Speech processing using maximum likelihood continuity mapping
Hogden, John E.
2000-01-01
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Speech processing using maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.E.
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Auditory-Motor Processing of Speech Sounds
Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.
2013-01-01
The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846
Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech Sounds
ERIC Educational Resources Information Center
Ito, Takayuki; Johns, Alexis R.; Ostry, David J.
2013-01-01
Purpose: Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory…
EEG oscillations entrain their phase to high-level features of speech sound.
Zoefel, Benedikt; VanRullen, Rufin
2016-01-01
Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.
The influence of (central) auditory processing disorder in speech sound disorders.
Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein
2016-01-01
Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Speech endpoint detection with non-language speech sounds for generic speech processing applications
NASA Astrophysics Data System (ADS)
McClain, Matthew; Romanowski, Brian
2009-05-01
Non-language speech sounds (NLSS) are sounds produced by humans that do not carry linguistic information. Examples of these sounds are coughs, clicks, breaths, and filled pauses such as "uh" and "um" in English. NLSS are prominent in conversational speech, but can be a significant source of errors in speech processing applications. Traditionally, these sounds are ignored by speech endpoint detection algorithms, where speech regions are identified in the audio signal prior to processing. The ability to filter NLSS as a pre-processing step can significantly enhance the performance of many speech processing applications, such as speaker identification, language identification, and automatic speech recognition. In order to be used in all such applications, NLSS detection must be performed without the use of language models that provide knowledge of the phonology and lexical structure of speech. This is especially relevant to situations where the languages used in the audio are not known apriori. We present the results of preliminary experiments using data from American and British English speakers, in which segments of audio are classified as language speech sounds (LSS) or NLSS using a set of acoustic features designed for language-agnostic NLSS detection and a hidden-Markov model (HMM) to model speech generation. The results of these experiments indicate that the features and model used are capable of detection certain types of NLSS, such as breaths and clicks, while detection of other types of NLSS such as filled pauses will require future research.
Multi-sensory learning and learning to read.
Blomert, Leo; Froyen, Dries
2010-09-01
The basis of literacy acquisition in alphabetic orthographies is the learning of the associations between the letters and the corresponding speech sounds. In spite of this primacy in learning to read, there is only scarce knowledge on how this audiovisual integration process works and which mechanisms are involved. Recent electrophysiological studies of letter-speech sound processing have revealed that normally developing readers take years to automate these associations and dyslexic readers hardly exhibit automation of these associations. It is argued that the reason for this effortful learning may reside in the nature of the audiovisual process that is recruited for the integration of in principle arbitrarily linked elements. It is shown that letter-speech sound integration does not resemble the processes involved in the integration of natural audiovisual objects such as audiovisual speech. The automatic symmetrical recruitment of the assumedly uni-sensory visual and auditory cortices in audiovisual speech integration does not occur for letter and speech sound integration. It is also argued that letter-speech sound integration only partly resembles the integration of arbitrarily linked unfamiliar audiovisual objects. Letter-sound integration and artificial audiovisual objects share the necessity of a narrow time window for integration to occur. However, they differ from these artificial objects, because they constitute an integration of partly familiar elements which acquire meaning through the learning of an orthography. Although letter-speech sound pairs share similarities with audiovisual speech processing as well as with unfamiliar, arbitrary objects, it seems that letter-speech sound pairs develop into unique audiovisual objects that furthermore have to be processed in a unique way in order to enable fluent reading and thus very likely recruit other neurobiological learning mechanisms than the ones involved in learning natural or arbitrary unfamiliar audiovisual associations. Copyright 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Leech, Robert; Saygin, Ayse Pinar
2011-01-01
Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…
Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome
Engineer, Crystal T.; Rahebi, Kimiya C.; Borland, Michael S.; Buell, Elizabeth P.; Centanni, Tracy M.; Fink, Melyssa K.; Im, Kwok W.; Wilson, Linda G.; Kilgard, Michael P.
2015-01-01
Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676
DETECTION AND IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL ACTIVITY PATTERNS
Centanni, T.M.; Sloan, A.M.; Reed, A.C.; Engineer, C.T.; Rennaker, R.; Kilgard, M.P.
2014-01-01
We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/sec), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech processing disorders. PMID:24286757
Speech and Language Skills of Parents of Children with Speech Sound Disorders
ERIC Educational Resources Information Center
Lewis, Barbara A.; Freebairn, Lisa A.; Hansen, Amy J.; Miscimarra, Lara; Iyengar, Sudha K.; Taylor, H. Gerry
2007-01-01
Purpose: This study compared parents with histories of speech sound disorders (SSD) to parents without known histories on measures of speech sound production, phonological processing, language, reading, and spelling. Familial aggregation for speech and language disorders was also examined. Method: The participants were 147 parents of children with…
ERIC Educational Resources Information Center
Froyen, Dries; Willems, Gonny; Blomert, Leo
2011-01-01
The phonological deficit theory of dyslexia assumes that degraded speech sound representations might hamper the acquisition of stable letter-speech sound associations necessary for learning to read. However, there is only scarce and mainly indirect evidence for this assumed letter-speech sound association problem. The present study aimed at…
Galilee, Alena; Stefanidou, Chrysi; McCleery, Joseph P
2017-01-01
Previous event-related potential (ERP) research utilizing oddball stimulus paradigms suggests diminished processing of speech versus non-speech sounds in children with an Autism Spectrum Disorder (ASD). However, brain mechanisms underlying these speech processing abnormalities, and to what extent they are related to poor language abilities in this population remain unknown. In the current study, we utilized a novel paired repetition paradigm in order to investigate ERP responses associated with the detection and discrimination of speech and non-speech sounds in 4- to 6-year old children with ASD, compared with gender and verbal age matched controls. ERPs were recorded while children passively listened to pairs of stimuli that were either both speech sounds, both non-speech sounds, speech followed by non-speech, or non-speech followed by speech. Control participants exhibited N330 match/mismatch responses measured from temporal electrodes, reflecting speech versus non-speech detection, bilaterally, whereas children with ASD exhibited this effect only over temporal electrodes in the left hemisphere. Furthermore, while the control groups exhibited match/mismatch effects at approximately 600 ms (central N600, temporal P600) when a non-speech sound was followed by a speech sound, these effects were absent in the ASD group. These findings suggest that children with ASD fail to activate right hemisphere mechanisms, likely associated with social or emotional aspects of speech detection, when distinguishing non-speech from speech stimuli. Together, these results demonstrate the presence of atypical speech versus non-speech processing in children with ASD when compared with typically developing children matched on verbal age.
Stefanidou, Chrysi; McCleery, Joseph P.
2017-01-01
Previous event-related potential (ERP) research utilizing oddball stimulus paradigms suggests diminished processing of speech versus non-speech sounds in children with an Autism Spectrum Disorder (ASD). However, brain mechanisms underlying these speech processing abnormalities, and to what extent they are related to poor language abilities in this population remain unknown. In the current study, we utilized a novel paired repetition paradigm in order to investigate ERP responses associated with the detection and discrimination of speech and non-speech sounds in 4- to 6—year old children with ASD, compared with gender and verbal age matched controls. ERPs were recorded while children passively listened to pairs of stimuli that were either both speech sounds, both non-speech sounds, speech followed by non-speech, or non-speech followed by speech. Control participants exhibited N330 match/mismatch responses measured from temporal electrodes, reflecting speech versus non-speech detection, bilaterally, whereas children with ASD exhibited this effect only over temporal electrodes in the left hemisphere. Furthermore, while the control groups exhibited match/mismatch effects at approximately 600 ms (central N600, temporal P600) when a non-speech sound was followed by a speech sound, these effects were absent in the ASD group. These findings suggest that children with ASD fail to activate right hemisphere mechanisms, likely associated with social or emotional aspects of speech detection, when distinguishing non-speech from speech stimuli. Together, these results demonstrate the presence of atypical speech versus non-speech processing in children with ASD when compared with typically developing children matched on verbal age. PMID:28738063
Processing of speech and non-speech stimuli in children with specific language impairment
NASA Astrophysics Data System (ADS)
Basu, Madhavi L.; Surprenant, Aimee M.
2003-10-01
Specific Language Impairment (SLI) is a developmental language disorder in which children demonstrate varying degrees of difficulties in acquiring a spoken language. One possible underlying cause is that children with SLI have deficits in processing sounds that are of short duration or when they are presented rapidly. Studies so far have compared their performance on speech and nonspeech sounds of unequal complexity. Hence, it is still unclear whether the deficit is specific to the perception of speech sounds or whether it more generally affects the auditory function. The current study aims to answer this question by comparing the performance of children with SLI on speech and nonspeech sounds synthesized from sine-wave stimuli. The children will be tested using the classic categorical perception paradigm that includes both the identification and discrimination of stimuli along a continuum. If there is a deficit in the performance on both speech and nonspeech tasks, it will show that these children have a deficit in processing complex sounds. Poor performance on only the speech sounds will indicate that the deficit is more related to language. The findings will offer insights into the exact nature of the speech perception deficits in children with SLI. [Work supported by ASHF.
Speech training alters consonant and vowel responses in multiple auditory cortex fields
Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.
2015-01-01
Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927
Centanni, Tracy M.; Chen, Fuyi; Booker, Anne M.; Engineer, Crystal T.; Sloan, Andrew M.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.
2014-01-01
In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments. PMID:24871331
Liu, Chang; Jin, Su-Hyun
2015-11-01
This study investigated whether native listeners processed speech differently from non-native listeners in a speech detection task. Detection thresholds of Mandarin Chinese and Korean vowels and non-speech sounds in noise, frequency selectivity, and the nativeness of Mandarin Chinese and Korean vowels were measured for Mandarin Chinese- and Korean-native listeners. The two groups of listeners exhibited similar non-speech sound detection and frequency selectivity; however, the Korean listeners had better detection thresholds of Korean vowels than Chinese listeners, while the Chinese listeners performed no better at Chinese vowel detection than the Korean listeners. Moreover, thresholds predicted from an auditory model highly correlated with behavioral thresholds of the two groups of listeners, suggesting that detection of speech sounds not only depended on listeners' frequency selectivity, but also might be affected by their native language experience. Listeners evaluated their native vowels with higher nativeness scores than non-native listeners. Native listeners may have advantages over non-native listeners when processing speech sounds in noise, even without the required phonetic processing; however, such native speech advantages might be offset by Chinese listeners' lower sensitivity to vowel sounds, a characteristic possibly resulting from their sparse vowel system and their greater cognitive and attentional demands for vowel processing.
Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede
2016-02-01
To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.
Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E.; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z.
2015-01-01
In the last decade, the debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. However, the exact role of the motor system in auditory speech processing remains elusive. Here we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. The patient’s spontaneous speech was marked by frequent phonological/articulatory errors, and those errors were caused, at least in part, by motor-level impairments with speech production. We found that the patient showed a normal phonemic categorical boundary when discriminating two nonwords that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the nonword stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labeling impairment. These data suggest that the identification (i.e. labeling) of nonword speech sounds may involve the speech motor system, but that the perception of speech sounds (i.e., discrimination) does not require the motor system. This means that motor processes are not causally involved in perception of the speech signal, and suggest that the motor system may be used when other cues (e.g., meaning, context) are not available. PMID:25951749
Choi, Ja Young; Hu, Elly R; Perrachione, Tyler K
2018-04-01
The nondeterministic relationship between speech acoustics and abstract phonemic representations imposes a challenge for listeners to maintain perceptual constancy despite the highly variable acoustic realization of speech. Talker normalization facilitates speech processing by reducing the degrees of freedom for mapping between encountered speech and phonemic representations. While this process has been proposed to facilitate the perception of ambiguous speech sounds, it is currently unknown whether talker normalization is affected by the degree of potential ambiguity in acoustic-phonemic mapping. We explored the effects of talker normalization on speech processing in a series of speeded classification paradigms, parametrically manipulating the potential for inconsistent acoustic-phonemic relationships across talkers for both consonants and vowels. Listeners identified words with varying potential acoustic-phonemic ambiguity across talkers (e.g., beet/boat vs. boot/boat) spoken by single or mixed talkers. Auditory categorization of words was always slower when listening to mixed talkers compared to a single talker, even when there was no potential acoustic ambiguity between target sounds. Moreover, the processing cost imposed by mixed talkers was greatest when words had the most potential acoustic-phonemic overlap across talkers. Models of acoustic dissimilarity between target speech sounds did not account for the pattern of results. These results suggest (a) that talker normalization incurs the greatest processing cost when disambiguating highly confusable sounds and (b) that talker normalization appears to be an obligatory component of speech perception, taking place even when the acoustic-phonemic relationships across sounds are unambiguous.
Jansson-Verkasalo, Eira; Eggers, Kurt; Järvenpää, Anu; Suominen, Kalervo; Van den Bergh, Bea; De Nil, Luc; Kujala, Teija
2014-09-01
Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter. Copyright © 2014 Elsevier Inc. All rights reserved.
Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean
2018-05-01
Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Perception of environmental sounds by experienced cochlear implant patients.
Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan
2011-01-01
Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries, or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds, and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Seventeen experienced postlingually deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern, and temporal order for tones tests), and a backward digit recall test. The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants, and r = 0.48 for vowels. HINT and CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialling out the variance due to other variables. Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectrotemproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations and might also be predictive of speech performance for prelingually deafened patients with cochlear implants.
Speech perception in individuals with auditory dys-synchrony.
Kumar, U A; Jayaram, M
2011-03-01
This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.
Liu, B; Wang, Z; Wu, G; Meng, X
2011-04-28
In this paper, we aim to study the cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events. Videos with asynchronous semantically consistent or inconsistent natural sound or speech were used as stimuli in order to compare the difference and similarity between multisensory integrations of videos with asynchronous natural sound and speech. The event-related potential (ERP) results showed that N1 and P250 components were elicited irrespective of whether natural sounds were consistent or inconsistent with critical actions in videos. Videos with inconsistent natural sound could elicit N400-P600 effects compared to videos with consistent natural sound, which was similar to the results from unisensory visual studies. Videos with semantically consistent or inconsistent speech could both elicit N1 components. Meanwhile, videos with inconsistent speech would elicit N400-LPN effects in comparison with videos with consistent speech, which showed that this semantic processing was probably related to recognition memory. Moreover, the N400 effect elicited by videos with semantically inconsistent speech was larger and later than that elicited by videos with semantically inconsistent natural sound. Overall, multisensory integration of videos with natural sound or speech could be roughly divided into two stages. For the videos with natural sound, the first stage might reflect the connection between the received information and the stored information in memory; and the second one might stand for the evaluation process of inconsistent semantic information. For the videos with speech, the first stage was similar to the first stage of videos with natural sound; while the second one might be related to recognition memory process. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Yoder, Paul J.; Molfese, Dennis; Murray, Micah M.; Key, Alexandra P. F.
2013-01-01
Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Post-treatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group. PMID:24219693
Differences in Talker Recognition by Preschoolers and Adults
ERIC Educational Resources Information Center
Creel, Sarah C.; Jimenez, Sofia R.
2012-01-01
Talker variability in speech influences language processing from infancy through adulthood and is inextricably embedded in the very cues that identify speech sounds. Yet little is known about developmental changes in the processing of talker information. On one account, children have not yet learned to separate speech sound variability from…
Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N.
2012-01-01
Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients. PMID:22891070
Tervaniemi, M; Kruck, S; De Baene, W; Schröger, E; Alter, K; Friederici, A D
2009-10-01
By recording auditory electrical brain potentials, we investigated whether the basic sound parameters (frequency, duration and intensity) are differentially encoded among speech vs. music sounds by musicians and non-musicians during different attentional demands. To this end, a pseudoword and an instrumental sound of comparable frequency and duration were presented. The accuracy of neural discrimination was tested by manipulations of frequency, duration and intensity. Additionally, the subjects' attentional focus was manipulated by instructions to ignore the sounds while watching a silent movie or to attentively discriminate the different sounds. In both musicians and non-musicians, the pre-attentively evoked mismatch negativity (MMN) component was larger to slight changes in music than in speech sounds. The MMN was also larger to intensity changes in music sounds and to duration changes in speech sounds. During attentional listening, all subjects more readily discriminated changes among speech sounds than among music sounds as indexed by the N2b response strength. Furthermore, during attentional listening, musicians displayed larger MMN and N2b than non-musicians for both music and speech sounds. Taken together, the data indicate that the discriminative abilities in human audition differ between music and speech sounds as a function of the sound-change context and the subjective familiarity of the sound parameters. These findings provide clear evidence for top-down modulatory effects in audition. In other words, the processing of sounds is realized by a dynamically adapting network considering type of sound, expertise and attentional demands, rather than by a strictly modularly organized stimulus-driven system.
The Long Road to Automation: Neurocognitive Development of Letter-Speech Sound Processing
ERIC Educational Resources Information Center
Froyen, Dries J. W.; Bonte, Milene L.; van Atteveldt, Nienke; Blomert, Leo
2009-01-01
In transparent alphabetic languages, the expected standard for complete acquisition of letter-speech sound associations is within one year of reading instruction. The neural mechanisms underlying the acquisition of letter-speech sound associations have, however, hardly been investigated. The present article describes an ERP study with beginner and…
Visual Feedback of Tongue Movement for Novel Speech Sound Learning
Katz, William F.; Mehta, Sonya
2015-01-01
Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV) information. Second language (L2) learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals). However, little is known about the role of viewing one's own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker's learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA) was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ/; a voiced, coronal, palatal stop) before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers' productions were evaluated using kinematic (tongue-tip spatial positioning) and acoustic (burst spectra) measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing. PMID:26635571
Brainstem Transcription of Speech Is Disrupted in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or…
Hemispheric Differences in Processing Dichotic Meaningful and Non-Meaningful Words
ERIC Educational Resources Information Center
Yasin, Ifat
2007-01-01
Classic dichotic-listening paradigms reveal a right-ear advantage (REA) for speech sounds as compared to non-speech sounds. This REA is assumed to be associated with a left-hemisphere dominance for meaningful speech processing. This study objectively probed the relationship between ear advantage and hemispheric dominance in a dichotic-listening…
Goldrick, Matthew; Keshet, Joseph; Gustafson, Erin; Heller, Jordana; Needle, Jeremy
2016-04-01
Traces of the cognitive mechanisms underlying speaking can be found within subtle variations in how we pronounce sounds. While speech errors have traditionally been seen as categorical substitutions of one sound for another, acoustic/articulatory analyses show they partially reflect the intended sound. When "pig" is mispronounced as "big," the resulting /b/ sound differs from correct productions of "big," moving towards intended "pig"-revealing the role of graded sound representations in speech production. Investigating the origins of such phenomena requires detailed estimation of speech sound distributions; this has been hampered by reliance on subjective, labor-intensive manual annotation. Computational methods can address these issues by providing for objective, automatic measurements. We develop a novel high-precision computational approach, based on a set of machine learning algorithms, for measurement of elicited speech. The algorithms are trained on existing manually labeled data to detect and locate linguistically relevant acoustic properties with high accuracy. Our approach is robust, is designed to handle mis-productions, and overall matches the performance of expert coders. It allows us to analyze a very large dataset of speech errors (containing far more errors than the total in the existing literature), illuminating properties of speech sound distributions previously impossible to reliably observe. We argue that this provides novel evidence that two sources both contribute to deviations in speech errors: planning processes specifying the targets of articulation and articulatory processes specifying the motor movements that execute this plan. These findings illustrate how a much richer picture of speech provides an opportunity to gain novel insights into language processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Kempe, Vera; Bublitz, Dennis; Brooks, Patricia J
2015-05-01
Is the observed link between musical ability and non-native speech-sound processing due to enhanced sensitivity to acoustic features underlying both musical and linguistic processing? To address this question, native English speakers (N = 118) discriminated Norwegian tonal contrasts and Norwegian vowels. Short tones differing in temporal, pitch, and spectral characteristics were used to measure sensitivity to the various acoustic features implicated in musical and speech processing. Musical ability was measured using Gordon's Advanced Measures of Musical Audiation. Results showed that sensitivity to specific acoustic features played a role in non-native speech-sound processing: Controlling for non-verbal intelligence, prior foreign language-learning experience, and sex, sensitivity to pitch and spectral information partially mediated the link between musical ability and discrimination of non-native vowels and lexical tones. The findings suggest that while sensitivity to certain acoustic features partially mediates the relationship between musical ability and non-native speech-sound processing, complex tests of musical ability also tap into other shared mechanisms. © 2014 The British Psychological Society.
ERIC Educational Resources Information Center
Seitz, Aaron R.; Protopapas, Athanassios; Tsushima, Yoshiaki; Vlahou, Eleni L.; Gori, Simone; Grossberg, Stephen; Watanabe, Takeo
2010-01-01
Learning a second language as an adult is particularly effortful when new phonetic representations must be formed. Therefore the processes that allow learning of speech sounds are of great theoretical and practical interest. Here we examined whether perception of single formant transitions, that is, sound components critical in speech perception,…
Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve
2013-01-01
Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two–covering non-overlapping areas of the auditory cortex–were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds. PMID:23734202
Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve
2013-01-01
Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two-covering non-overlapping areas of the auditory cortex-were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds.
Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D
2006-01-01
This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.
Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah
2018-01-01
Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate "Correct"/"Incorrect" feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a "Wizard of Oz" experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human "Wizard" will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children.
Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah
2018-01-01
Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate “Correct”/”Incorrect” feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a “Wizard of Oz” experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human “Wizard” will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children. PMID:29674986
ERIC Educational Resources Information Center
Marks, William J.; Jones, W. Paul; Loe, Scott A.
2013-01-01
This study investigated the use of compressed speech as a modality for assessment of the simultaneous processing function for participants with visual impairment. A 24-item compressed speech test was created using a sound editing program to randomly remove sound elements from aural stimuli, holding pitch constant, with the objective to emulate the…
Expertise with artificial non-speech sounds recruits speech-sensitive cortical regions
Leech, Robert; Holt, Lori L.; Devlin, Joseph T.; Dick, Frederic
2009-01-01
Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained listeners to categorize acoustically complex, artificial non-linguistic sounds. Before and after training, we used functional MRI to measure how expertise with these sounds modulated temporal lobe activation. Participants’ ability to explicitly categorize the non-speech sounds predicted the change in pre- to post-training activation in speech-sensitive regions of the left posterior superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus, seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based restructuring of high-dimensional perceptual space. PMID:19386919
Temporal plasticity in auditory cortex improves neural discrimination of speech sounds
Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.
2017-01-01
Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520
Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams.
Centanni, Tracy Michelle; Booker, Anne B; Chen, Fuyi; Sloan, Andrew M; Carraway, Ryan S; Rennaker, Robert L; LoTurco, Joseph J; Kilgard, Michael P
2016-04-27
Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population. Copyright © 2016 the authors 0270-6474/16/364895-12$15.00/0.
Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams
Booker, Anne B.; Chen, Fuyi; Sloan, Andrew M.; Carraway, Ryan S.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.
2016-01-01
Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC−) before any behavioral training. A separate group of 8 rats (3 DC−) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population. PMID:27122044
ERIC Educational Resources Information Center
Tkach, Jean A.; Chen, Xu; Freebairn, Lisa A.; Schmithorst, Vincent J.; Holland, Scott K.; Lewis, Barbara A.
2011-01-01
Speech sound disorders (SSD) are the largest group of communication disorders observed in children. One explanation for these disorders is that children with SSD fail to form stable phonological representations when acquiring the speech sound system of their language due to poor phonological memory (PM). The goal of this study was to examine PM in…
Assessing Auditory Discrimination Skill of Malay Children Using Computer-based Method.
Ting, H; Yunus, J; Mohd Nordin, M Z
2005-01-01
The purpose of this paper is to investigate the auditory discrimination skill of Malay children using computer-based method. Currently, most of the auditory discrimination assessments are conducted manually by Speech-Language Pathologist. These conventional tests are actually general tests of sound discrimination, which do not reflect the client's specific speech sound errors. Thus, we propose computer-based Malay auditory discrimination test to automate the whole process of assessment as well as to customize the test according to the specific speech error sounds of the client. The ability in discriminating voiced and unvoiced Malay speech sounds was studied for the Malay children aged between 7 and 10 years old. The study showed no major difficulty for the children in discriminating the Malay speech sounds except differentiating /g/-/k/ sounds. Averagely the children of 7 years old failed to discriminate /g/-/k/ sounds.
Getting the cocktail party started: masking effects in speech perception
Evans, S; McGettigan, C; Agnew, ZK; Rosen, S; Scott, SK
2016-01-01
Spoken conversations typically take place in noisy environments and different kinds of masking sounds place differing demands on cognitive resources. Previous studies, examining the modulation of neural activity associated with the properties of competing sounds, have shown that additional speech streams engage the superior temporal gyrus. However, the absence of a condition in which target speech was heard without additional masking made it difficult to identify brain networks specific to masking and to ascertain the extent to which competing speech was processed equivalently to target speech. In this study, we scanned young healthy adults with continuous functional Magnetic Resonance Imaging (fMRI), whilst they listened to stories masked by sounds that differed in their similarity to speech. We show that auditory attention and control networks are activated during attentive listening to masked speech in the absence of an overt behavioural task. We demonstrate that competing speech is processed predominantly in the left hemisphere within the same pathway as target speech but is not treated equivalently within that stream, and that individuals who perform better in speech in noise tasks activate the left mid-posterior superior temporal gyrus more. Finally, we identify neural responses associated with the onset of sounds in the auditory environment, activity was found within right lateralised frontal regions consistent with a phasic alerting response. Taken together, these results provide a comprehensive account of the neural processes involved in listening in noise. PMID:26696297
Degraded speech sound processing in a rat model of fragile X syndrome
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Kilgard, Michael P.
2014-01-01
Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies. PMID:24713347
ERIC Educational Resources Information Center
Preston, Jonathan L.; Felsenfeld, Susan; Frost, Stephen J.; Mencl, W. Einar; Fulbright, Robert K.; Grigorenko, Elena L.; Landi, Nicole; Seki, Ayumi; Pugh, Kenneth R.
2012-01-01
Purpose: To examine neural response to spoken and printed language in children with speech sound errors (SSE). Method: Functional magnetic resonance imaging was used to compare processing of auditorily and visually presented words and pseudowords in 17 children with SSE, ages 8;6[years;months] through 10;10, with 17 matched controls. Results: When…
Hashizume, Hiroshi; Taki, Yasuyuki; Sassa, Yuko; Thyreau, Benjamin; Asano, Michiko; Asano, Kohei; Takeuchi, Hikaru; Nouchi, Rui; Kotozaki, Yuka; Jeong, Hyeonjeong; Sugiura, Motoaki; Kawashima, Ryuta
2014-08-01
Older children are more successful at producing unfamiliar, non-native speech sounds than younger children during the initial stages of learning. To reveal the neuronal underpinning of the age-related increase in the accuracy of non-native speech production, we examined the developmental changes in activation involved in the production of novel speech sounds using functional magnetic resonance imaging. Healthy right-handed children (aged 6-18 years) were scanned while performing an overt repetition task and a perceptual task involving aurally presented non-native and native syllables. Productions of non-native speech sounds were recorded and evaluated by native speakers. The mouth regions in the bilateral primary sensorimotor areas were activated more significantly during the repetition task relative to the perceptual task. The hemodynamic response in the left inferior frontal gyrus pars opercularis (IFG pOp) specific to non-native speech sound production (defined by prior hypothesis) increased with age. Additionally, the accuracy of non-native speech sound production increased with age. These results provide the first evidence of developmental changes in the neural processes underlying the production of novel speech sounds. Our data further suggest that the recruitment of the left IFG pOp during the production of novel speech sounds was possibly enhanced due to the maturation of the neuronal circuits needed for speech motor planning. This, in turn, would lead to improvement in the ability to immediately imitate non-native speech. Copyright © 2014 Wiley Periodicals, Inc.
Theoretical Aspects of Speech Production.
ERIC Educational Resources Information Center
Stevens, Kenneth N.
1992-01-01
This paper on speech production in children and youth with hearing impairments summarizes theoretical aspects, including the speech production process, sound sources in the vocal tract, vowel production, and consonant production. Examples of spectra for several classes of vowel and consonant sounds in simple syllables are given. (DB)
Brainstem transcription of speech is disrupted in children with autism spectrum disorders
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083
Milovanov, Riia; Huotilainen, Minna; Esquef, Paulo A A; Alku, Paavo; Välimäki, Vesa; Tervaniemi, Mari
2009-08-28
We examined 10-12-year old elementary school children's ability to preattentively process sound durations in music and speech stimuli. In total, 40 children had either advanced foreign language production skills and higher musical aptitude or less advanced results in both musicality and linguistic tests. Event-related potential (ERP) recordings of the mismatch negativity (MMN) show that the duration changes in musical sounds are more prominently and accurately processed than changes in speech sounds. Moreover, children with advanced pronunciation and musicality skills displayed enhanced MMNs to duration changes in both speech and musical sounds. Thus, our study provides further evidence for the claim that musical aptitude and linguistic skills are interconnected and the musical features of the stimuli could have a preponderant role in preattentive duration processing.
Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia
2018-01-17
During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nonlinear frequency compression: effects on sound quality ratings of speech and music.
Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas
2013-03-01
Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality.
Phonological Processing and Reading in Children with Speech Sound Disorders
ERIC Educational Resources Information Center
Rvachew, Susan
2007-01-01
Purpose: To examine the relationship between phonological processing skills prior to kindergarten entry and reading skills at the end of 1st grade, in children with speech sound disorders (SSD). Method: The participants were 17 children with SSD and poor phonological processing skills (SSD-low PP), 16 children with SSD and good phonological…
Influence of Gestational Age and Postnatal Age on Speech Sound Processing in NICU infants
Key, Alexandra P.F.; Lambert, E. Warren; Aschner, Judy L.; Maitre, Nathalie L.
2012-01-01
The study examined the effect of gestational (GA) and postnatal (PNA) age on speech sound perception in infants. Auditory ERPs were recorded in response to speech sounds (CV syllables) in 50 infant NICU patients (born at 24–40 weeks gestation) prior to discharge. Efficiency of speech perception was quantified as absolute difference in mean amplitudes of ERPs in response to vowel (/a/–/u/) and consonant (/b/–/g/, /d/–/g/) contrasts within 150–250, 250–400, 400–700 ms after stimulus onset. Results indicated that both GA and PNA affected speech sound processing. These effects were more pronounced for consonant than vowel contrasts. Increasing PNA was associated with greater sound discrimination in infants born at or after 30 weeks GA, while minimal PNA-related changes were observed for infants with GA less than 30 weeks. Our findings suggest that a certain level of brain maturity at birth is necessary to benefit from postnatal experience in the first 4 months of life, and both gestational and postnatal ages need to be considered when evaluating infant brain responses. PMID:22332725
Effects of musical expertise on oscillatory brain activity in response to emotional sounds.
Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L
2017-08-01
Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Speech training alters tone frequency tuning in rat primary auditory cortex
Engineer, Crystal T.; Perez, Claudia A.; Carraway, Ryan S.; Chang, Kevin Q.; Roland, Jarod L.; Kilgard, Michael P.
