büchner, Andreas

    2016-01-01

    Single-sided deaf subjects with a cochlear implant (CI) provide the unique opportunity to compare central auditory processing of the electrical input (CI ear) and the acoustic input (normal-hearing, NH, ear) within the same individual. In these individuals, sensory processing differs between their two ears, while cognitive abilities are the same irrespectively of the sensory input. To better understand perceptual-cognitive factors modulating speech intelligibility with a CI, this electroencephalography study examined the central-auditory processing of words, the cognitive abilities, and the speech intelligibility in 10 postlingually single-sided deaf CI users. We found lower hit rates and prolonged response times for word classification during an oddball task for the CI ear when compared with the NH ear. Also, event-related potentials reflecting sensory (N1) and higher-order processing (N2/N4) were prolonged for word classification (targets versus nontargets) with the CI ear compared with the NH ear. Our results suggest that speech processing via the CI ear and the NH ear differs both at sensory (N1) and cognitive (N2/N4) processing stages, thereby affecting the behavioral performance for speech discrimination. These results provide objective evidence for cognition to be a key factor for speech perception under adverse listening conditions, such as the degraded speech signal provided from the CI. © 2016 S. Karger AG, Basel.

  20. DETECTION AND IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL ACTIVITY PATTERNS

    PubMed Central

    Centanni, T.M.; Sloan, A.M.; Reed, A.C.; Engineer, C.T.; Rennaker, R.; Kilgard, M.P.

    2014-01-01

    We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/sec), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech processing disorders. PMID:24286757

  1. The Processing and Interpretation of Verb Phrase Ellipsis Constructions by Children at Normal and Slowed Speech Rates

    ERIC Educational Resources Information Center

    Callahan, Sarah M.; Walenski, Matthew; Love, Tracy

    2012-01-01

    Purpose: To examine children's comprehension of verb phrase (VP) ellipsis constructions in light of their automatic, online structural processing abilities and conscious, metalinguistic reflective skill. Method: Forty-two children ages 5 through 12 years listened to VP ellipsis constructions involving the strict/sloppy ambiguity (e.g., "The…

  2. Multisensory integration of speech sounds with letters vs. visual speech: only visual speech induces the mismatch negativity.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean

    2018-05-01

    Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Speech Sound Processing Deficits and Training-Induced Neural Plasticity in Rats with Dyslexia Gene Knockdown

    PubMed Central

    Centanni, Tracy M.; Chen, Fuyi; Booker, Anne M.; Engineer, Crystal T.; Sloan, Andrew M.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.

    2014-01-01

    In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments. PMID:24871331

  4. Discharge experiences of speech-language pathologists working in Cyprus and Greece.

    PubMed

    Kambanaros, Maria

    2010-08-01

    Post-termination relationships are complex because the client may need additional services and it may be difficult to determine when the speech-language pathologist-client relationship is truly terminated. In my contribution to this scientific forum, discharge experiences from speech-language pathologists working in Cyprus and Greece will be explored in search of commonalities and differences in the way in which pathologists end therapy from different cultural perspectives. Within this context the personal impact on speech-language pathologists of the discharge process will be highlighted. Inherent in this process is how speech-language pathologists learn to hold their feelings, anxieties and reactions when communicating discharge to clients. Overall speech-language pathologists working in Cyprus and Greece experience similar emotional responses to positive and negative therapy endings as speech-language pathologists working in Australia. The major difference is that Cypriot and Greek therapists face serious limitations in moving their clients on after therapy has ended.

  5. Verbal Processing Speed and Executive Functioning in Long-Term Cochlear Implant Users

    PubMed Central

    Pisoni, David B.; Kronenberger, William G.

    2015-01-01

    Purpose The purpose of this study was to report how verbal rehearsal speed (VRS), a form of covert speech used to maintain verbal information in working memory, and another verbal processing speed measure, perceptual encoding speed, are related to 3 domains of executive function (EF) at risk in cochlear implant (CI) users: verbal working memory, fluency-speed, and inhibition-concentration. Method EF, speech perception, and language outcome measures were obtained from 55 prelingually deaf, long-term CI users and matched controls with normal hearing (NH controls). Correlational analyses were used to assess relations between VRS (articulation rate), perceptual encoding speed (digit and color naming), and the outcomes in each sample. Results CI users displayed slower verbal processing speeds than NH controls. Verbal rehearsal speed was related to 2 EF domains in the NH sample but was unrelated to EF outcomes in CI users. Perceptual encoding speed was related to all EF domains in both groups. Conclusions Verbal rehearsal speed may be less influential for EF quality in CI users than for NH controls, whereas rapid automatized labeling skills and EF are closely related in both groups. CI users may develop processing strategies in EF tasks that differ from the covert speech strategies routinely employed by NH individuals. PMID:25320961

  6. Speech and language disorders in children from public schools in Belo Horizonte

    PubMed Central

    Rabelo, Alessandra Terra Vasconcelos; Campos, Fernanda Rodrigues; Friche, Clarice Passos; da Silva, Bárbara Suelen Vasconcelos; Friche, Amélia Augusta de Lima; Alves, Claudia Regina Lindgren; Goulart, Lúcia Maria Horta de Figueiredo

    2015-01-01

    Objective: To investigate the prevalence of oral language, orofacial motor skill and auditory processing disorders in children aged 4-10 years and verify their association with age and gender. Methods: Cross-sectional study with stratified, random sample consisting of 539 students. The evaluation consisted of three protocols: orofacial motor skill protocol, adapted from the Myofunctional Evaluation Guidelines; the Child Language Test ABFW - Phonology; and a simplified auditory processing evaluation. Descriptive and associative statistical analyses were performed using Epi Info software, release 6.04. Chi-square test was applied to compare proportion of events and analysis of variance was used to compare mean values. Significance was set at p≤0.05. Results: Of the studied subjects, 50.1% had at least one of the assessed disorders; of those, 33.6% had oral language disorder, 17.1% had orofacial motor skill impairment, and 27.3% had auditory processing disorder. There were significant associations between auditory processing skills’ impairment, oral language impairment and age, suggesting a decrease in the number of disorders with increasing age. Similarly, the variable "one or more speech, language and hearing disorders" was also associated with age. Conclusions: The prevalence of speech, language and hearing disorders in children was high, indicating the need for research and public health efforts to cope with this problem. PMID:26300524

  7. Restoring the missing features of the corrupted speech using linear interpolation methods

    NASA Astrophysics Data System (ADS)

    Rassem, Taha H.; Makbol, Nasrin M.; Hasan, Ali Muttaleb; Zaki, Siti Syazni Mohd; Girija, P. N.

    2017-10-01

    One of the main challenges in the Automatic Speech Recognition (ASR) is the noise. The performance of the ASR system reduces significantly if the speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low Signal to Noise Ratio (SNR) elements, the incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to the spectrogram in order to restore the missing elements, which is one direction. In another direction, speech recognizer should be able to restore the missing elements due to deleting low SNR elements before performing the recognition. This is can be done using different spectrogram reconstruction methods. In this paper, the geometrical spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox. In these geometrical reconstruction methods, the linear interpolation along time or frequency methods are used to predict the missing elements between adjacent observed elements in the spectrogram. Moreover, a new linear interpolation method using time and frequency together is presented. The CMU Sphinx III software is used in the experiments to test the performance of the linear interpolation reconstruction method. The experiments are done under different conditions such as different lengths of the window and different lengths of utterances. Speech corpus consists of 20 males and 20 females; each one has two different utterances are used in the experiments. As a result, 80% recognition accuracy is achieved with 25% SNR ratio.

  8. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  9. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  10. The impact of demographic and socio-economic conditions on the prevalence of speech disorders in preschool children in Bitola.

    PubMed

    Rajchanovska, Domnika; Ivanovska, Beti Zaifirova

    2015-01-01

    Speech development in preschool children should be consistent with a child's overall development. However, disorders of speech in childhood are not uncommon. The purpose of the study was to determine the impact of demographic and socio-economic conditions on the prevalence of speech disorders in preschool children in Bitola. The study is observational and prospective with two years duration. During the period from May 2009 to June 2011, 1607 children aged 3 and 5 years, who came for regular examinations, were observed. The following research methods were applied: pediatric examination, psychological testing (Test of Chuturik), interviews with parents and a questionnaire for behavior of children (Child Behavior Checklist - CBCL). 1,607 children were analyzed, 772 aged three years, 835 aged five years, 51.65% male and 49.35% female.The prevalence of speech disorders was 37.65%. Statistical analysis showed that these disorders were more frequent in three years old children, males living in rural areas and in larger families.They did not have their own rooms at home, they were using mobile phones and were spending many hours per day watching television, (p<0.01). Also, children whose parents had lower levels of education and were engaged in agriculture, often had significant speech disorders, (p<0.01). Speech disorders in preschool children in Bitola have a high prevalence. Because of their influence on later cognitive development of children, the process requires cooperation among parents, children, speech and the audiologist with the significant role in prevention, early detection and treatment.

  11. Computer-based auditory training (CBAT): benefits for children with language- and reading-related learning difficulties.

    PubMed

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Campbell, Nicci; Luxon, Linda M

    2010-08-01

    This article reviews the evidence for computer-based auditory training (CBAT) in children with language, reading, and related learning difficulties, and evaluates the extent it can benefit children with auditory processing disorder (APD). Searches were confined to studies published between 2000 and 2008, and they are rated according to the level of evidence hierarchy proposed by the American Speech-Language Hearing Association (ASHA) in 2004. We identified 16 studies of two commercially available CBAT programs (13 studies of Fast ForWord (FFW) and three studies of Earobics) and five further outcome studies of other non-speech and simple speech sounds training, available for children with language, learning, and reading difficulties. The results suggest that, apart from the phonological awareness skills, the FFW and Earobics programs seem to have little effect on the language, spelling, and reading skills of children. Non-speech and simple speech sounds training may be effective in improving children's reading skills, but only if it is delivered by an audio-visual method. There is some initial evidence to suggest that CBAT may be of benefit for children with APD. Further research is necessary, however, to substantiate these preliminary findings.

  12. Visual stimuli in intervention approaches for pre-schoolers diagnosed with phonological delay.

    PubMed

    Pedro, Cassandra Ferreira; Lousada, Marisa; Hall, Andreia; Jesus, Luis M T

    2018-04-01

    The aim of this study was to develop and content validate specific speech and language intervention picture cards: The Letter-Sound (L&S) cards. The present study was also focused on assessing the influence of these cards on letter-sound correspondences and speech sound production. An expert panel of six speech and language therapists analysed and discussed the L&S cards based on several criteria previously established. A Speech and Language Therapist carried out a 6-week therapeutic intervention with a group of seven Portuguese phonologically delayed pre-schoolers aged 5;3 to 6;5. The modified Bland-Altman method revealed good agreement among evaluators, that is the majority of the values was between the agreement limits. Additional outcome measures were collected before and after the therapeutic intervention process. Results indicate that the L&S cards facilitate the acquisition of letter-sound correspondences. Regarding speech sound production, some improvements were also observed at word level. The L&S cards are therefore likely to give phonetic cues, which are crucial for the correct production of therapeutic targets. These visual cues seemed to have helped children with phonological delay develop the above-mentioned skills.

  13. Quality of Mobile Phone and Tablet Mobile Apps for Speech Sound Disorders: Protocol for an Evidence-Based Appraisal

    PubMed Central

    Morris, Meg E; Erickson, Shane; Serry, Tanya A

    2016-01-01

    Background Although mobile apps are readily available for speech sound disorders (SSD), their validity has not been systematically evaluated. This evidence-based appraisal will critically review and synthesize current evidence on available therapy apps for use by children with SSD. Objective The main aims are to (1) identify the types of apps currently available for Android and iOS mobile phones and tablets, and (2) to critique their design features and content using a structured quality appraisal tool. Methods This protocol paper presents and justifies the methods used for a systematic review of mobile apps that provide intervention for use by children with SSD. The primary outcomes of interest are (1) engagement, (2) functionality, (3) aesthetics, (4) information quality, (5) subjective quality, and (6) perceived impact. Quality will be assessed by 2 certified practicing speech-language pathologists using a structured quality appraisal tool. Two app stores will be searched from the 2 largest operating platforms, Android and iOS. Systematic methods of knowledge synthesis shall include searching the app stores using a defined procedure, data extraction, and quality analysis. Results This search strategy shall enable us to determine how many SSD apps are available for Android and for iOS compatible mobile phones and tablets. It shall also identify the regions of the world responsible for the apps’ development, the content and the quality of offerings. Recommendations will be made for speech-language pathologists seeking to use mobile apps in their clinical practice. Conclusions This protocol provides a structured process for locating apps and appraising the quality, as the basis for evaluating their use in speech pathology for children in English-speaking nations. PMID:27899341

  14. The Relationship between Speech Production and Speech Perception Deficits in Parkinson's Disease

    ERIC Educational Resources Information Center

    De Keyser, Kim; Santens, Patrick; Bockstael, Annelies; Botteldooren, Dick; Talsma, Durk; De Vos, Stefanie; Van Cauwenberghe, Mieke; Verheugen, Femke; Corthals, Paul; De Letter, Miet

    2016-01-01

    Purpose: This study investigated the possible relationship between hypokinetic speech production and speech intensity perception in patients with Parkinson's disease (PD). Method: Participants included 14 patients with idiopathic PD and 14 matched healthy controls (HCs) with normal hearing and cognition. First, speech production was objectified…

  15. Speech Characteristics Associated with Three Genotypes of Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Ahn, Ji Sook; Gomez, Christopher; Sidtis, Diana

    2011-01-01

    Purpose: Advances in neurobiology are providing new opportunities to investigate the neurological systems underlying motor speech control. This study explores the perceptual characteristics of the speech of three genotypes of spino-cerebellar ataxia (SCA) as manifest in four different speech tasks. Methods: Speech samples from 26 speakers with SCA…

  16. Speech Acts across Cultures: Challenges to Communication in a Second Language. Studies on Language Acquisition, 11.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Neu, Joyce, Ed.

    Articles on speech acts and intercultural communication include: "Investigating the Production of Speech Act Sets" (Andrew Cohen); "Non-Native Refusals: A Methodological Perspective" (Noel Houck, Susan M. Gass); "Natural Speech Act Data versus Written Questionnaire Data: How Data Collection Method Affects Speech Act…

  17. Advanced Persuasive Speaking, English, Speech: 5114.112.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Developed as a high school quinmester unit on persuasive speaking, this guide provides the teacher with teaching strategies for a course which analyzes speeches from "Vital Speeches of the Day," political speeches, TV commercials, and other types of speeches. Practical use of persuasive methods for school, community, county, state, and…

  18. Automated Speech Rate Measurement in Dysarthria

    ERIC Educational Resources Information Center

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-01-01

    Purpose: In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. Method: The new algorithm was trained and tested using Dutch…

  19. Suppression of the µ rhythm during speech and non-speech discrimination revealed by independent component analysis: implications for sensorimotor integration in speech processing.

    PubMed

    Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan

    2013-01-01

    Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.). Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80-100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13-30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed.

  20. Language familiarity modulates relative attention to the eyes and mouth of a talker.

    PubMed

    Barenholtz, Elan; Mavica, Lauren; Lewkowicz, David J

    2016-02-01

    We investigated whether the audiovisual speech cues available in a talker's mouth elicit greater attention when adults have to process speech in an unfamiliar language vs. a familiar language. Participants performed a speech-encoding task while watching and listening to videos of a talker in a familiar language (English) or an unfamiliar language (Spanish or Icelandic). Attention to the mouth increased in monolingual subjects in response to an unfamiliar language condition but did not in bilingual subjects when the task required speech processing. In the absence of an explicit speech-processing task, subjects attended equally to the eyes and mouth in response to both familiar and unfamiliar languages. Overall, these results demonstrate that language familiarity modulates selective attention to the redundant audiovisual speech cues in a talker's mouth in adults. When our findings are considered together with similar findings from infants, they suggest that this attentional strategy emerges very early in life. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Blind estimation of reverberation time

    NASA Astrophysics Data System (ADS)

    Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; O'Brien, William D.; Lansing, Charissa R.; Feng, Albert S.

    2003-11-01

    The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. Many state-of-the-art audio signal processing algorithms, for example in hearing-aids and telephony, are expected to have the ability to characterize the listening environment, and turn on an appropriate processing strategy accordingly. Thus, a method for characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, a method for estimating RT without prior knowledge of sound sources or room geometry is presented. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time-constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.

  2. Online estimation of room reverberation time

    NASA Astrophysics Data System (ADS)

    Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; Feng, Albert S.

    2003-04-01

    The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. State-of-the-art signal processing algorithms for hearing aids are expected to have the ability to evaluate the characteristics of the listening environment and turn on an appropriate processing strategy accordingly. Thus, a method for the characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method or regression, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, we describe a method for estimating RT without prior knowledge of sound sources or room geometry. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.

  3. APPLICATION OF MOWRER'S AUTISTIC THEORY TO THE SPEECH HABILITATION OF MENTALLY RETARDED PUPILS.

    ERIC Educational Resources Information Center

    RIGRODSKY, S.; AND OTHERS

    A SPEECH THERAPY METHOD FOR MENTAL RETARDATES WAS DEVELOPED AND EVALUATED. THE METHOD WAS BASED UPON THE ESTABLISHMENT OF FAVORABLE ASSOCIATIONS IN THE CHILD BETWEEN THE WORDS AND SOUNDS OF LANGUAGE AND THE PRODUCER OF THE LANGUAGE, USING STIMULUS-REWARD AND SITUATION-REWARD PRINCIPLES. TRADITIONAL METHODS OF SPEECH THERAPY WERE ADMINISTERED,…

  4. Using Compressed Speech to Measure Simultaneous Processing in Persons with and without Visual Impairment

    ERIC Educational Resources Information Center

    Marks, William J.; Jones, W. Paul; Loe, Scott A.

    2013-01-01

    This study investigated the use of compressed speech as a modality for assessment of the simultaneous processing function for participants with visual impairment. A 24-item compressed speech test was created using a sound editing program to randomly remove sound elements from aural stimuli, holding pitch constant, with the objective to emulate the…

  5. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural Perspective

    ERIC Educational Resources Information Center

    Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…

  6. Connecting Stuttering Management and Measurement: I. Core Speech Measures of Clinical Process and Outcome

    ERIC Educational Resources Information Center

    Shenker, Rosalee C.

    2006-01-01

    Background: There will always be a place for stuttering treatments designed to eliminate or reduce stuttered speech. When those treatments are required, direct speech measures of treatment process and outcome are needed in clinical practice. Aims: Based on the contents of published clinical trials of such treatments, three "core" measures of…

  7. Little Houses and Casas Pequenas: Message Formulation and Syntactic Form in Unscripted Speech with Speakers of English and Spanish

    ERIC Educational Resources Information Center

    Brown-Schmidt, Sarah; Konopka, Agnieszka E.