2013-01-01
Previous studies in both humans and animals have documented improved performance following discrimination training. This enhanced performance is often associated with cortical response changes. In this study, we tested the hypothesis that long-term speech training on multiple tasks can improve primary auditory cortex (A1) responses compared to rats trained on a single speech discrimination task or experimentally naïve rats. Specifically, we compared the percent of A1 responding to trained sounds, the responses to both trained and untrained sounds, receptive field properties of A1 neurons, and the neural discrimination of pairs of speech sounds in speech trained and naïve rats. Speech training led to accurate discrimination of consonant and vowel sounds, but did not enhance A1 response strength or the neural discrimination of these sounds. Speech training altered tone responses in rats trained on six speech discrimination tasks but not in rats trained on a single speech discrimination task. Extensive speech training resulted in broader frequency tuning, shorter onset latencies, a decreased driven response to tones, and caused a shift in the frequency map to favor tones in the range where speech sounds are the loudest. Both the number of trained tasks and the number of days of training strongly predict the percent of A1 responding to a low frequency tone. Rats trained on a single speech discrimination task performed less accurately than rats trained on multiple tasks and did not exhibit A1 response changes. Our results indicate that extensive speech training can reorganize the A1 frequency map, which may have downstream consequences on speech sound processing. PMID:24344364
Maggu, Akshay R; Liu, Fang; Antoniou, Mark; Wong, Patrick C M
2016-01-01
Across time, languages undergo changes in phonetic, syntactic, and semantic dimensions. Social, cognitive, and cultural factors contribute to sound change, a phenomenon in which the phonetics of a language undergo changes over time. Individuals who misperceive and produce speech in a slightly divergent manner (called innovators ) contribute to variability in the society, eventually leading to sound change. However, the cause of variability in these individuals is still unknown. In this study, we examined whether such misperceptions are represented in neural processes of the auditory system. We investigated behavioral, subcortical (via FFR), and cortical (via P300) manifestations of sound change processing in Cantonese, a Chinese language in which several lexical tones are merging. Across the merging categories, we observed a similar gradation of speech perception abilities in both behavior and the brain (subcortical and cortical processes). Further, we also found that behavioral evidence of tone merging correlated with subjects' encoding at the subcortical and cortical levels. These findings indicate that tone-merger categories, that are indicators of sound change in Cantonese, are represented neurophysiologically with high fidelity. Using our results, we speculate that innovators encode speech in a slightly deviant neurophysiological manner, and thus produce speech divergently that eventually spreads across the community and contributes to sound change.
Maggu, Akshay R.; Liu, Fang; Antoniou, Mark; Wong, Patrick C. M.
2016-01-01
Across time, languages undergo changes in phonetic, syntactic, and semantic dimensions. Social, cognitive, and cultural factors contribute to sound change, a phenomenon in which the phonetics of a language undergo changes over time. Individuals who misperceive and produce speech in a slightly divergent manner (called innovators) contribute to variability in the society, eventually leading to sound change. However, the cause of variability in these individuals is still unknown. In this study, we examined whether such misperceptions are represented in neural processes of the auditory system. We investigated behavioral, subcortical (via FFR), and cortical (via P300) manifestations of sound change processing in Cantonese, a Chinese language in which several lexical tones are merging. Across the merging categories, we observed a similar gradation of speech perception abilities in both behavior and the brain (subcortical and cortical processes). Further, we also found that behavioral evidence of tone merging correlated with subjects' encoding at the subcortical and cortical levels. These findings indicate that tone-merger categories, that are indicators of sound change in Cantonese, are represented neurophysiologically with high fidelity. Using our results, we speculate that innovators encode speech in a slightly deviant neurophysiological manner, and thus produce speech divergently that eventually spreads across the community and contributes to sound change. PMID:28066218
A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.
Carlin, Michael A; Elhilali, Mounya
2015-12-01
One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.
Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.
Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R
1999-04-06
Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.
Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F
2017-08-16
Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.
Action planning and predictive coding when speaking
Wang, Jun; Mathalon, Daniel H.; Roach, Brian J.; Reilly, James; Keedy, Sarah; Sweeney, John A.; Ford, Judith M.
2014-01-01
Across the animal kingdom, sensations resulting from an animal's own actions are processed differently from sensations resulting from external sources, with self-generated sensations being suppressed. A forward model has been proposed to explain this process across sensorimotor domains. During vocalization, reduced processing of one's own speech is believed to result from a comparison of speech sounds to corollary discharges of intended speech production generated from efference copies of commands to speak. Until now, anatomical and functional evidence validating this model in humans has been indirect. Using EEG with anatomical MRI to facilitate source localization, we demonstrate that inferior frontal gyrus activity during the 300ms before speaking was associated with suppressed processing of speech sounds in auditory cortex around 100ms after speech onset (N1). These findings indicate that an efference copy from speech areas in prefrontal cortex is transmitted to auditory cortex, where it is used to suppress processing of anticipated speech sounds. About 100ms after N1, a subsequent auditory cortical component (P2) was not suppressed during talking. The combined N1 and P2 effects suggest that although sensory processing is suppressed as reflected in N1, perceptual gaps are filled as reflected in the lack of P2 suppression, explaining the discrepancy between sensory suppression and preserved sensory experiences. These findings, coupled with the coherence between relevant brain regions before and during speech, provide new mechanistic understanding of the complex interactions between action planning and sensory processing that provide for differentiated tagging and monitoring of one's own speech, processes disrupted in neuropsychiatric disorders. PMID:24423729
ERIC Educational Resources Information Center
Masso, Sarah; Baker, Elise; McLeod, Sharynne; Wang, Cen
2017-01-01
Purpose: The aim of this study was to determine if polysyllable accuracy in preschoolers with speech sound disorders (SSD) was related to known predictors of later literacy development: phonological processing, receptive vocabulary, and print knowledge. Polysyllables--words of three or more syllables--are important to consider because unlike…
ERIC Educational Resources Information Center
Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.
2008-01-01
Autism is a disorder characterized by a core impairment in social behaviour. A prominent component of this social deficit is poor orienting to speech. It is unclear whether this deficit involves an impairment in allocating attention to speech sounds, or a sensory impairment in processing phonetic information. In this study, event-related…
The sound symbolism bootstrapping hypothesis for language acquisition and language evolution
Imai, Mutsumi; Kita, Sotaro
2014-01-01
Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. PMID:25092666
Preschoolers' real-time coordination of vocal and facial emotional information.
Berman, Jared M J; Chambers, Craig G; Graham, Susan A
2016-02-01
An eye-tracking methodology was used to examine the time course of 3- and 5-year-olds' ability to link speech bearing different acoustic cues to emotion (i.e., happy-sounding, neutral, and sad-sounding intonation) to photographs of faces reflecting different emotional expressions. Analyses of saccadic eye movement patterns indicated that, for both 3- and 5-year-olds, sad-sounding speech triggered gaze shifts to a matching (sad-looking) face from the earliest moments of speech processing. However, it was not until approximately 800ms into a happy-sounding utterance that preschoolers began to use the emotional cues from speech to identify a matching (happy-looking) face. Complementary analyses based on conscious/controlled behaviors (children's explicit points toward the faces) indicated that 5-year-olds, but not 3-year-olds, could successfully match happy-sounding and sad-sounding vocal affect to a corresponding emotional face. Together, the findings clarify developmental patterns in preschoolers' implicit versus explicit ability to coordinate emotional cues across modalities and highlight preschoolers' greater sensitivity to sad-sounding speech as the auditory signal unfolds in time. Copyright © 2015 Elsevier Inc. All rights reserved.
Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z
2015-01-01
The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available.
Reed, Amanda C.; Centanni, Tracy M.; Borland, Michael S.; Matney, Chanel J.; Engineer, Crystal T.; Kilgard, Michael P.
2015-01-01
Objectives Hearing loss is a commonly experienced disability in a variety of populations including veterans and the elderly and can often cause significant impairment in the ability to understand spoken language. In this study, we tested the hypothesis that neural and behavioral responses to speech will be differentially impaired in an animal model after two forms of hearing loss. Design Sixteen female Sprague–Dawley rats were exposed to one of two types of broadband noise which was either moderate or intense. In nine of these rats, auditory cortex recordings were taken 4 weeks after noise exposure (NE). The other seven were pretrained on a speech sound discrimination task prior to NE and were then tested on the same task after hearing loss. Results Following intense NE, rats had few neural responses to speech stimuli. These rats were able to detect speech sounds but were no longer able to discriminate between speech sounds. Following moderate NE, rats had reorganized cortical maps and altered neural responses to speech stimuli but were still able to accurately discriminate between similar speech sounds during behavioral testing. Conclusions These results suggest that rats are able to adjust to the neural changes after moderate NE and discriminate speech sounds, but they are not able to recover behavioral abilities after intense NE. Animal models could help clarify the adaptive and pathological neural changes that contribute to speech processing in hearing-impaired populations and could be used to test potential behavioral and pharmacological therapies. PMID:25072238
Speech-Sound Duration Processing in a Second Language is Specific to Phonetic Categories
ERIC Educational Resources Information Center
Nenonen, Sari; Shestakova, Anna; Huotilainen, Minna; Naatanen, Risto
2005-01-01
The mismatch negativity (MMN) component of the auditory event-related potential was used to determine the effect of native language, Russian, on the processing of speech-sound duration in a second language, Finnish, that uses duration as a cue for phonological distinction. The native-language effect was compared with Finnish vowels that either can…
McKinnon, David H; McLeod, Sharynne; Reilly, Sheena
2007-01-01
The aims of this study were threefold: to report teachers' estimates of the prevalence of speech disorders (specifically, stuttering, voice, and speech-sound disorders); to consider correspondence between the prevalence of speech disorders and gender, grade level, and socioeconomic status; and to describe the level of support provided to schoolchildren with speech disorders. Students with speech disorders were identified from 10,425 students in Australia using a 4-stage process: training in the data collection process, teacher identification, confirmation by a speech-language pathologist, and consultation with district special needs advisors. The prevalence of students with speech disorders was estimated; specifically, 0.33% of students were identified as stuttering, 0.12% as having a voice disorder, and 1.06% as having a speech-sound disorder. There was a higher prevalence of speech disorders in males than in females. As grade level increased, the prevalence of speech disorders decreased. There was no significant difference in the pattern of prevalence across the three speech disorders and four socioeconomic groups; however, students who were identified with a speech disorder were more likely to be in the higher socioeconomic groups. Finally, there was a difference between the perceived and actual level of support that was provided to these students. These prevalence figures are lower than those using initial identification by speech-language pathologists and similar to those using parent report.
Adults with Specific Language Impairment fail to consolidate speech sounds during sleep.
Earle, F Sayako; Landi, Nicole; Myers, Emily B
2018-02-14
Specific Language Impairment (SLI) is a common learning disability that is associated with poor speech sound representations. These differences in representational quality are thought to impose a burden on spoken language processing. The underlying mechanism to account for impoverished speech sound representations remains in debate. Previous findings that implicate sleep as important for building speech representations, combined with reports of atypical sleep in SLI, motivate the current investigation into a potential consolidation mechanism as a source of impoverished representations in SLI. In the current study, we trained individuals with SLI on a new (nonnative) set of speech sounds, and tracked their perceptual accuracy and neural responses to these sounds over two days. Adults with SLI achieved comparable performance to typical controls during training, however demonstrated a distinct lack of overnight gains on the next day. We propose that those with SLI may be impaired in the consolidation of acoustic-phonetic information. Published by Elsevier B.V.
The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.
Imai, Mutsumi; Kita, Sotaro
2014-09-19
Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The auditory representation of speech sounds in human motor cortex
Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F
2016-01-01
In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778
Speech-sound duration processing in a second language is specific to phonetic categories.
Nenonen, Sari; Shestakova, Anna; Huotilainen, Minna; Näätänen, Risto
2005-01-01
The mismatch negativity (MMN) component of the auditory event-related potential was used to determine the effect of native language, Russian, on the processing of speech-sound duration in a second language, Finnish, that uses duration as a cue for phonological distinction. The native-language effect was compared with Finnish vowels that either can or cannot be categorized using the Russian phonological system. The results showed that the duration-change MMN for the Finnish sounds that could be categorized through Russian was reduced in comparison with that for the Finnish sounds having no Russian equivalent. In the Finnish sounds that can be mapped through the Russian phonological system, the facilitation of the duration processing may be inhibited by the native Russian language. However, for the sounds that have no Russian equivalent, new vowel categories independent of the native Russian language have apparently been established, enabling a native-like duration processing of Finnish.
Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta
2014-01-01
Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas SSFs to music showed no lateralization. In addition, the right lateralization of SSFs to the speech stimuli decreased with decreasing modulation depth. The results showed that SSFs can be reliably measured to amplitude-modulated natural sounds, with slightly different hemispheric lateralization for different carrier sounds. With speech stimuli, modulation at 100% depth is required, whereas for music the 75% or even 50% modulation depths provide a reasonable compromise between the signal-to-noise ratio of SSFs and sound quality or perceptual requirements. SSF recordings thus seem feasible for assessing the early cortical processing of natural sounds.
Ding, Nai; Pan, Xunyi; Luo, Cheng; Su, Naifei; Zhang, Wen; Zhang, Jianfeng
2018-01-31
How the brain groups sequential sensory events into chunks is a fundamental question in cognitive neuroscience. This study investigates whether top-down attention or specific tasks are required for the brain to apply lexical knowledge to group syllables into words. Neural responses tracking the syllabic and word rhythms of a rhythmic speech sequence were concurrently monitored using electroencephalography (EEG). The participants performed different tasks, attending to either the rhythmic speech sequence or a distractor, which was another speech stream or a nonlinguistic auditory/visual stimulus. Attention to speech, but not a lexical-meaning-related task, was required for reliable neural tracking of words, even when the distractor was a nonlinguistic stimulus presented cross-modally. Neural tracking of syllables, however, was reliably observed in all tested conditions. These results strongly suggest that neural encoding of individual auditory events (i.e., syllables) is automatic, while knowledge-based construction of temporal chunks (i.e., words) crucially relies on top-down attention. SIGNIFICANCE STATEMENT Why we cannot understand speech when not paying attention is an old question in psychology and cognitive neuroscience. Speech processing is a complex process that involves multiple stages, e.g., hearing and analyzing the speech sound, recognizing words, and combining words into phrases and sentences. The current study investigates which speech-processing stage is blocked when we do not listen carefully. We show that the brain can reliably encode syllables, basic units of speech sounds, even when we do not pay attention. Nevertheless, when distracted, the brain cannot group syllables into multisyllabic words, which are basic units for speech meaning. Therefore, the process of converting speech sound into meaning crucially relies on attention. Copyright © 2018 the authors 0270-6474/18/381178-11$15.00/0.
Soskey, Laura N; Allen, Paul D; Bennetto, Loisa
2017-08-01
One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve
2018-01-01
To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…
Tsunoda, Koichi; Sekimoto, Sotaro; Itoh, Kenji
2016-06-01
Conclusions The result suggested that mother tongue Japanese and non- mother tongue Japanese differ in their pattern of brain dominance when listening to sounds from the natural world-in particular, insect sounds. These results reveal significant support for previous findings from Tsunoda (in 1970). Objectives This study concentrates on listeners who show clear evidence of a 'speech' brain vs a 'music' brain and determines which side is most active in the processing of insect sounds, using with near-infrared spectroscopy. Methods The present study uses 2-channel Near Infrared Spectroscopy (NIRS) to provide a more direct measure of left- and right-brain activity while participants listen to each of three types of sounds: Japanese speech, Western violin music, or insect sounds. Data were obtained from 33 participants who showed laterality on opposite sides for Japanese speech and Western music. Results Results showed that a majority (80%) of the MJ participants exhibited dominance for insect sounds on the side that was dominant for language, while a majority (62%) of the non-MJ participants exhibited dominance for insect sounds on the side that was dominant for music.
Keshavarzi, Mahmoud; Goehring, Tobias; Zakis, Justin; Turner, Richard E; Moore, Brian C J
2018-01-01
Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using the "clean" speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impairment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing. Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using an RNN is possible and might have beneficial effects when used in hearing aids.
Speech sound discrimination training improves auditory cortex responses in a rat model of autism
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.
2014-01-01
Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133
ERIC Educational Resources Information Center
Blackman, Graham A.; Hall, Deborah A.
2011-01-01
Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…
ERIC Educational Resources Information Center
Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A.
2008-01-01
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated…
Applications of Hilbert Spectral Analysis for Speech and Sound Signals
NASA Technical Reports Server (NTRS)
Huang, Norden E.
2003-01-01
A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.
Francisco, Danira Tavares; Wertzner, Haydée Fiszbein
2017-01-01
This study describes the criteria that are used in ultrasound to measure the differences between the tongue contours that produce [s] and [ʃ] sounds in the speech of adults, typically developing children (TDC), and children with speech sound disorder (SSD) with the phonological process of palatal fronting. Overlapping images of the tongue contours that resulted from 35 subjects producing the [s] and [ʃ] sounds were analysed to select 11 spokes on the radial grid that were spread over the tongue contour. The difference was calculated between the mean contour of the [s] and [ʃ] sounds for each spoke. A cluster analysis produced groups with some consistency in the pattern of articulation across subjects and differentiated adults and TDC to some extent and children with SSD with a high level of success. Children with SSD were less likely to show differentiation of the tongue contours between the articulation of [s] and [ʃ].
Masapollo, Matthew; Polka, Linda; Ménard, Lucie
2016-03-01
To learn to produce speech, infants must effectively monitor and assess their own speech output. Yet very little is known about how infants perceive speech produced by an infant, which has higher voice pitch and formant frequencies compared to adult or child speech. Here, we tested whether pre-babbling infants (at 4-6 months) prefer listening to vowel sounds with infant vocal properties over vowel sounds with adult vocal properties. A listening preference favoring infant vowels may derive from their higher voice pitch, which has been shown to attract infant attention in infant-directed speech (IDS). In addition, infants' nascent articulatory abilities may induce a bias favoring infant speech given that 4- to 6-month-olds are beginning to produce vowel sounds. We created infant and adult /i/ ('ee') vowels using a production-based synthesizer that simulates the act of speaking in talkers at different ages and then tested infants across four experiments using a sequential preferential listening task. The findings provide the first evidence that infants preferentially attend to vowel sounds with infant voice pitch and/or formants over vowel sounds with no infant-like vocal properties, supporting the view that infants' production abilities influence how they process infant speech. The findings with respect to voice pitch also reveal parallels between IDS and infant speech, raising new questions about the role of this speech register in infant development. Research exploring the underpinnings and impact of this perceptual bias can expand our understanding of infant language development. © 2015 John Wiley & Sons Ltd.
Status Report on Speech Research, No. 27, July-September 1971.
ERIC Educational Resources Information Center
Haskins Labs., New Haven, CT.
This report contains fourteen papers on a wide range of current topics and experiments in speech research, ranging from the relationship between speech and reading to questions of memory and perception of speech sounds. The following papers are included: "How Is Language Conveyed by Speech?;""Reading, the Linguistic Process, and Linguistic…
Discrimination of speech and non-speech sounds following theta-burst stimulation of the motor cortex
Rogers, Jack C.; Möttönen, Riikka; Boyles, Rowan; Watkins, Kate E.
2014-01-01
Perceiving speech engages parts of the motor system involved in speech production. The role of the motor cortex in speech perception has been demonstrated using low-frequency repetitive transcranial magnetic stimulation (rTMS) to suppress motor excitability in the lip representation and disrupt discrimination of lip-articulated speech sounds (Möttönen and Watkins, 2009). Another form of rTMS, continuous theta-burst stimulation (cTBS), can produce longer-lasting disruptive effects following a brief train of stimulation. We investigated the effects of cTBS on motor excitability and discrimination of speech and non-speech sounds. cTBS was applied for 40 s over either the hand or the lip representation of motor cortex. Motor-evoked potentials recorded from the lip and hand muscles in response to single pulses of TMS revealed no measurable change in motor excitability due to cTBS. This failure to replicate previous findings may reflect the unreliability of measurements of motor excitability related to inter-individual variability. We also measured the effects of cTBS on a listener’s ability to discriminate: (1) lip-articulated speech sounds from sounds not articulated by the lips (“ba” vs. “da”); (2) two speech sounds not articulated by the lips (“ga” vs. “da”); and (3) non-speech sounds produced by the hands (“claps” vs. “clicks”). Discrimination of lip-articulated speech sounds was impaired between 20 and 35 min after cTBS over the lip motor representation. Specifically, discrimination of across-category ba–da sounds presented with an 800-ms inter-stimulus interval was reduced to chance level performance. This effect was absent for speech sounds that do not require the lips for articulation and non-speech sounds. Stimulation over the hand motor representation did not affect discrimination of speech or non-speech sounds. These findings show that stimulation of the lip motor representation disrupts discrimination of speech sounds in an articulatory feature-specific way. PMID:25076928
Rogers, Jack C; Möttönen, Riikka; Boyles, Rowan; Watkins, Kate E
2014-01-01
Perceiving speech engages parts of the motor system involved in speech production. The role of the motor cortex in speech perception has been demonstrated using low-frequency repetitive transcranial magnetic stimulation (rTMS) to suppress motor excitability in the lip representation and disrupt discrimination of lip-articulated speech sounds (Möttönen and Watkins, 2009). Another form of rTMS, continuous theta-burst stimulation (cTBS), can produce longer-lasting disruptive effects following a brief train of stimulation. We investigated the effects of cTBS on motor excitability and discrimination of speech and non-speech sounds. cTBS was applied for 40 s over either the hand or the lip representation of motor cortex. Motor-evoked potentials recorded from the lip and hand muscles in response to single pulses of TMS revealed no measurable change in motor excitability due to cTBS. This failure to replicate previous findings may reflect the unreliability of measurements of motor excitability related to inter-individual variability. We also measured the effects of cTBS on a listener's ability to discriminate: (1) lip-articulated speech sounds from sounds not articulated by the lips ("ba" vs. "da"); (2) two speech sounds not articulated by the lips ("ga" vs. "da"); and (3) non-speech sounds produced by the hands ("claps" vs. "clicks"). Discrimination of lip-articulated speech sounds was impaired between 20 and 35 min after cTBS over the lip motor representation. Specifically, discrimination of across-category ba-da sounds presented with an 800-ms inter-stimulus interval was reduced to chance level performance. This effect was absent for speech sounds that do not require the lips for articulation and non-speech sounds. Stimulation over the hand motor representation did not affect discrimination of speech or non-speech sounds. These findings show that stimulation of the lip motor representation disrupts discrimination of speech sounds in an articulatory feature-specific way.
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
Marsh, John E.; Campbell, Tom A.
2016-01-01
The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.
Marsh, John E; Campbell, Tom A
2016-01-01
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.
Elmer, Stefan; Klein, Carina; Kühnis, Jürg; Liem, Franziskus; Meyer, Martin; Jäncke, Lutz
2014-10-01
In this study, we used high-density EEG to evaluate whether speech and music expertise has an influence on the categorization of expertise-related and unrelated sounds. With this purpose in mind, we compared the categorization of speech, music, and neutral sounds between professional musicians, simultaneous interpreters (SIs), and controls in response to morphed speech-noise, music-noise, and speech-music continua. Our hypothesis was that music and language expertise will strengthen the memory representations of prototypical sounds, which act as a perceptual magnet for morphed variants. This means that the prototype would "attract" variants. This so-called magnet effect should be manifested by an increased assignment of morphed items to the trained category, by a reduced maximal slope of the psychometric function, as well as by differential event-related brain responses reflecting memory comparison processes (i.e., N400 and P600 responses). As a main result, we provide first evidence for a domain-specific behavioral bias of musicians and SIs toward the trained categories, namely music and speech. In addition, SIs showed a bias toward musical items, indicating that interpreting training has a generic influence on the cognitive representation of spectrotemporal signals with similar acoustic properties to speech sounds. Notably, EEG measurements revealed clear distinct N400 and P600 responses to both prototypical and ambiguous items between the three groups at anterior, central, and posterior scalp sites. These differential N400 and P600 responses represent synchronous activity occurring across widely distributed brain networks, and indicate a dynamical recruitment of memory processes that vary as a function of training and expertise.
Autistic traits and attention to speech: Evidence from typically developing individuals.
Korhonen, Vesa; Werner, Stefan
2017-04-01
Individuals with autism spectrum disorder have a preference for attending to non-speech stimuli over speech stimuli. We are interested in whether non-speech preference is only a feature of diagnosed individuals, and whether we can we test implicit preference experimentally. In typically developed individuals, serial recall is disrupted more by speech stimuli than by non-speech stimuli. Since behaviour of individuals with autistic traits resembles that of individuals with autism, we have used serial recall to test whether autistic traits influence task performance during irrelevant speech sounds. The errors made on the serial recall task during speech or non-speech sounds were counted as a measure of speech or non-speech preference in relation to no sound condition. We replicated the serial order effect and found the speech to be more disruptive than the non-speech sounds, but were unable to find any associations between the autism quotient scores and the non-speech sounds. Our results may indicate a learnt behavioural response to speech sounds.
Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds
Agnew, Z.K.; McGettigan, C.; Scott, S.K.
2012-01-01
Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557
The Functional Neuroanatomy of Prelexical Processing in Speech Perception
ERIC Educational Resources Information Center
Scott, Sophie K.; Wise, Richard J. S.
2004-01-01
In this paper we attempt to relate the prelexical processing of speech, with particular emphasis on functional neuroimaging studies, to the study of auditory perceptual systems by disciplines in the speech and hearing sciences. The elaboration of the sound-to-meaning pathways in the human brain enables their integration into models of the human…
Audiovisual Matching in Speech and Nonspeech Sounds: A Neurodynamical Model
ERIC Educational Resources Information Center
Loh, Marco; Schmid, Gabriele; Deco, Gustavo; Ziegler, Wolfram
2010-01-01
Audiovisual speech perception provides an opportunity to investigate the mechanisms underlying multimodal processing. By using nonspeech stimuli, it is possible to investigate the degree to which audiovisual processing is specific to the speech domain. It has been shown in a match-to-sample design that matching across modalities is more difficult…
Keshavarzi, Mahmoud; Goehring, Tobias; Zakis, Justin; Turner, Richard E.; Moore, Brian C. J.
2018-01-01
Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using the “clean” speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impairment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing. Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using an RNN is possible and might have beneficial effects when used in hearing aids. PMID:29708061
Auditory Cortex Processes Variation in Our Own Speech
Sitek, Kevin R.; Mathalon, Daniel H.; Roach, Brian J.; Houde, John F.; Niziolek, Caroline A.; Ford, Judith M.
2013-01-01
As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs) from ninety-nine subjects while they uttered “ah” and while they listened to those speech sounds played back. Subjects' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance's difference from the median formant values did not affect N1. Trial-to-trial pitch (f0) deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production. PMID:24349399
What Factors Place Children with Speech Sound Disorders at Risk for Reading Problems?
ERIC Educational Resources Information Center
Anthony, Jason L.; Aghara, Rachel Greenblatt; Dunkelberger, Martha J.; Anthony, Teresa I.; Williams, Jeffrey M.; Zhang, Zhou
2011-01-01
Purpose: To identify weaknesses in print awareness and phonological processing that place children with speech sound disorders (SSDs) at increased risk for reading difficulties. Method: Language, literacy, and phonological skills of 3 groups of preschool-age children were compared: a group of 68 children with SSDs, a group of 68 peers with normal…
ERIC Educational Resources Information Center
Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Denes
2011-01-01
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory…
Normal Aspects of Speech, Hearing, and Language.
ERIC Educational Resources Information Center
Minifie, Fred. D., Ed.; And Others
This book is written as a guide to the understanding of the processes involved in human speech communication. Ten authorities contributed material to provide an introduction to the physiological aspects of speech production and reception, the acoustical aspects of speech production and transmission, the psychophysics of sound reception, the nature…
Hemispheric Differences in the Effects of Context on Vowel Perception
ERIC Educational Resources Information Center
Sjerps, Matthias J.; Mitterer, Holger; McQueen, James M.
2012-01-01
Listeners perceive speech sounds relative to context. Contextual influences might differ over hemispheres if different types of auditory processing are lateralized. Hemispheric differences in contextual influences on vowel perception were investigated by presenting speech targets and both speech and non-speech contexts to listeners' right or left…
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Christos Nikolaos; Vovoli, Eftichia
An emotion recognition framework based on sound processing could improve services in human-computer interaction. Various quantitative speech features obtained from sound processing of acting speech were tested, as to whether they are sufficient or not to discriminate between seven emotions. Multilayered perceptrons were trained to classify gender and emotions on the basis of a 24-input vector, which provide information about the prosody of the speaker over the entire sentence using statistics of sound features. Several experiments were performed and the results were presented analytically. Emotion recognition was successful when speakers and utterances were “known” to the classifier. However, severe misclassifications occurred during the utterance-independent framework. At least, the proposed feature vector achieved promising results for utterance-independent recognition of high- and low-arousal emotions.
ERIC Educational Resources Information Center
Giordano, Bruno L.; McDonnell, John; McAdams, Stephen
2010-01-01
The neurocognitive processing of environmental sounds and linguistic stimuli shares common semantic resources and can lead to the activation of motor programs for the generation of the passively heard sound or speech. We investigated the extent to which the cognition of environmental sounds, like that of language, relies on symbolic mental…
NASA Astrophysics Data System (ADS)
Nishiura, Takanobu; Nakamura, Satoshi
2003-10-01
Humans communicate with each other through speech by focusing on the target speech among environmental sounds in real acoustic environments. We can easily identify the target sound from other environmental sounds. For hands-free speech recognition, the identification of the target speech from environmental sounds is imperative. This mechanism may also be important for a self-moving robot to sense the acoustic environments and communicate with humans. Therefore, this paper first proposes hidden Markov model (HMM)-based environmental sound source identification. Environmental sounds are modeled by three states of HMMs and evaluated using 92 kinds of environmental sounds. The identification accuracy was 95.4%. This paper also proposes a new HMM composition method that composes speech HMMs and an HMM of categorized environmental sounds for robust environmental sound-added speech recognition. As a result of the evaluation experiments, we confirmed that the proposed HMM composition outperforms the conventional HMM composition with speech HMMs and a noise (environmental sound) HMM trained using noise periods prior to the target speech in a captured signal. [Work supported by Ministry of Public Management, Home Affairs, Posts and Telecommunications of Japan.
Visual stimuli in intervention approaches for pre-schoolers diagnosed with phonological delay.
Pedro, Cassandra Ferreira; Lousada, Marisa; Hall, Andreia; Jesus, Luis M T
2018-04-01
The aim of this study was to develop and content validate specific speech and language intervention picture cards: The Letter-Sound (L&S) cards. The present study was also focused on assessing the influence of these cards on letter-sound correspondences and speech sound production. An expert panel of six speech and language therapists analysed and discussed the L&S cards based on several criteria previously established. A Speech and Language Therapist carried out a 6-week therapeutic intervention with a group of seven Portuguese phonologically delayed pre-schoolers aged 5;3 to 6;5. The modified Bland-Altman method revealed good agreement among evaluators, that is the majority of the values was between the agreement limits. Additional outcome measures were collected before and after the therapeutic intervention process. Results indicate that the L&S cards facilitate the acquisition of letter-sound correspondences. Regarding speech sound production, some improvements were also observed at word level. The L&S cards are therefore likely to give phonetic cues, which are crucial for the correct production of therapeutic targets. These visual cues seemed to have helped children with phonological delay develop the above-mentioned skills.
Masso, Sarah; Baker, Elise; McLeod, Sharynne; Wang, Cen
2017-07-12
The aim of this study was to determine if polysyllable accuracy in preschoolers with speech sound disorders (SSD) was related to known predictors of later literacy development: phonological processing, receptive vocabulary, and print knowledge. Polysyllables-words of three or more syllables-are important to consider because unlike monosyllables, polysyllables have been associated with phonological processing and literacy difficulties in school-aged children. They therefore have the potential to help identify preschoolers most at risk of future literacy difficulties. Participants were 93 preschool children with SSD from the Sound Start Study. Participants completed the Polysyllable Preschool Test (Baker, 2013) as well as phonological processing, receptive vocabulary, and print knowledge tasks. Cluster analysis was completed, and 2 clusters were identified: low polysyllable accuracy and moderate polysyllable accuracy. The clusters were significantly different based on 2 measures of phonological awareness and measures of receptive vocabulary, rapid naming, and digit span. The clusters were not significantly different on sound matching accuracy or letter, sound, or print concept knowledge. The participants' poor performance on print knowledge tasks suggested that as a group, they were at risk of literacy difficulties but that there was a cluster of participants at greater risk-those with both low polysyllable accuracy and poor phonological processing.