    2008-01-01

    During unscripted speech, speakers coordinate the formulation of pre-linguistic messages with the linguistic processes that implement those messages into speech. We examine the process of constructing a contextually appropriate message and interfacing that message with utterance planning in English ("the small butterfly") and Spanish ("la mariposa…

  8. Teaching Turkish as a Foreign Language: Extrapolating from Experimental Psychology

    ERIC Educational Resources Information Center

    Erdener, Dogu

    2017-01-01

    Speech perception is beyond the auditory domain and a multimodal process, specifically, an auditory-visual one--we process lip and face movements during speech. In this paper, the findings in cross-language studies of auditory-visual speech perception in the past two decades are interpreted to the applied domain of second language (L2)…

  9. Dynamic Processes of Speech Development by Seven Adult Learners of Japanese in a Domestic Immersion Context

    ERIC Educational Resources Information Center

    Fukuda, Makiko

    2014-01-01

    The present study revealed the dynamic process of speech development in a domestic immersion program by seven adult beginning learners of Japanese. The speech data were analyzed with fluency, accuracy, and complexity measurements at group, interindividual, and intraindividual levels. The results revealed the complex nature of language development…

  10. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.

    PubMed

    Hossain, Mohammad E; Jassim, Wissam A; Zilany, Muhammad S A

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.

  11. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram

    PubMed Central

    Hossain, Mohammad E.; Jassim, Wissam A.; Zilany, Muhammad S. A.

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants. PMID:26967160

  12. Lessons Learned in Part-of-Speech Tagging of Conversational Speech

    DTIC Science & Technology

    2010-10-01

    for conversational speech recognition. In Plenary Meeting and Symposium on Prosody and Speech Processing. Slav Petrov and Dan Klein. 2007. Improved...inference for unlexicalized parsing. In HLT-NAACL. Slav Petrov. 2010. Products of random latent variable grammars. In HLT-NAACL. Brian Roark, Yang Liu

  13. Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition.

    PubMed

    Kreitewolf, Jens; Friederici, Angela D; von Kriegstein, Katharina

    2014-11-15

    Hemispheric specialization for linguistic prosody is a controversial issue. While it is commonly assumed that linguistic prosody and emotional prosody are preferentially processed in the right hemisphere, neuropsychological work directly comparing processes of linguistic prosody and emotional prosody suggests a predominant role of the left hemisphere for linguistic prosody processing. Here, we used two functional magnetic resonance imaging (fMRI) experiments to clarify the role of left and right hemispheres in the neural processing of linguistic prosody. In the first experiment, we sought to confirm previous findings showing that linguistic prosody processing compared to other speech-related processes predominantly involves the right hemisphere. Unlike previous studies, we controlled for stimulus influences by employing a prosody and speech task using the same speech material. The second experiment was designed to investigate whether a left-hemispheric involvement in linguistic prosody processing is specific to contrasts between linguistic prosody and emotional prosody or whether it also occurs when linguistic prosody is contrasted against other non-linguistic processes (i.e., speaker recognition). Prosody and speaker tasks were performed on the same stimulus material. In both experiments, linguistic prosody processing was associated with activity in temporal, frontal, parietal and cerebellar regions. Activation in temporo-frontal regions showed differential lateralization depending on whether the control task required recognition of speech or speaker: recognition of linguistic prosody predominantly involved right temporo-frontal areas when it was contrasted against speech recognition; when contrasted against speaker recognition, recognition of linguistic prosody predominantly involved left temporo-frontal areas. The results show that linguistic prosody processing involves functions of both hemispheres and suggest that recognition of linguistic prosody is based on an inter-hemispheric mechanism which exploits both a right-hemispheric sensitivity to pitch information and a left-hemispheric dominance in speech processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Letting go of yesterday: Effect of distraction on post-event processing and anticipatory anxiety in a socially anxious sample.

    PubMed

    Blackie, Rebecca A; Kocovski, Nancy L

    2016-01-01

    According to cognitive models, post-event processing (PEP) is a key factor in the maintenance of social anxiety. Given that decreasing PEP can be challenging for socially anxious individuals, it is important to identify potentially useful strategies. Although distraction may help to decrease PEP, the findings have been equivocal. The primary purpose of this study was to examine whether a brief distraction period immediately following a speech would lead to less PEP the next day. The secondary aim was to examine the effect of distraction following an initial speech on anticipatory anxiety for a second speech, via reductions in PEP. Participants (N = 77 undergraduates with elevated social anxiety; 67.53% female) delivered a speech and were randomly assigned to a distraction, rumination, or control condition. The following day, participants reported levels of PEP in relation to the first speech, as well as anxiety regarding a second, upcoming speech. As expected, those in the distraction condition reported less PEP than those in the rumination and control conditions. Additionally, distraction following the first speech was indirectly related to anticipatory anxiety for the second speech, via PEP. Distraction may represent a potentially useful strategy for reducing PEP and other maladaptive processes that may maintain social anxiety.

  15. Dissociating Cortical Activity during Processing of Native and Non-Native Audiovisual Speech from Early to Late Infancy

    PubMed Central

    Fava, Eswen; Hull, Rachel; Bortfeld, Heather

    2014-01-01

    Initially, infants are capable of discriminating phonetic contrasts across the world’s languages. Starting between seven and ten months of age, they gradually lose this ability through a process of perceptual narrowing. Although traditionally investigated with isolated speech sounds, such narrowing occurs in a variety of perceptual domains (e.g., faces, visual speech). Thus far, tracking the developmental trajectory of this tuning process has been focused primarily on auditory speech alone, and generally using isolated sounds. But infants learn from speech produced by people talking to them, meaning they learn from a complex audiovisual signal. Here, we use near-infrared spectroscopy to measure blood concentration changes in the bilateral temporal cortices of infants in three different age groups: 3-to-6 months, 7-to-10 months, and 11-to-14-months. Critically, all three groups of infants were tested with continuous audiovisual speech in both their native and another, unfamiliar language. We found that at each age range, infants showed different patterns of cortical activity in response to the native and non-native stimuli. Infants in the youngest group showed bilateral cortical activity that was greater overall in response to non-native relative to native speech; the oldest group showed left lateralized activity in response to native relative to non-native speech. These results highlight perceptual tuning as a dynamic process that happens across modalities and at different levels of stimulus complexity. PMID:25116572

  16. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music.

    PubMed

    Chen, Xizhuo; Zhao, Yanxin; Zhong, Suyu; Cui, Zaixu; Li, Jiaqi; Gong, Gaolang; Dong, Qi; Nan, Yun

    2018-05-01

    The arcuate fasciculus (AF) is a neural fiber tract that is critical to speech and music development. Although the predominant role of the left AF in speech development is relatively clear, how the AF engages in music development is not understood. Congenital amusia is a special neurodevelopmental condition, which not only affects musical pitch but also speech tone processing. Using diffusion tensor tractography, we aimed at understanding the role of AF in music and speech processing by examining the neural connectivity characteristics of the bilateral AF among thirty Mandarin amusics. Compared to age- and intelligence quotient (IQ)-matched controls, amusics demonstrated increased connectivity as reflected by the increased fractional anisotropy in the right posterior AF but decreased connectivity as reflected by the decreased volume in the right anterior AF. Moreover, greater fractional anisotropy in the left direct AF was correlated with worse performance in speech tone perception among amusics. This study is the first to examine the neural connectivity of AF in the neurodevelopmental condition of amusia as a result of disrupted music pitch and speech tone processing. We found abnormal white matter structural connectivity in the right AF for the amusic individuals. Moreover, we demonstrated that the white matter microstructural properties of the left direct AF is modulated by lexical tone deficits among the amusic individuals. These data support the notion of distinctive pitch processing systems between music and speech.

  17. The functional neuroanatomy of language

    NASA Astrophysics Data System (ADS)

    Hickok, Gregory

    2009-09-01

    There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.

  18. Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Borland, Michael S.; Buell, Elizabeth P.; Centanni, Tracy M.; Fink, Melyssa K.; Im, Kwok W.; Wilson, Linda G.; Kilgard, Michael P.

    2015-01-01

    Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676

  19. The effect of hearing aid technologies on listening in an automobile

    PubMed Central

    Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A.; Stanziola, Rachel W.

    2014-01-01

    Background Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile /road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the driver/listener, conventional directional processing that places the directivity beam toward the listener’s front may not be helpful, and in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). Purpose The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener’s speech recognition performance and preference for communication in a traveling automobile. Research design A single-blinded, repeated-measures design was used. Study Sample Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 years participated in the study. Data Collection and Analysis The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 miles/hour on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound treated booth to assess speech recognition performance and preference with each programmed condition. Results Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants’ preferences for a given processing scheme were generally consistent with speech recognition results. Conclusions The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. PMID:23886425

  20. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  1. Single-trial analysis of the neural correlates of speech quality perception.