Temporal factors affecting somatosensory–auditory interactions in speech processing
Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.
2014-01-01
Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733
Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 CP810 Sound Processor.
Dillier, Norbert; Lai, Wai Kong
2015-06-11
The Nucleus(®) 5 System Sound Processor (CP810, Cochlear™, Macquarie University, NSW, Australia) contains two omnidirectional microphones. They can be configured as a fixed directional microphone combination (called Zoom) or as an adaptive beamformer (called Beam), which adjusts the directivity continuously to maximally reduce the interfering noise. Initial evaluation studies with the CP810 had compared performance and usability of the new processor in comparison with the Freedom™ Sound Processor (Cochlear™) for speech in quiet and noise for a subset of the processing options. This study compares the two processing options suggested to be used in noisy environments, Zoom and Beam, for various sound field conditions using a standardized speech in noise matrix test (Oldenburg sentences test). Nine German-speaking subjects who previously had been using the Freedom speech processor and subsequently were upgraded to the CP810 device participated in this series of additional evaluation tests. The speech reception threshold (SRT for 50% speech intelligibility in noise) was determined using sentences presented via loudspeaker at 65 dB SPL in front of the listener and noise presented either via the same loudspeaker (S0N0) or at 90 degrees at either the ear with the sound processor (S0NCI+) or the opposite unaided ear (S0NCI-). The fourth noise condition consisted of three uncorrelated noise sources placed at 90, 180 and 270 degrees. The noise level was adjusted through an adaptive procedure to yield a signal to noise ratio where 50% of the words in the sentences were correctly understood. In spatially separated speech and noise conditions both Zoom and Beam could improve the SRT significantly. For single noise sources, either ipsilateral or contralateral to the cochlear implant sound processor, average improvements with Beam of 12.9 and 7.9 dB in SRT were found. The average SRT of -8 dB for Beam in the diffuse noise condition (uncorrelated noise from both sides and back) is truly remarkable and comparable to the performance of normal hearing listeners in the same test environment. The static directivity (Zoom) option in the diffuse noise condition still provides a significant benefit of 5.9 dB in comparison with the standard omnidirectional microphone setting. These results indicate that CI recipients may improve their speech recognition in noisy environments significantly using these directional microphone-processing options.
Klatte, Maria; Lachmann, Thomas; Meis, Markus
2010-01-01
The effects of classroom noise and background speech on speech perception, measured by word-to-picture matching, and listening comprehension, measured by execution of oral instructions, were assessed in first- and third-grade children and adults in a classroom-like setting. For speech perception, in addition to noise, reverberation time (RT) was varied by conducting the experiment in two virtual classrooms with mean RT = 0.47 versus RT = 1.1 s. Children were more impaired than adults by background sounds in both speech perception and listening comprehension. Classroom noise evoked a reliable disruption in children's speech perception even under conditions of short reverberation. RT had no effect on speech perception in silence, but evoked a severe increase in the impairments due to background sounds in all age groups. For listening comprehension, impairments due to background sounds were found in the children, stronger for first- than for third-graders, whereas adults were unaffected. Compared to classroom noise, background speech had a smaller effect on speech perception, but a stronger effect on listening comprehension, remaining significant when speech perception was controlled. This indicates that background speech affects higher-order cognitive processes involved in children's comprehension. Children's ratings of the sound-induced disturbance were low overall and uncorrelated to the actual disruption, indicating that the children did not consciously realize the detrimental effects. The present results confirm earlier findings on the substantial impact of noise and reverberation on children's speech perception, and extend these to classroom-like environmental settings and listening demands closely resembling those faced by children at school.
Relationship between individual differences in speech processing and cognitive functions.
Ou, Jinghua; Law, Sam-Po; Fung, Roxana
2015-12-01
A growing body of research has suggested that cognitive abilities may play a role in individual differences in speech processing. The present study took advantage of a widespread linguistic phenomenon of sound change to systematically assess the relationships between speech processing and various components of attention and working memory in the auditory and visual modalities among typically developed Cantonese-speaking individuals. The individual variations in speech processing are captured in an ongoing sound change-tone merging in Hong Kong Cantonese, in which typically developed native speakers are reported to lose the distinctions between some tonal contrasts in perception and/or production. Three groups of participants were recruited, with a first group of good perception and production, a second group of good perception but poor production, and a third group of good production but poor perception. Our findings revealed that modality-independent abilities of attentional switching/control and working memory might contribute to individual differences in patterns of speech perception and production as well as discrimination latencies among typically developed speakers. The findings not only have the potential to generalize to speech processing in other languages, but also broaden our understanding of the omnipresent phenomenon of language change in all languages.
ERIC Educational Resources Information Center
Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…
ERIC Educational Resources Information Center
Yau, Shu Hui; Brock, Jon; McArthur, Genevieve
2016-01-01
It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to…
ERIC Educational Resources Information Center
Blau, Vera; Reithler, Joel; van Atteveldt, Nienke; Seitz, Jochen; Gerretsen, Patty; Goebel, Rainer; Blomert, Leo
2010-01-01
Learning to associate auditory information of speech sounds with visual information of letters is a first and critical step for becoming a skilled reader in alphabetic languages. Nevertheless, it remains largely unknown which brain areas subserve the learning and automation of such associations. Here, we employ functional magnetic resonance…
Neurobiology of Everyday Communication: What Have We Learned From Music?
Kraus, Nina; White-Schwoch, Travis
2016-06-09
Sound is an invisible but powerful force that is central to everyday life. Studies in the neurobiology of everyday communication seek to elucidate the neural mechanisms underlying sound processing, their stability, their plasticity, and their links to language abilities and disabilities. This sound processing lies at the nexus of cognitive, sensorimotor, and reward networks. Music provides a powerful experimental model to understand these biological foundations of communication, especially with regard to auditory learning. We review studies of music training that employ a biological approach to reveal the integrity of sound processing in the brain, the bearing these mechanisms have on everyday communication, and how these processes are shaped by experience. Together, these experiments illustrate that music works in synergistic partnerships with language skills and the ability to make sense of speech in complex, everyday listening environments. The active, repeated engagement with sound demanded by music making augments the neural processing of speech, eventually cascading to listening and language. This generalization from music to everyday communications illustrates both that these auditory brain mechanisms have a profound potential for plasticity and that sound processing is biologically intertwined with listening and language skills. A new wave of studies has pushed neuroscience beyond the traditional laboratory by revealing the effects of community music training in underserved populations. These community-based studies reinforce laboratory work highlight how the auditory system achieves a remarkable balance between stability and flexibility in processing speech. Moreover, these community studies have the potential to inform health care, education, and social policy by lending a neurobiological perspective to their efficacy. © The Author(s) 2016.
Asymmetries in the Processing of Vowel Height
ERIC Educational Resources Information Center
Scharinger, Mathias; Monahan, Philip J.; Idsardi, William J.
2012-01-01
Purpose: Speech perception can be described as the transformation of continuous acoustic information into discrete memory representations. Therefore, research on neural representations of speech sounds is particularly important for a better understanding of this transformation. Speech perception models make specific assumptions regarding the…
Auditory-neurophysiological responses to speech during early childhood: Effects of background noise
White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina
2015-01-01
Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025
Rumbach, Anna F; Rose, Tanya A; Cheah, Mynn
2018-01-29
To explore Australian speech-language pathologists' use of non-speech oral motor exercises, and rationales for using/not using non-speech oral motor exercises in clinical practice. A total of 124 speech-language pathologists practising in Australia, working with paediatric and/or adult clients with speech sound difficulties, completed an online survey. The majority of speech-language pathologists reported that they did not use non-speech oral motor exercises when working with paediatric or adult clients with speech sound difficulties. However, more than half of the speech-language pathologists working with adult clients who have dysarthria reported using non-speech oral motor exercises with this population. The most frequently reported rationale for using non-speech oral motor exercises in speech sound difficulty management was to improve awareness/placement of articulators. The majority of speech-language pathologists agreed there is no clear clinical or research evidence base to support non-speech oral motor exercise use with clients who have speech sound difficulties. This study provides an overview of Australian speech-language pathologists' reported use and perceptions of non-speech oral motor exercises' applicability and efficacy in treating paediatric and adult clients who have speech sound difficulties. The research findings provide speech-language pathologists with insight into how and why non-speech oral motor exercises are currently used, and adds to the knowledge base regarding Australian speech-language pathology practice of non-speech oral motor exercises in the treatment of speech sound difficulties. Implications for Rehabilitation Non-speech oral motor exercises refer to oral motor activities which do not involve speech, but involve the manipulation or stimulation of oral structures including the lips, tongue, jaw, and soft palate. Non-speech oral motor exercises are intended to improve the function (e.g., movement, strength) of oral structures. The majority of speech-language pathologists agreed there is no clear clinical or research evidence base to support non-speech oral motor exercise use with clients who have speech sound disorders. Non-speech oral motor exercise use was most frequently reported in the treatment of dysarthria. Non-speech oral motor exercise use when targeting speech sound disorders is not widely endorsed in the literature.
Iverson, Paul; Wagner, Anita; Rosen, Stuart
2016-04-01
Cross-language differences in speech perception have traditionally been linked to phonological categories, but it has become increasingly clear that language experience has effects beginning at early stages of perception, which blurs the accepted distinctions between general and speech-specific processing. The present experiments explored this distinction by playing stimuli to English and Japanese speakers that manipulated the acoustic form of English /r/ and /l/, in order to determine how acoustically natural and phonologically identifiable a stimulus must be for cross-language discrimination differences to emerge. Discrimination differences were found for stimuli that did not sound subjectively like speech or /r/ and /l/, but overall they were strongly linked to phonological categorization. The results thus support the view that phonological categories are an important source of cross-language differences, but also show that these differences can extend to stimuli that do not clearly sound like speech.
Cortical activity patterns predict robust speech discrimination ability in noise
Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.
2012-01-01
The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath
2018-05-24
Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Integrating speech in time depends on temporal expectancies and attention.
Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro
2017-08-01
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acoustic analysis of trill sounds.
Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri
2012-04-01
In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.
Sound and speech detection and classification in a Health Smart Home.
Fleury, A; Noury, N; Vacher, M; Glasson, H; Seri, J F
2008-01-01
Improvements in medicine increase life expectancy in the world and create a new bottleneck at the entrance of specialized and equipped institutions. To allow elderly people to stay at home, researchers work on ways to monitor them in their own environment, with non-invasive sensors. To meet this goal, smart homes, equipped with lots of sensors, deliver information on the activities of the person and can help detect distress situations. In this paper, we present a global speech and sound recognition system that can be set-up in a flat. We placed eight microphones in the Health Smart Home of Grenoble (a real living flat of 47m(2)) and we automatically analyze and sort out the different sounds recorded in the flat and the speech uttered (to detect normal or distress french sentences). We introduce the methods for the sound and speech recognition, the post-processing of the data and finally the experimental results obtained in real conditions in the flat.
NASA Technical Reports Server (NTRS)
1987-01-01
Designed to assist deaf and hearing impaired-persons in achieving better speech, Resnick Worldwide Inc.'s device provides a visual means of cuing the deaf as a speech-improvement measure. This is done by electronically processing the subjects' sounds and comparing them with optimum values which are displayed for comparison.
Nonverbal auditory agnosia with lesion to Wernicke's area.
Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic
2010-01-01
We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.
When speaker identity is unavoidable: Neural processing of speaker identity cues in natural speech.
Tuninetti, Alba; Chládková, Kateřina; Peter, Varghese; Schiller, Niels O; Escudero, Paola
2017-11-01
Speech sound acoustic properties vary largely across speakers and accents. When perceiving speech, adult listeners normally disregard non-linguistic variation caused by speaker or accent differences, in order to comprehend the linguistic message, e.g. to correctly identify a speech sound or a word. Here we tested whether the process of normalizing speaker and accent differences, facilitating the recognition of linguistic information, is found at the level of neural processing, and whether it is modulated by the listeners' native language. In a multi-deviant oddball paradigm, native and nonnative speakers of Dutch were exposed to naturally-produced Dutch vowels varying in speaker, sex, accent, and phoneme identity. Unexpectedly, the analysis of mismatch negativity (MMN) amplitudes elicited by each type of change shows a large degree of early perceptual sensitivity to non-linguistic cues. This finding on perception of naturally-produced stimuli contrasts with previous studies examining the perception of synthetic stimuli wherein adult listeners automatically disregard acoustic cues to speaker identity. The present finding bears relevance to speech normalization theories, suggesting that at an unattended level of processing, listeners are indeed sensitive to changes in fundamental frequency in natural speech tokens. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pivik, R. T.; Andres, Aline; Badger, Thomas M.
2011-01-01
Early post-natal nutrition influences later development, but there are no studies comparing brain function in healthy infants as a function of dietary intake even though the major infant diets differ significantly in nutrient composition. We studied brain responses (event-related potentials; ERPs) to speech sounds for infants who were fed either…
Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time
Thakur, Chetan Singh; Wang, Runchun M.; Afshar, Saeed; Hamilton, Tara J.; Tapson, Jonathan C.; Shamma, Shihab A.; van Schaik, André
2015-01-01
The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and speech recognition. PMID:26388721
Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André
2015-01-01
The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and speech recognition.
Ingressive Speech Errors: A Service Evaluation of Speech-Sound Therapy in a Child Aged 4;6
ERIC Educational Resources Information Center
Hrastelj, Laura; Knight, Rachael-Anne
2017-01-01
Background: A pattern of ingressive substitutions for word-final sibilants can be identified in a small number of cases in child speech disorder, with growing evidence suggesting it is a phonological difficulty, despite the unusual surface form. Phonological difficulty implies a problem with the cognitive process of organizing speech into sound…
Lima, César F; Garrett, Carolina; Castro, São Luís
2013-01-01
Does emotion processing in music and speech prosody recruit common neurocognitive mechanisms? To examine this question, we implemented a cross-domain comparative design in Parkinson's disease (PD). Twenty-four patients and 25 controls performed emotion recognition tasks for music and spoken sentences. In music, patients had impaired recognition of happiness and peacefulness, and intact recognition of sadness and fear; this pattern was independent of general cognitive and perceptual abilities. In speech, patients had a small global impairment, which was significantly mediated by executive dysfunction. Hence, PD affected differently musical and prosodic emotions. This dissociation indicates that the mechanisms underlying the two domains are partly independent.
Anatomy and Physiology of the Speech Mechanism.
ERIC Educational Resources Information Center
Sheets, Boyd V.
This monograph on the anatomical and physiological aspects of the speech mechanism stresses the importance of a general understanding of the process of verbal communication. Contents include "Positions of the Body,""Basic Concepts Linked with the Speech Mechanism,""The Nervous System,""The Respiratory System--Sound-Power Source,""The…
Gangji, Nazneen; Pascoe, Michelle; Smouse, Mantoa
2015-01-01
Swahili is widely spoken in East Africa, but to date there are no culturally and linguistically appropriate materials available for speech-language therapists working in the region. The challenges are further exacerbated by the limited research available on the typical acquisition of Swahili phonology. To describe the speech development of 24 typically developing first language Swahili-speaking children between the ages of 3;0 and 5;11 years in Dar es Salaam, Tanzania. A cross-sectional design was used with six groups of four children in 6-month age bands. Single-word speech samples were obtained from each child using a set of culturally appropriate pictures designed to elicit all consonants and vowels of Swahili. Each child's speech was audio-recorded and phonetically transcribed using International Phonetic Alphabet (IPA) conventions. Children's speech development is described in terms of (1) phonetic inventory, (2) syllable structure inventory, (3) phonological processes and (4) percentage consonants correct (PCC) and percentage vowels correct (PVC). Results suggest a gradual progression in the acquisition of speech sounds and syllables between the ages of 3;0 and 5;11 years. Vowel acquisition was completed and most of the consonants acquired by age 3;0. Fricatives/z, s, h/ were later acquired at 4 years and /θ/and /r/ were the last acquired consonants at age 5;11. Older children were able to produce speech sounds more accurately and had fewer phonological processes in their speech than younger children. Common phonological processes included lateralization and sound preference substitutions. The study contributes a preliminary set of normative data on speech development of Swahili-speaking children. Findings are discussed in relation to theories of phonological development, and may be used as a basis for further normative studies with larger numbers of children and ultimately the development of a contextually relevant assessment of the phonology of Swahili-speaking children. © 2014 Royal College of Speech and Language Therapists.
Articulatory speech synthesis and speech production modelling
NASA Astrophysics Data System (ADS)
Huang, Jun
This dissertation addresses the problem of speech synthesis and speech production modelling based on the fundamental principles of human speech production. Unlike the conventional source-filter model, which assumes the independence of the excitation and the acoustic filter, we treat the entire vocal apparatus as one system consisting of a fluid dynamic aspect and a mechanical part. We model the vocal tract by a three-dimensional moving geometry. We also model the sound propagation inside the vocal apparatus as a three-dimensional nonplane-wave propagation inside a viscous fluid described by Navier-Stokes equations. In our work, we first propose a combined minimum energy and minimum jerk criterion to estimate the dynamic vocal tract movements during speech production. Both theoretical error bound analysis and experimental results show that this method can achieve very close match at the target points and avoid the abrupt change in articulatory trajectory at the same time. Second, a mechanical vocal fold model is used to compute the excitation signal of the vocal tract. The advantage of this model is that it is closely coupled with the vocal tract system based on fundamental aerodynamics. As a result, we can obtain an excitation signal with much more detail than the conventional parametric vocal fold excitation model. Furthermore, strong evidence of source-tract interaction is observed. Finally, we propose a computational model of the fricative and stop types of sounds based on the physical principles of speech production. The advantage of this model is that it uses an exogenous process to model the additional nonsteady and nonlinear effects due to the flow mode, which are ignored by the conventional source- filter speech production model. A recursive algorithm is used to estimate the model parameters. Experimental results show that this model is able to synthesize good quality fricative and stop types of sounds. Based on our dissertation work, we carefully argue that the articulatory speech production model has the potential to flexibly synthesize natural-quality speech sounds and to provide a compact computational model for speech production that can be beneficial to a wide range of areas in speech signal processing.
Corollary discharge provides the sensory content of inner speech.
Scott, Mark
2013-09-01
Inner speech is one of the most common, but least investigated, mental activities humans perform. It is an internal copy of one's external voice and so is similar to a well-established component of motor control: corollary discharge. Corollary discharge is a prediction of the sound of one's voice generated by the motor system. This prediction is normally used to filter self-caused sounds from perception, which segregates them from externally caused sounds and prevents the sensory confusion that would otherwise result. The similarity between inner speech and corollary discharge motivates the theory, tested here, that corollary discharge provides the sensory content of inner speech. The results reported here show that inner speech attenuates the impact of external sounds. This attenuation was measured using a context effect (an influence of contextual speech sounds on the perception of subsequent speech sounds), which weakens in the presence of speech imagery that matches the context sound. Results from a control experiment demonstrated this weakening in external speech as well. Such sensory attenuation is a hallmark of corollary discharge.
NASA Astrophysics Data System (ADS)
1992-06-01
Phonology is traditionally seen as the discipline that concerns itself with the building blocks of linguistic messages. It is the study of the structure of sound inventories of languages and of the participation of sounds in rules or processes. Phonetics, in contrast, concerns speech sounds as produced and perceived. Two extreme positions on the relationship between phonological messages and phonetic realizations are represented in the literature. One holds that the primary home for linguistic symbols, including phonological ones, is the human mind, itself housed in the human brain. The second holds that their primary home is the human vocal tract.
D Chorna, Olena; L Hamm, Ellyn; Shrivastava, Hemang; Maitre, Nathalie L
2018-01-01
Atypical maturation of auditory neural processing contributes to preterm-born infants' language delays. Event-related potential (ERP) measurement of speech-sound differentiation might fill a gap in treatment-response biomarkers to auditory interventions. We evaluated whether these markers could measure treatment effects in a quasi-randomized prospective study. Hospitalized preterm infants in passive or active, suck-contingent mother's voice exposure groups were not different at baseline. Post-intervention, the active group had greater increases in/du/-/gu/differentiation in left frontal and temporal regions. Infants with brain injury had lower baseline/ba/-/ga/and/du/-/gu/differentiation than those without. ERP provides valid discriminative, responsive, and predictive biomarkers of infant speech-sound differentiation.
Wolfe, Jace; Schafer, Erin; Parkinson, Aaron; John, Andrew; Hudson, Mary; Wheeler, Julie; Mucci, Angie
2013-01-01
The objective of this study was to compare speech recognition in quiet and in noise for cochlear implant recipients using two different types of personal frequency modulation (FM) systems (directly coupled [direct auditory input] versus induction neckloop) with each of two sound processors (Cochlear Nucleus Freedom versus Cochlear Nucleus 5). Two different experiments were conducted within this study. In both these experiments, mixing of the FM signal within the Freedom processor was implemented via the same scheme used clinically for the Freedom sound processor. In Experiment 1, the aforementioned comparisons were conducted with the Nucleus 5 programmed so that the microphone and FM signals were mixed and then the mixed signals were subjected to autosensitivity control (ASC). In Experiment 2, comparisons between the two FM systems and processors were conducted again with the Nucleus 5 programmed to provide a more complex multistage implementation of ASC during the preprocessing stage. This study was a within-subject, repeated-measures design. Subjects were recruited from the patient population at the Hearts for Hearing Foundation in Oklahoma City, OK. Fifteen subjects participated in Experiment 1, and 16 subjects participated in Experiment 2. Subjects were adults who had used either unilateral or bilateral cochlear implants for at least 1 year. In this experiment, no differences were found in speech recognition in quiet obtained with the two different FM systems or the various sound-processor conditions. With each sound processor, speech recognition in noise was better with the directly coupled direct auditory input system relative to the neckloop system. The multistage ASC processing of the Nucleus 5 sound processor provided better performance than the single-stage approach for the Nucleus 5 and the Nucleus Freedom sound processor. Speech recognition in noise is substantially affected by the type of sound processor, FM system, and implementation of ASC used by a Cochlear implant recipient.
Loebach, Jeremy L.; Pisoni, David B.; Svirsky, Mario A.
2009-01-01
Objective The objective of this study was to assess whether training on speech processed with an 8-channel noise vocoder to simulate the output of a cochlear implant would produce transfer of auditory perceptual learning to the recognition of non-speech environmental sounds, the identification of speaker gender, and the discrimination of talkers by voice. Design Twenty-four normal hearing subjects were trained to transcribe meaningful English sentences processed with a noise vocoder simulation of a cochlear implant. An additional twenty-four subjects served as an untrained control group and transcribed the same sentences in their unprocessed form. All subjects completed pre- and posttest sessions in which they transcribed vocoded sentences to provide an assessment of training efficacy. Transfer of perceptual learning was assessed using a series of closed-set, nonlinguistic tasks: subjects identified talker gender, discriminated the identity of pairs of talkers, and identified ecologically significant environmental sounds from a closed set of alternatives. Results Although both groups of subjects showed significant pre- to posttest improvements, subjects who transcribed vocoded sentences during training performed significantly better at posttest than subjects in the control group. Both groups performed equally well on gender identification and talker discrimination. Subjects who received explicit training on the vocoded sentences, however, performed significantly better on environmental sound identification than the untrained subjects. Moreover, across both groups, pretest speech performance, and to a higher degree posttest speech performance, were significantly correlated with environmental sound identification. For both groups, environmental sounds that were characterized as having more salient temporal information were identified more often than environmental sounds that were characterized as having more salient spectral information. Conclusions Listeners trained to identify noise-vocoded sentences showed evidence of transfer of perceptual learning to the identification of environmental sounds. In addition, the correlation between environmental sound identification and sentence transcription indicates that subjects who were better able to utilize the degraded acoustic information to identify the environmental sounds were also better able to transcribe the linguistic content of novel sentences. Both trained and untrained groups performed equally well (~75% correct) on the gender identification task, indicating that training did not have an effect on the ability to identify the gender of talkers. Although better than chance, performance on the talker discrimination task was poor overall (~55%), suggesting that either explicit training is required to reliably discriminate talkers’ voices, or that additional information (perhaps spectral in nature) not present in the vocoded speech is required to excel in such tasks. Taken together, the results suggest that while transfer of auditory perceptual learning with spectrally degraded speech does occur, explicit task-specific training may be necessary for tasks that cannot rely on temporal information alone. PMID:19773659
Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions
Porter, Benjamin A.; Rosenthal, Tara R.; Ranasinghe, Kamalini G.; Kilgard, Michael P.
2011-01-01
Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the ability of rats to discriminate consonant-vowel-consonant speech sounds. This result seems to suggest that AC does not play a role in speech discrimination. However, the speech sounds used in both studies differed in many acoustic dimensions and an adaptive change in discrimination strategy could allow the rats to use an acoustic difference that does not require an intact AC to discriminate. Based on our earlier observation that the first 40 ms of the spatiotemporal activity patterns elicited by speech sounds best correlate with behavioral discriminations of these sounds (Engineer et al., 2008), we predicted that eliminating additional cues by truncating speech sounds to the first 40 ms would render the stimuli indistinguishable to a rat with AC lesions. Although the initial discrimination of truncated sounds took longer to learn, the final performance paralleled rats using full-length consonant-vowel-consonant sounds. After 20 days of testing, half of the rats using speech onsets received bilateral AC lesions. Lesions severely impaired speech onset discrimination for at least one-month post lesion. These results support the hypothesis that auditory cortex is required to accurately discriminate the subtle differences between similar consonant and vowel sounds. PMID:21167211
Articulation of sounds in Serbian language in patients who learned esophageal speech successfully.
Vekić, Maja; Veselinović, Mila; Mumović, Gordana; Mitrović, Slobodan M
2014-01-01
Articulation of pronounced sounds during the training and subsequent use of esophageal speech is very important because it contributes significantly to intelligibility and aesthetics of spoken words and sentences, as well as of speech and language itself. The aim of this research was to determine the quality of articulation of sounds of Serbian language by groups of sounds in patients who had learned esophageal speech successfully as well as the effect of age and tooth loss on the quality of articulation. This retrospective-prospective study included 16 patients who had undergone total laryngectomy. Having completed the rehabilitation of speech, these patient used esophageal voice and speech. The quality of articulation was tested by the "Global test of articulation." Esophageal speech was rated with grade 5, 4 and 3 in 62.5%, 31.3% and one patient, respectively. Serbian was the native language of all the patients. The study included 30 sounds of Serbian language in 16 subjects (480 total sounds). Only two patients (12.5%) articulated all sounds properly, whereas 87.5% of them had incorrect articulation. The articulation of affricates and fricatives, especially sound /h/ from the group of the fricatives, was found to be the worst in the patients who had successfully mastered esophageal speech. The age and the tooth loss of patients who have mastered esophageal speech do not affect the articulation of sounds in Serbian language.
Different Timescales for the Neural Coding of Consonant and Vowel Sounds
Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.
2013-01-01
Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334
Brennan, Marc A; Lewis, Dawna; McCreery, Ryan; Kopun, Judy; Alexander, Joshua M
2017-10-01
Nonlinear frequency compression (NFC) can improve the audibility of high-frequency sounds by lowering them to a frequency where audibility is better; however, this lowering results in spectral distortion. Consequently, performance is a combination of the effects of increased access to high-frequency sounds and the detrimental effects of spectral distortion. Previous work has demonstrated positive benefits of NFC on speech recognition when NFC is set to improve audibility while minimizing distortion. However, the extent to which NFC impacts listening effort is not well understood, especially for children with sensorineural hearing loss (SNHL). To examine the impact of NFC on recognition and listening effort for speech in adults and children with SNHL. Within-subject, quasi-experimental study. Participants listened to amplified nonsense words that were (1) frequency-lowered using NFC, (2) low-pass filtered at 5 kHz to simulate the restricted bandwidth (RBW) of conventional hearing aid processing, or (3) low-pass filtered at 10 kHz to simulate extended bandwidth (EBW) amplification. Fourteen children (8-16 yr) and 14 adults (19-65 yr) with mild-to-severe SNHL. Participants listened to speech processed by a hearing aid simulator that amplified input signals to fit a prescriptive target fitting procedure. Participants were blinded to the type of processing. Participants' responses to each nonsense word were analyzed for accuracy and verbal-response time (VRT; listening effort). A multivariate analysis of variance and linear mixed model were used to determine the effect of hearing-aid signal processing on nonsense word recognition and VRT. Both children and adults identified the nonsense words and initial consonants better with EBW and NFC than with RBW. The type of processing did not affect the identification of the vowels or final consonants. There was no effect of age on recognition of the nonsense words, initial consonants, medial vowels, or final consonants. VRT did not change significantly with the type of processing or age. Both adults and children demonstrated improved speech recognition with access to the high-frequency sounds in speech. Listening effort as measured by VRT was not affected by access to high-frequency sounds. American Academy of Audiology
Confusability of Consonant Phonemes in Sound Discrimination Tasks.
ERIC Educational Resources Information Center
Rudegeair, Robert E.
The findings of Marsh and Sherman's investigation, in 1970, of the speech sound discrimination ability of kindergarten subjects, are discussed in this paper. In the study a comparison was made between performance when speech sounds were presented in isolation and when speech sounds were presented in a word context, using minimal sound contrasts.…
Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob
In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.
Dick, Fred; Deutsch, Diana; Sereno, Marty
2013-01-01
It is normally obvious to listeners whether a human vocalization is intended to be heard as speech or song. However, the 2 signals are remarkably similar acoustically. A naturally occurring boundary case between speech and song has been discovered where a spoken phrase sounds as if it were sung when isolated and repeated. In the present study, an extensive search of audiobooks uncovered additional similar examples, which were contrasted with samples from the same corpus that do not sound like song, despite containing clear prosodic pitch contours. Using functional magnetic resonance imaging, we show that hearing these 2 closely matched stimuli is not associated with differences in response of early auditory areas. Rather, we find that a network of 8 regions, including the anterior superior temporal gyrus (STG) just anterior to Heschl's gyrus and the right midposterior STG, respond more strongly to speech perceived as song than to mere speech. This network overlaps a number of areas previously associated with pitch extraction and song production, confirming that phrases originally intended to be heard as speech can, under certain circumstances, be heard as song. Our results suggest that song processing compared with speech processing makes increased demands on pitch processing and auditory–motor integration. PMID:22314043
Auditory brainstem response to complex sounds: a tutorial
Skoe, Erika; Kraus, Nina
2010-01-01
This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007
ERIC Educational Resources Information Center
Peter, Beate; Button, Le; Stoel-Gammon, Carol; Chapman, Kathy; Raskind, Wendy H.
2013-01-01
The purpose of this study was to evaluate a global deficit in sequential processing as candidate endophenotypein a family with familial childhood apraxia of speech (CAS). Of 10 adults and 13 children in a three-generational family with speech sound disorder (SSD) consistent with CAS, 3 adults and 6 children had past or present SSD diagnoses. Two…
Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns
Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia
2017-01-01
Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788
Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R
2000-09-01
Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects, prior to the MMNm, M60, was elicited by both rare and frequent sounds. Both MMNm and M60 sources were posteriorly located in the left than the right hemisphere.
Building phonetic categories: an argument for the role of sleep
Earle, F. Sayako; Myers, Emily B.
2014-01-01
The current review provides specific predictions for the role of sleep-mediated memory consolidation in the formation of new speech sound representations. Specifically, this discussion will highlight selected literature on the different ideas concerning category representation in speech, followed by a broad overview of memory consolidation and how it relates to human behavior, as relevant to speech/perceptual learning. In combining behavioral and physiological accounts from animal models with insights from the human consolidation literature on auditory skill/word learning, we are in the early stages of understanding how the transfer of experiential information between brain structures during sleep manifests in changes to online perception. Arriving at the conclusion that this process is crucial in perceptual learning and the formation of novel categories, further speculation yields the adjacent claim that the habitual disruption in this process leads to impoverished quality in the representation of speech sounds. PMID:25477828
I Karipidis, Iliana; Pleisch, Georgette; Röthlisberger, Martina; Hofstetter, Christoph; Dornbierer, Dario; Stämpfli, Philipp; Brem, Silvia
2017-02-01
Learning letter-speech sound correspondences is a major step in reading acquisition and is severely impaired in children with dyslexia. Up to now, it remains largely unknown how quickly neural networks adopt specific functions during audiovisual integration of linguistic information when prereading children learn letter-speech sound correspondences. Here, we simulated the process of learning letter-speech sound correspondences in 20 prereading children (6.13-7.17 years) at varying risk for dyslexia by training artificial letter-speech sound correspondences within a single experimental session. Subsequently, we acquired simultaneously event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) scans during implicit audiovisual presentation of trained and untrained pairs. Audiovisual integration of trained pairs correlated with individual learning rates in right superior temporal, left inferior temporal, and bilateral parietal areas and with phonological awareness in left temporal areas. In correspondence, a differential left-lateralized parietooccipitotemporal ERP at 400 ms for trained pairs correlated with learning achievement and familial risk. Finally, a late (650 ms) posterior negativity indicating audiovisual congruency of trained pairs was associated with increased fMRI activation in the left occipital cortex. Taken together, a short (<30 min) letter-speech sound training initializes audiovisual integration in neural systems that are responsible for processing linguistic information in proficient readers. To conclude, the ability to learn grapheme-phoneme correspondences, the familial history of reading disability, and phonological awareness of prereading children account for the degree of audiovisual integration in a distributed brain network. Such findings on emerging linguistic audiovisual integration could allow for distinguishing between children with typical and atypical reading development. Hum Brain Mapp 38:1038-1055, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hickok, G; Okada, K; Barr, W; Pa, J; Rogalsky, C; Donnelly, K; Barde, L; Grant, A
2008-12-01
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.
Fava, Eswen; Hull, Rachel; Bortfeld, Heather
2014-01-01
Initially, infants are capable of discriminating phonetic contrasts across the world’s languages. Starting between seven and ten months of age, they gradually lose this ability through a process of perceptual narrowing. Although traditionally investigated with isolated speech sounds, such narrowing occurs in a variety of perceptual domains (e.g., faces, visual speech). Thus far, tracking the developmental trajectory of this tuning process has been focused primarily on auditory speech alone, and generally using isolated sounds. But infants learn from speech produced by people talking to them, meaning they learn from a complex audiovisual signal. Here, we use near-infrared spectroscopy to measure blood concentration changes in the bilateral temporal cortices of infants in three different age groups: 3-to-6 months, 7-to-10 months, and 11-to-14-months. Critically, all three groups of infants were tested with continuous audiovisual speech in both their native and another, unfamiliar language. We found that at each age range, infants showed different patterns of cortical activity in response to the native and non-native stimuli. Infants in the youngest group showed bilateral cortical activity that was greater overall in response to non-native relative to native speech; the oldest group showed left lateralized activity in response to native relative to non-native speech. These results highlight perceptual tuning as a dynamic process that happens across modalities and at different levels of stimulus complexity. PMID:25116572
Park, H K; Bradley, J S
2009-09-01
Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.
Learning-induced neural plasticity of speech processing before birth
Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna
2013-01-01
Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations. PMID:23980148
Combinatorial Markov Random Fields and Their Applications to Information Organization
2008-02-01
titles, part-of- speech tags; • Image processing: images, colors, texture, blobs, interest points, caption words; • Video processing: video signal, audio...McGurk and MacDonald published their pioneering work [80] that revealed the multi-modal nature of speech perception: sound and moving lips compose one... Speech (POS) n-grams (that correspond to the syntactic structure of text). POS n-grams are extracted from sentences in an incremental manner: the first n
Implications of diadochokinesia in children with speech sound disorder.
Wertzner, Haydée Fiszbein; Pagan-Neves, Luciana de Oliveira; Alves, Renata Ramos; Barrozo, Tatiane Faria
2013-01-01
To verify the performance of children with and without speech sound disorder in oral motor skills measured by oral diadochokinesia according to age and gender and to compare the results by two different methods of analysis. Participants were 72 subjects aged from 5 years to 7 years and 11 months divided into four subgroups according to the presence of speech sound disorder (Study Group and Control Group) and age (<6 years and 5 months and >6 years and 5 months). Diadochokinesia skills were assessed by the repetition of the sequences 'pa', 'ta', 'ka' and 'pataka' measured both manually and by the software Motor Speech Profile®. Gender was statistically different for both groups but it did not influence on the number of sequences per second produced. Correlation between the number of sequences per second and age was observed for all sequences (except for 'ka') only for the control group children. Comparison between groups did not indicate differences between the number of sequences per second and age. Results presented strong agreement between the values of oral diadochokinesia measured manually and by MSP. This research demonstrated the importance of using different methods of analysis on the functional evaluation of oro-motor processing aspects of children with speech sound disorder and evidenced the oro-motor difficulties on children aged under than eight years old.
Loebach, Jeremy L; Pisoni, David B; Svirsky, Mario A
2009-12-01
The objective of this study was to assess whether training on speech processed with an eight-channel noise vocoder to simulate the output of a cochlear implant would produce transfer of auditory perceptual learning to the recognition of nonspeech environmental sounds, the identification of speaker gender, and the discrimination of talkers by voice. Twenty-four normal-hearing subjects were trained to transcribe meaningful English sentences processed with a noise vocoder simulation of a cochlear implant. An additional 24 subjects served as an untrained control group and transcribed the same sentences in their unprocessed form. All subjects completed pre- and post-test sessions in which they transcribed vocoded sentences to provide an assessment of training efficacy. Transfer of perceptual learning was assessed using a series of closed set, nonlinguistic tasks: subjects identified talker gender, discriminated the identity of pairs of talkers, and identified ecologically significant environmental sounds from a closed set of alternatives. Although both groups of subjects showed significant pre- to post-test improvements, subjects who transcribed vocoded sentences during training performed significantly better at post-test than those in the control group. Both groups performed equally well on gender identification and talker discrimination. Subjects who received explicit training on the vocoded sentences, however, performed significantly better on environmental sound identification than the untrained subjects. Moreover, across both groups, pre-test speech performance and, to a higher degree, post-test speech performance, were significantly correlated with environmental sound identification. For both groups, environmental sounds that were characterized as having more salient temporal information were identified more often than environmental sounds that were characterized as having more salient spectral information. Listeners trained to identify noise-vocoded sentences showed evidence of transfer of perceptual learning to the identification of environmental sounds. In addition, the correlation between environmental sound identification and sentence transcription indicates that subjects who were better able to use the degraded acoustic information to identify the environmental sounds were also better able to transcribe the linguistic content of novel sentences. Both trained and untrained groups performed equally well ( approximately 75% correct) on the gender-identification task, indicating that training did not have an effect on the ability to identify the gender of talkers. Although better than chance, performance on the talker discrimination task was poor overall ( approximately 55%), suggesting that either explicit training is required to discriminate talkers' voices reliably or that additional information (perhaps spectral in nature) not present in the vocoded speech is required to excel in such tasks. Taken together, the results suggest that although transfer of auditory perceptual learning with spectrally degraded speech does occur, explicit task-specific training may be necessary for tasks that cannot rely on temporal information alone.
Ansari, M S; Rangasayee, R; Ansari, M A H
2017-03-01
Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.
Brammer, Anthony J; Yu, Gongqiang; Bernstein, Eric R; Cherniack, Martin G; Peterson, Donald R; Tufts, Jennifer B
2014-08-01
An adaptive, delayless, subband feed-forward control structure is employed to improve the speech signal-to-noise ratio (SNR) in the communication channel of a circumaural headset/hearing protector (HPD) from 90 Hz to 11.3 kHz, and to provide active noise control (ANC) from 50 to 800 Hz to complement the passive attenuation of the HPD. The task involves optimizing the speech SNR for each communication channel subband, subject to limiting the maximum sound level at the ear, maintaining a speech SNR preferred by users, and reducing large inter-band gain differences to improve speech quality. The performance of a proof-of-concept device has been evaluated in a pseudo-diffuse sound field when worn by human subjects under conditions of environmental noise and speech that do not pose a risk to hearing, and by simulation for other conditions. For the environmental noises employed in this study, subband speech SNR control combined with subband ANC produced greater improvement in word scores than subband ANC alone, and improved the consistency of word scores across subjects. The simulation employed a subject-specific linear model, and predicted that word scores are maintained in excess of 90% for sound levels outside the HPD of up to ∼115 dBA.
An Acquired Deficit of Audiovisual Speech Processing
ERIC Educational Resources Information Center
Hamilton, Roy H.; Shenton, Jeffrey T.; Coslett, H. Branch
2006-01-01
We report a 53-year-old patient (AWF) who has an acquired deficit of audiovisual speech integration, characterized by a perceived temporal mismatch between speech sounds and the sight of moving lips. AWF was less accurate on an auditory digit span task with vision of a speaker's face as compared to a condition in which no visual information from…
Understanding environmental sounds in sentence context.
Uddin, Sophia; Heald, Shannon L M; Van Hedger, Stephen C; Klos, Serena; Nusbaum, Howard C
2018-03-01
There is debate about how individuals use context to successfully predict and recognize words. One view argues that context supports neural predictions that make use of the speech motor system, whereas other views argue for a sensory or conceptual level of prediction. While environmental sounds can convey clear referential meaning, they are not linguistic signals, and are thus neither produced with the vocal tract nor typically encountered in sentence context. We compared the effect of spoken sentence context on recognition and comprehension of spoken words versus nonspeech, environmental sounds. In Experiment 1, sentence context decreased the amount of signal needed for recognition of spoken words and environmental sounds in similar fashion. In Experiment 2, listeners judged sentence meaning in both high and low contextually constraining sentence frames, when the final word was present or replaced with a matching environmental sound. Results showed that sentence constraint affected decision time similarly for speech and nonspeech, such that high constraint sentences (i.e., frame plus completion) were processed faster than low constraint sentences for speech and nonspeech. Linguistic context facilitates the recognition and understanding of nonspeech sounds in much the same way as for spoken words. This argues against a simple form of a speech-motor explanation of predictive coding in spoken language understanding, and suggests support for conceptual-level predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex
Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire
2015-01-01
Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269
Speech versus non-speech as irrelevant sound: controlling acoustic variation.
Little, Jason S; Martin, Frances Heritage; Thomson, Richard H S
2010-09-01
Functional differences between speech and non-speech within the irrelevant sound effect were investigated using repeated and changing formats of irrelevant sounds in the form of intelligible words and unintelligible signal correlated noise (SCN) versions of the words. Event-related potentials were recorded from 25 females aged between 18 and 25 while they completed a serial order recall task in the presence of irrelevant sound or silence. As expected and in line with the changing-state hypothesis both words and SCN produced robust changing-state effects. However, words produced a greater changing-state effect than SCN indicating that the spectral detail inherent within speech accounts for the greater irrelevant sound effect and changing-state effect typically observed with speech. ERP data in the form of N1 amplitude was modulated within some irrelevant sound conditions suggesting that attentional aspects are involved in the elicitation of the irrelevant sound effect. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Perceptual sensitivity to spectral properties of earlier sounds during speech categorization.
Stilp, Christian E; Assgari, Ashley A
2018-02-28
Speech perception is heavily influenced by surrounding sounds. When spectral properties differ between earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs) that bias perception of later sounds. For example, when context sounds have more energy in low-F 1 frequency regions, listeners report more high-F 1 responses to a target vowel, and vice versa. SCEs have been reported using various approaches for a wide range of stimuli, but most often, large spectral peaks were added to the context to bias speech categorization. This obscures the lower limit of perceptual sensitivity to spectral properties of earlier sounds, i.e., when SCEs begin to bias speech categorization. Listeners categorized vowels (/ɪ/-/ɛ/, Experiment 1) or consonants (/d/-/g/, Experiment 2) following a context sentence with little spectral amplification (+1 to +4 dB) in frequency regions known to produce SCEs. In both experiments, +3 and +4 dB amplification in key frequency regions of the context produced SCEs, but lesser amplification was insufficient to bias performance. This establishes a lower limit of perceptual sensitivity where spectral differences across sounds can bias subsequent speech categorization. These results are consistent with proposed adaptation-based mechanisms that potentially underlie SCEs in auditory perception. Recent sounds can change what speech sounds we hear later. This can occur when the average frequency composition of earlier sounds differs from that of later sounds, biasing how they are perceived. These "spectral contrast effects" are widely observed when sounds' frequency compositions differ substantially. We reveal the lower limit of these effects, as +3 dB amplification of key frequency regions in earlier sounds was enough to bias categorization of the following vowel or consonant sound. Speech categorization being biased by very small spectral differences across sounds suggests that spectral contrast effects occur frequently in everyday speech perception.
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2012-01-01
Purpose To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost four years later. Method Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 and followed up at 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors were used to predict later speech sound production, PA, and literacy outcomes. Results Group averages revealed below-average school-age articulation scores and low-average PA, but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom more than 10% of their speech sound errors were atypical had lower PA and literacy scores at school-age than children who produced fewer than 10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores. Conclusions Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschool may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschool distortions may be resistant to change over time, leading to persisting speech sound production problems. PMID:23184137
Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise
2013-05-01
To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.
Statistical properties of Chinese phonemic networks
NASA Astrophysics Data System (ADS)
Yu, Shuiyuan; Liu, Haitao; Xu, Chunshan
2011-04-01
The study of properties of speech sound systems is of great significance in understanding the human cognitive mechanism and the working principles of speech sound systems. Some properties of speech sound systems, such as the listener-oriented feature and the talker-oriented feature, have been unveiled with the statistical study of phonemes in human languages and the research of the interrelations between human articulatory gestures and the corresponding acoustic parameters. With all the phonemes of speech sound systems treated as a coherent whole, our research, which focuses on the dynamic properties of speech sound systems in operation, investigates some statistical parameters of Chinese phoneme networks based on real text and dictionaries. The findings are as follows: phonemic networks have high connectivity degrees and short average distances; the degrees obey normal distribution and the weighted degrees obey power law distribution; vowels enjoy higher priority than consonants in the actual operation of speech sound systems; the phonemic networks have high robustness against targeted attacks and random errors. In addition, for investigating the structural properties of a speech sound system, a statistical study of dictionaries is conducted, which shows the higher frequency of shorter words and syllables and the tendency that the longer a word is, the shorter the syllables composing it are. From these structural properties and dynamic properties one can derive the following conclusion: the static structure of a speech sound system tends to promote communication efficiency and save articulation effort while the dynamic operation of this system gives preference to reliable transmission and easy recognition. In short, a speech sound system is an effective, efficient and reliable communication system optimized in many aspects.
Giraud, Anne Lise; Truy, Eric
2002-01-01
Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.
The Relationship between Auditory Temporal Processing, Phonemic Awareness, and Reading Disability.
ERIC Educational Resources Information Center
Bretherton, Lesley; Holmes, V. M.
2003-01-01
Investigated the relationship between auditory temporal processing of nonspeech sounds and phonological awareness ability in 8- to 12-year-olds with a reading disability, placed in groups based on performance on Tallal's tone-order judgment task. Found that a tone-order deficit did not relate to performance on order processing of speech sounds, to…
Effect of gap detection threshold on consistency of speech in children with speech sound disorder.
Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz
2017-02-01
The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.
Developing a Weighted Measure of Speech Sound Accuracy
Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.
2010-01-01
Purpose The purpose is to develop a system for numerically quantifying a speaker’s phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, we describe a system for differentially weighting speech sound errors based on various levels of phonetic accuracy with a Weighted Speech Sound Accuracy (WSSA) score. We then evaluate the reliability and validity of this measure. Method Phonetic transcriptions are analyzed from several samples of child speech, including preschoolers and young adolescents with and without speech sound disorders and typically developing toddlers. The new measure of phonetic accuracy is compared to existing measures, is used to discriminate typical and disordered speech production, and is evaluated to determine whether it is sensitive to changes in phonetic accuracy over time. Results Initial psychometric data indicate that WSSA scores correlate with other measures of phonetic accuracy as well as listeners’ judgments of severity of a child’s speech disorder. The measure separates children with and without speech sound disorders. WSSA scores also capture growth in phonetic accuracy in toddler’s speech over time. Conclusion Results provide preliminary support for the WSSA as a valid and reliable measure of phonetic accuracy in children’s speech. PMID:20699344
Effects of Familiarity and Feeding on Newborn Speech-Voice Recognition
ERIC Educational Resources Information Center
Valiante, A. Grace; Barr, Ronald G.; Zelazo, Philip R.; Brant, Rollin; Young, Simon N.
2013-01-01
Newborn infants preferentially orient to familiar over unfamiliar speech sounds. They are also better at remembering unfamiliar speech sounds for short periods of time if learning and retention occur after a feed than before. It is unknown whether short-term memory for speech is enhanced when the sound is familiar (versus unfamiliar) and, if so,…
Shao, Jing; Huang, Xunan
2017-01-01
Congenital amusia is a lifelong disorder of fine-grained pitch processing in music and speech. However, it remains unclear whether amusia is a pitch-specific deficit, or whether it affects frequency/spectral processing more broadly, such as the perception of formant frequency in vowels, apart from pitch. In this study, in order to illuminate the scope of the deficits, we compared the performance of 15 Cantonese-speaking amusics and 15 matched controls on the categorical perception of sound continua in four stimulus contexts: lexical tone, pure tone, vowel, and voice onset time (VOT). Whereas lexical tone, pure tone and vowel continua rely on frequency/spectral processing, the VOT continuum depends on duration/temporal processing. We found that the amusic participants performed similarly to controls in all stimulus contexts in the identification, in terms of the across-category boundary location and boundary width. However, the amusic participants performed systematically worse than controls in discriminating stimuli in those three contexts that depended on frequency/spectral processing (lexical tone, pure tone and vowel), whereas they performed normally when discriminating duration differences (VOT). These findings suggest that the deficit of amusia is probably not pitch specific, but affects frequency/spectral processing more broadly. Furthermore, there appeared to be differences in the impairment of frequency/spectral discrimination in speech and nonspeech contexts. The amusic participants exhibited less benefit in between-category discriminations than controls in speech contexts (lexical tone and vowel), suggesting reduced categorical perception; on the other hand, they performed inferiorly compared to controls across the board regardless of between- and within-category discriminations in nonspeech contexts (pure tone), suggesting impaired general auditory processing. These differences imply that the frequency/spectral-processing deficit might be manifested differentially in speech and nonspeech contexts in amusics—it is manifested as a deficit of higher-level phonological processing in speech sounds, and as a deficit of lower-level auditory processing in nonspeech sounds. PMID:28829808
Slevc, L Robert; Shell, Alison R
2015-01-01
Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.
Schafer, Erin C; Romine, Denise; Musgrave, Elizabeth; Momin, Sadaf; Huynh, Christy
2013-01-01
Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. The results in Experiment 1 suggested that both FM receivers provided significantly better speech-recognition performance in noise than the CI alone; however, the electromagnetically coupled receiver provided significantly better speech-recognition performance in noise and better ratings in some situations than the electrically coupled receiver when set to the same gain. In Experiment 2, the primary analysis suggested significantly better speech-recognition performance in noise for the neck-loop versus electrically coupled receiver, but a second analysis, using the best performance across gain settings for each device, revealed no significant differences between the two FM receivers. Experiment 3 revealed monitor-earphone output differences in the Nucleus 5 sound processor for the two FM receivers when set to the +8 setting used in Experiment 1 but equal output when the electrically coupled device was set to a +16 gain setting and the electromagnetically coupled device was set to the +8 gain setting. Individuals with contemporary sound processors may show more favorable speech-recognition performance in noise electromagnetically coupled FM systems (i.e., Oticon Arc), which is most likely related to the input processing and signal processing pathway within the CI sound processor for direct input versus telecoil input. Further research is warranted to replicate these findings with a larger sample size and to develop and validate a more objective approach to fitting FM systems to CI sound processors. American Academy of Audiology.
The role of reverberation-related binaural cues in the externalization of speech.
Catic, Jasmina; Santurette, Sébastien; Dau, Torsten
2015-08-01
The perception of externalization of speech sounds was investigated with respect to the monaural and binaural cues available at the listeners' ears in a reverberant environment. Individualized binaural room impulse responses (BRIRs) were used to simulate externalized sound sources via headphones. The measured BRIRs were subsequently modified such that the proportion of the response containing binaural vs monaural information was varied. Normal-hearing listeners were presented with speech sounds convolved with such modified BRIRs. Monaural reverberation cues were found to be sufficient for the externalization of a lateral sound source. In contrast, for a frontal source, an increased amount of binaural cues from reflections was required in order to obtain well externalized sound images. It was demonstrated that the interaction between the interaural cues of the direct sound and the reverberation strongly affects the perception of externalization. An analysis of the short-term binaural cues showed that the amount of fluctuations of the binaural cues corresponded well to the externalization ratings obtained in the listening tests. The results further suggested that the precedence effect is involved in the auditory processing of the dynamic binaural cues that are utilized for externalization perception.
Harmonic template neurons in primate auditory cortex underlying complex sound processing
Feng, Lei
2017-01-01
Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music. PMID:28096341
Non-speech oral motor treatment for children with developmental speech sound disorders.
Lee, Alice S-Y; Gibbon, Fiona E
2015-03-25
Children with developmental speech sound disorders have difficulties in producing the speech sounds of their native language. These speech difficulties could be due to structural, sensory or neurophysiological causes (e.g. hearing impairment), but more often the cause of the problem is unknown. One treatment approach used by speech-language therapists/pathologists is non-speech oral motor treatment (NSOMT). NSOMTs are non-speech activities that aim to stimulate or improve speech production and treat specific speech errors. For example, using exercises such as smiling, pursing, blowing into horns, blowing bubbles, and lip massage to target lip mobility for the production of speech sounds involving the lips, such as /p/, /b/, and /m/. The efficacy of this treatment approach is controversial, and evidence regarding the efficacy of NSOMTs needs to be examined. To assess the efficacy of non-speech oral motor treatment (NSOMT) in treating children with developmental speech sound disorders who have speech errors. In April 2014 we searched the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (R) and Ovid MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Education Resources Information Center (ERIC), PsycINFO and 11 other databases. We also searched five trial and research registers, checked the reference lists of relevant titles identified by the search and contacted researchers to identify other possible published and unpublished studies. Randomised and quasi-randomised controlled trials that compared (1) NSOMT versus placebo or control; and (2) NSOMT as adjunctive treatment or speech intervention versus speech intervention alone, for children aged three to 16 years with developmental speech sound disorders, as judged by a speech and language therapist. Individuals with an intellectual disability (e.g. Down syndrome) or a physical disability were not excluded. The Trials Search Co-ordinator of the Cochrane Developmental, Psychosocial and Learning Problems Group and one review author ran the searches. Two review authors independently screened titles and abstracts to eliminate irrelevant studies, extracted data from the included studies and assessed risk of bias in each of these studies. In cases of ambiguity or information missing from the paper, we contacted trial authors. This review identified three studies (from four reports) involving a total of 22 children that investigated the efficacy of NSOMT as adjunctive treatment to conventional speech intervention versus conventional speech intervention for children with speech sound disorders. One study, a randomised controlled trial (RCT), included four boys aged seven years one month to nine years six months - all had speech sound disorders, and two had additional conditions (one was diagnosed as "communication impaired" and the other as "multiply disabled"). Of the two quasi-randomised controlled trials, one included 10 children (six boys and four girls), aged five years eight months to six years nine months, with speech sound disorders as a result of tongue thrust, and the other study included eight children (four boys and four girls), aged three to six years, with moderate to severe articulation disorder only. Two studies did not find NSOMT as adjunctive treatment to be more effective than conventional speech intervention alone, as both intervention and control groups made similar improvements in articulation after receiving treatments. One study reported a change in postintervention articulation test results but used an inappropriate statistical test and did not report the results clearly. None of the included studies examined the effects of NSOMTs on any other primary outcomes, such as speech intelligibility, speech physiology and adverse effects, or on any of the secondary outcomes such as listener acceptability.The RCT was judged at low risk for selection bias. The two quasi-randomised trials used randomisation but did not report the method for generating the random sequence and were judged as having unclear risk of selection bias. The three included studies were deemed to have high risk of performance bias as, given the nature of the intervention, blinding of participants was not possible. Only one study implemented blinding of outcome assessment and was at low risk for detection bias. One study showed high risk of other bias as the baseline characteristics of participants seemed to be unequal. The sample size of each of the included studies was very small, which means it is highly likely that participants in these studies were not representative of its target population. In the light of these serious limitations in methodology, the overall quality of the evidence provided by the included trials is judged to be low. Therefore, further research is very likely to have an important impact on our confidence in the estimate of treatment effect and is likely to change the estimate. The three included studies were small in scale and had a number of serious methodological limitations. In addition, they covered limited types of NSOMTs for treating children with speech sound disorders of unknown origin with the sounds /s/ and /z/. Hence, we judged the overall applicability of the evidence as limited and incomplete. Results of this review are consistent with those of previous reviews: Currently no strong evidence suggests that NSOMTs are an effective treatment or an effective adjunctive treatment for children with developmental speech sound disorders. Lack of strong evidence regarding the treatment efficacy of NSOMTs has implications for clinicians when they make decisions in relation to treatment plans. Well-designed research is needed to carefully investigate NSOMT as a type of treatment for children with speech sound disorders.
Phonological Awareness and Types of Sound Errors in Preschoolers with Speech Sound Disorders
ERIC Educational Resources Information Center
Preston, Jonathan; Edwards, Mary Louise
2010-01-01
Purpose: Some children with speech sound disorders (SSD) have difficulty with literacy-related skills, particularly phonological awareness (PA). This study investigates the PA skills of preschoolers with SSD by using a regression model to evaluate the degree to which PA can be concurrently predicted by types of speech sound errors. Method:…
Personality, Category, and Cross-Linguistic Speech Sound Processing: A Connectivistic View
Li, Will X. Y.
2014-01-01
Category formation of human perception is a vital part of cognitive ability. The disciplines of neuroscience and linguistics, however, seldom mention it in the marrying of the two. The present study reviews the neurological view of language acquisition as normalization of incoming speech signal, and attempts to suggest how speech sound category formation may connect personality with second language speech perception. Through a questionnaire, (being thick or thin) ego boundary, a correlate found to be related to category formation, was proven a positive indicator of personality types. Following the qualitative study, thick boundary and thin boundary English learners native in Cantonese were given a speech-signal perception test using an ABX discrimination task protocol. Results showed that thick-boundary learners performed significantly lower in accuracy rate than thin-boundary learners. It was implied that differences in personality do have an impact on language learning. PMID:24757425
ERIC Educational Resources Information Center
Preston, Jonathan L.; Edwards, Mary Louise
2009-01-01
Children with residual speech sound errors are often underserved clinically, yet there has been a lack of recent research elucidating the specific deficits in this population. Adolescents aged 10-14 with residual speech sound errors (RE) that included rhotics were compared to normally speaking peers on tasks assessing speed and accuracy of speech…
ERIC Educational Resources Information Center
Macrae, Toby; Tyler, Ann A.
2014-01-01
Purpose: The authors compared preschool children with co-occurring speech sound disorder (SSD) and language impairment (LI) to children with SSD only in their numbers and types of speech sound errors. Method: In this post hoc quasi-experimental study, independent samples t tests were used to compare the groups in the standard score from different…
Tomblin, J. Bruce; Peng, Shu-Chen; Spencer, Linda J.; Lu, Nelson
2011-01-01
Purpose This study characterized the development of speech sound production in prelingually deaf children with a minimum of 8 years of cochlear implant (CI) experience. Method Twenty-seven pediatric CI recipients' spontaneous speech samples from annual evaluation sessions were phonemically transcribed. Accuracy for these speech samples was evaluated in piecewise regression models. Results As a group, pediatric CI recipients showed steady improvement in speech sound production following implantation, but the improvement rate declined after 6 years of device experience. Piecewise regression models indicated that the slope estimating the participants' improvement rate was statistically greater than 0 during the first 6 years postimplantation, but not after 6 years. The group of pediatric CI recipients' accuracy of speech sound production after 4 years of device experience reasonably predicts their speech sound production after 5–10 years of device experience. Conclusions The development of speech sound production in prelingually deaf children stabilizes after 6 years of device experience, and typically approaches a plateau by 8 years of device use. Early growth in speech before 4 years of device experience did not predict later rates of growth or levels of achievement. However, good predictions could be made after 4 years of device use. PMID:18695018
Cognitive Bias for Learning Speech Sounds From a Continuous Signal Space Seems Nonlinguistic.
van der Ham, Sabine; de Boer, Bart
2015-10-01
When learning language, humans have a tendency to produce more extreme distributions of speech sounds than those observed most frequently: In rapid, casual speech, vowel sounds are centralized, yet cross-linguistically, peripheral vowels occur almost universally. We investigate whether adults' generalization behavior reveals selective pressure for communication when they learn skewed distributions of speech-like sounds from a continuous signal space. The domain-specific hypothesis predicts that the emergence of sound categories is driven by a cognitive bias to make these categories maximally distinct, resulting in more skewed distributions in participants' reproductions. However, our participants showed more centered distributions, which goes against this hypothesis, indicating that there are no strong innate linguistic biases that affect learning these speech-like sounds. The centralization behavior can be explained by a lack of communicative pressure to maintain categories.
Cognitive Bias for Learning Speech Sounds From a Continuous Signal Space Seems Nonlinguistic
de Boer, Bart
2015-01-01
When learning language, humans have a tendency to produce more extreme distributions of speech sounds than those observed most frequently: In rapid, casual speech, vowel sounds are centralized, yet cross-linguistically, peripheral vowels occur almost universally. We investigate whether adults’ generalization behavior reveals selective pressure for communication when they learn skewed distributions of speech-like sounds from a continuous signal space. The domain-specific hypothesis predicts that the emergence of sound categories is driven by a cognitive bias to make these categories maximally distinct, resulting in more skewed distributions in participants’ reproductions. However, our participants showed more centered distributions, which goes against this hypothesis, indicating that there are no strong innate linguistic biases that affect learning these speech-like sounds. The centralization behavior can be explained by a lack of communicative pressure to maintain categories. PMID:27648212
Intertrial auditory neural stability supports beat synchronization in preschoolers
Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina
2016-01-01
The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457
New Perspectives on Assessing Amplification Effects
Souza, Pamela E.; Tremblay, Kelly L.
2006-01-01
Clinicians have long been aware of the range of performance variability with hearing aids. Despite improvements in technology, there remain many instances of well-selected and appropriately fitted hearing aids whereby the user reports minimal improvement in speech understanding. This review presents a multistage framework for understanding how a hearing aid affects performance. Six stages are considered: (1) acoustic content of the signal, (2) modification of the signal by the hearing aid, (3) interaction between sound at the output of the hearing aid and the listener's ear, (4) integrity of the auditory system, (5) coding of available acoustic cues by the listener's auditory system, and (6) correct identification of the speech sound. Within this framework, this review describes methodology and research on 2 new assessment techniques: acoustic analysis of speech measured at the output of the hearing aid and auditory evoked potentials recorded while the listener wears hearing aids. Acoustic analysis topics include the relationship between conventional probe microphone tests and probe microphone measurements using speech, appropriate procedures for such tests, and assessment of signal-processing effects on speech acoustics and recognition. Auditory evoked potential topics include an overview of physiologic measures of speech processing and the effect of hearing loss and hearing aids on cortical auditory evoked potential measurements in response to speech. Finally, the clinical utility of these procedures is discussed. PMID:16959734
ERIC Educational Resources Information Center
Noguchi, Masaki; Hudson Kam, Carla L.