    PubMed

    Porbadnigk, Anne K; Treder, Matthias S; Blankertz, Benjamin; Antons, Jan-Niklas; Schleicher, Robert; Möller, Sebastian; Curio, Gabriel; Müller, Klaus-Robert

    2013-10-01

    Assessing speech quality perception is a challenge typically addressed in behavioral and opinion-seeking experiments. Only recently, neuroimaging methods were introduced, which were used to study the neural processing of quality at group level. However, our electroencephalography (EEG) studies show that the neural correlates of quality perception are highly individual. Therefore, it became necessary to establish dedicated machine learning methods for decoding subject-specific effects. The effectiveness of our methods is shown by the data of an EEG study that investigates how the quality of spoken vowels is processed neurally. Participants were asked to indicate whether they had perceived a degradation of quality (signal-correlated noise) in vowels, presented in an oddball paradigm. We find that the P3 amplitude is attenuated with increasing noise. Single-trial analysis allows one to show that this is partly due to an increasing jitter of the P3 component. A novel classification approach helps to detect trials with presumably non-conscious processing at the threshold of perception. We show that this approach uncovers a non-trivial confounder between neural hits and neural misses. The combined use of EEG signals and machine learning methods results in a significant 'neural' gain in sensitivity (in processing quality loss) when compared to standard behavioral evaluation; averaged over 11 subjects, this amounts to a relative improvement in sensitivity of 35%.

  2. [A research in speech endpoint detection based on boxes-coupling generalization dimension].

    PubMed

    Wang, Zimei; Yang, Cuirong; Wu, Wei; Fan, Yingle

    2008-06-01

    In this paper, a new calculating method of generalized dimension, based on boxes-coupling principle, is proposed to overcome the edge effects and to improve the capability of the speech endpoint detection which is based on the original calculating method of generalized dimension. This new method has been applied to speech endpoint detection. Firstly, the length of overlapping border was determined, and through calculating the generalized dimension by covering the speech signal with overlapped boxes, three-dimension feature vectors including the box dimension, the information dimension and the correlation dimension were obtained. Secondly, in the light of the relation between feature distance and similarity degree, feature extraction was conducted by use of common distance. Lastly, bi-threshold method was used to classify the speech signals. The results of experiment indicated that, by comparison with the original generalized dimension (OGD) and the spectral entropy (SE) algorithm, the proposed method is more robust and effective for detecting the speech signals which contain different kinds of noise in different signal noise ratio (SNR), especially in low SNR.

  3. Speech Processing to Improve the Perception of Speech in Background Noise for Children With Auditory Processing Disorder and Typically Developing Peers.

    PubMed

    Flanagan, Sheila; Zorilă, Tudor-Cătălin; Stylianou, Yannis; Moore, Brian C J

    2018-01-01

    Auditory processing disorder (APD) may be diagnosed when a child has listening difficulties but has normal audiometric thresholds. For adults with normal hearing and with mild-to-moderate hearing impairment, an algorithm called spectral shaping with dynamic range compression (SSDRC) has been shown to increase the intelligibility of speech when background noise is added after the processing. Here, we assessed the effect of such processing using 8 children with APD and 10 age-matched control children. The loudness of the processed and unprocessed sentences was matched using a loudness model. The task was to repeat back sentences produced by a female speaker when presented with either speech-shaped noise (SSN) or a male competing speaker (CS) at two signal-to-background ratios (SBRs). Speech identification was significantly better with SSDRC processing than without, for both groups. The benefit of SSDRC processing was greater for the SSN than for the CS background. For the SSN, scores were similar for the two groups at both SBRs. For the CS, the APD group performed significantly more poorly than the control group. The overall improvement produced by SSDRC processing could be useful for enhancing communication in a classroom where the teacher's voice is broadcast using a wireless system.

  4. Normal Aspects of Speech, Hearing, and Language.

    ERIC Educational Resources Information Center

    Minifie, Fred. D., Ed.; And Others

    This book is written as a guide to the understanding of the processes involved in human speech communication. Ten authorities contributed material to provide an introduction to the physiological aspects of speech production and reception, the acoustical aspects of speech production and transmission, the psychophysics of sound reception, the nature…

  5. Hemispheric Differences in the Effects of Context on Vowel Perception

    ERIC Educational Resources Information Center

    Sjerps, Matthias J.; Mitterer, Holger; McQueen, James M.

    2012-01-01

    Listeners perceive speech sounds relative to context. Contextual influences might differ over hemispheres if different types of auditory processing are lateralized. Hemispheric differences in contextual influences on vowel perception were investigated by presenting speech targets and both speech and non-speech contexts to listeners' right or left…

  6. Inferring Speaker Affect in Spoken Natural Language Communication

    ERIC Educational Resources Information Center

    Pon-Barry, Heather Roberta

    2013-01-01

    The field of spoken language processing is concerned with creating computer programs that can understand human speech and produce human-like speech. Regarding the problem of understanding human speech, there is currently growing interest in moving beyond speech recognition (the task of transcribing the words in an audio stream) and towards…

  7. Perceptual Learning of Noise Vocoded Words: Effects of Feedback and Lexicality

    ERIC Educational Resources Information Center

    Hervais-Adelman, Alexis; Davis, Matthew H.; Johnsrude, Ingrid S.; Carlyon, Robert P.

    2008-01-01

    Speech comprehension is resistant to acoustic distortion in the input, reflecting listeners' ability to adjust perceptual processes to match the speech input. This adjustment is reflected in improved comprehension of distorted speech with experience. For noise vocoding, a manipulation that removes spectral detail from speech, listeners' word…

  8. Rethinking clinical language mapping approaches: discordant receptive and expressive hemispheric language dominance in epilepsy surgery candidates.

    PubMed

    Gage, Nicole M; Eliashiv, Dawn S; Isenberg, Anna L; Fillmore, Paul T; Kurelowech, Lacey; Quint, Patti J; Chung, Jeffrey M; Otis, Shirley M

    2011-06-01

    Neuroimaging studies have shed light on cortical language organization, with findings implicating the left and right temporal lobes in speech processing converging to a left-dominant pattern. Findings highlight the fact that the state of theoretical language knowledge is ahead of current clinical language mapping methods, motivating a rethinking of these approaches. The authors used magnetoencephalography and multiple tasks in seven candidates for resective epilepsy surgery to investigate language organization. The authors scanned 12 control subjects to investigate the time course of bilateral receptive speech processes. Laterality indices were calculated for left and right hemisphere late fields ∼150 to 400 milliseconds. The authors report that (1) in healthy adults, speech processes activated superior temporal regions bilaterally converging to a left-dominant pattern, (2) in four of six patients, this was reversed, with bilateral processing converging to a right-dominant pattern, and (3) in three of four of these patients, receptive and expressive language processes were laterally discordant. Results provide evidence that receptive and expressive language may have divergent hemispheric dominance. Right-sided receptive language dominance in epilepsy patients emphasizes the need to assess both receptive and expressive language. Findings indicate that it is critical to use multiple tasks tapping separable aspects of language function to provide sensitive and specific estimates of language localization in surgical patients.

  9. Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech

    PubMed Central

    PETER, BEATE; BUTTON, LE; STOEL-GAMMON, CAROL; CHAPMAN, KATHY; RASKIND, WENDY H.

    2013-01-01

    The purpose of this study was to evaluate a global deficit in sequential processing as candidate endophenotypein a family with familial childhood apraxia of speech (CAS). Of 10 adults and 13 children in a three-generational family with speech sound disorder (SSD) consistent with CAS, 3 adults and 6 children had past or present SSD diagnoses. Two preschoolers with unremediated CAS showed a high number of sequencing errors during single-word production. Performance on tasks with high sequential processing loads differentiated between the affected and unaffected family members, whereas there were no group differences in tasks with low processing loads. Adults with a history of SSD produced more sequencing errors during nonword and multisyllabic real word imitation, compared to those without such a history. Results are consistent with a global deficit in sequential processing that influences speech development as well as cognitive and linguistic processing. PMID:23339324

  10. The Bilingual Language Interaction Network for Comprehension of Speech*

    PubMed Central

    Marian, Viorica

    2013-01-01

    During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can examine how cross-linguistic interaction affects language processing in a controlled, simulated environment. Here we present a connectionist model of bilingual language processing, the Bilingual Language Interaction Network for Comprehension of Speech (BLINCS), wherein interconnected levels of processing are created using dynamic, self-organizing maps. BLINCS can account for a variety of psycholinguistic phenomena, including cross-linguistic interaction at and across multiple levels of processing, cognate facilitation effects, and audio-visual integration during speech comprehension. The model also provides a way to separate two languages without requiring a global language-identification system. We conclude that BLINCS serves as a promising new model of bilingual spoken language comprehension. PMID:24363602

  11. Spectrotemporal Modulation Sensitivity as a Predictor of Speech Intelligibility for Hearing-Impaired Listeners

    PubMed Central

    Bernstein, Joshua G.W.; Mehraei, Golbarg; Shamma, Shihab; Gallun, Frederick J.; Theodoroff, Sarah M.; Leek, Marjorie R.