2018-01-01
In human languages, different speech sounds can be contextual variants of a single phoneme, called allophones. Learning which sounds are allophones is an integral part of the acquisition of phonemes. Whether given sounds are separate phonemes or allophones in a listener's language affects speech perception. Listeners tend to be less sensitive to…
ERIC Educational Resources Information Center
Yeni-Komshian, Grace; And Others
This study was designed to compare children and adults on their initial ability to identify and reproduce novel speech sounds and to evaluate their performance after receiving several training sessions in producing these sounds. The novel speech sounds used were two voiceless fricatives which are consonant phonemes in Arabic but which are…
Developing a weighted measure of speech sound accuracy.
Preston, Jonathan L; Ramsdell, Heather L; Oller, D Kimbrough; Edwards, Mary Louise; Tobin, Stephen J
2011-02-01
To develop a system for numerically quantifying a speaker's phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, the authors describe a system for differentially weighting speech sound errors on the basis of various levels of phonetic accuracy using a Weighted Speech Sound Accuracy (WSSA) score. The authors then evaluate the reliability and validity of this measure. Phonetic transcriptions were analyzed from several samples of child speech, including preschoolers and young adolescents with and without speech sound disorders and typically developing toddlers. The new measure of phonetic accuracy was validated against existing measures, was used to discriminate typical and disordered speech production, and was evaluated to examine sensitivity to changes in phonetic accuracy over time. Reliability between transcribers and consistency of scores among different word sets and testing points are compared. Initial psychometric data indicate that WSSA scores correlate with other measures of phonetic accuracy as well as listeners' judgments of the severity of a child's speech disorder. The measure separates children with and without speech sound disorders and captures growth in phonetic accuracy in toddlers' speech over time. The measure correlates highly across transcribers, word lists, and testing points. Results provide preliminary support for the WSSA as a valid and reliable measure of phonetic accuracy in children's speech.
Parbery-Clark, Alexandra; Anderson, Samira; Hittner, Emily; Kraus, Nina
2012-01-01
Older adults frequently complain that while they can hear a person talking, they cannot understand what is being said; this difficulty is exacerbated by background noise. Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise ability, as declines in central processing also contribute to this problem. Given that musicians have enhanced speech-in-noise perception, we aimed to define the effects of musical experience on subcortical responses to speech and speech-in-noise perception in middle-aged adults. Results reveal that musicians have enhanced neural encoding of speech in quiet and noisy settings. Enhancements include faster neural response timing, higher neural response consistency, more robust encoding of speech harmonics, and greater neural precision. Taken together, we suggest that musical experience provides perceptual benefits in an aging population by strengthening the underlying neural pathways necessary for the accurate representation of important temporal and spectral features of sound. PMID:23189051
Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope.
Vanthornhout, Jonas; Decruy, Lien; Wouters, Jan; Simon, Jonathan Z; Francart, Tom
2018-04-01
Speech intelligibility is currently measured by scoring how well a person can identify a speech signal. The results of such behavioral measures reflect neural processing of the speech signal, but are also influenced by language processing, motivation, and memory. Very often, electrophysiological measures of hearing give insight in the neural processing of sound. However, in most methods, non-speech stimuli are used, making it hard to relate the results to behavioral measures of speech intelligibility. The use of natural running speech as a stimulus in electrophysiological measures of hearing is a paradigm shift which allows to bridge the gap between behavioral and electrophysiological measures. Here, by decoding the speech envelope from the electroencephalogram, and correlating it with the stimulus envelope, we demonstrate an electrophysiological measure of neural processing of running speech. We show that behaviorally measured speech intelligibility is strongly correlated with our electrophysiological measure. Our results pave the way towards an objective and automatic way of assessing neural processing of speech presented through auditory prostheses, reducing confounds such as attention and cognitive capabilities. We anticipate that our electrophysiological measure will allow better differential diagnosis of the auditory system, and will allow the development of closed-loop auditory prostheses that automatically adapt to individual users.
Restoring speech perception with cochlear implants by spanning defective electrode contacts.
Frijns, Johan H M; Snel-Bongers, Jorien; Vellinga, Dirk; Schrage, Erik; Vanpoucke, Filiep J; Briaire, Jeroen J
2013-04-01
Even with six defective contacts, spanning can largely restore speech perception with the HiRes 120 speech processing strategy to the level supported by an intact electrode array. Moreover, the sound quality is not degraded. Previous studies have demonstrated reduced speech perception scores (SPS) with defective contacts in HiRes 120. This study investigated whether replacing defective contacts by spanning, i.e. current steering on non-adjacent contacts, is able to restore speech recognition to the level supported by an intact electrode array. Ten adult cochlear implant recipients (HiRes90K, HiFocus1J) with experience with HiRes 120 participated in this study. Three different defective electrode arrays were simulated (six separate defective contacts, three pairs or two triplets). The participants received three take-home strategies and were asked to evaluate the sound quality in five predefined listening conditions. After 3 weeks, SPS were evaluated with monosyllabic words in quiet and in speech-shaped background noise. The participants rated the sound quality equal for all take-home strategies. SPS with background noise were equal for all conditions tested. However, SPS in quiet (85% phonemes correct on average with the full array) decreased significantly with increasing spanning distance, with a 3% decrease for each spanned contact.
NASA Astrophysics Data System (ADS)
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.
2016-02-01
Sound processing in the inner ear involves separation of the constituent frequencies along the length of the cochlea. Frequencies relevant to human speech (100 to 500 Hz) are processed in the apex region. Among mammals, the guinea pig cochlear apex processes similar frequencies and is thus relevant for the study of speech processing in the cochlea. However, the requirement for extensive surgery has challenged the optical accessibility of this area to investigate cochlear processing of signals without significant intrusion. A simple method is developed to provide optical access to the guinea pig cochlear apex in two directions with minimal surgery. Furthermore, all prior vibration measurements in the guinea pig apex involved opening an observation hole in the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here, this limitation is overcome by measuring the vibrations through the unopened otic capsule using phase-sensitive Fourier domain optical coherence tomography. The optically and surgically advanced method described here lays the foundation to perform minimally invasive investigation of speech-related signal processing in the cochlea.
Subtyping Children with Speech Sound Disorders by Endophenotypes
ERIC Educational Resources Information Center
Lewis, Barbara A.; Avrich, Allison A.; Freebairn, Lisa A.; Taylor, H. Gerry; Iyengar, Sudha K.; Stein, Catherine M.
2011-01-01
Purpose: The present study examined associations of 5 endophenotypes (i.e., measurable skills that are closely associated with speech sound disorders and are useful in detecting genetic influences on speech sound production), oral motor skills, phonological memory, phonological awareness, vocabulary, and speeded naming, with 3 clinical criteria…
Studer-Eichenberger, Esther; Studer-Eichenberger, Felix; Koenig, Thomas
2016-01-01
The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Speech and oromotor outcome in adolescents born preterm: relationship to motor tract integrity.
Northam, Gemma B; Liégeois, Frédérique; Chong, Wui K; Baker, Kate; Tournier, Jacques-Donald; Wyatt, John S; Baldeweg, Torsten; Morgan, Angela
2012-03-01
To assess speech abilities in adolescents born preterm and investigate whether there is an association between specific speech deficits and brain abnormalities. Fifty adolescents born prematurely (<33 weeks' gestation) with a spectrum of brain injuries were recruited (mean age, 16 years). Speech examination included tests of speech-sound processing and production and speech and oromotor control. Conventional magnetic resonance imaging and diffusion-weighted imaging was acquired in all adolescents born preterm and 30 term-born control subjects. Radiological ratings of brain injury were recorded and the integrity of the primary motor projections was measured (corticospinal tract and speech-motor corticobulbar tract [CST/CBT]). There were no clinical diagnoses of developmental dysarthria, dyspraxia, or a speech-sound disorder, but difficulties in speech and oromotor control were common. A regression analysis revealed that presence of a neurologic impairment, and diffusion-weighted imaging abnormalities in the left CST/CBT were significant independent predictors of poor speech and oromotor outcome. These left-lateralized abnormalities were most evident at the level of the posterior limb of the internal capsule. Difficulties in speech and oromotor control are common in adolescents born preterm, and adolescents with injury to the CST/CBT pathways in the left-hemisphere may be most at risk. Copyright © 2012 Mosby, Inc. All rights reserved.
Eadie, Patricia; Morgan, Angela; Ukoumunne, Obioha C; Ttofari Eecen, Kyriaki; Wake, Melissa; Reilly, Sheena
2015-06-01
The epidemiology of preschool speech sound disorder is poorly understood. Our aims were to determine: the prevalence of idiopathic speech sound disorder; the comorbidity of speech sound disorder with language and pre-literacy difficulties; and the factors contributing to speech outcome at 4 years. One thousand four hundred and ninety-four participants from an Australian longitudinal cohort completed speech, language, and pre-literacy assessments at 4 years. Prevalence of speech sound disorder (SSD) was defined by standard score performance of ≤79 on a speech assessment. Logistic regression examined predictors of SSD within four domains: child and family; parent-reported speech; cognitive-linguistic; and parent-reported motor skills. At 4 years the prevalence of speech disorder in an Australian cohort was 3.4%. Comorbidity with SSD was 40.8% for language disorder and 20.8% for poor pre-literacy skills. Sex, maternal vocabulary, socio-economic status, and family history of speech and language difficulties predicted SSD, as did 2-year speech, language, and motor skills. Together these variables provided good discrimination of SSD (area under the curve=0.78). This is the first epidemiological study to demonstrate prevalence of SSD at 4 years of age that was consistent with previous clinical studies. Early detection of SSD at 4 years should focus on family variables and speech, language, and motor skills measured at 2 years. © 2014 Mac Keith Press.
Wolfe, Jace; Morais, Mila; Schafer, Erin; Agrawal, Smita; Koch, Dawn
2015-05-01
Cochlear implant recipients often experience difficulty with understanding speech in the presence of noise. Cochlear implant manufacturers have developed sound processing algorithms designed to improve speech recognition in noise, and research has shown these technologies to be effective. Remote microphone technology utilizing adaptive, digital wireless radio transmission has also been shown to provide significant improvement in speech recognition in noise. There are no studies examining the potential improvement in speech recognition in noise when these two technologies are used simultaneously. The goal of this study was to evaluate the potential benefits and limitations associated with the simultaneous use of a sound processing algorithm designed to improve performance in noise (Advanced Bionics ClearVoice) and a remote microphone system that incorporates adaptive, digital wireless radio transmission (Phonak Roger). A two-by-two way repeated measures design was used to examine performance differences obtained without these technologies compared to the use of each technology separately as well as the simultaneous use of both technologies. Eleven Advanced Bionics (AB) cochlear implant recipients, ages 11 to 68 yr. AzBio sentence recognition was measured in quiet and in the presence of classroom noise ranging in level from 50 to 80 dBA in 5-dB steps. Performance was evaluated in four conditions: (1) No ClearVoice and no Roger, (2) ClearVoice enabled without the use of Roger, (3) ClearVoice disabled with Roger enabled, and (4) simultaneous use of ClearVoice and Roger. Speech recognition in quiet was better than speech recognition in noise for all conditions. Use of ClearVoice and Roger each provided significant improvement in speech recognition in noise. The best performance in noise was obtained with the simultaneous use of ClearVoice and Roger. ClearVoice and Roger technology each improves speech recognition in noise, particularly when used at the same time. Because ClearVoice does not degrade performance in quiet settings, clinicians should consider recommending ClearVoice for routine, full-time use for AB implant recipients. Roger should be used in all instances in which remote microphone technology may assist the user in understanding speech in the presence of noise. American Academy of Audiology.
Phonetic Recalibration Only Occurs in Speech Mode
ERIC Educational Resources Information Center
Vroomen, Jean; Baart, Martijn
2009-01-01
Upon hearing an ambiguous speech sound dubbed onto lipread speech, listeners adjust their phonetic categories in accordance with the lipread information (recalibration) that tells what the phoneme should be. Here we used sine wave speech (SWS) to show that this tuning effect occurs if the SWS sounds are perceived as speech, but not if the sounds…
Speech Sound Disorders in a Community Study of Preschool Children
ERIC Educational Resources Information Center
McLeod, Sharynne; Harrison, Linda J.; McAllister, Lindy; McCormack, Jane
2013-01-01
Purpose: To undertake a community (nonclinical) study to describe the speech of preschool children who had been identified by parents/teachers as having difficulties "talking and making speech sounds" and compare the speech characteristics of those who had and had not accessed the services of a speech-language pathologist (SLP). Method:…
Increasing Parental Involvement in Speech-Sound Remediation
ERIC Educational Resources Information Center
Roberts, Micah Renee Ferguson
2014-01-01
Speech therapy homework is a key component of a successful speech therapy program, increasing carryover of learned speech sounds. Poor return rate of homework assigned, with a lack of parental involvement, is a problem. The purpose of this project study was to examine what may increase parental participation in speech therapy homework. Guided by…
Hey, Matthias; Hocke, Thomas; Mauger, Stefan; Müller-Deile, Joachim
2016-11-01
Individual speech intelligibility was measured in quiet and noise for cochlear Implant recipients upgrading from the Freedom to the CP900 series sound processor. The postlingually deafened participants (n = 23) used either Nucleus CI24RE or CI512 cochlear implant, and currently wore a Freedom sound processor. A significant group mean improvement in speech intelligibility was found in quiet (Freiburg monosyllabic words at 50 dB SPL ) and in noise (adaptive Oldenburger sentences in noise) for the two CP900 series SmartSound programs compared to the Freedom program. Further analysis was carried out on individual's speech intelligibility outcomes in quiet and in noise. Results showed a significant improvement or decrement for some recipients when upgrading to the new programs. To further increase speech intelligibility outcomes when upgrading, an enhanced upgrade procedure is proposed that includes additional testing with different signal-processing schemes. Implications of this research are that future automated scene analysis and switching technologies could provide additional performance improvements by introducing individualized scene-dependent settings.
Sounds Exaggerate Visual Shape
ERIC Educational Resources Information Center
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
Telkemeyer, Silke; Rossi, Sonja; Nierhaus, Till; Steinbrink, Jens; Obrig, Hellmuth; Wartenburger, Isabell
2010-01-01
Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition. PMID:21716574
The Influence of Phonetic Dimensions on Aphasic Speech Perception
ERIC Educational Resources Information Center
Hessler, Dorte; Jonkers, Roel; Bastiaanse, Roelien
2010-01-01
Individuals with aphasia have more problems detecting small differences between speech sounds than larger ones. This paper reports how phonemic processing is impaired and how this is influenced by speechreading. A non-word discrimination task was carried out with "audiovisual", "auditory only" and "visual only" stimulus display. Subjects had to…
Lewis, James W.; Talkington, William J.; Walker, Nathan A.; Spirou, George A.; Jajosky, Audrey; Frum, Chris
2009-01-01
The ability to detect and rapidly process harmonic sounds, which in nature are typical of animal vocalizations and speech, can be critical for communication among conspecifics and for survival. Single-unit studies have reported neurons in auditory cortex sensitive to specific combinations of frequencies (e.g. harmonics), theorized to rapidly abstract or filter for specific structures of incoming sounds, where large ensembles of such neurons may constitute spectral templates. We studied the contribution of harmonic structure to activation of putative spectral templates in human auditory cortex by using a wide variety of animal vocalizations, as well as artificially constructed iterated rippled noises (IRNs). Both the IRNs and vocalization sounds were quantitatively characterized by calculating a global harmonics-to-noise ratio (HNR). Using fMRI we identified HNR-sensitive regions when presenting either artificial IRNs and/or recordings of natural animal vocalizations. This activation included regions situated between functionally defined primary auditory cortices and regions preferential for processing human non-verbal vocalizations or speech sounds. These results demonstrate that the HNR of sound reflects an important second-order acoustic signal attribute that parametrically activates distinct pathways of human auditory cortex. Thus, these results provide novel support for putative spectral templates, which may subserve a major role in the hierarchical processing of vocalizations as a distinct category of behaviorally relevant sound. PMID:19228981
The Frame Constraint on Experimentally Elicited Speech Errors in Japanese.
Saito, Akie; Inoue, Tomoyoshi
2017-06-01
The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the same position within a syllable or word. Most of the evidence for the effect comes from analyses of naturally occurring speech errors in Indo-European languages, and there are few studies examining the effect in experimentally elicited speech errors and in other languages. This study examined whether experimentally elicited sound errors in Japanese exhibits the syllable position effect. In Japanese, the sub-syllabic unit known as "mora" is considered to be a basic sound unit in production. Results showed that the syllable position effect occurred in mora errors, suggesting that the frame constrains the ordering of sounds during speech production.
Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study.
Pishnamazi, Morteza; Nojaba, Yasaman; Ganjgahi, Habib; Amousoltani, Asie; Oghabian, Mohammad Ali
2016-05-01
Reading is a multisensory function that relies on arbitrary associations between auditory speech sounds and symbols from a second modality. Studies of bimodal phonetic perception have mostly investigated the integration of visual letters and speech sounds. Blind readers perform an analogous task by using tactile Braille letters instead of visual letters. The neural underpinnings of audiotactile phonetic processing have not been studied before. We used functional magnetic resonance imaging to reveal the neural correlates of audiotactile phonetic processing in 16 early-blind Braille readers. Braille letters and corresponding speech sounds were presented in unimodal, and congruent/incongruent bimodal configurations. We also used a behavioral task to measure the speed of blind readers in identifying letters presented via tactile and/or auditory modalities. Reaction times for tactile stimuli were faster. The reaction times for bimodal stimuli were equal to those for the slower auditory-only stimuli. fMRI analyses revealed the convergence of unimodal auditory and unimodal tactile responses in areas of the right precentral gyrus and bilateral crus I of the cerebellum. The left and right planum temporale fulfilled the 'max criterion' for bimodal integration, but activities of these areas were not sensitive to the phonetical congruency between sounds and Braille letters. Nevertheless, congruency effects were found in regions of frontal lobe and cerebellum. Our findings suggest that, unlike sighted readers who are assumed to have amodal phonetic representations, blind readers probably process letters and sounds separately. We discuss that this distinction might be due to mal-development of multisensory neural circuits in early blinds or it might be due to inherent differences between Braille and print reading mechanisms.
Felix, Richard A; Portfors, Christine V
2007-06-01
Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.
Dynamic Assessment of Phonological Awareness for Children with Speech Sound Disorders
ERIC Educational Resources Information Center
Gillam, Sandra Laing; Ford, Mikenzi Bentley
2012-01-01
The current study was designed to examine the relationships between performance on a nonverbal phoneme deletion task administered in a dynamic assessment format with performance on measures of phoneme deletion, word-level reading, and speech sound production that required verbal responses for school-age children with speech sound disorders (SSDs).…
The sensorimotor and social sides of the architecture of speech.
Pezzulo, Giovanni; Barca, Laura; D'Ausilio, Alessando
2014-12-01
Speech is a complex skill to master. In addition to sophisticated phono-articulatory abilities, speech acquisition requires neuronal systems configured for vocal learning, with adaptable sensorimotor maps that couple heard speech sounds with motor programs for speech production; imitation and self-imitation mechanisms that can train the sensorimotor maps to reproduce heard speech sounds; and a "pedagogical" learning environment that supports tutor learning.
ERIC Educational Resources Information Center
Skoruppa, Katrin; Rosen, Stuart
2014-01-01
Purpose: In this study, the authors explored phonological processing in connected speech in children with hearing loss. Specifically, the authors investigated these children's sensitivity to English place assimilation, by which alveolar consonants like t and n can adapt to following sounds (e.g., the word ten can be realized as tem in the…
Musical expertise and foreign speech perception
Martínez-Montes, Eduardo; Hernández-Pérez, Heivet; Chobert, Julie; Morgado-Rodríguez, Lisbet; Suárez-Murias, Carlos; Valdés-Sosa, Pedro A.; Besson, Mireille
2013-01-01
The aim of this experiment was to investigate the influence of musical expertise on the automatic perception of foreign syllables and harmonic sounds. Participants were Cuban students with high level of expertise in music or in visual arts and with the same level of general education and socio-economic background. We used a multi-feature Mismatch Negativity (MMN) design with sequences of either syllables in Mandarin Chinese or harmonic sounds, both comprising deviants in pitch contour, duration and Voice Onset Time (VOT) or equivalent that were either far from (Large deviants) or close to (Small deviants) the standard. For both Mandarin syllables and harmonic sounds, results were clear-cut in showing larger MMNs to pitch contour deviants in musicians than in visual artists. Results were less clear for duration and VOT deviants, possibly because of the specific characteristics of the stimuli. Results are interpreted as reflecting similar processing of pitch contour in speech and non-speech sounds. The implications of these results for understanding the influence of intense musical training from childhood to adulthood and of genetic predispositions for music on foreign language perception are discussed. PMID:24294193
Musical expertise and foreign speech perception.
Martínez-Montes, Eduardo; Hernández-Pérez, Heivet; Chobert, Julie; Morgado-Rodríguez, Lisbet; Suárez-Murias, Carlos; Valdés-Sosa, Pedro A; Besson, Mireille
2013-01-01
The aim of this experiment was to investigate the influence of musical expertise on the automatic perception of foreign syllables and harmonic sounds. Participants were Cuban students with high level of expertise in music or in visual arts and with the same level of general education and socio-economic background. We used a multi-feature Mismatch Negativity (MMN) design with sequences of either syllables in Mandarin Chinese or harmonic sounds, both comprising deviants in pitch contour, duration and Voice Onset Time (VOT) or equivalent that were either far from (Large deviants) or close to (Small deviants) the standard. For both Mandarin syllables and harmonic sounds, results were clear-cut in showing larger MMNs to pitch contour deviants in musicians than in visual artists. Results were less clear for duration and VOT deviants, possibly because of the specific characteristics of the stimuli. Results are interpreted as reflecting similar processing of pitch contour in speech and non-speech sounds. The implications of these results for understanding the influence of intense musical training from childhood to adulthood and of genetic predispositions for music on foreign language perception are discussed.
Kujala, T; Kuuluvainen, S; Saalasti, S; Jansson-Verkasalo, E; von Wendt, L; Lepistö, T
2010-09-01
Asperger syndrome, belonging to the autistic spectrum of disorders, involves deficits in social interaction and prosodic use of language but normal development of formal language abilities. Auditory processing involves both hyper- and hypoactive reactivity to acoustic changes. Responses composed of mismatch negativity (MMN) and obligatory components were recorded for five types of deviations in syllables (vowel, vowel duration, consonant, syllable frequency, syllable intensity) with the multi-feature paradigm from 8-12-year old children with Asperger syndrome. Children with Asperger syndrome had larger MMNs for intensity and smaller MMNs for frequency changes than typically developing children, whereas no MMN group differences were found for the other deviant stimuli. Furthermore, children with Asperger syndrome performed more poorly than controls in Comprehension of Instructions subtest of a language test battery. Cortical speech-sound discrimination is aberrant in children with Asperger syndrome. This is evident both as hypersensitive and depressed neural reactions to speech-sound changes, and is associated with features (frequency, intensity) which are relevant for prosodic processing. The multi-feature MMN paradigm, which includes variation and thereby resembles natural speech hearing circumstances, suggests abnormal pattern of speech discrimination in Asperger syndrome, including both hypo- and hypersensitive responses for speech features. 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
2014-01-01
This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772
Focal versus distributed temporal cortex activity for speech sound category assignment
Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise
2018-01-01
Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598
ERIC Educational Resources Information Center
Skahan, Sarah M.; Watson, Maggie; Lof, Gregory L.
2007-01-01
Purpose: This study examined assessment procedures used by speech-language pathologists (SLPs) when assessing children suspected of having speech sound disorders (SSD). This national survey also determined the information participants obtained from clients' speech samples, evaluation of non-native English speakers, and time spent on assessment.…
Reilly, Kevin J.; Spencer, Kristie A.
2013-01-01
The current study investigated the processes responsible for selection of sounds and syllables during production of speech sequences in 10 adults with hypokinetic dysarthria from Parkinson’s disease, five adults with ataxic dysarthria, and 14 healthy control speakers. Speech production data from a choice reaction time task were analyzed to evaluate the effects of sequence length and practice on speech sound sequencing. Speakers produced sequences that were between one and five syllables in length over five experimental runs of 60 trials each. In contrast to the healthy speakers, speakers with hypokinetic dysarthria demonstrated exaggerated sequence length effects for both inter-syllable intervals (ISIs) and speech error rates. Conversely, speakers with ataxic dysarthria failed to demonstrate a sequence length effect on ISIs and were also the only group that did not exhibit practice-related changes in ISIs and speech error rates over the five experimental runs. The exaggerated sequence length effects in the hypokinetic speakers with Parkinson’s disease are consistent with an impairment of action selection during speech sequence production. The absent length effects observed in the speakers with ataxic dysarthria is consistent with previous findings that indicate a limited capacity to buffer speech sequences in advance of their execution. In addition, the lack of practice effects in these speakers suggests that learning-related improvements in the production rate and accuracy of speech sequences involves processing by structures of the cerebellum. Together, the current findings inform models of serial control for speech in healthy speakers and support the notion that sequencing deficits contribute to speech symptoms in speakers with hypokinetic or ataxic dysarthria. In addition, these findings indicate that speech sequencing is differentially impaired in hypokinetic and ataxic dysarthria. PMID:24137121
Dole, Marjorie; Hoen, Michel; Meunier, Fanny
2012-06-01
Developmental dyslexia is associated with impaired speech-in-noise perception. The goal of the present research was to further characterize this deficit in dyslexic adults. In order to specify the mechanisms and processing strategies used by adults with dyslexia during speech-in-noise perception, we explored the influence of background type, presenting single target-words against backgrounds made of cocktail party sounds, modulated speech-derived noise or stationary noise. We also evaluated the effect of three listening configurations differing in terms of the amount of spatial processing required. In a monaural condition, signal and noise were presented to the same ear while in a dichotic situation, target and concurrent sound were presented to two different ears, finally in a spatialised configuration, target and competing signals were presented as if they originated from slightly differing positions in the auditory scene. Our results confirm the presence of a speech-in-noise perception deficit in dyslexic adults, in particular when the competing signal is also speech, and when both signals are presented to the same ear, an observation potentially relating to phonological accounts of dyslexia. However, adult dyslexics demonstrated better levels of spatial release of masking than normal reading controls when the background was speech, suggesting that they are well able to rely on denoising strategies based on spatial auditory scene analysis strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakagawa, Seiji; Fujiyuki, Chika; Kagomiya, Takayuki
2012-07-01
Bone-conducted ultrasound (BCU) is perceived even by the profoundly sensorineural deaf. A novel hearing aid using the perception of amplitude-modulated BCU (BCU hearing aid: BCUHA) has been developed; however, further improvements are needed, especially in terms of articulation and sound quality. In this study, the intelligibility and sound quality of BCU speech with several types of amplitude modulation [double-sideband with transmitted carrier (DSB-TC), double-sideband with suppressed carrier (DSB-SC), and transposed modulation] were evaluated. The results showed that DSB-TC and transposed speech were more intelligible than DSB-SC speech, and transposed speech was closer than the other types of BCU speech to air-conducted speech in terms of sound quality. These results provide useful information for further development of the BCUHA.
Sleep and Native Language Interference Affect Non-Native Speech Sound Learning
Earle, F. Sayako; Myers, Emily B.
2015-01-01
Adults learning a new language are faced with a significant challenge: non-native speech sounds that are perceptually similar to sounds in one’s native language can be very difficult to acquire. Sleep and native language interference, two factors that may help to explain this difficulty in acquisition, are addressed in three studies. Results of Experiment 1 showed that participants trained on a non-native contrast at night improved in discrimination 24 hours after training, while those trained in the morning showed no such improvement. Experiments 2 and 3 addressed the possibility that incidental exposure to perceptually similar native language speech sounds during the day interfered with maintenance in the morning group. Taken together, results show that the ultimate success of non-native speech sound learning depends not only on the similarity of learned sounds to the native language repertoire, but also to interference from native language sounds before sleep. PMID:26280264
Sleep and native language interference affect non-native speech sound learning.
Earle, F Sayako; Myers, Emily B
2015-12-01
Adults learning a new language are faced with a significant challenge: non-native speech sounds that are perceptually similar to sounds in one's native language can be very difficult to acquire. Sleep and native language interference, 2 factors that may help to explain this difficulty in acquisition, are addressed in 3 studies. Results of Experiment 1 showed that participants trained on a non-native contrast at night improved in discrimination 24 hr after training, while those trained in the morning showed no such improvement. Experiments 2 and 3 addressed the possibility that incidental exposure to perceptually similar native language speech sounds during the day interfered with maintenance in the morning group. Taken together, results show that the ultimate success of non-native speech sound learning depends not only on the similarity of learned sounds to the native language repertoire, but also to interference from native language sounds before sleep. (c) 2015 APA, all rights reserved).
Speech vs. singing: infants choose happier sounds
Corbeil, Marieve; Trehub, Sandra E.; Peretz, Isabelle
2013-01-01
Infants prefer speech to non-vocal sounds and to non-human vocalizations, and they prefer happy-sounding speech to neutral speech. They also exhibit an interest in singing, but there is little knowledge of their relative interest in speech and singing. The present study explored infants' attention to unfamiliar audio samples of speech and singing. In Experiment 1, infants 4–13 months of age were exposed to happy-sounding infant-directed speech vs. hummed lullabies by the same woman. They listened significantly longer to the speech, which had considerably greater acoustic variability and expressiveness, than to the lullabies. In Experiment 2, infants of comparable age who heard the lyrics of a Turkish children's song spoken vs. sung in a joyful/happy manner did not exhibit differential listening. Infants in Experiment 3 heard the happily sung lyrics of the Turkish children's song vs. a version that was spoken in an adult-directed or affectively neutral manner. They listened significantly longer to the sung version. Overall, happy voice quality rather than vocal mode (speech or singing) was the principal contributor to infant attention, regardless of age. PMID:23805119
Multilingual Aspects of Speech Sound Disorders in Children. Communication Disorders across Languages
ERIC Educational Resources Information Center
McLeod, Sharynne; Goldstein, Brian
2012-01-01
Multilingual Aspects of Speech Sound Disorders in Children explores both multilingual and multicultural aspects of children with speech sound disorders. The 30 chapters have been written by 44 authors from 16 different countries about 112 languages and dialects. The book is designed to translate research into clinical practice. It is divided into…
D'Souza, Dean; D'Souza, Hana; Johnson, Mark H; Karmiloff-Smith, Annette
2016-08-01
Typically-developing (TD) infants can construct unified cross-modal percepts, such as a speaking face, by integrating auditory-visual (AV) information. This skill is a key building block upon which higher-level skills, such as word learning, are built. Because word learning is seriously delayed in most children with neurodevelopmental disorders, we assessed the hypothesis that this delay partly results from a deficit in integrating AV speech cues. AV speech integration has rarely been investigated in neurodevelopmental disorders, and never previously in infants. We probed for the McGurk effect, which occurs when the auditory component of one sound (/ba/) is paired with the visual component of another sound (/ga/), leading to the perception of an illusory third sound (/da/ or /tha/). We measured AV integration in 95 infants/toddlers with Down, fragile X, or Williams syndrome, whom we matched on Chronological and Mental Age to 25 TD infants. We also assessed a more basic AV perceptual ability: sensitivity to matching vs. mismatching AV speech stimuli. Infants with Williams syndrome failed to demonstrate a McGurk effect, indicating poor AV speech integration. Moreover, while the TD children discriminated between matching and mismatching AV stimuli, none of the other groups did, hinting at a basic deficit or delay in AV speech processing, which is likely to constrain subsequent language development. Copyright © 2016 Elsevier Inc. All rights reserved.
Vuolo, Janet; Goffman, Lisa
2017-01-01
This exploratory treatment study used phonetic transcription and speech kinematics to examine changes in segmental and articulatory variability. Nine children, ages 4- to 8-years-old, served as participants, including two with childhood apraxia of speech (CAS), five with speech sound disorder (SSD), and two who were typically developing (TD). Children practised producing agent + action phrases in an imitation task (low linguistic load) and a retrieval task (high linguistic load) over five sessions. In the imitation task in session one, both participants with CAS showed high degrees of segmental and articulatory variability. After five sessions, imitation practice resulted in increased articulatory variability for five participants. Retrieval practice resulted in decreased articulatory variability in three participants with SSD. These results suggest that short-term speech production practice in rote imitation disrupts articulatory control in children with and without CAS. In contrast, tasks that require linguistic processing may scaffold learning for children with SSD but not CAS. PMID:27960554
Ultrasound visual feedback treatment and practice variability for residual speech sound errors
Preston, Jonathan L.; McCabe, Patricia; Rivera-Campos, Ahmed; Whittle, Jessica L.; Landry, Erik; Maas, Edwin
2014-01-01
Purpose The goals were to (1) test the efficacy of a motor-learning based treatment that includes ultrasound visual feedback for individuals with residual speech sound errors, and (2) explore whether the addition of prosodic cueing facilitates speech sound learning. Method A multiple baseline single subject design was used, replicated across 8 participants. For each participant, one sound context was treated with ultrasound plus prosodic cueing for 7 sessions, and another sound context was treated with ultrasound but without prosodic cueing for 7 sessions. Sessions included ultrasound visual feedback as well as non-ultrasound treatment. Word-level probes assessing untreated words were used to evaluate retention and generalization. Results For most participants, increases in accuracy of target sound contexts at the word level were observed with the treatment program regardless of whether prosodic cueing was included. Generalization between onset singletons and clusters was observed, as well as generalization to sentence-level accuracy. There was evidence of retention during post-treatment probes, including at a two-month follow-up. Conclusions A motor-based treatment program that includes ultrasound visual feedback can facilitate learning of speech sounds in individuals with residual speech sound errors. PMID:25087938
Interventions for Speech Sound Disorders in Children
ERIC Educational Resources Information Center
Williams, A. Lynn, Ed.; McLeod, Sharynne, Ed.; McCauley, Rebecca J., Ed.
2010-01-01
With detailed discussion and invaluable video footage of 23 treatment interventions for speech sound disorders (SSDs) in children, this textbook and DVD set should be part of every speech-language pathologist's professional preparation. Focusing on children with functional or motor-based speech disorders from early childhood through the early…
ERIC Educational Resources Information Center
Hodge, Megan M.; Gotzke, Carrie L.
2011-01-01
Listeners' identification of young children's productions of minimally contrastive words and predictive relationships between accurately identified words and intelligibility scores obtained from a 100-word spontaneous speech sample were determined for 36 children with typically developing speech (TDS) and 36 children with speech sound disorders…
Developing a Weighted Measure of Speech Sound Accuracy
ERIC Educational Resources Information Center
Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.
2011-01-01
Purpose: To develop a system for numerically quantifying a speaker's phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, the authors describe a system for differentially weighting speech sound errors on the basis of various levels of phonetic accuracy using a Weighted Speech Sound…
Kharlamov, Viktor; Campbell, Kenneth; Kazanina, Nina
2011-11-01
Speech sounds are not always perceived in accordance with their acoustic-phonetic content. For example, an early and automatic process of perceptual repair, which ensures conformity of speech inputs to the listener's native language phonology, applies to individual input segments that do not exist in the native inventory or to sound sequences that are illicit according to the native phonotactic restrictions on sound co-occurrences. The present study with Russian and Canadian English speakers shows that listeners may perceive phonetically distinct and licit sound sequences as equivalent when the native language system provides robust evidence for mapping multiple phonetic forms onto a single phonological representation. In Russian, due to an optional but productive t-deletion process that affects /stn/ clusters, the surface forms [sn] and [stn] may be phonologically equivalent and map to a single phonological form /stn/. In contrast, [sn] and [stn] clusters are usually phonologically distinct in (Canadian) English. Behavioral data from identification and discrimination tasks indicated that [sn] and [stn] clusters were more confusable for Russian than for English speakers. The EEG experiment employed an oddball paradigm with nonwords [asna] and [astna] used as the standard and deviant stimuli. A reliable mismatch negativity response was elicited approximately 100 msec postchange in the English group but not in the Russian group. These findings point to a perceptual repair mechanism that is engaged automatically at a prelexical level to ensure immediate encoding of speech inputs in phonological terms, which in turn enables efficient access to the meaning of a spoken utterance.
Jordan, Timothy R; Abedipour, Lily
2010-01-01
Hearing the sound of laughter is important for social communication, but processes contributing to the audibility of laughter remain to be determined. Production of laughter resembles production of speech in that both involve visible facial movements accompanying socially significant auditory signals. However, while it is known that speech is more audible when the facial movements producing the speech sound can be seen, similar visual enhancement of the audibility of laughter remains unknown. To address this issue, spontaneously occurring laughter was edited to produce stimuli comprising visual laughter, auditory laughter, visual and auditory laughter combined, and no laughter at all (either visual or auditory), all presented in four levels of background noise. Visual laughter and no-laughter stimuli produced very few reports of auditory laughter. However, visual laughter consistently made auditory laughter more audible, compared to the same auditory signal presented without visual laughter, resembling findings reported previously for speech.
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
Speech perception skills of deaf infants following cochlear implantation: a first report
Houston, Derek M.; Pisoni, David B.; Kirk, Karen Iler; Ying, Elizabeth A.; Miyamoto, Richard T.
2012-01-01
Summary Objective We adapted a behavioral procedure that has been used extensively with normal-hearing (NH) infants, the visual habituation (VH) procedure, to assess deaf infants’ discrimination and attention to speech. Methods Twenty-four NH 6-month-olds, 24 NH 9-month-olds, and 16 deaf infants at various ages before and following cochlear implantation (CI) were tested in a sound booth on their caregiver’s lap in front of a TV monitor. During the habituation phase, each infant was presented with a repeating speech sound (e.g. ‘hop hop hop’) paired with a visual display of a checkerboard pattern on half of the trials (‘sound trials’) and only the visual display on the other half (‘silent trials’). When the infant’s looking time decreased and reached a habituation criterion, a test phase began. This consisted of two trials: an ‘old trial’ that was identical to the ‘sound trials’ and a ‘novel trial’ that consisted of a different repeating speech sound (e.g. ‘ahhh’) paired with the same checkerboard pattern. Results During the habituation phase, NH infants looked significantly longer during the sound trials than during the silent trials. However, deaf infants who had received cochlear implants (CIs) displayed a much weaker preference for the sound trials. On the other hand, both NH infants and deaf infants with CIs attended significantly longer to the visual display during the novel trial than during the old trial, suggesting that they were able to discriminate the speech patterns. Before receiving CIs, deaf infants did not show any preferences. Conclusions Taken together, the findings suggest that deaf infants who receive CIs are able to detect and discriminate some speech patterns. However, their overall attention to speech sounds may be less than NH infants’. Attention to speech may impact other aspects of speech perception and spoken language development, such as segmenting words from fluent speech and learning novel words. Implications of the effects of early auditory deprivation and age at CI on speech perception and language development are discussed. PMID:12697350
ERIC Educational Resources Information Center
Ferjan Ramírez, Naja; Ramírez, Rey R.; Clarke, Maggie; Taulu, Samu; Kuhl, Patricia K.
2017-01-01
Language experience shapes infants' abilities to process speech sounds, with universal phonetic discrimination abilities narrowing in the second half of the first year. Brain measures reveal a corresponding change in neural discrimination as the infant brain becomes selectively sensitive to its native language(s). Whether and how bilingual…
Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina
2017-01-01
Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Phonological and Motor Errors in Individuals with Acquired Sound Production Impairment
ERIC Educational Resources Information Center
Buchwald, Adam; Miozzo, Michele
2012-01-01
Purpose: This study aimed to compare sound production errors arising due to phonological processing impairment with errors arising due to motor speech impairment. Method: Two speakers with similar clinical profiles who produced similar consonant cluster simplification errors were examined using a repetition task. We compared both overall accuracy…
Kumar, U A; Jayaram, M
2013-07-01
The purpose of this study was to evaluate the effect of lengthening of voice onset time and burst duration of selected speech stimuli on perception by individuals with auditory dys-synchrony. This is the second of a series of articles reporting the effect of signal enhancing strategies on speech perception by such individuals. Two experiments were conducted: (1) assessment of the 'just-noticeable difference' for voice onset time and burst duration of speech sounds; and (2) assessment of speech identification scores when speech sounds were modified by lengthening the voice onset time and the burst duration in units of one just-noticeable difference, both in isolation and in combination with each other plus transition duration modification. Lengthening of voice onset time as well as burst duration improved perception of voicing. However, the effect of voice onset time modification was greater than that of burst duration modification. Although combined lengthening of voice onset time, burst duration and transition duration resulted in improved speech perception, the improvement was less than that due to lengthening of transition duration alone. These results suggest that innovative speech processing strategies that enhance temporal cues may benefit individuals with auditory dys-synchrony.
Incidental learning of sound categories is impaired in developmental dyslexia.
Gabay, Yafit; Holt, Lori L
2015-12-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia
Gabay, Yafit; Holt, Lori L.
2015-01-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017
NASA Astrophysics Data System (ADS)
Jelinek, H. J.
1986-01-01
This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.
Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
Gilley, Phillip M; Uhler, Kristin; Watson, Kaylee; Yoshinaga-Itano, Christine
2017-03-22
Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language. Mismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30-50 Hz), the emergence of a beta oscillation (12-30 Hz) was temporally coupled with a lower frequency theta oscillation (2-8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features. The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context. An infant's brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language-learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the clinically utility of the MMR TF and other auditory oddball responses.
Marie, Céline; Kujala, Teija; Besson, Mireille
2012-04-01
The aim of this experiment was two-fold. Our first goal was to determine whether linguistic expertise influences the pre-attentive [as reflected by the Mismatch Negativity - (MMN)] and the attentive processing (as reflected by behavioural discrimination accuracy) of non-speech, harmonic sounds. The second was to directly compare the effects of linguistic and musical expertise. To this end, we compared non-musician native speakers of a quantity language, Finnish, in which duration is a phonemically contrastive cue, with French musicians and French non-musicians. Results revealed that pre-attentive and attentive processing of duration deviants was enhanced in Finn non-musicians and French musicians compared to French non-musicians. By contrast, MMN in French musicians was larger than in both Finns and French non-musicians for frequency deviants, whereas no between-group differences were found for intensity deviants. By showing similar effects of linguistic and musical expertise, these results argue in favor of common processing of duration in music and speech. Copyright © 2010 Elsevier Srl. All rights reserved.
Acoustic signals for emergency evacuation.
DOT National Transportation Integrated Search
1979-01-01
Previous studies of binaural hearing suggested that speech sounds are less resistant to masking than are nonspeech sounds; experiments demonstrated that, when the nonspeech sounds are given a message to convey, they act more like speech. Earlier rese...
Barton-Hulsey, Andrea; Sevcik, Rose A; Romski, MaryAnn
2018-05-03
A number of intrinsic factors, including expressive speech skills, have been suggested to place children with developmental disabilities at risk for limited development of reading skills. This study examines the relationship between these factors, speech ability, and children's phonological awareness skills. A nonexperimental study design was used to examine the relationship between intrinsic skills of speech, language, print, and letter-sound knowledge to phonological awareness in 42 children with developmental disabilities between the ages of 48 and 69 months. Hierarchical multiple regression was done to determine if speech ability accounted for a unique amount of variance in phonological awareness skill beyond what would be expected by developmental skills inclusive of receptive language and print and letter-sound knowledge. A range of skill in all areas of direct assessment was found. Children with limited speech were found to have emerging skills in print knowledge, letter-sound knowledge, and phonological awareness. Speech ability did not predict a significant amount of variance in phonological awareness beyond what would be expected by developmental skills of receptive language and print and letter-sound knowledge. Children with limited speech ability were found to have receptive language and letter-sound knowledge that supported the development of phonological awareness skills. This study provides implications for practitioners and researchers concerning the factors related to early reading development in children with limited speech ability and developmental disabilities.
Foreign Subtitles Help but Native-Language Subtitles Harm Foreign Speech Perception
Mitterer, Holger; McQueen, James M.
2009-01-01
Understanding foreign speech is difficult, in part because of unusual mappings between sounds and words. It is known that listeners in their native language can use lexical knowledge (about how words ought to sound) to learn how to interpret unusual speech-sounds. We therefore investigated whether subtitles, which provide lexical information, support perceptual learning about foreign speech. Dutch participants, unfamiliar with Scottish and Australian regional accents of English, watched Scottish or Australian English videos with Dutch, English or no subtitles, and then repeated audio fragments of both accents. Repetition of novel fragments was worse after Dutch-subtitle exposure but better after English-subtitle exposure. Native-language subtitles appear to create lexical interference, but foreign-language subtitles assist speech learning by indicating which words (and hence sounds) are being spoken. PMID:19918371
ERIC Educational Resources Information Center
McGrath, Lauren M.; Hutaff-Lee, Christa; Scott, Ashley; Boada, Richard; Shriberg, Lawrence D.; Pennington, Bruce F.
2008-01-01
This study focuses on the comorbidity between attention-deficit/hyperactivity disorder (ADHD) symptoms and speech sound disorder (SSD). SSD is a developmental disorder characterized by speech production errors that impact intelligibility. Previous research addressing this comorbidity has typically used heterogeneous groups of speech-language…
Dimensions of Early Speech Sound Disorders: A Factor Analytic Study
ERIC Educational Resources Information Center
Lewis, Barbara A.; Freebairn, Lisa A.; Hansen, Amy J.; Stein, Catherine M.; Shriberg, Lawrence D.; Iyengar, Sudha K.; Taylor, H. Gerry
2006-01-01
The goal of this study was to classify children with speech sound disorders (SSD) empirically, using factor analytic techniques. Participants were 3-7-year olds enrolled in speech/language therapy (N=185). Factor analysis of an extensive battery of speech and language measures provided support for two distinct factors, representing the skill…
ERIC Educational Resources Information Center
Klein, Harriet B.; Liu-Shea, May
2009-01-01
Purpose: This study was designed to identify and describe between-word simplification patterns in the continuous speech of children with speech sound disorders. It was hypothesized that word combinations would reveal phonological changes that were unobserved with single words, possibly accounting for discrepancies between the intelligibility of…
Identifying Residual Speech Sound Disorders in Bilingual Children: A Japanese-English Case Study
ERIC Educational Resources Information Center
Preston, Jonathan L.; Seki, Ayumi
2011-01-01
Purpose: To describe (a) the assessment of residual speech sound disorders (SSDs) in bilinguals by distinguishing speech patterns associated with second language acquisition from patterns associated with misarticulations and (b) how assessment of domains such as speech motor control and phonological awareness can provide a more complete…
Influences on infant speech processing: toward a new synthesis.
Werker, J F; Tees, R C
1999-01-01
To comprehend and produce language, we must be able to recognize the sound patterns of our language and the rules for how these sounds "map on" to meaning. Human infants are born with a remarkable array of perceptual sensitivities that allow them to detect the basic properties that are common to the world's languages. During the first year of life, these sensitivities undergo modification reflecting an exquisite tuning to just that phonological information that is needed to map sound to meaning in the native language. We review this transition from language-general to language-specific perceptual sensitivity that occurs during the first year of life and consider whether the changes propel the child into word learning. To account for the broad-based initial sensitivities and subsequent reorganizations, we offer an integrated transactional framework based on the notion of a specialized perceptual-motor system that has evolved to serve human speech, but which functions in concert with other developing abilities. In so doing, we highlight the links between infant speech perception, babbling, and word learning.
Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review
Anderson, Samira; Kraus, Nina
2011-01-01
Background Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker’s voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system’s transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training. PMID:21241645
Martin, B A; Sigal, A; Kurtzberg, D; Stapells, D R
1997-03-01
This study investigated the effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials (ERPs) N1, N2, and P3 to the speech sounds /ba/and/da/presented at 65 and 80 dB SPL. Normal-hearing subjects pressed a button in response to the deviant sound in an oddball paradigm. Broadband masking noise was presented at an intensity sufficient to completely mask the response to the 65-dB SPL speech sounds, and subsequently high-pass filtered at 4000, 2000, 1000, 500, and 250 Hz. With high-pass masking noise, pure-tone behavioral thresholds increased by an average of 38 dB at the high-pass cutoff and by 50 dB one octave above the cutoff frequency. Results show that as the cutoff frequency of the high-pass masker was lowered, ERP latencies to speech sounds increased and amplitudes decreased. The cutoff frequency where these changes first occurred and the rate of the change differed for N1 compared to N2, P3, and the behavioral measures. N1 showed gradual changes as the masker cutoff frequency was lowered. N2, P3, and behavioral measures showed marked changes below a masker cutoff of 2000 Hz. These results indicate that the decreased audibility resulting from the noise masking affects the various ERP components in a differential manner. N1 is related to the presence of audible stimulus energy, being present whether audible stimuli are discriminable or not. In contrast, N2 and P3 were absent when the stimuli were audible but not discriminable (i.e., when the second formant transitions were masked), reflecting stimulus discrimination. These data have implications regarding the effects of decreased audibility on cortical processing of speech sounds and for the study of cortical ERPs in populations with hearing impairment.
Duke, Mila Morais; Wolfe, Jace; Schafer, Erin
2016-05-01
Cochlear implant (CI) recipients often experience difficulty understanding speech in noise and speech that originates from a distance. Many CI recipients also experience difficulty understanding speech originating from a television. Use of hearing assistance technology (HAT) may improve speech recognition in noise and for signals that originate from more than a few feet from the listener; however, there are no published studies evaluating the potential benefits of a wireless HAT designed to deliver audio signals from a television directly to a CI sound processor. The objective of this study was to compare speech recognition in quiet and in noise of CI recipients with the use of their CI alone and with the use of their CI and a wireless HAT (Cochlear Wireless TV Streamer). A two-way repeated measures design was used to evaluate performance differences obtained in quiet and in competing noise (65 dBA) with the CI sound processor alone and with the sound processor coupled to the Cochlear Wireless TV Streamer. Sixteen users of Cochlear Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Participants were evaluated in four conditions including use of the sound processor alone and use of the sound processor with the wireless streamer in quiet and in the presence of competing noise at 65 dBA. Speech recognition was evaluated in each condition with two full lists of Computer-Assisted Speech Perception Testing and Training Sentence-Level Test sentences presented from a light-emitting diode television. Speech recognition in noise was significantly better with use of the wireless streamer compared to participants' performance with their CI sound processor alone. There was also a nonsignificant trend toward better performance in quiet with use of the TV Streamer. Performance was significantly poorer when evaluated in noise compared to performance in quiet when the TV Streamer was not used. Use of the Cochlear Wireless TV Streamer designed to stream audio from a television directly to a CI sound processor provides better speech recognition in quiet and in noise when compared to performance obtained with use of the CI sound processor alone. American Academy of Audiology.
Cumming, Ruth; Wilson, Angela; Goswami, Usha
2015-01-01
Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech (“ba”) and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the “prosodic phrasing” hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration. PMID:26217286
Enhanced perception of pitch changes in speech and music in early blind adults.
Arnaud, Laureline; Gracco, Vincent; Ménard, Lucie
2018-06-12
It is well known that congenitally blind adults have enhanced auditory processing for some tasks. For instance, they show supra-normal capacity to perceive accelerated speech. However, only a few studies have investigated basic auditory processing in this population. In this study, we investigated if pitch processing enhancement in the blind is a domain-general or domain-specific phenomenon, and if pitch processing shares the same properties as in the sighted regarding how scores from different domains are associated. Fifteen congenitally blind adults and fifteen sighted adults participated in the study. We first created a set of personalized native and non-native vowel stimuli using an identification and rating task. Then, an adaptive discrimination paradigm was used to determine the frequency difference limen for pitch direction identification of speech (native and non-native vowels) and non-speech stimuli (musical instruments and pure tones). The results show that the blind participants had better discrimination thresholds than controls for native vowels, music stimuli, and pure tones. Whereas within the blind group, the discrimination thresholds were smaller for musical stimuli than speech stimuli, replicating previous findings in sighted participants, we did not find this effect in the current control group. Further analyses indicate that older sighted participants show higher thresholds for instrument sounds compared to speech sounds. This effect of age was not found in the blind group. Moreover, the scores across domains were not associated to the same extent in the blind as they were in the sighted. In conclusion, in addition to providing further evidence of compensatory auditory mechanisms in early blind individuals, our results point to differences in how auditory processing is modulated in this population. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of fixed labial orthodontic appliances on speech sound production.
Paley, Jonathan S; Cisneros, George J; Nicolay, Olivier F; LeBlanc, Etoile M
2016-05-01
To explore the impact of fixed labial orthodontic appliances on speech sound production. Speech evaluations were performed on 23 patients with fixed labial appliances. Evaluations were performed immediately prior to appliance insertion, immediately following insertion, and 1 and 2 months post insertion. Baseline dental/skeletal variables were correlated with the ability to accommodate the presence of the appliances. Appliance effects were variable: 44% of the subjects were unaffected, 39% were temporarily affected but adapted within 2 months, and 17% of patients showed persistent sound errors at 2 months. Resolution of acquired sound errors was noted by 8 months post-appliance removal. Maladaptation to appliances was correlated to severity of malocclusion as determined by the Grainger's Treatment Priority Index. Sibilant sounds, most notably /s/, were affected most often. (1) Insertion of fixed labial appliances has an effect on speech sound production. (2) Sibilant and stopped sounds are affected, with /s/ being affected most often. (3) Accommodation to fixed appliances depends on the severity of malocclusion.
Blind estimation of reverberation time
NASA Astrophysics Data System (ADS)
Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; O'Brien, William D.; Lansing, Charissa R.; Feng, Albert S.
2003-11-01
The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. Many state-of-the-art audio signal processing algorithms, for example in hearing-aids and telephony, are expected to have the ability to characterize the listening environment, and turn on an appropriate processing strategy accordingly. Thus, a method for characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, a method for estimating RT without prior knowledge of sound sources or room geometry is presented. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time-constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.
Online estimation of room reverberation time
NASA Astrophysics Data System (ADS)
Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; Feng, Albert S.
2003-04-01
The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. State-of-the-art signal processing algorithms for hearing aids are expected to have the ability to evaluate the characteristics of the listening environment and turn on an appropriate processing strategy accordingly. Thus, a method for the characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method or regression, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, we describe a method for estimating RT without prior knowledge of sound sources or room geometry. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.
Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain
2015-05-01
Psychophysiological evidence supports a music-language association, such that experience in one domain can impact processing required in the other domain. We investigated the bidirectionality of this association by measuring event-related potentials (ERPs) in native English-speaking musicians, native tone language (Cantonese) nonmusicians, and native English-speaking nonmusician controls. We tested the degree to which pitch expertise stemming from musicianship or tone language experience similarly enhances the neural encoding of auditory information necessary for speech and music processing. Early cortical discriminatory processing for music and speech sounds was characterized using the mismatch negativity (MMN). Stimuli included 'large deviant' and 'small deviant' pairs of sounds that differed minimally in pitch (fundamental frequency, F0; contrastive musical tones) or timbre (first formant, F1; contrastive speech vowels). Behavioural F0 and F1 difference limen tasks probed listeners' perceptual acuity for these same acoustic features. Musicians and Cantonese speakers performed comparably in pitch discrimination; only musicians showed an additional advantage on timbre discrimination performance and an enhanced MMN responses to both music and speech. Cantonese language experience was not associated with enhancements on neural measures, despite enhanced behavioural pitch acuity. These data suggest that while both musicianship and tone language experience enhance some aspects of auditory acuity (behavioural pitch discrimination), musicianship confers farther-reaching enhancements to auditory function, tuning both pitch and timbre-related brain processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance
ERIC Educational Resources Information Center
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-01-01
Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…
ERIC Educational Resources Information Center
Crowe, Kathryn; Cumming, Tamara; McCormack, Jane; Baker, Elise; McLeod, Sharynne; Wren, Yvonne; Roulstone, Sue; Masso, Sarah
2017-01-01
Early childhood educators are frequently called on to support preschool-aged children with speech sound disorders and to engage these children in activities that target their speech production. This study explored factors that acted as facilitators and/or barriers to the provision of computer-based support for children with speech sound disorders…
ERIC Educational Resources Information Center
McKinnon, David H.; McLeod, Sharynne; Reilly, Sheena
2007-01-01
Purpose: The aims of this study were threefold: to report teachers' estimates of the prevalence of speech disorders (specifically, stuttering, voice, and speech-sound disorders); to consider correspondence between the prevalence of speech disorders and gender, grade level, and socioeconomic status; and to describe the level of support provided to…
ERIC Educational Resources Information Center
Oliveira, Carla; Lousada, Marisa; Jesus, Luis M. T.
2015-01-01
Children with speech sound disorders (SSD) represent a large number of speech and language therapists' caseloads. The intervention with children who have SSD can involve different therapy approaches, and these may be articulatory or phonologically based. Some international studies reveal a widespread application of articulatory based approaches in…
Mechanisms Mediating the Perception of Complex Acoustic Patterns
1990-11-09
units stimulated by the louder sound include the units stimulated by the fainter sound. Thus, auditory induction corresponds to a rather sophisticated...FIELD GRU - auditory perception, complex sounds I. I 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Five studies were...show how auditory mechanisms employed for the processing of complex nonverbal patterns have been modified for the perception of speech. 2 Richard M
McLeod, Sharynne; Verdon, Sarah; Bowen, Caroline
2013-01-01
A major challenge for the speech-language pathology profession in many cultures is to address the mismatch between the "linguistic homogeneity of the speech-language pathology profession and the linguistic diversity of its clientele" (Caesar & Kohler, 2007, p. 198). This paper outlines the development of the Multilingual Children with Speech Sound Disorders: Position Paper created to guide speech-language pathologists' (SLPs') facilitation of multilingual children's speech. An international expert panel was assembled comprising 57 researchers (SLPs, linguists, phoneticians, and speech scientists) with knowledge about multilingual children's speech, or children with speech sound disorders. Combined, they had worked in 33 countries and used 26 languages in professional practice. Fourteen panel members met for a one-day workshop to identify key points for inclusion in the position paper. Subsequently, 42 additional panel members participated online to contribute to drafts of the position paper. A thematic analysis was undertaken of the major areas of discussion using two data sources: (a) face-to-face workshop transcript (133 pages) and (b) online discussion artifacts (104 pages). Finally, a moderator with international expertise in working with children with speech sound disorders facilitated the incorporation of the panel's recommendations. The following themes were identified: definitions, scope, framework, evidence, challenges, practices, and consideration of a multilingual audience. The resulting position paper contains guidelines for providing services to multilingual children with speech sound disorders (http://www.csu.edu.au/research/multilingual-speech/position-paper). The paper is structured using the International Classification of Functioning, Disability and Health: Children and Youth Version (World Health Organization, 2007) and incorporates recommendations for (a) children and families, (b) SLPs' assessment and intervention, (c) SLPs' professional practice, and (d) SLPs' collaboration with other professionals. Readers will 1. recognize that multilingual children with speech sound disorders have both similar and different needs to monolingual children when working with speech-language pathologists. 2. Describe the challenges for speech-language pathologists who work with multilingual children. 3. Recall the importance of cultural competence for speech-language pathologists. 4. Identify methods for international collaboration and consultation. 5. Recognize the importance of engaging with families and people within their local communities for supporting multilingual children in context. Copyright © 2013 Elsevier Inc. All rights reserved.
Hearing aid fitting for visual and hearing impaired patients with Usher syndrome type IIa.
Hartel, B P; Agterberg, M J H; Snik, A F; Kunst, H P M; van Opstal, A J; Bosman, A J; Pennings, R J E
2017-08-01
Usher syndrome is the leading cause of hereditary deaf-blindness. Most patients with Usher syndrome type IIa start using hearing aids from a young age. A serious complaint refers to interference between sound localisation abilities and adaptive sound processing (compression), as present in today's hearing aids. The aim of this study was to investigate the effect of advanced signal processing on binaural hearing, including sound localisation. In this prospective study, patients were fitted with hearing aids with a nonlinear (compression) and linear amplification programs. Data logging was used to objectively evaluate the use of either program. Performance was evaluated with a speech-in-noise test, a sound localisation test and two questionnaires focussing on self-reported benefit. Data logging confirmed that the reported use of hearing aids was high. The linear program was used significantly more often (average use: 77%) than the nonlinear program (average use: 17%). The results for speech intelligibility in noise and sound localisation did not show a significant difference between type of amplification. However, the self-reported outcomes showed higher scores on 'ease of communication' and overall benefit, and significant lower scores on disability for the new hearing aids when compared to their previous hearing aids with compression amplification. Patients with Usher syndrome type IIa prefer a linear amplification over nonlinear amplification when fitted with novel hearing aids. Apart from a significantly higher logged use, no difference in speech in noise and sound localisation was observed between linear and nonlinear amplification with the currently used tests. Further research is needed to evaluate the reasons behind the preference for the linear settings. © 2016 The Authors. Clinical Otolaryngology Published by John Wiley & Sons Ltd.
Neural network based speech synthesizer: A preliminary report
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Mcintire, Gary
1987-01-01
A neural net based speech synthesis project is discussed. The novelty is that the reproduced speech was extracted from actual voice recordings. In essence, the neural network learns the timing, pitch fluctuations, connectivity between individual sounds, and speaking habits unique to that individual person. The parallel distributed processing network used for this project is the generalized backward propagation network which has been modified to also learn sequences of actions or states given in a particular plan.
Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele
2017-12-01
Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
François, Clément; Schön, Daniele
2014-02-01
There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.
Speech sound articulation abilities of preschool-age children who stutter.
Clark, Chagit E; Conture, Edward G; Walden, Tedra A; Lambert, Warren E
2013-12-01
The purpose of this study was to assess the association between speech sound articulation and childhood stuttering in a relatively large sample of preschool-age children who do and do not stutter, using the Goldman-Fristoe Test of Articulation-2 (GFTA-2; Goldman & Fristoe, 2000). Participants included 277 preschool-age children who do (CWS; n=128, 101 males) and do not stutter (CWNS; n=149, 76 males). Generalized estimating equations (GEE) were performed to assess between-group (CWS versus CWNS) differences on the GFTA-2. Additionally, within-group correlations were performed to explore the relation between CWS' speech sound articulation abilities and their stuttering frequency and severity, as well as their sound prolongation index (SPI; Schwartz & Conture, 1988). No significant differences were found between the articulation scores of preschool-age CWS and CWNS. However, there was a small gender effect for the 5-year-old age group, with girls generally exhibiting better articulation scores than boys. Additional findings indicated no relation between CWS' speech sound articulation abilities and their stuttering frequency, severity, or SPI. Findings suggest no apparent association between speech sound articulation-as measured by one standardized assessment (GFTA-2)-and childhood stuttering for this sample of preschool-age children (N=277). After reading this article, the reader will be able to: (1) discuss salient issues in the articulation literature relative to children who stutter; (2) compare/contrast the present study's methodologies and main findings to those of previous studies that investigated the association between childhood stuttering and speech sound articulation; (3) identify future research needs relative to the association between childhood stuttering and speech sound development; (4) replicate the present study's methodology to expand this body of knowledge. Copyright © 2013 Elsevier Inc. All rights reserved.
PETER, BEATE; BUTTON, LE; STOEL-GAMMON, CAROL; CHAPMAN, KATHY; RASKIND, WENDY H.
2013-01-01
The purpose of this study was to evaluate a global deficit in sequential processing as candidate endophenotypein a family with familial childhood apraxia of speech (CAS). Of 10 adults and 13 children in a three-generational family with speech sound disorder (SSD) consistent with CAS, 3 adults and 6 children had past or present SSD diagnoses. Two preschoolers with unremediated CAS showed a high number of sequencing errors during single-word production. Performance on tasks with high sequential processing loads differentiated between the affected and unaffected family members, whereas there were no group differences in tasks with low processing loads. Adults with a history of SSD produced more sequencing errors during nonword and multisyllabic real word imitation, compared to those without such a history. Results are consistent with a global deficit in sequential processing that influences speech development as well as cognitive and linguistic processing. PMID:23339324
Flaherty, Mary; Dent, Micheal L.; Sawusch, James R.