    2014-01-01

    Background A model that can accurately predict speech intelligibility for a given hearing-impaired (HI) listener would be an important tool for hearing-aid fitting or hearing-aid algorithm development. Existing speech-intelligibility models do not incorporate variability in suprathreshold deficits that are not well predicted by classical audiometric measures. One possible approach to the incorporation of such deficits is to base intelligibility predictions on sensitivity to simultaneously spectrally and temporally modulated signals. Purpose The likelihood of success of this approach was evaluated by comparing estimates of spectrotemporal modulation (STM) sensitivity to speech intelligibility and to psychoacoustic estimates of frequency selectivity and temporal fine-structure (TFS) sensitivity across a group of HI listeners. Research Design The minimum modulation depth required to detect STM applied to an 86 dB SPL four-octave noise carrier was measured for combinations of temporal modulation rate (4, 12, or 32 Hz) and spectral modulation density (0.5, 1, 2, or 4 cycles/octave). STM sensitivity estimates for individual HI listeners were compared to estimates of frequency selectivity (measured using the notched-noise method at 500, 1000measured using the notched-noise method at 500, 2000, and 4000 Hz), TFS processing ability (2 Hz frequency-modulation detection thresholds for 500, 10002 Hz frequency-modulation detection thresholds for 500, 2000, and 4000 Hz carriers) and sentence intelligibility in noise (at a 0 dB signal-to-noise ratio) that were measured for the same listeners in a separate study. Study Sample Eight normal-hearing (NH) listeners and 12 listeners with a diagnosis of bilateral sensorineural hearing loss participated. Data Collection and Analysis STM sensitivity was compared between NH and HI listener groups using a repeated-measures analysis of variance. A stepwise regression analysis compared STM sensitivity for individual HI listeners to audiometric thresholds, age, and measures of frequency selectivity and TFS processing ability. A second stepwise regression analysis compared speech intelligibility to STM sensitivity and the audiogram-based Speech Intelligibility Index. Results STM detection thresholds were elevated for the HI listeners, but only for low rates and high densities. STM sensitivity for individual HI listeners was well predicted by a combination of estimates of frequency selectivity at 4000 Hz and TFS sensitivity at 500 Hz but was unrelated to audiometric thresholds. STM sensitivity accounted for an additional 40% of the variance in speech intelligibility beyond the 40% accounted for by the audibility-based Speech Intelligibility Index. Conclusions Impaired STM sensitivity likely results from a combination of a reduced ability to resolve spectral peaks and a reduced ability to use TFS information to follow spectral-peak movements. Combining STM sensitivity estimates with audiometric threshold measures for individual HI listeners provided a more accurate prediction of speech intelligibility than audiometric measures alone. These results suggest a significant likelihood of success for an STM-based model of speech intelligibility for HI listeners. PMID:23636210

  12. Implementation of support vector machine for classification of speech marked hijaiyah letters based on Mel frequency cepstrum coefficient feature extraction

    NASA Astrophysics Data System (ADS)

    Adhi Pradana, Wisnu; Adiwijaya; Novia Wisesty, Untari

    2018-03-01

    Support Vector Machine or commonly called SVM is one method that can be used to process the classification of a data. SVM classifies data from 2 different classes with hyperplane. In this study, the system was built using SVM to develop Arabic Speech Recognition. In the development of the system, there are 2 kinds of speakers that have been tested that is dependent speakers and independent speakers. The results from this system is an accuracy of 85.32% for speaker dependent and 61.16% for independent speakers.

  13. Deep neural network and noise classification-based speech enhancement

    NASA Astrophysics Data System (ADS)

    Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei

    2017-07-01

    In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.

  14. Effects of reverberation time on the cognitive load in speech communication: theoretical considerations.

    PubMed

    Kjellberg, A

    2004-01-01

    The paper presents a theoretical analysis of possible effects of reverberation time on the cognitive load in speech communication. Speech comprehension requires not only phonological processing of the spoken words. Simultaneously, this information must be further processed and stored. All this processing takes place in the working memory, which has a limited processing capacity. The more resources that are allocated to word identification, the fewer resources are therefore left for the further processing and storing of the information. Reverberation conditions that allow the identification of almost all words may therefore still interfere with speech comprehension and memory storing. These problems are likely to be especially serious in situations where speech has to be followed continuously for a long time. An unfavourable reverberation time (RT) then could contribute to the development of cognitive fatigue, which means that working memory resources are gradually reduced. RT may also affect the cognitive load in two other ways: RT may change the distracting effects of a sound and a person's mood. Both effects could influence the cognitive load of a listener. It is argued that we need studies of RT effects in realistic long-lasting listening situations to better understand the effect of RT on speech communication. Furthermore, the effect of RT on distraction and mood need to be better understood.

  15. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise.

    PubMed

    Kumar, U Ajith; Ameenudin, Syed; Sangamanatha, A V

    2012-01-01

    Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13), 41 50 ( = 13), 41-50 (n = 9), and 51-60 (n = 6) years and their non-noise-exposed counterparts (n = 30 in each age group). Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.

  16. [Device for graphic visualization of pressure course in the opening of sphincter of oesophagus mouth in patients after total laryngectomy].

    PubMed

    Musialik, Wojciech; Markowski, Jarosław; Dziubdziela, Włodzimierz; Likus, Wirginia; Swiderek-Kliszewska, Monika; Paluch, Jarosław

    2012-01-01

    Oesophageal speech were described for the first time by Gutzmann in 1909. The diagnostic method based upon checking the pressure causing opening of oesophagus mouth was developed by Seeman and Van Den Bergh. In the initial stage, the method was meant to determine the level, to which the patient can master oesophageal speech. In the course of further investigations, an additional element of diagnostics was noted, which enabled early detection of recurrence of the neoplastic process in the oesopagus mouth area. The material includes 96 patients treated in 2008-2010 at the Department of Otolaryngology, Medical University in Katowice. All patients were classified on the basis of CT of the larynx and the result of histopathological examination to the total laryngectomy. All the patients were subjected to examination by device to visualize the process of opening pressure of the sphincter of the esophagus paragraph. During two years of observation in 28 cases (29%), oesophageal pressure was open his mouth more than 80 mmHg. When performed CT of the neck and histopathology examination recurrence of laryngeal cancer was confirmed in 23 cases (82%). This device is used to determine the best method of voice and speech rehabilitation in patients after total laryngectomy and early diagnosis of laryngeal and/or hypopharynx cancer recurrence. 2012 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o.

  17. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  18. Intervention for bilingual speech sound disorders: A case study of an isiXhosa-English-speaking child.

    PubMed

    Rossouw, Kate; Pascoe, Michelle

    2018-03-19

     Bilingualism is common in South Africa, with many children acquiring isiXhosa as a home language and learning English from a young age in nursery or crèche. IsiXhosa is a local language, part of the Bantu language family, widely spoken in the country. Aims: To describe changes in a bilingual child's speech following intervention based on a theoretically motivated and tailored intervention plan. Methods and procedures: This study describes a female isiXhosa-English bilingual child, named Gcobisa (pseudonym) (chronological age 4 years and 2 months) with a speech sound disorder. Gcobisa's speech was assessed and her difficulties categorised according to Dodd's (2005) diagnostic framework. From this, intervention was planned and the language of intervention was selected. Following intervention, Gcobisa's speech was reassessed. Outcomes and results: Gcobisa's speech was categorised as a consistent phonological delay as she presented with gliding of/l/in both English and isiXhosa, cluster reduction in English and several other age appropriate phonological processes. She was provided with 16 sessions of intervention using a minimal pairs approach, targeting the phonological process of gliding of/l/, which was not considered age appropriate for Gcobisa in isiXhosa when compared to the small set of normative data regarding monolingual isiXhosa development. As a result, the targets and stimuli were in isiXhosa while the main language of instruction was English. This reflects the language mismatch often faced by speech language therapists in South Africa. Gcobisa showed evidence of generalising the target phoneme to English words. Conclusions and implications: The data have theoretical implications regarding bilingual development of isiXhosa-English, as it highlights the ways bilingual development may differ from the monolingual development of this language pair. It adds to the small set of intervention studies investigating the changes in the speech of bilingual children following intervention. In addition, it contributes to the small amount of data gathered regarding typical bilingual acquisition of this language pair.

  19. Intensive Speech and Language Therapy for Older Children with Cerebral Palsy: A Systems Approach

    ERIC Educational Resources Information Center

    Pennington, Lindsay; Miller, Nick; Robson, Sheila; Steen, Nick

    2010-01-01

    Aim: To investigate whether speech therapy using a speech systems approach to controlling breath support, phonation, and speech rate can increase the speech intelligibility of children with dysarthria and cerebral palsy (CP). Method: Sixteen children with dysarthria and CP participated in a modified time series design. Group characteristics were…

  20. Speech Sound Disorders in a Community Study of Preschool Children

    ERIC Educational Resources Information Center

    McLeod, Sharynne; Harrison, Linda J.; McAllister, Lindy; McCormack, Jane

    2013-01-01

    Purpose: To undertake a community (nonclinical) study to describe the speech of preschool children who had been identified by parents/teachers as having difficulties "talking and making speech sounds" and compare the speech characteristics of those who had and had not accessed the services of a speech-language pathologist (SLP). Method:…

  1. 78 FR 63152 - Telecommunications Relay Services and Speech-to-Speech Services for Individuals With Hearing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...] Telecommunications Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities... for telecommunications relay services (TRS) by eliminating standards for Internet-based relay services... comments, identified by CG Docket No. 03-123, by any of the following methods: Electronic Filers: Comments...

  2. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  3. A comparative analysis of whispered and normally phonated speech using an LPC-10 vocoder

    NASA Astrophysics Data System (ADS)

    Wilson, J. B.; Mosko, J. D.

    1985-12-01

    The determination of the performance of an LPC-10 vocoder in the processing of adult male and female whispered and normally phonated connected speech was the focus of this study. The LPC-10 vocoder's analysis of whispered speech compared quite favorably with similar studies which used sound spectrographic processing techniques. Shifting from phonated speech to whispered speech caused a substantial increase in the phonomic formant frequencies and formant bandwidths for both male and female speakers. The data from this study showed no evidence that the LPC-10 vocoder's ability to process voices with pitch extremes and quality extremes was limited in any significant manner. A comparison of the unprocessed natural vowel waveforms and qualities with the synthesized vowel waveforms and qualities revealed almost imperceptible differences. An LPC-10 vocoder's ability to process linguistic and dialectical suprasegmental features such as intonation, rate and stress at low bit rates should be a critical issue of concern for future research.