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with “d” or “t” and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal. PMID:28562597
Flaherty, Mary; Dent, Micheal L; Sawusch, James R
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with "d" or "t" and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal.
ERIC Educational Resources Information Center
Constantino, John N.; Yang, Dan; Gray, Teddi L.; Gross, Maggie M.; Abbacchi, Anna M.; Smith, Sarah C.; Kohn, Catherine E.; Kuhl, Patricia K.
2007-01-01
Autism spectrum disorders (ASDs) are characterized by correlated deficiencies in social and language development. This study explored a fundamental aspect of auditory information processing (AIP) that is dependent on social experience and critical to early language development: the ability to compartmentalize close-sounding speech sounds into…
ERIC Educational Resources Information Center
Halpern, Orly; Tobin, Yishai
2008-01-01
"Non-vocalization" (N-V) is a newly described phonological error process in hearing impaired speakers. In N-V the hearing impaired person actually articulates the phoneme but without producing a voice. The result is an error process looking as if it is produced but sounding as if it is omitted. N-V was discovered by video recording the speech of…
Techniques and applications for binaural sound manipulation in human-machine interfaces
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Wenzel, Elizabeth M.
1990-01-01
The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.
Techniques and applications for binaural sound manipulation in human-machine interfaces
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Wenzel, Elizabeth M.
1992-01-01
The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.
Language Experience Affects Grouping of Musical Instrument Sounds
ERIC Educational Resources Information Center
Bhatara, Anjali; Boll-Avetisyan, Natalie; Agus, Trevor; Höhle, Barbara; Nazzi, Thierry
2016-01-01
Language experience clearly affects the perception of speech, but little is known about whether these differences in perception extend to non-speech sounds. In this study, we investigated rhythmic perception of non-linguistic sounds in speakers of French and German using a grouping task, in which complexity (variability in sounds, presence of…
Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh
2017-10-01
Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).
MMSE Estimator for Children’s Speech with Car and Weather Noise
NASA Astrophysics Data System (ADS)
Sayuthi, V.
2018-04-01
Previous research mentioned that most people need and use vehicles for various purposes, in this recent time and future, as a means of traveling. Many ways can be done in a vehicle, such as for enjoying entertainment, and doing work, so vehicles not just only as a means of traveling. In this study, we will examine the children’s speech from a girl in the vehicle that affected by noise disturbances from the sound source of car noise and the weather sound noise around it, in this case, the rainy weather noise. Vehicle sounds may be from car engine or car air conditioner. The minimum mean square error (MMSE) estimator is used as an attempt to obtain or detect the children’s clear speech by representing simulation research as random process signal that factored by the autocorrelation of both the child’s voice and the disturbance noise signal. This MMSE estimator can be considered as wiener filter as the clear sound are reconstructed again. We expected that the results of this study can help as the basis for development of entertainment or communication technology for passengers of vehicles in the future, particularly using MMSE estimators.
Johnson, Erin Phinney; Pennington, Bruce F.; Lowenstein, Joanna H.; Nittrouer, Susan
2011-01-01
Purpose Children with speech sound disorder (SSD) and reading disability (RD) have poor phonological awareness, a problem believed to arise largely from deficits in processing the sensory information in speech, specifically individual acoustic cues. However, such cues are details of acoustic structure. Recent theories suggest that listeners also need to be able to integrate those details to perceive linguistically relevant form. This study examined abilities of children with SSD, RD, and SSD+RD not only to process acoustic cues but also to recover linguistically relevant form from the speech signal. Method Ten- to 11-year-olds with SSD (n = 17), RD (n = 16), SSD+RD (n = 17), and Controls (n = 16) were tested to examine their sensitivity to (1) voice onset times (VOT); (2) spectral structure in fricative-vowel syllables; and (3) vocoded sentences. Results Children in all groups performed similarly with VOT stimuli, but children with disorders showed delays on other tasks, although the specifics of their performance varied. Conclusion Children with poor phonemic awareness not only lack sensitivity to acoustic details, but are also less able to recover linguistically relevant forms. This is contrary to one of the main current theories of the relation between spoken and written language development. PMID:21329941
Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank
2014-01-01
The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052
Integrating cognitive and peripheral factors in predicting hearing-aid processing effectiveness
Kates, James M.; Arehart, Kathryn H.; Souza, Pamela E.
2013-01-01
Individual factors beyond the audiogram, such as age and cognitive abilities, can influence speech intelligibility and speech quality judgments. This paper develops a neural network framework for combining multiple subject factors into a single model that predicts speech intelligibility and quality for a nonlinear hearing-aid processing strategy. The nonlinear processing approach used in the paper is frequency compression, which is intended to improve the audibility of high-frequency speech sounds by shifting them to lower frequency regions where listeners with high-frequency loss have better hearing thresholds. An ensemble averaging approach is used for the neural network to avoid the problems associated with overfitting. Models are developed for two subject groups, one having nearly normal hearing and the other mild-to-moderate sloping losses. PMID:25669257
Williams, Joshua T; Darcy, Isabelle; Newman, Sharlene D
2016-02-15
The aim of the present study was to characterize effects of learning a sign language on the processing of a spoken language. Specifically, audiovisual phoneme comprehension was assessed before and after 13 weeks of sign language exposure. L2 ASL learners performed this task in the fMRI scanner. Results indicated that L2 American Sign Language (ASL) learners' behavioral classification of the speech sounds improved with time compared to hearing nonsigners. Results indicated increased activation in the supramarginal gyrus (SMG) after sign language exposure, which suggests concomitant increased phonological processing of speech. A multiple regression analysis indicated that learner's rating on co-sign speech use and lipreading ability was correlated with SMG activation. This pattern of results indicates that the increased use of mouthing and possibly lipreading during sign language acquisition may concurrently improve audiovisual speech processing in budding hearing bimodal bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.
Speech perception and spoken word recognition: past and present.
Jusezyk, Peter W; Luce, Paul A
2002-02-01
The scientific study of the perception of spoken language has been an exciting, prolific, and productive area of research for more than 50 yr. We have learned much about infants' and adults' remarkable capacities for perceiving and understanding the sounds of their language, as evidenced by our increasingly sophisticated theories of acquisition, process, and representation. We present a selective, but we hope, representative review of the past half century of research on speech perception, paying particular attention to the historical and theoretical contexts within which this research was conducted. Our foci in this review fall on three principle topics: early work on the discrimination and categorization of speech sounds, more recent efforts to understand the processes and representations that subserve spoken word recognition, and research on how infants acquire the capacity to perceive their native language. Our intent is to provide the reader a sense of the progress our field has experienced over the last half century in understanding the human's extraordinary capacity for the perception of spoken language.
Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils.
Khouri, Leila; Lesica, Nicholas A; Grothe, Benedikt
2011-07-06
Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment.
Results of the Sensory Profile in Children with Suspected Childhood Apraxia of Speech
ERIC Educational Resources Information Center
Newmeyer Amy J.; Grether, Sandra; Aylward, Christa; deGrauw, Ton; Akers, Rachel; Grasha, Carol; Ishikawa, Keiko; White, Jaye
2009-01-01
Speech-sound disorders are common in preschool-age children, and are characterized by difficulty in the planning and production of speech sounds and their combination into words and sentences. The objective of this study was to review and compare the results of the "Sensory Profile" ([Dunn, 1999]) in children with a specific type of speech-sound…
ERIC Educational Resources Information Center
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2013-01-01
Purpose: To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method: Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up…
Data-Driven Subclassification of Speech Sound Disorders in Preschool Children
Vick, Jennell C.; Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Truemper, Klaus; Rusiewicz, Heather Leavy; Moore, Christopher A.
2015-01-01
Purpose The purpose of the study was to determine whether distinct subgroups of preschool children with speech sound disorders (SSD) could be identified using a subgroup discovery algorithm (SUBgroup discovery via Alternate Random Processes, or SUBARP). Of specific interest was finding evidence of a subgroup of SSD exhibiting performance consistent with atypical speech motor control. Method Ninety-seven preschool children with SSD completed speech and nonspeech tasks. Fifty-three kinematic, acoustic, and behavioral measures from these tasks were input to SUBARP. Results Two distinct subgroups were identified from the larger sample. The 1st subgroup (76%; population prevalence estimate = 67.8%–84.8%) did not have characteristics that would suggest atypical speech motor control. The 2nd subgroup (10.3%; population prevalence estimate = 4.3%– 16.5%) exhibited significantly higher variability in measures of articulatory kinematics and poor ability to imitate iambic lexical stress, suggesting atypical speech motor control. Both subgroups were consistent with classes of SSD in the Speech Disorders Classification System (SDCS; Shriberg et al., 2010a). Conclusion Characteristics of children in the larger subgroup were consistent with the proportionally large SDCS class termed speech delay; characteristics of children in the smaller subgroup were consistent with the SDCS subtype termed motor speech disorder—not otherwise specified. The authors identified candidate measures to identify children in each of these groups. PMID:25076005
Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Dénes
2011-01-01
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami et al., 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes et al., 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.
Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.
Comparing Binaural Pre-processing Strategies I
Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920
Zeitler, Daniel M; Dorman, Michael F; Natale, Sarah J; Loiselle, Louise; Yost, William A; Gifford, Rene H
2015-09-01
To assess improvements in sound source localization and speech understanding in complex listening environments after unilateral cochlear implantation for single-sided deafness (SSD). Nonrandomized, open, prospective case series. Tertiary referral center. Nine subjects with a unilateral cochlear implant (CI) for SSD (SSD-CI) were tested. Reference groups for the task of sound source localization included young (n = 45) and older (n = 12) normal-hearing (NH) subjects and 27 bilateral CI (BCI) subjects. Unilateral cochlear implantation. Sound source localization was tested with 13 loudspeakers in a 180 arc in front of the subject. Speech understanding was tested with the subject seated in an 8-loudspeaker sound system arrayed in a 360-degree pattern. Directionally appropriate noise, originally recorded in a restaurant, was played from each loudspeaker. Speech understanding in noise was tested using the Azbio sentence test and sound source localization quantified using root mean square error. All CI subjects showed poorer-than-normal sound source localization. SSD-CI subjects showed a bimodal distribution of scores: six subjects had scores near the mean of those obtained by BCI subjects, whereas three had scores just outside the 95th percentile of NH listeners. Speech understanding improved significantly in the restaurant environment when the signal was presented to the side of the CI. Cochlear implantation for SSD can offer improved speech understanding in complex listening environments and improved sound source localization in both children and adults. On tasks of sound source localization, SSD-CI patients typically perform as well as BCI patients and, in some cases, achieve scores at the upper boundary of normal performance.
Nonspeech oral motor treatment issues related to children with developmental speech sound disorders.
Ruscello, Dennis M
2008-07-01
This article examines nonspeech oral motor treatments (NSOMTs) in the population of clients with developmental speech sound disorders. NSOMTs are a collection of nonspeech methods and procedures that claim to influence tongue, lip, and jaw resting postures; increase strength; improve muscle tone; facilitate range of motion; and develop muscle control. In the case of developmental speech sound disorders, NSOMTs are employed before or simultaneous with actual speech production treatment. First, NSOMTs are defined for the reader, and there is a discussion of NSOMTs under the categories of active muscle exercise, passive muscle exercise, and sensory stimulation. Second, different theories underlying NSOMTs along with the implications of the theories are discussed. Finally, a review of pertinent investigations is presented. The application of NSOMTs is questionable due to a number of reservations that include (a) the implied cause of developmental speech sound disorders, (b) neurophysiologic differences between the limbs and oral musculature, (c) the development of new theories of movement and movement control, and (d) the paucity of research literature concerning NSOMTs. There is no substantive evidence to support NSOMTs as interventions for children with developmental speech sound disorders.
Result on speech perception after conversion from Spectra® to Freedom®.
Magalhães, Ana Tereza de Matos; Goffi-Gomez, Maria Valéria Schmidt; Hoshino, Ana Cristina; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; Brito, Rubens
2012-04-01
New technology in the Freedom® speech processor for cochlear implants was developed to improve how incoming acoustic sound is processed; this applies not only for new users, but also for previous generations of cochlear implants. To identify the contribution of this technology-- the Nucleus 22®--on speech perception tests in silence and in noise, and on audiometric thresholds. A cross-sectional cohort study was undertaken. Seventeen patients were selected. The last map based on the Spectra® was revised and optimized before starting the tests. Troubleshooting was used to identify malfunction. To identify the contribution of the Freedom® technology for the Nucleus22®, auditory thresholds and speech perception tests were performed in free field in sound-proof booths. Recorded monosyllables and sentences in silence and in noise (SNR = 0dB) were presented at 60 dBSPL. The nonparametric Wilcoxon test for paired data was used to compare groups. Freedom® applied for the Nucleus22® showed a statistically significant difference in all speech perception tests and audiometric thresholds. The Freedom® technology improved the performance of speech perception and audiometric thresholds of patients with Nucleus 22®.
Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret
2013-01-02
Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance.
The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition
McLachlan, Neil M.; Wilson, Sarah J.
2017-01-01
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850
Duration of the speech disfluencies of beginning stutterers.
Zebrowski, P M
1991-06-01
This study compared the duration of within-word disfluencies and the number of repeated units per instance of sound/syllable and whole-word repetitions of beginning stutterers to those produced by age- and sex-matched nonstuttering children. Subjects were 10 stuttering children [9 males and 1 female; mean age 4:1 (years:months); age range 3:2-5:1), and 10 nonstuttering children (9 males and 1 female; mean age 4:0; age range: 2:10-5:1). Mothers of the stuttering children reported that their children had been stuttering for 1 year or less. One 300-word conversational speech sample from each of the stuttering and nonstuttering children was analyzed for (a) mean duration of sound/syllable repetition and sound prolongation, (b) mean number of repeated units per instance of sound/syllable and whole-word repetition, and (c) various related measures of the frequency of all between- and within-word speech disfluencies. There were no significant between-group differences for either the duration of acoustically measured sound/syllable repetitions and sound prolongations or the number of repeated units per instance of sound/syllable and whole-word repetition. Unlike frequency and type of speech disfluency produced, average duration of within-word disfluencies and number of repeated units per repetition do not differentiate the disfluent speech of beginning stutterers and their nonstuttering peers. Additional analyses support findings from previous perceptual work that type and frequency of speech disfluency, not duration, are the principal characteristics listeners use in distinguishing these two talker groups.
Intensive Treatment with Ultrasound Visual Feedback for Speech Sound Errors in Childhood Apraxia
Preston, Jonathan L.; Leece, Megan C.; Maas, Edwin
2016-01-01
Ultrasound imaging is an adjunct to traditional speech therapy that has shown to be beneficial in the remediation of speech sound errors. Ultrasound biofeedback can be utilized during therapy to provide clients with additional knowledge about their tongue shapes when attempting to produce sounds that are erroneous. The additional feedback may assist children with childhood apraxia of speech (CAS) in stabilizing motor patterns, thereby facilitating more consistent and accurate productions of sounds and syllables. However, due to its specialized nature, ultrasound visual feedback is a technology that is not widely available to clients. Short-term intensive treatment programs are one option that can be utilized to expand access to ultrasound biofeedback. Schema-based motor learning theory suggests that short-term intensive treatment programs (massed practice) may assist children in acquiring more accurate motor patterns. In this case series, three participants ages 10–14 years diagnosed with CAS attended 16 h of speech therapy over a 2-week period to address residual speech sound errors. Two participants had distortions on rhotic sounds, while the third participant demonstrated lateralization of sibilant sounds. During therapy, cues were provided to assist participants in obtaining a tongue shape that facilitated a correct production of the erred sound. Additional practice without ultrasound was also included. Results suggested that all participants showed signs of acquisition of sounds in error. Generalization and retention results were mixed. One participant showed generalization and retention of sounds that were treated; one showed generalization but limited retention; and the third showed no evidence of generalization or retention. Individual characteristics that may facilitate generalization are discussed. Short-term intensive treatment programs using ultrasound biofeedback may result in the acquisition of more accurate motor patterns and improved articulation of sounds previously in error, with varying levels of generalization and retention. PMID:27625603
Human emotions track changes in the acoustic environment.
Ma, Weiyi; Thompson, William Forde
2015-11-24
Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin's hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds.
A lab-controlled simulation of a letter-speech sound binding deficit in dyslexia.
Aravena, Sebastián; Snellings, Patrick; Tijms, Jurgen; van der Molen, Maurits W
2013-08-01
Dyslexic and non-dyslexic readers engaged in a short training aimed at learning eight basic letter-speech sound correspondences within an artificial orthography. We examined whether a letter-speech sound binding deficit is behaviorally detectable within the initial steps of learning a novel script. Both letter knowledge and word reading ability within the artificial script were assessed. An additional goal was to investigate the influence of instructional approach on the initial learning of letter-speech sound correspondences. We assigned children from both groups to one of three different training conditions: (a) explicit instruction, (b) implicit associative learning within a computer game environment, or (c) a combination of (a) and (b) in which explicit instruction is followed by implicit learning. Our results indicated that dyslexics were outperformed by the controls on a time-pressured binding task and a word reading task within the artificial orthography, providing empirical support for the view that a letter-speech sound binding deficit is a key factor in dyslexia. A combination of explicit instruction and implicit techniques proved to be a more powerful tool in the initial teaching of letter-sound correspondences than implicit training alone. Copyright © 2013 Elsevier Inc. All rights reserved.
Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis
NASA Astrophysics Data System (ADS)
Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert
2005-12-01
A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.
Irrelevant speech does not interfere with serial recall in early blind listeners.
Kattner, Florian; Ellermeier, Wolfgang
2014-01-01
Phonological working memory is known be (a) inversely related to the duration of the items to be learned (word-length effect), and (b) impaired by the presence of irrelevant speech-like sounds (irrelevant-speech effect). As it is discussed controversially whether these memory disruptions are subject to attentional control, both effects were studied in sighted participants and in a sample of early blind individuals who are expected to be superior in selectively attending to auditory stimuli. Results show that, while performance depended on word length in both groups, irrelevant speech interfered with recall only in the sighted group, but not in blind participants. This suggests that blind listeners may be able to effectively prevent irrelevant sound from being encoded in the phonological store, presumably due to superior auditory processing. The occurrence of a word-length effect, however, implies that blind and sighted listeners are utilizing the same phonological rehearsal mechanism in order to maintain information in the phonological store.
A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)
Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.
2010-01-01
Purpose Conceptual and methodological confounds occur when non(sense) repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. We describe a nonword repetition task, the Syllable Repetiton Task (SRT) that eliminates this confound and report findings from three validity studies. Method Ninety-five preschool children with Speech Delay and 63 with Typical Speech, completed an assessment battery that included the Nonword Repetition Task (NRT: Dollaghan & Campbell, 1998) and the SRT. SRT stimuli include only four of the earliest occurring consonants and one early occurring vowel. Results Study 1 findings indicated that the SRT eliminated the speech confound in nonword testing with speakers who misarticulate. Study 2 findings indicated that the accuracy of the SRT to identify expressive language impairment was comparable to findings for the NRT. Study 3 findings illustrated the SRT’s potential to interrogate speech processing constraints underlying poor nonword repetition accuracy. Results supported both memorial and auditory-perceptual encoding constraints underlying nonword repetition errors in children with speech-language impairment. Conclusion The SRT appears to be a psychometrically stable and substantively informative nonword repetition task for emerging genetic and other research with speakers who misarticulate. PMID:19635944
Linkage of Speech Sound Disorder to Reading Disability Loci
ERIC Educational Resources Information Center
Smith, Shelley D.; Pennington, Bruce F.; Boada, Richard; Shriberg, Lawrence D.
2005-01-01
Background: Speech sound disorder (SSD) is a common childhood disorder characterized by developmentally inappropriate errors in speech production that greatly reduce intelligibility. SSD has been found to be associated with later reading disability (RD), and there is also evidence for both a cognitive and etiological overlap between the two…
Techniques for decoding speech phonemes and sounds: A concept
NASA Technical Reports Server (NTRS)
Lokerson, D. C.; Holby, H. G.
1975-01-01
Techniques studied involve conversion of speech sounds into machine-compatible pulse trains. (1) Voltage-level quantizer produces number of output pulses proportional to amplitude characteristics of vowel-type phoneme waveforms. (2) Pulses produced by quantizer of first speech formants are compared with pulses produced by second formants.
A comparative analysis of whispered and normally phonated speech using an LPC-10 vocoder
NASA Astrophysics Data System (ADS)
Wilson, J. B.; Mosko, J. D.
1985-12-01
The determination of the performance of an LPC-10 vocoder in the processing of adult male and female whispered and normally phonated connected speech was the focus of this study. The LPC-10 vocoder's analysis of whispered speech compared quite favorably with similar studies which used sound spectrographic processing techniques. Shifting from phonated speech to whispered speech caused a substantial increase in the phonomic formant frequencies and formant bandwidths for both male and female speakers. The data from this study showed no evidence that the LPC-10 vocoder's ability to process voices with pitch extremes and quality extremes was limited in any significant manner. A comparison of the unprocessed natural vowel waveforms and qualities with the synthesized vowel waveforms and qualities revealed almost imperceptible differences. An LPC-10 vocoder's ability to process linguistic and dialectical suprasegmental features such as intonation, rate and stress at low bit rates should be a critical issue of concern for future research.
[Telemonitoring of swallowing function: technologies in speech therapy practice.
Tedesco, Angela; Lavermicocca, Valentina; Notarnicola, Marilina; De Francesco, Luca; Dellomonaco, Anna Rita
2018-02-01
The process of medical-healthcare technological revolution represents an advantage for the patient and for the care provider, in terms of costs and distances reduction. The telehomecare approach could be useful for monitoring the swallowing disorder in neurodegenerative diseases, preventing complications. In this study the applicability of telemedicine techniques for the monitoring of swallowing function, in patients affected by Huntington's disease (HD), was evaluated through the acquisition and analysis of the sound of swallowing. Two patients with HD were outpatient screened for dysphagia through the Bedside Swallowing Assessment Scale (BSAS) sensitized with pulse oximetry and cervical auscultation. Subsequently, the swallowing functionality was telemonitored for three months with Skype. The swallowing sounds were acquired with a detection microphone attached to the lateral edge of the trachea during fluid intake. The sounds were instantly processed and graphically represented through the Praat software. The analysis of the acoustic signal acquired remotely has made it possible to identify the situations that required immediate speech therapy intervention, suggesting to the patients further modifications of food consistencies, and saving frequent moving to the hospital even in the absence of critical situations. Remote assistance applied to speech therapy could represent a benefit for patients and their carers and a more efficient use of medical and health resources.
A nationwide survey of nonspeech oral motor exercise use: implications for evidence-based practice.
Lof, Gregory L; Watson, Maggie M
2008-07-01
A nationwide survey was conducted to determine if speech-language pathologists (SLPs) use nonspeech oral motor exercises (NSOMEs) to address children's speech sound problems. For those SLPs who used NSOMEs, the survey also identified (a) the types of NSOMEs used by the SLPs, (b) the SLPs' underlying beliefs about why they use NSOMEs, (c) clinicians' training for these exercises, (d) the application of NSOMEs across various clinical populations, and (e) specific tasks/procedures/tools that are used for intervention. A total of 2,000 surveys were mailed to a randomly selected subgroup of SLPs, obtained from the American Speech-Language-Hearing Association (ASHA) membership roster, who self-identified that they worked in various settings with children who have speech sound problems. The questions required answers that used both a forced choice and Likert-type scales. The response rate was 27.5% (537 out of 2,000). Of these respondents, 85% reported using NSOMEs to deal with children's speech sound production problems. Those SLPs reported that the research literature supports the use of NSOMEs, and that they learned to use these techniques from continuing education events. They also stated that NSOMEs can help improve the speech of children from disparate etiologies, and "warming up" and strengthening the articulators are important components of speech sound therapy. There are theoretical and research data that challenge both the use of NSOMEs and the efficacy of such exercises in resolving speech sound problems. SLPs need to follow the concepts of evidence-based practice in order to determine if these exercises are actually effective in bringing about changes in speech productions.
Sensorimotor influences on speech perception in infancy.
Bruderer, Alison G; Danielson, D Kyle; Kandhadai, Padmapriya; Werker, Janet F
2015-11-03
The influence of speech production on speech perception is well established in adults. However, because adults have a long history of both perceiving and producing speech, the extent to which the perception-production linkage is due to experience is unknown. We addressed this issue by asking whether articulatory configurations can influence infants' speech perception performance. To eliminate influences from specific linguistic experience, we studied preverbal, 6-mo-old infants and tested the discrimination of a nonnative, and hence never-before-experienced, speech sound distinction. In three experimental studies, we used teething toys to control the position and movement of the tongue tip while the infants listened to the speech sounds. Using ultrasound imaging technology, we verified that the teething toys consistently and effectively constrained the movement and positioning of infants' tongues. With a looking-time procedure, we found that temporarily restraining infants' articulators impeded their discrimination of a nonnative consonant contrast but only when the relevant articulator was selectively restrained to prevent the movements associated with producing those sounds. Our results provide striking evidence that even before infants speak their first words and without specific listening experience, sensorimotor information from the articulators influences speech perception. These results transform theories of speech perception by suggesting that even at the initial stages of development, oral-motor movements influence speech sound discrimination. Moreover, an experimentally induced "impairment" in articulator movement can compromise speech perception performance, raising the question of whether long-term oral-motor impairments may impact perceptual development.
NASA Astrophysics Data System (ADS)
Nishiura, Takanobu; Nakamura, Satoshi
2002-11-01
It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.
Brain dynamics that correlate with effects of learning on auditory distance perception.
Wisniewski, Matthew G; Mercado, Eduardo; Church, Barbara A; Gramann, Klaus; Makeig, Scott
2014-01-01
Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m) and far (30-m) distances. Listeners' accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC) processes identified in electroencephalographic (EEG) data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS) that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD) were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS). The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.
Auditory scene analysis in school-aged children with developmental language disorders
Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.
2014-01-01
Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430
Acoustic Event Detection and Classification
NASA Astrophysics Data System (ADS)
Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio
The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.
Pronunciation difficulty, temporal regularity, and the speech-to-song illusion.
Margulis, Elizabeth H; Simchy-Gross, Rhimmon; Black, Justin L
2015-01-01
The speech-to-song illusion (Deutsch et al., 2011) tracks the perceptual transformation from speech to song across repetitions of a brief spoken utterance. Because it involves no change in the stimulus itself, but a dramatic change in its perceived affiliation to speech or to music, it presents a unique opportunity to comparatively investigate the processing of language and music. In this study, native English-speaking participants were presented with brief spoken utterances that were subsequently repeated ten times. The utterances were drawn either from languages that are relatively difficult for a native English speaker to pronounce, or languages that are relatively easy for a native English speaker to pronounce. Moreover, the repetition could occur at regular or irregular temporal intervals. Participants rated the utterances before and after the repetitions on a 5-point Likert-like scale ranging from "sounds exactly like speech" to "sounds exactly like singing." The difference in ratings before and after was taken as a measure of the strength of the speech-to-song illusion in each case. The speech-to-song illusion occurred regardless of whether the repetitions were spaced at regular temporal intervals or not; however, it occurred more readily if the utterance was spoken in a language difficult for a native English speaker to pronounce. Speech circuitry seemed more liable to capture native and easy-to-pronounce languages, and more reluctant to relinquish them to perceived song across repetitions.
Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors.
Preston, Jonathan L; McAllister Byun, Tara; Boyce, Suzanne E; Hamilton, Sarah; Tiede, Mark; Phillips, Emily; Rivera-Campos, Ahmed; Whalen, Douglas H
2017-01-03
Diagnostic ultrasound imaging has been a common tool in medical practice for several decades. It provides a safe and effective method for imaging structures internal to the body. There has been a recent increase in the use of ultrasound technology to visualize the shape and movements of the tongue during speech, both in typical speakers and in clinical populations. Ultrasound imaging of speech has greatly expanded our understanding of how sounds articulated with the tongue (lingual sounds) are produced. Such information can be particularly valuable for speech-language pathologists. Among other advantages, ultrasound images can be used during speech therapy to provide (1) illustrative models of typical (i.e. "correct") tongue configurations for speech sounds, and (2) a source of insight into the articulatory nature of deviant productions. The images can also be used as an additional source of feedback for clinical populations learning to distinguish their better productions from their incorrect productions, en route to establishing more effective articulatory habits. Ultrasound feedback is increasingly used by scientists and clinicians as both the expertise of the users increases and as the expense of the equipment declines. In this tutorial, procedures are presented for collecting ultrasound images of the tongue in a clinical context. We illustrate these procedures in an extended example featuring one common error sound, American English /r/. Images of correct and distorted /r/ are used to demonstrate (1) how to interpret ultrasound images, (2) how to assess tongue shape during production of speech sounds, (3), how to categorize tongue shape errors, and (4), how to provide visual feedback to elicit a more appropriate and functional tongue shape. We present a sample protocol for using real-time ultrasound images of the tongue for visual feedback to remediate speech sound errors. Additionally, example data are shown to illustrate outcomes with the procedure.
Iliadou, Vasiliki Vivian; Chermak, Gail D; Bamiou, Doris-Eva
2015-04-01
According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, diagnosis of speech sound disorder (SSD) requires a determination that it is not the result of other congenital or acquired conditions, including hearing loss or neurological conditions that may present with similar symptomatology. To examine peripheral and central auditory function for the purpose of determining whether a peripheral or central auditory disorder was an underlying factor or contributed to the child's SSD. Central auditory processing disorder clinic pediatric case reports. Three clinical cases are reviewed of children with diagnosed SSD who were referred for audiological evaluation by their speech-language pathologists as a result of slower than expected progress in therapy. Audiological testing revealed auditory deficits involving peripheral auditory function or the central auditory nervous system. These cases demonstrate the importance of increasing awareness among professionals of the need to fully evaluate the auditory system to identify auditory deficits that could contribute to a patient's speech sound (phonological) disorder. Audiological assessment in cases of suspected SSD should not be limited to pure-tone audiometry given its limitations in revealing the full range of peripheral and central auditory deficits, deficits which can compromise treatment of SSD. American Academy of Audiology.
Environmental Sound Training in Cochlear Implant Users
Sheft, Stanley; Kuvadia, Sejal; Gygi, Brian
2015-01-01
Purpose The study investigated the effect of a short computer-based environmental sound training regimen on the perception of environmental sounds and speech in experienced cochlear implant (CI) patients. Method Fourteen CI patients with the average of 5 years of CI experience participated. The protocol consisted of 2 pretests, 1 week apart, followed by 4 environmental sound training sessions conducted on separate days in 1 week, and concluded with 2 posttest sessions, separated by another week without training. Each testing session included an environmental sound test, which consisted of 40 familiar everyday sounds, each represented by 4 different tokens, as well as the Consonant Nucleus Consonant (CNC) word test, and Revised Speech Perception in Noise (SPIN-R) sentence test. Results Environmental sounds scores were lower than for either of the speech tests. Following training, there was a significant average improvement of 15.8 points in environmental sound perception, which persisted 1 week later after training was discontinued. No significant improvements were observed for either speech test. Conclusions The findings demonstrate that environmental sound perception, which remains problematic even for experienced CI patients, can be improved with a home-based computer training regimen. Such computer-based training may thus provide an effective low-cost approach to rehabilitation for CI users, and potentially, other hearing impaired populations. PMID:25633579
ERIC Educational Resources Information Center
Hayiou-Thomas, Marianna E.; Carroll, Julia M.; Leavett, Ruth; Hulme, Charles; Snowling, Margaret J.