  4. The role of the supplementary motor area for speech and language processing.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2016-09-01

    Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    PubMed

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.

  6. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  7. Assessing Children's Home Language Environments Using Automatic Speech Recognition Technology

    ERIC Educational Resources Information Center

    Greenwood, Charles R.; Thiemann-Bourque, Kathy; Walker, Dale; Buzhardt, Jay; Gilkerson, Jill

    2011-01-01

    The purpose of this research was to replicate and extend some of the findings of Hart and Risley using automatic speech processing instead of human transcription of language samples. The long-term goal of this work is to make the current approach to speech processing possible by researchers and clinicians working on a daily basis with families and…

  8. Auditory Processing and Speech Perception in Children with Specific Language Impairment: Relations with Oral Language and Literacy Skills

    ERIC Educational Resources Information Center

    Vandewalle, Ellen; Boets, Bart; Ghesquiere, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay…

  9. When speaker identity is unavoidable: Neural processing of speaker identity cues in natural speech.

    PubMed

    Tuninetti, Alba; Chládková, Kateřina; Peter, Varghese; Schiller, Niels O; Escudero, Paola

    2017-11-01

    Speech sound acoustic properties vary largely across speakers and accents. When perceiving speech, adult listeners normally disregard non-linguistic variation caused by speaker or accent differences, in order to comprehend the linguistic message, e.g. to correctly identify a speech sound or a word. Here we tested whether the process of normalizing speaker and accent differences, facilitating the recognition of linguistic information, is found at the level of neural processing, and whether it is modulated by the listeners' native language. In a multi-deviant oddball paradigm, native and nonnative speakers of Dutch were exposed to naturally-produced Dutch vowels varying in speaker, sex, accent, and phoneme identity. Unexpectedly, the analysis of mismatch negativity (MMN) amplitudes elicited by each type of change shows a large degree of early perceptual sensitivity to non-linguistic cues. This finding on perception of naturally-produced stimuli contrasts with previous studies examining the perception of synthetic stimuli wherein adult listeners automatically disregard acoustic cues to speaker identity. The present finding bears relevance to speech normalization theories, suggesting that at an unattended level of processing, listeners are indeed sensitive to changes in fundamental frequency in natural speech tokens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Experimental comparison between speech transmission index, rapid speech transmission index, and speech intelligibility index.

    PubMed

    Larm, Petra; Hongisto, Valtteri

    2006-02-01

    During the acoustical design of, e.g., auditoria or open-plan offices, it is important to know how speech can be perceived in various parts of the room. Different objective methods have been developed to measure and predict speech intelligibility, and these have been extensively used in various spaces. In this study, two such methods were compared, the speech transmission index (STI) and the speech intelligibility index (SII). Also the simplification of the STI, the room acoustics speech transmission index (RASTI), was considered. These quantities are all based on determining an apparent speech-to-noise ratio on selected frequency bands and summing them using a specific weighting. For comparison, some data were needed on the possible differences of these methods resulting from the calculation scheme and also measuring equipment. Their prediction accuracy was also of interest. Measurements were made in a laboratory having adjustable noise level and absorption, and in a real auditorium. It was found that the measurement equipment, especially the selection of the loudspeaker, can greatly affect the accuracy of the results. The prediction accuracy of the RASTI was found acceptable, if the input values for the prediction are accurately known, even though the studied space was not ideally diffuse.

  11. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.

    PubMed

    Shao, Xu; Milner, Ben

    2005-08-01

    This work proposes a method to reconstruct an acoustic speech signal solely from a stream of mel-frequency cepstral coefficients (MFCCs) as may be encountered in a distributed speech recognition (DSR) system. Previous methods for speech reconstruction have required, in addition to the MFCC vectors, fundamental frequency and voicing components. In this work the voicing classification and fundamental frequency are predicted from the MFCC vectors themselves using two maximum a posteriori (MAP) methods. The first method enables fundamental frequency prediction by modeling the joint density of MFCCs and fundamental frequency using a single Gaussian mixture model (GMM). The second scheme uses a set of hidden Markov models (HMMs) to link together a set of state-dependent GMMs, which enables a more localized modeling of the joint density of MFCCs and fundamental frequency. Experimental results on speaker-independent male and female speech show that accurate voicing classification and fundamental frequency prediction is attained when compared to hand-corrected reference fundamental frequency measurements. The use of the predicted fundamental frequency and voicing for speech reconstruction is shown to give very similar speech quality to that obtained using the reference fundamental frequency and voicing.

  12. Monaural room acoustic parameters from music and speech.

    PubMed

    Kendrick, Paul; Cox, Trevor J; Li, Francis F; Zhang, Yonggang; Chambers, Jonathon A

    2008-07-01

    This paper compares two methods for extracting room acoustic parameters from reverberated speech and music. An approach which uses statistical machine learning, previously developed for speech, is extended to work with music. For speech, reverberation time estimations are within a perceptual difference limen of the true value. For music, virtually all early decay time estimations are within a difference limen of the true value. The estimation accuracy is not good enough in other cases due to differences between the simulated data set used to develop the empirical model and real rooms. The second method carries out a maximum likelihood estimation on decay phases at the end of notes or speech utterances. This paper extends the method to estimate parameters relating to the balance of early and late energies in the impulse response. For reverberation time and speech, the method provides estimations which are within the perceptual difference limen of the true value. For other parameters such as clarity, the estimations are not sufficiently accurate due to the natural reverberance of the excitation signals. Speech is a better test signal than music because of the greater periods of silence in the signal, although music is needed for low frequency measurement.

  13. Automated Depression Analysis Using Convolutional Neural Networks from Speech.

    PubMed

    He, Lang; Cao, Cui

    2018-05-28

    To help clinicians to efficiently diagnose the severity of a person's depression, the affective computing community and the artificial intelligence field have shown a growing interest in designing automated systems. The speech features have useful information for the diagnosis of depression. However, manually designing and domain knowledge are still important for the selection of the feature, which makes the process labor consuming and subjective. In recent years, deep-learned features based on neural networks have shown superior performance to hand-crafted features in various areas. In this paper, to overcome the difficulties mentioned above, we propose a combination of hand-crafted and deep-learned features which can effectively measure the severity of depression from speech. In the proposed method, Deep Convolutional Neural Networks (DCNN) are firstly built to learn deep-learned features from spectrograms and raw speech waveforms. Then we manually extract the state-of-the-art texture descriptors named median robust extended local binary patterns (MRELBP) from spectrograms. To capture the complementary information within the hand-crafted features and deep-learned features, we propose joint fine-tuning layers to combine the raw and spectrogram DCNN to boost the depression recognition performance. Moreover, to address the problems with small samples, a data augmentation method was proposed. Experiments conducted on AVEC2013 and AVEC2014 depression databases show that our approach is robust and effective for the diagnosis of depression when compared to state-of-the-art audio-based methods. Copyright © 2018. Published by Elsevier Inc.

  14. Linguistic Processing of Accented Speech Across the Lifespan

    PubMed Central

    Cristia, Alejandrina; Seidl, Amanda; Vaughn, Charlotte; Schmale, Rachel; Bradlow, Ann; Floccia, Caroline

    2012-01-01

    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work. PMID:23162513

  15. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  16. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment.

    PubMed

    Rosemann, Stephanie; Thiel, Christiane M

    2018-07-15

    Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party".

    PubMed

    Zion Golumbic, Elana; Cogan, Gregory B; Schroeder, Charles E; Poeppel, David

    2013-01-23

    Our ability to selectively attend to one auditory signal amid competing input streams, epitomized by the "Cocktail Party" problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared with responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker's face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a Cocktail Party setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive.

  18. An attention-gating recurrent working memory architecture for emergent speech representation

    NASA Astrophysics Data System (ADS)

    Elshaw, Mark; Moore, Roger K.; Klein, Michael

    2010-06-01

    This paper describes an attention-gating recurrent self-organising map approach for emergent speech representation. Inspired by evidence from human cognitive processing, the architecture combines two main neural components. The first component, the attention-gating mechanism, uses actor-critic learning to perform selective attention towards speech. Through this selective attention approach, the attention-gating mechanism controls access to working memory processing. The second component, the recurrent self-organising map memory, develops a temporal-distributed representation of speech using phone-like structures. Representing speech in terms of phonetic features in an emergent self-organised fashion, according to research on child cognitive development, recreates the approach found in infants. Using this representational approach, in a fashion similar to infants, should improve the performance of automatic recognition systems through aiding speech segmentation and fast word learning.

  19. A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.

    PubMed

    Carlin, Michael A; Elhilali, Mounya

    2015-12-01

    One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.

  20. Categorical speech processing in Broca's area: an fMRI study using multivariate pattern-based analysis.

    PubMed

    Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S

    2012-03-14

    Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.

  1. Development of a Mandarin-English Bilingual Speech Recognition System for Real World Music Retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Qingqing; Pan, Jielin; Lin, Yang; Shao, Jian; Yan, Yonghong

    In recent decades, there has been a great deal of research into the problem of bilingual speech recognition-to develop a recognizer that can handle inter- and intra-sentential language switching between two languages. This paper presents our recent work on the development of a grammar-constrained, Mandarin-English bilingual Speech Recognition System (MESRS) for real world music retrieval. Two of the main difficult issues in handling the bilingual speech recognition systems for real world applications are tackled in this paper. One is to balance the performance and the complexity of the bilingual speech recognition system; the other is to effectively deal with the matrix language accents in embedded language**. In order to process the intra-sentential language switching and reduce the amount of data required to robustly estimate statistical models, a compact single set of bilingual acoustic models derived by phone set merging and clustering is developed instead of using two separate monolingual models for each language. In our study, a novel Two-pass phone clustering method based on Confusion Matrix (TCM) is presented and compared with the log-likelihood measure method. Experiments testify that TCM can achieve better performance. Since potential system users' native language is Mandarin which is regarded as a matrix language in our application, their pronunciations of English as the embedded language usually contain Mandarin accents. In order to deal with the matrix language accents in embedded language, different non-native adaptation approaches are investigated. Experiments show that model retraining method outperforms the other common adaptation methods such as Maximum A Posteriori (MAP). With the effective incorporation of approaches on phone clustering and non-native adaptation, the Phrase Error Rate (PER) of MESRS for English utterances was reduced by 24.47% relatively compared to the baseline monolingual English system while the PER on Mandarin utterances was comparable to that of the baseline monolingual Mandarin system. The performance for bilingual utterances achieved 22.37% relative PER reduction.

  2. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging.

    PubMed

    Hagedorn, Christina; Proctor, Michael; Goldstein, Louis; Wilson, Stephen M; Miller, Bruce; Gorno-Tempini, Maria Luisa; Narayanan, Shrikanth S

    2017-04-14

    Real-time magnetic resonance imaging (MRI) and accompanying analytical methods are shown to capture and quantify salient aspects of apraxic speech, substantiating and expanding upon evidence provided by clinical observation and acoustic and kinematic data. Analysis of apraxic speech errors within a dynamic systems framework is provided and the nature of pathomechanisms of apraxic speech discussed. One adult male speaker with apraxia of speech was imaged using real-time MRI while producing spontaneous speech, repeated naming tasks, and self-paced repetition of word pairs designed to elicit speech errors. Articulatory data were analyzed, and speech errors were detected using time series reflecting articulatory activity in regions of interest. Real-time MRI captured two types of apraxic gestural intrusion errors in a word pair repetition task. Gestural intrusion errors in nonrepetitive speech, multiple silent initiation gestures at the onset of speech, and covert (unphonated) articulation of entire monosyllabic words were also captured. Real-time MRI and accompanying analytical methods capture and quantify many features of apraxic speech that have been previously observed using other modalities while offering high spatial resolution. This patient's apraxia of speech affected the ability to select only the appropriate vocal tract gestures for a target utterance, suppressing others, and to coordinate them in time.

  3. Understanding and Identifying the Child at Risk for Auditory Processing Disorders: A Case Method Approach in Examining the Interdisciplinary Role of the School Nurse

    ERIC Educational Resources Information Center

    Neville, Kathleen; Foley, Marie; Gertner, Alan

    2011-01-01

    Despite receiving increased professional and public awareness since the initial American Speech Language Hearing Association (ASHA) statement defining Auditory Processing Disorders (APDs) in 1993 and the subsequent ASHA statement (2005), many misconceptions remain regarding APDs in school-age children among health and academic professionals. While…

  4. Speech enhancement based on modified phase-opponency detectors

    NASA Astrophysics Data System (ADS)

    Deshmukh, Om D.; Espy-Wilson, Carol Y.

    2005-09-01

    A speech enhancement algorithm based on a neural model was presented by Deshmukh et al., [149th meeting of the Acoustical Society America, 2005]. The algorithm consists of a bank of Modified Phase Opponency (MPO) filter pairs tuned to different center frequencies. This algorithm is able to enhance salient spectral features in speech signals even at low signal-to-noise ratios. However, the algorithm introduces musical noise and sometimes misses a spectral peak that is close in frequency to a stronger spectral peak. Refinement in the design of the MPO filters was recently made that takes advantage of the falling spectrum of the speech signal in sonorant regions. The modified set of filters leads to better separation of the noise and speech signals, and more accurate enhancement of spectral peaks. The improvements also lead to a significant reduction in musical noise. Continuity algorithms based on the properties of speech signals are used to further reduce the musical noise effect. The efficiency of the proposed method in enhancing the speech signal when the level of the background noise is fluctuating will be demonstrated. The performance of the improved speech enhancement method will be compared with various spectral subtraction-based methods. [Work supported by NSF BCS0236707.

  5. Bimodal bilingualism as multisensory training?: Evidence for improved audiovisual speech perception after sign language exposure.

    PubMed

    Williams, Joshua T; Darcy, Isabelle; Newman, Sharlene D

    2016-02-15

    The aim of the present study was to characterize effects of learning a sign language on the processing of a spoken language. Specifically, audiovisual phoneme comprehension was assessed before and after 13 weeks of sign language exposure. L2 ASL learners performed this task in the fMRI scanner. Results indicated that L2 American Sign Language (ASL) learners' behavioral classification of the speech sounds improved with time compared to hearing nonsigners. Results indicated increased activation in the supramarginal gyrus (SMG) after sign language exposure, which suggests concomitant increased phonological processing of speech. A multiple regression analysis indicated that learner's rating on co-sign speech use and lipreading ability was correlated with SMG activation. This pattern of results indicates that the increased use of mouthing and possibly lipreading during sign language acquisition may concurrently improve audiovisual speech processing in budding hearing bimodal bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electrocorticographic representations of segmental features in continuous speech

    PubMed Central

    Lotte, Fabien; Brumberg, Jonathan S.; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Guan, Cuntai; Schalk, Gerwin

    2015-01-01

    Acoustic speech output results from coordinated articulation of dozens of muscles, bones and cartilages of the vocal mechanism. While we commonly take the fluency and speed of our speech productions for granted, the neural mechanisms facilitating the requisite muscular control are not completely understood. Previous neuroimaging and electrophysiology studies of speech sensorimotor control has typically concentrated on speech sounds (i.e., phonemes, syllables and words) in isolation; sentence-length investigations have largely been used to inform coincident linguistic processing. In this study, we examined the neural representations of segmental features (place and manner of articulation, and voicing status) in the context of fluent, continuous speech production. We used recordings from the cortical surface [electrocorticography (ECoG)] to simultaneously evaluate the spatial topography and temporal dynamics of the neural correlates of speech articulation that may mediate the generation of hypothesized gestural or articulatory scores. We found that the representation of place of articulation involved broad networks of brain regions during all phases of speech production: preparation, execution and monitoring. In contrast, manner of articulation and voicing status were dominated by auditory cortical responses after speech had been initiated. These results provide a new insight into the articulatory and auditory processes underlying speech production in terms of their motor requirements and acoustic correlates. PMID:25759647

  7. The influence of informational masking on speech perception and pupil response in adults with hearing impairment.

    PubMed

    Koelewijn, Thomas; Zekveld, Adriana A; Festen, Joost M; Kramer, Sophia E

    2014-03-01

    A recent pupillometry study on adults with normal hearing indicates that the pupil response during speech perception (cognitive processing load) is strongly affected by the type of speech masker. The current study extends these results by recording the pupil response in 32 participants with hearing impairment (mean age 59 yr) while they were listening to sentences masked by fluctuating noise or a single-talker. Efforts were made to improve audibility of all sounds by means of spectral shaping. Additionally, participants performed tests measuring verbal working memory capacity, inhibition of interfering information in working memory, and linguistic closure. The results showed worse speech reception thresholds for speech masked by single-talker speech compared to fluctuating noise. In line with previous results for participants with normal hearing, the pupil response was larger when listening to speech masked by a single-talker compared to fluctuating noise. Regression analysis revealed that larger working memory capacity and better inhibition of interfering information related to better speech reception thresholds, but these variables did not account for inter-individual differences in the pupil response. In conclusion, people with hearing impairment show more cognitive load during speech processing when there is interfering speech compared to fluctuating noise.

  8. Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearinga)

    PubMed Central

    Léger, Agnès C.; Reed, Charlotte M.; Desloge, Joseph G.; Swaminathan, Jayaganesh; Braida, Louis D.

    2015-01-01

    Consonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance. For NH listeners, scores were higher in interrupted noise than in steady-state noise for all speech types (indicating substantial masking release). For HI listeners, masking release was typically observed for TFS and recovered-envelope speech but not for unprocessed and envelope speech. For both groups of listeners, TFS and recovered-envelope speech yielded similar levels of performance and consonant confusion patterns. The masking release observed for TFS and recovered-envelope speech may be related to level effects associated with the manner in which the TFS processing interacts with the interrupted noise signal, rather than to the contributions of TFS cues per se. PMID:26233038

  9. Involvement of Right STS in Audio-Visual Integration for Affective Speech Demonstrated Using MEG

    PubMed Central

    Hagan, Cindy C.; Woods, Will; Johnson, Sam; Green, Gary G. R.; Young, Andrew W.

    2013-01-01

    Speech and emotion perception are dynamic processes in which it may be optimal to integrate synchronous signals emitted from different sources. Studies of audio-visual (AV) perception of neutrally expressed speech demonstrate supra-additive (i.e., where AV>[unimodal auditory+unimodal visual]) responses in left STS to crossmodal speech stimuli. However, emotions are often conveyed simultaneously with speech; through the voice in the form of speech prosody and through the face in the form of facial expression. Previous studies of AV nonverbal emotion integration showed a role for right (rather than left) STS. The current study therefore examined whether the integration of facial and prosodic signals of emotional speech is associated with supra-additive responses in left (cf. results for speech integration) or right (due to emotional content) STS. As emotional displays are sometimes difficult to interpret, we also examined whether supra-additive responses were affected by emotional incongruence (i.e., ambiguity). Using magnetoencephalography, we continuously recorded eighteen participants as they viewed and heard AV congruent emotional and AV incongruent emotional speech stimuli. Significant supra-additive responses were observed in right STS within the first 250 ms for emotionally incongruent and emotionally congruent AV speech stimuli, which further underscores the role of right STS in processing crossmodal emotive signals. PMID:23950977

  10. Involvement of right STS in audio-visual integration for affective speech demonstrated using MEG.

    PubMed

    Hagan, Cindy C; Woods, Will; Johnson, Sam; Green, Gary G R; Young, Andrew W

    2013-01-01

    Speech and emotion perception are dynamic processes in which it may be optimal to integrate synchronous signals emitted from different sources. Studies of audio-visual (AV) perception of neutrally expressed speech demonstrate supra-additive (i.e., where AV>[unimodal auditory+unimodal visual]) responses in left STS to crossmodal speech stimuli. However, emotions are often conveyed simultaneously with speech; through the voice in the form of speech prosody and through the face in the form of facial expression. Previous studies of AV nonverbal emotion integration showed a role for right (rather than left) STS. The current study therefore examined whether the integration of facial and prosodic signals of emotional speech is associated with supra-additive responses in left (cf. results for speech integration) or right (due to emotional content) STS. As emotional displays are sometimes difficult to interpret, we also examined whether supra-additive responses were affected by emotional incongruence (i.e., ambiguity). Using magnetoencephalography, we continuously recorded eighteen participants as they viewed and heard AV congruent emotional and AV incongruent emotional speech stimuli. Significant supra-additive responses were observed in right STS within the first 250 ms for emotionally incongruent and emotionally congruent AV speech stimuli, which further underscores the role of right STS in processing crossmodal emotive signals.

  11. Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.

    PubMed

    Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina

    2018-05-14

    The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.

  12. Audiovisual cues and perceptual learning of spectrally distorted speech.

    PubMed

    Pilling, Michael; Thomas, Sharon

    2011-12-01

    Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties of a cochlear implant with a 6 mm place mismatch: Experiment I found that participants showed significantly greater improvement in perceiving noise-vocoded speech when training gave AV cues than when it gave auditory cues alone. Experiment 2 compared training with AV cues with training which gave written feedback. These two methods did not significantly differ in the pattern of training they produced. Suggestions are made about the types of circumstances in which the two training methods might be found to differ in facilitating auditory perceptual learning of speech.

  13. Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception

    PubMed Central

    Davis, Matthew H.

    2016-01-01

    Successful perception depends on combining sensory input with prior knowledge. However, the underlying mechanism by which these two sources of information are combined is unknown. In speech perception, as in other domains, two functionally distinct coding schemes have been proposed for how expectations influence representation of sensory evidence. Traditional models suggest that expected features of the speech input are enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Predictive Coding suggests that expected features are suppressed so that unexpected features of the speech input (Prediction Errors) are processed further. The present work is aimed at distinguishing between these two accounts of how prior knowledge influences speech perception. By combining behavioural, univariate, and multivariate fMRI measures of how sensory detail and prior expectations influence speech perception with computational modelling, we provide evidence in favour of Prediction Error computations. Increased sensory detail and informative expectations have additive behavioural and univariate neural effects because they both improve the accuracy of word report and reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and informative expectations have interacting effects on speech representations shown by multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was absent, increased sensory detail enhanced the amount of speech information measured in superior temporal multivoxel patterns, but with informative expectations, increased sensory detail reduced the amount of measured information. Computational simulations of Sharpened Signals and Prediction Errors during speech perception could both explain these behavioural and univariate fMRI observations. However, the multivariate fMRI observations were uniquely simulated by a Prediction Error and not a Sharpened Signal model. The interaction between prior expectation and sensory detail provides evidence for a Predictive Coding account of speech perception. Our work establishes methods that can be used to distinguish representations of Prediction Error and Sharpened Signals in other perceptual domains. PMID:27846209

  14. Reaction Times of Normal Listeners to Laryngeal, Alaryngeal, and Synthetic Speech

    ERIC Educational Resources Information Center

    Evitts, Paul M.; Searl, Jeff

    2006-01-01

    The purpose of this study was to compare listener processing demands when decoding alaryngeal compared to laryngeal speech. Fifty-six listeners were presented with single words produced by 1 proficient speaker from 5 different modes of speech: normal, tracheosophageal (TE), esophageal (ES), electrolaryngeal (EL), and synthetic speech (SS).…

  15. A Procedure for the Computerized Analysis of Cleft Palate Speech Transcription

    ERIC Educational Resources Information Center

    Fitzsimons, David A.; Jones, David L.; Barton, Belinda; North, Kathryn N.

    2012-01-01

    The phonetic symbols used by speech-language pathologists to transcribe speech contain underlying hexadecimal values used by computers to correctly display and process transcription data. This study aimed to develop a procedure to utilise these values as the basis for subsequent computerized analysis of cleft palate speech. A computer keyboard…

  16. Speech-Processing Fatigue in Children: Auditory Event-Related Potential and Behavioral Measures

    PubMed Central

    Gustafson, Samantha J.; Rentmeester, Lindsey; Hornsby, Benjamin W. Y.; Bess, Fred H.

    2017-01-01

    Purpose Fatigue related to speech processing is an understudied area that may have significant negative effects, especially in children who spend the majority of their school days listening to classroom instruction. Method This study examined the feasibility of using auditory P300 responses and behavioral indices (lapses of attention and self-report) to measure fatigue resulting from sustained listening demands in 27 children (M = 9.28 years). Results Consistent with predictions, increased lapses of attention, longer reaction times, reduced P300 amplitudes to infrequent target stimuli, and self-report of greater fatigue were observed after the completion of a series of demanding listening tasks compared with the baseline values. The event-related potential responses correlated with the behavioral measures of performance. Conclusion These findings suggest that neural and behavioral responses indexing attention and processing resources show promise as effective markers of fatigue in children. PMID:28595261

  17. Language-learning disabilities: Paradigms for the nineties.

    PubMed

    Wiig, E H

    1991-01-01

    We are beginning a decade, during which many traditional paradigms in education, special education, and speech-language pathology will undergo change. Among paradigms considered promising for speech-language pathology in the schools are collaborative language intervention and strategy training for language and communication. This presentation introduces management models for developing a collaborative language intervention process, among them the Deming Management Method for Total Quality (TQ) (Deming 1986). Implementation models for language assessment and IEP planning and multicultural issues are also introduced (Damico and Nye 1990; Secord and Wiig in press). While attention to processes involved in developing and implementing collaborative language intervention is paramount, content should not be neglected. To this end, strategy training for language and communication is introduced as a viable paradigm. Macro- and micro-level process models for strategy training are featured and general issues are discussed (Ellis, Deshler, and Schumaker 1989; Swanson 1989; Wiig 1989).

  18. Subliminal speech perception and auditory streaming.

    PubMed

    Dupoux, Emmanuel; de Gardelle, Vincent; Kouider, Sid

    2008-11-01

    Current theories of consciousness assume a qualitative dissociation between conscious and unconscious processing: while subliminal stimuli only elicit a transient activity, supraliminal stimuli have long-lasting influences. Nevertheless, the existence of this qualitative distinction remains controversial, as past studies confounded awareness and stimulus strength (energy, duration). Here, we used a masked speech priming method in conjunction with a submillisecond interaural delay manipulation to contrast subliminal and supraliminal processing at constant prime, mask and target strength. This delay induced a perceptual streaming effect, with the prime popping out in the supraliminal condition. By manipulating the prime-target interval (ISI), we show a qualitatively distinct profile of priming longevity as a function of prime awareness. While subliminal priming disappeared after half a second, supraliminal priming was independent of ISI. This shows that the distinction between conscious and unconscious processing depends on high-level perceptual streaming factors rather than low-level features (energy, duration).

  19. The role of left inferior frontal cortex during audiovisual speech perception in infants.

    PubMed

    Altvater-Mackensen, Nicole; Grossmann, Tobias

    2016-06-01

    In the first year of life, infants' speech perception attunes to their native language. While the behavioral changes associated with native language attunement are fairly well mapped, the underlying mechanisms and neural processes are still only poorly understood. Using fNIRS and eye tracking, the current study investigated 6-month-old infants' processing of audiovisual speech that contained matching or mismatching auditory and visual speech cues. Our results revealed that infants' speech-sensitive brain responses in inferior frontal brain regions were lateralized to the left hemisphere. Critically, our results further revealed that speech-sensitive left inferior frontal regions showed enhanced responses to matching when compared to mismatching audiovisual speech, and that infants with a preference to look at the speaker's mouth showed an enhanced left inferior frontal response to speech compared to infants with a preference to look at the speaker's eyes. These results suggest that left inferior frontal regions play a crucial role in associating information from different modalities during native language attunement, fostering the formation of multimodal phonological categories. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Speech recognition systems on the Cell Broadband Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Jones, H; Vaidya, S

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousandsmore » of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.« less

Top