2017-01-01
Background: This study considers the role of early speech difficulties in literacy development, in the context of additional risk factors. Method: Children were identified with speech sound disorder (SSD) at the age of 3½ years, on the basis of performance on the Diagnostic Evaluation of Articulation and Phonology. Their literacy skills were…
NASA Astrophysics Data System (ADS)
Nakagawa, Seiji; Fujiyuki, Chika; Kagomiya, Takayuki
2013-07-01
Bone-conducted ultrasound (BCU) is perceived even by the profoundly sensorineural deaf. A novel hearing aid using the perception of amplitude-modulated BCU (BCU hearing aid: BCUHA) has been developed. However, there is room for improvement particularly in terms of sound quality. BCU speech is accompanied by a strong high-pitched tone and contain some distortion. In this study, the sound quality of BCU speech with several types of amplitude modulation [double-sideband with transmitted carrier (DSB-TC), double-sideband with suppressed carrier (DSB-SC), and transposed modulations] and air-conducted (AC) speech was quantitatively evaluated using semantic differential and factor analysis. The results showed that all the types of BCU speech had higher metallic and lower esthetic factor scores than AC speech. On the other hand, transposed speech was closer than the other types of BCU speech to AC speech generally; the transposed speech showed a higher powerfulness factor score than the other types of BCU speech and a higher esthetic factor score than DSB-SC speech. These results provide useful information for further development of the BCUHA.
D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.
2014-01-01
The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384
Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024
Phonological Encoding in Speech-Sound Disorder: Evidence from a Cross-Modal Priming Experiment
ERIC Educational Resources Information Center
Munson, Benjamin; Krause, Miriam O. P.
2017-01-01
Background: Psycholinguistic models of language production provide a framework for determining the locus of language breakdown that leads to speech-sound disorder (SSD) in children. Aims: To examine whether children with SSD differ from their age-matched peers with typical speech and language development (TD) in the ability phonologically to…
Evidence-Based Practice for Children with Speech Sound Disorders: Part 1 Narrative Review
ERIC Educational Resources Information Center
Baker, Elise; McLeod, Sharynne
2011-01-01
Purpose: This article provides a comprehensive narrative review of intervention studies for children with speech sound disorders (SSD). Its companion paper (Baker & McLeod, 2011) provides a tutorial and clinical example of how speech-language pathologists (SLPs) can engage in evidence-based practice (EBP) for this clinical population. Method:…
Influence of Sound Immersion and Communicative Interaction on the Lombard Effect
ERIC Educational Resources Information Center
Garnier, Maeva; Henrich, Nathalie; Dubois, Daniele
2010-01-01
Purpose: To examine the influence of sound immersion techniques and speech production tasks on speech adaptation in noise. Method: In Experiment 1, we compared the modification of speakers' perception and speech production in noise when noise is played into headphones (with and without additional self-monitoring feedback) or over loudspeakers. We…
ERIC Educational Resources Information Center
McLeod, Sharynne; Crowe, Kathryn; Masso, Sarah; Baker, Elise; McCormack, Jane; Wren, Yvonne; Roulstone, Susan; Howland, Charlotte
2017-01-01
Speech sound disorders are a common communication difficulty in preschool children. Teachers indicate difficulty identifying and supporting these children. The aim of this research was to describe speech and language characteristics of children identified by their parents and/or teachers as having possible communication concerns. 275 Australian 4-…
The Neural Substrates of Infant Speech Perception
ERIC Educational Resources Information Center
Homae, Fumitaka; Watanabe, Hama; Taga, Gentaro
2014-01-01
Infants often pay special attention to speech sounds, and they appear to detect key features of these sounds. To investigate the neural foundation of speech perception in infants, we measured cortical activation using near-infrared spectroscopy. We presented the following three types of auditory stimuli while 3-month-old infants watched a silent…
Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha
Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim
2015-01-01
The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641
Echoes of the spoken past: how auditory cortex hears context during speech perception
Skipper, Jeremy I.
2014-01-01
What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds. PMID:25092665
Auditory temporal processing in healthy aging: a magnetoencephalographic study
Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd
2009-01-01
Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410
A Generative Model of Speech Production in Broca’s and Wernicke’s Areas
Price, Cathy J.; Crinion, Jenny T.; MacSweeney, Mairéad
2011-01-01
Speech production involves the generation of an auditory signal from the articulators and vocal tract. When the intended auditory signal does not match the produced sounds, subsequent articulatory commands can be adjusted to reduce the difference between the intended and produced sounds. This requires an internal model of the intended speech output that can be compared to the produced speech. The aim of this functional imaging study was to identify brain activation related to the internal model of speech production after activation related to vocalization, auditory feedback, and movement in the articulators had been controlled. There were four conditions: silent articulation of speech, non-speech mouth movements, finger tapping, and visual fixation. In the speech conditions, participants produced the mouth movements associated with the words “one” and “three.” We eliminated auditory feedback from the spoken output by instructing participants to articulate these words without producing any sound. The non-speech mouth movement conditions involved lip pursing and tongue protrusions to control for movement in the articulators. The main difference between our speech and non-speech mouth movement conditions is that prior experience producing speech sounds leads to the automatic and covert generation of auditory and phonological associations that may play a role in predicting auditory feedback. We found that, relative to non-speech mouth movements, silent speech activated Broca’s area in the left dorsal pars opercularis and Wernicke’s area in the left posterior superior temporal sulcus. We discuss these results in the context of a generative model of speech production and propose that Broca’s and Wernicke’s areas may be involved in predicting the speech output that follows articulation. These predictions could provide a mechanism by which rapid movement of the articulators is precisely matched to the intended speech outputs during future articulations. PMID:21954392
Using listening difficulty ratings of conditions for speech communication in rooms
NASA Astrophysics Data System (ADS)
Sato, Hiroshi; Bradley, John S.; Morimoto, Masayuki
2005-03-01
The use of listening difficulty ratings of speech communication in rooms is explored because, in common situations, word recognition scores do not discriminate well among conditions that are near to acceptable. In particular, the benefits of early reflections of speech sounds on listening difficulty were investigated and compared to the known benefits to word intelligibility scores. Listening tests were used to assess word intelligibility and perceived listening difficulty of speech in simulated sound fields. The experiments were conducted in three types of sound fields with constant levels of ambient noise: only direct sound, direct sound with early reflections, and direct sound with early reflections and reverberation. The results demonstrate that (1) listening difficulty can better discriminate among these conditions than can word recognition scores; (2) added early reflections increase the effective signal-to-noise ratio equivalent to the added energy in the conditions without reverberation; (3) the benefit of early reflections on difficulty scores is greater than expected from the simple increase in early arriving speech energy with reverberation; (4) word intelligibility tests are most appropriate for conditions with signal-to-noise (S/N) ratios less than 0 dBA, and where S/N is between 0 and 15-dBA S/N, listening difficulty is a more appropriate evaluation tool. .
Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech.
Švec, Jan G; Granqvist, Svante
2018-03-15
Sound pressure level (SPL) measurement of voice and speech is often considered a trivial matter, but the measured levels are often reported incorrectly or incompletely, making them difficult to compare among various studies. This article aims at explaining the fundamental principles behind these measurements and providing guidelines to improve their accuracy and reproducibility. Basic information is put together from standards, technical, voice and speech literature, and practical experience of the authors and is explained for nontechnical readers. Variation of SPL with distance, sound level meters and their accuracy, frequency and time weightings, and background noise topics are reviewed. Several calibration procedures for SPL measurements are described for stand-mounted and head-mounted microphones. SPL of voice and speech should be reported together with the mouth-to-microphone distance so that the levels can be related to vocal power. Sound level measurement settings (i.e., frequency weighting and time weighting/averaging) should always be specified. Classified sound level meters should be used to assure measurement accuracy. Head-mounted microphones placed at the proximity of the mouth improve signal-to-noise ratio and can be taken advantage of for voice SPL measurements when calibrated. Background noise levels should be reported besides the sound levels of voice and speech.
Ultrasound biofeedback treatment for persisting childhood apraxia of speech.
Preston, Jonathan L; Brick, Nickole; Landi, Nicole
2013-11-01
The purpose of this study was to evaluate the efficacy of a treatment program that includes ultrasound biofeedback for children with persisting speech sound errors associated with childhood apraxia of speech (CAS). Six children ages 9-15 years participated in a multiple baseline experiment for 18 treatment sessions during which treatment focused on producing sequences involving lingual sounds. Children were cued to modify their tongue movements using visual feedback from real-time ultrasound images. Probe data were collected before, during, and after treatment to assess word-level accuracy for treated and untreated sound sequences. As participants reached preestablished performance criteria, new sequences were introduced into treatment. All participants met the performance criterion (80% accuracy for 2 consecutive sessions) on at least 2 treated sound sequences. Across the 6 participants, performance criterion was met for 23 of 31 treated sequences in an average of 5 sessions. Some participants showed no improvement in untreated sequences, whereas others showed generalization to untreated sequences that were phonetically similar to the treated sequences. Most gains were maintained 2 months after the end of treatment. The percentage of phonemes correct increased significantly from pretreatment to the 2-month follow-up. A treatment program including ultrasound biofeedback is a viable option for improving speech sound accuracy in children with persisting speech sound errors associated with CAS.
Coding strategies for cochlear implants under adverse environments
NASA Astrophysics Data System (ADS)
Tahmina, Qudsia
Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise.
Simultaneous F 0-F 1 modifications of Arabic for the improvement of natural-sounding
NASA Astrophysics Data System (ADS)
Ykhlef, F.; Bensebti, M.
2013-03-01
Pitch (F 0) modification is one of the most important problems in the area of speech synthesis. Several techniques have been developed in the literature to achieve this goal. The main restrictions of these techniques are in the modification range and the synthesised speech quality, intelligibility and naturalness. The control of formants in a spoken language can significantly improve the naturalness of the synthesised speech. This improvement is mainly dependent on the control of the first formant (F 1). Inspired by this observation, this article proposes a new approach that modifies both F 0 and F 1 of Arabic voiced sounds in order to improve the naturalness of the pitch shifted speech. The developed strategy takes a parallel processing approach, in which the analysis segments are decomposed into sub-bands in the wavelet domain, modified in the desired sub-band by using a resampling technique and reconstructed without affecting the remained sub-bands. Pitch marking and voicing detection are performed in the frequency decomposition step based on the comparison of the multi-level approximation and detail signals. The performance of the proposed technique is evaluated by listening tests and compared to the pitch synchronous overlap and add (PSOLA) technique in the third approximation level. Experimental results have shown that the manipulation in the wavelet domain of F 0 in conjunction with F 1 guarantees natural-sounding of the synthesised speech compared to the classical pitch modification technique. This improvement was appropriate for high pitch modifications.
Human emotions track changes in the acoustic environment
Ma, Weiyi; Thompson, William Forde
2015-01-01
Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin’s hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds. PMID:26553987
Effects of irrelevant sounds on phonological coding in reading comprehension and short-term memory.
Boyle, R; Coltheart, V
1996-05-01
The effects of irrelevant sounds on reading comprehension and short-term memory were studied in two experiments. In Experiment 1, adults judged the acceptability of written sentences during irrelevant speech, accompanied and unaccompanied singing, instrumental music, and in silence. Sentences varied in syntactic complexity: Simple sentences contained a right-branching relative clause (The applause pleased the woman that gave the speech) and syntactically complex sentences included a centre-embedded relative clause (The hay that the farmer stored fed the hungry animals). Unacceptable sentences either sounded acceptable (The dog chased the cat that eight up all his food) or did not (The man praised the child that sight up his spinach). Decision accuracy was impaired by syntactic complexity but not by irrelevant sounds. Phonological coding was indicated by increased errors on unacceptable sentences that sounded correct. These errors rates were unaffected by irrelevant sounds. Experiment 2 examined effects of irrelevant sounds on ordered recall of phonologically similar and dissimilar word lists. Phonological similarity impaired recall. Irrelevant speech reduced recall but did not interact with phonological similarity. The results of these experiments question assumptions about the relationship between speech input and phonological coding in reading and the short-term store.
Transfer of Training between Music and Speech: Common Processing, Attention, and Memory.
Besson, Mireille; Chobert, Julie; Marie, Céline
2011-01-01
After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing.
Transfer of Training between Music and Speech: Common Processing, Attention, and Memory
Besson, Mireille; Chobert, Julie; Marie, Céline
2011-01-01
After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing. PMID:21738519
Processing Electromyographic Signals to Recognize Words
NASA Technical Reports Server (NTRS)
Jorgensen, C. C.; Lee, D. D.
2009-01-01
A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
The Measurement of the Oral and Nasal Sound Pressure Levels of Speech
ERIC Educational Resources Information Center
Clarke, Wayne M.
1975-01-01
A nasal separator was used to measure the oral and nasal components in the speech of a normal adult Australian population. Results indicated no difference in oral and nasal sound pressure levels for read versus spontaneous speech samples; however, females tended to have a higher nasal component than did males. (Author/TL)
ERIC Educational Resources Information Center
Overby, Megan S.; Masterson, Julie J.; Preston, Jonathan L.
2015-01-01
Purpose: This archival investigation examined the relationship between preliteracy speech sound production skill (SSPS) and spelling in Grade 3 using a dataset in which children's receptive vocabulary was generally within normal limits, speech therapy was not provided until Grade 2, and phonological awareness instruction was discouraged at the…
ERIC Educational Resources Information Center
Watts Pappas, Nicole; McAllister, Lindy; McLeod, Sharynne
2016-01-01
Parental beliefs and experiences regarding involvement in speech intervention for their child with mild to moderate speech sound disorder (SSD) were explored using multiple, sequential interviews conducted during a course of treatment. Twenty-one interviews were conducted with seven parents of six children with SSD: (1) after their child's initial…
ERIC Educational Resources Information Center
Peter, Beate
2012-01-01
This study tested the hypothesis that children with speech sound disorder have generalized slowed motor speeds. It evaluated associations among oral and hand motor speeds and measures of speech (articulation and phonology) and language (receptive vocabulary, sentence comprehension, sentence imitation), in 11 children with moderate to severe SSD…
Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine
2012-01-01
Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language deficits compared to several other studies; (c) describe how performance differed on a nonword repetition test between children who stutter who do and do not have concomitant speech or language deficits; (d) make a general statement about speech motor control for nonword production in children who stutter compared to controls. PMID:23218217
Understanding the Role of the Prefrontal Cortex in Phonological Processing
ERIC Educational Resources Information Center
Burton, Martha W.
2009-01-01
Lesion studies have demonstrated impairments of specific types of phonological processes. However, results from neuropsychological studies of speech sound processing have been inconclusive as to the role of specific brain regions because of a lack of a one-to-one correspondence between behavioural patterns and lesion location. Functional…
Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement.
Maryn, Youri; Zarowski, Andrzej
2015-11-01
Sound intensity is an important acoustic feature of voice/speech signals. Yet recordings are performed with different microphone, amplifier, and computer configurations, and it is therefore crucial to calibrate sound intensity measures of clinical audio recording and analysis systems on the basis of output of a sound-level meter. This study was designed to evaluate feasibility, validity, and accuracy of calibration methods, including audiometric speech noise signals and human voice signals under typical speech conditions. Calibration consisted of 3 comparisons between data from 29 measurement microphone-and-computer systems and data from the sound-level meter: signal-specific comparison with audiometric speech noise at 5 levels, signal-specific comparison with natural voice at 3 levels, and cross-signal comparison with natural voice at 3 levels. Intensity measures from recording systems were then linearly converted into calibrated data on the basis of these comparisons, and validity and accuracy of calibrated sound intensity were investigated. Very strong correlations and quasisimilarity were found between calibrated data and sound-level meter data across calibration methods and recording systems. Calibration of clinical sound intensity measures according to this method is feasible, valid, accurate, and representative for a heterogeneous set of microphones and data acquisition systems in real-life circumstances with distinct noise contexts.
Normal Adult Aging and the Contextual Influences Affecting Speech and Meaningful Sound Perception
Aydelott, Jennifer; Leech, Robert; Crinion, Jennifer
2010-01-01
It is widely accepted that hearing loss increases markedly with age, beginning in the fourth decade ISO 7029 (2000). Age-related hearing loss is typified by high-frequency threshold elevation and associated reductions in speech perception because speech sounds, especially consonants, become inaudible. Nevertheless, older adults often report additional and progressive difficulties in the perception and comprehension of speech, often highlighted in adverse listening conditions that exceed those reported by younger adults with a similar degree of high-frequency hearing loss (Dubno, Dirks, & Morgan) leading to communication difficulties and social isolation (Weinstein & Ventry). Some of the age-related decline in speech perception can be accounted for by peripheral sensory problems but cognitive aging can also be a contributing factor. In this article, we review findings from the psycholinguistic literature predominantly over the last four years and present a pilot study illustrating how normal age-related changes in cognition and the linguistic context can influence speech-processing difficulties in older adults. For significant progress in understanding and improving the auditory performance of aging listeners to be made, we discuss how future research will have to be much more specific not only about which interactions between auditory and cognitive abilities are critical but also how they are modulated in the brain. PMID:21307006
Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret
2012-01-01
Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance. PMID:26557339
Sensory Intelligence for Extraction of an Abstract Auditory Rule: A Cross-Linguistic Study.
Guo, Xiao-Tao; Wang, Xiao-Dong; Liang, Xiu-Yuan; Wang, Ming; Chen, Lin
2018-02-21
In a complex linguistic environment, while speech sounds can greatly vary, some shared features are often invariant. These invariant features constitute so-called abstract auditory rules. Our previous study has shown that with auditory sensory intelligence, the human brain can automatically extract the abstract auditory rules in the speech sound stream, presumably serving as the neural basis for speech comprehension. However, whether the sensory intelligence for extraction of abstract auditory rules in speech is inherent or experience-dependent remains unclear. To address this issue, we constructed a complex speech sound stream using auditory materials in Mandarin Chinese, in which syllables had a flat lexical tone but differed in other acoustic features to form an abstract auditory rule. This rule was occasionally and randomly violated by the syllables with the rising, dipping or falling tone. We found that both Chinese and foreign speakers detected the violations of the abstract auditory rule in the speech sound stream at a pre-attentive stage, as revealed by the whole-head recordings of mismatch negativity (MMN) in a passive paradigm. However, MMNs peaked earlier in Chinese speakers than in foreign speakers. Furthermore, Chinese speakers showed different MMN peak latencies for the three deviant types, which paralleled recognition points. These findings indicate that the sensory intelligence for extraction of abstract auditory rules in speech sounds is innate but shaped by language experience. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Campbell, Nicci; Luxon, Linda M
2010-08-01
This article reviews the evidence for computer-based auditory training (CBAT) in children with language, reading, and related learning difficulties, and evaluates the extent it can benefit children with auditory processing disorder (APD). Searches were confined to studies published between 2000 and 2008, and they are rated according to the level of evidence hierarchy proposed by the American Speech-Language Hearing Association (ASHA) in 2004. We identified 16 studies of two commercially available CBAT programs (13 studies of Fast ForWord (FFW) and three studies of Earobics) and five further outcome studies of other non-speech and simple speech sounds training, available for children with language, learning, and reading difficulties. The results suggest that, apart from the phonological awareness skills, the FFW and Earobics programs seem to have little effect on the language, spelling, and reading skills of children. Non-speech and simple speech sounds training may be effective in improving children's reading skills, but only if it is delivered by an audio-visual method. There is some initial evidence to suggest that CBAT may be of benefit for children with APD. Further research is necessary, however, to substantiate these preliminary findings.
Perceptual Learning of Speech under Optimal and Adverse Conditions
Zhang, Xujin; Samuel, Arthur G.
2014-01-01
Humans have a remarkable ability to understand spoken language despite the large amount of variability in speech. Previous research has shown that listeners can use lexical information to guide their interpretation of atypical sounds in speech (Norris, McQueen, & Cutler, 2003). This kind of lexically induced perceptual learning enables people to adjust to the variations in utterances due to talker-specific characteristics, such as individual identity and dialect. The current study investigated perceptual learning in two optimal conditions: conversational speech (Experiment 1) vs. clear speech (Experiment 2), and three adverse conditions: noise (Experiment 3a) vs. two cognitive loads (Experiments 4a & 4b). Perceptual learning occurred in the two optimal conditions and in the two cognitive load conditions, but not in the noise condition. Furthermore, perceptual learning occurred only in the first of two sessions for each participant, and only for atypical /s/ sounds and not for atypical /f/ sounds. This pattern of learning and non-learning reflects a balance between flexibility and stability that the speech system must have to deal with speech variability in the diverse conditions that speech is encountered. PMID:23815478
Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.
2014-01-01
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033
Effect of Blast Injury on Auditory Localization in Military Service Members.
Kubli, Lina R; Brungart, Douglas; Northern, Jerry
Among the many advantages of binaural hearing are the abilities to localize sounds in space and to attend to one sound in the presence of many sounds. Binaural hearing provides benefits for all listeners, but it may be especially critical for military personnel who must maintain situational awareness in complex tactical environments with multiple speech and noise sources. There is concern that Military Service Members who have been exposed to one or more high-intensity blasts during their tour of duty may have difficulty with binaural and spatial ability due to degradation in auditory and cognitive processes. The primary objective of this study was to assess the ability of blast-exposed Military Service Members to localize speech sounds in quiet and in multisource environments with one or two competing talkers. Participants were presented with one, two, or three topic-related (e.g., sports, food, travel) sentences under headphones and required to attend to, and then locate the source of, the sentence pertaining to a prespecified target topic within a virtual space. The listener's head position was monitored by a head-mounted tracking device that continuously updated the apparent spatial location of the target and competing speech sounds as the subject turned within the virtual space. Measurements of auditory localization ability included mean absolute error in locating the source of the target sentence, the time it took to locate the target sentence within 30 degrees, target/competitor confusion errors, response time, and cumulative head motion. Twenty-one blast-exposed Active-Duty or Veteran Military Service Members (blast-exposed group) and 33 non-blast-exposed Service Members and beneficiaries (control group) were evaluated. In general, the blast-exposed group performed as well as the control group if the task involved localizing the source of a single speech target. However, if the task involved two or three simultaneous talkers, localization ability was compromised for some participants in the blast-exposed group. Blast-exposed participants were less accurate in their localization responses and required more exploratory head movements to find the location of the target talker. Results suggest that blast-exposed participants have more difficulty than non-blast-exposed participants in localizing sounds in complex acoustic environments. This apparent deficit in spatial hearing ability highlights the need to develop new diagnostic tests using complex listening tasks that involve multiple sound sources that require speech segregation and comprehension.
... sound different from the way it normally sounds. Causes Some of these disorders develop gradually, but anyone can develop a speech and language impairment suddenly, usually in a trauma. APHASIA Alzheimer disease Brain tumor (more common in aphasia than ...
Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing
Edwards, Erik; Chang, Edward F.
2013-01-01
Given recent interest in syllabic rates (~2-5 Hz) for speech processing, we review the perception of “fluctuation” range (~1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (~2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. PMID:24035819
Benders, Titia
2013-12-01
Exaggeration of the vowel space in infant-directed speech (IDS) is well documented for English, but not consistently replicated in other languages or for other speech-sound contrasts. A second attested, but less discussed, pattern of change in IDS is an overall rise of the formant frequencies, which may reflect an affective speaking style. The present study investigates longitudinally how Dutch mothers change their corner vowels, voiceless fricatives, and pitch when speaking to their infant at 11 and 15 months of age. In comparison to adult-directed speech (ADS), Dutch IDS has a smaller vowel space, higher second and third formant frequencies in the vowels, and a higher spectral frequency in the fricatives. The formants of the vowels and spectral frequency of the fricatives are raised more strongly for infants at 11 than at 15 months, while the pitch is more extreme in IDS to 15-month olds. These results show that enhanced positive affect is the main factor influencing Dutch mothers' realisation of speech sounds in IDS, especially to younger infants. This study provides evidence that mothers' expression of emotion in IDS can influence the realisation of speech sounds, and that the loss or gain of speech clarity may be secondary effects of affect. Copyright © 2013 Elsevier Inc. All rights reserved.
Speech intelligibility in complex acoustic environments in young children
NASA Astrophysics Data System (ADS)
Litovsky, Ruth
2003-04-01
While the auditory system undergoes tremendous maturation during the first few years of life, it has become clear that in complex scenarios when multiple sounds occur and when echoes are present, children's performance is significantly worse than their adult counterparts. The ability of children (3-7 years of age) to understand speech in a simulated multi-talker environment and to benefit from spatial separation of the target and competing sounds was investigated. In these studies, competing sources vary in number, location, and content (speech, modulated or unmodulated speech-shaped noise and time-reversed speech). The acoustic spaces were also varied in size and amount of reverberation. Finally, children with chronic otitis media who received binaural training were tested pre- and post-training on a subset of conditions. Results indicated the following. (1) Children experienced significantly more masking than adults, even in the simplest conditions tested. (2) When the target and competing sounds were spatially separated speech intelligibility improved, but the amount varied with age, type of competing sound, and number of competitors. (3) In a large reverberant classroom there was no benefit of spatial separation. (4) Binaural training improved speech intelligibility performance in children with otitis media. Future work includes similar studies in children with unilateral and bilateral cochlear implants. [Work supported by NIDCD, DRF, and NOHR.
A Selective Deficit in Phonetic Recalibration by Text in Developmental Dyslexia.
Keetels, Mirjam; Bonte, Milene; Vroomen, Jean
2018-01-01
Upon hearing an ambiguous speech sound, listeners may adjust their perceptual interpretation of the speech input in accordance with contextual information, like accompanying text or lipread speech (i.e., phonetic recalibration; Bertelson et al., 2003). As developmental dyslexia (DD) has been associated with reduced integration of text and speech sounds, we investigated whether this deficit becomes manifest when text is used to induce this type of audiovisual learning. Adults with DD and normal readers were exposed to ambiguous consonants halfway between /aba/ and /ada/ together with text or lipread speech. After this audiovisual exposure phase, they categorized auditory-only ambiguous test sounds. Results showed that individuals with DD, unlike normal readers, did not use text to recalibrate their phoneme categories, whereas their recalibration by lipread speech was spared. Individuals with DD demonstrated similar deficits when ambiguous vowels (halfway between /wIt/ and /wet/) were recalibrated by text. These findings indicate that DD is related to a specific letter-speech sound association deficit that extends over phoneme classes (vowels and consonants), but - as lipreading was spared - does not extend to a more general audio-visual integration deficit. In particular, these results highlight diminished reading-related audiovisual learning in addition to the commonly reported phonological problems in developmental dyslexia.
Speech processing using conditional observable maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, John; Nix, David
A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less
On the Acoustics of Emotion in Audio: What Speech, Music, and Sound have in Common.
Weninger, Felix; Eyben, Florian; Schuller, Björn W; Mortillaro, Marcello; Scherer, Klaus R
2013-01-01
WITHOUT DOUBT, THERE IS EMOTIONAL INFORMATION IN ALMOST ANY KIND OF SOUND RECEIVED BY HUMANS EVERY DAY: be it the affective state of a person transmitted by means of speech; the emotion intended by a composer while writing a musical piece, or conveyed by a musician while performing it; or the affective state connected to an acoustic event occurring in the environment, in the soundtrack of a movie, or in a radio play. In the field of affective computing, there is currently some loosely connected research concerning either of these phenomena, but a holistic computational model of affect in sound is still lacking. In turn, for tomorrow's pervasive technical systems, including affective companions and robots, it is expected to be highly beneficial to understand the affective dimensions of "the sound that something makes," in order to evaluate the system's auditory environment and its own audio output. This article aims at a first step toward a holistic computational model: starting from standard acoustic feature extraction schemes in the domains of speech, music, and sound analysis, we interpret the worth of individual features across these three domains, considering four audio databases with observer annotations in the arousal and valence dimensions. In the results, we find that by selection of appropriate descriptors, cross-domain arousal, and valence regression is feasible achieving significant correlations with the observer annotations of up to 0.78 for arousal (training on sound and testing on enacted speech) and 0.60 for valence (training on enacted speech and testing on music). The high degree of cross-domain consistency in encoding the two main dimensions of affect may be attributable to the co-evolution of speech and music from multimodal affect bursts, including the integration of nature sounds for expressive effects.
ERIC Educational Resources Information Center
Silvén, Maarit; Voeten, Marinus; Kouvo, Anna; Lundén, Maija
2014-01-01
Growth modeling was applied to monolingual (N = 26) and bilingual (N = 28) word learning from 14 to 36 months. Level and growth rate of vocabulary were lower for Finnish-Russian bilinguals than for Finnish monolinguals. Processing of Finnish speech sounds at 7 but not at 11 months predicted level, but not growth rate of vocabulary in both Finnish…
ERIC Educational Resources Information Center
Velleman, Shelley L.
2011-01-01
Although not the focus of her article, phonological development in young children with speech sound disorders of various types is highly germane to Stoel-Gammon's discussion (this issue) for at least two primary reasons. Most obvious is that typical processes and milestones of phonological development are the standards and benchmarks against which…
ERIC Educational Resources Information Center
Nash, Hannah M.; Gooch, Debbie; Hulme, Charles; Mahajan, Yatin; McArthur, Genevieve; Steinmetzger, Kurt; Snowling, Margaret J.
2017-01-01
The "automatic letter-sound integration hypothesis" (Blomert, [Blomert, L., 2011]) proposes that dyslexia results from a failure to fully integrate letters and speech sounds into automated audio-visual objects. We tested this hypothesis in a sample of English-speaking children with dyslexic difficulties (N = 13) and samples of…
Use of Authentic-Speech Technique for Teaching Sound Recognition to EFL Students
ERIC Educational Resources Information Center
Sersen, William J.
2011-01-01
The main objective of this research was to test an authentic-speech technique for improving the sound-recognition skills of EFL (English as a foreign language) students at Roi-Et Rajabhat University. The secondary objective was to determine the correlation, if any, between students' self-evaluation of sound-recognition progress and the actual…
Motor-Based Treatment with and without Ultrasound Feedback for Residual Speech-Sound Errors
ERIC Educational Resources Information Center
Preston, Jonathan L.; Leece, Megan C.; Maas, Edwin
2017-01-01
Background: There is a need to develop effective interventions and to compare the efficacy of different interventions for children with residual speech-sound errors (RSSEs). Rhotics (the r-family of sounds) are frequently in error American English-speaking children with RSSEs and are commonly targeted in treatment. One treatment approach involves…
Basirat, Anahita; Schwartz, Jean-Luc; Sato, Marc
2012-01-01
The verbal transformation effect (VTE) refers to perceptual switches while listening to a speech sound repeated rapidly and continuously. It is a specific case of perceptual multistability providing a rich paradigm for studying the processes underlying the perceptual organization of speech. While the VTE has been mainly considered as a purely auditory effect, this paper presents a review of recent behavioural and neuroimaging studies investigating the role of perceptuo-motor interactions in the effect. Behavioural data show that articulatory constraints and visual information from the speaker's articulatory gestures can influence verbal transformations. In line with these data, functional magnetic resonance imaging and intracranial electroencephalography studies demonstrate that articulatory-based representations play a key role in the emergence and the stabilization of speech percepts during a verbal transformation task. Overall, these results suggest that perceptuo (multisensory)-motor processes are involved in the perceptual organization of speech and the formation of speech perceptual objects. PMID:22371618
Native language shapes automatic neural processing of speech.
Intartaglia, Bastien; White-Schwoch, Travis; Meunier, Christine; Roman, Stéphane; Kraus, Nina; Schön, Daniele
2016-08-01
The development of the phoneme inventory is driven by the acoustic-phonetic properties of one's native language. Neural representation of speech is known to be shaped by language experience, as indexed by cortical responses, and recent studies suggest that subcortical processing also exhibits this attunement to native language. However, most work to date has focused on the differences between tonal and non-tonal languages that use pitch variations to convey phonemic categories. The aim of this cross-language study is to determine whether subcortical encoding of speech sounds is sensitive to language experience by comparing native speakers of two non-tonal languages (French and English). We hypothesized that neural representations would be more robust and fine-grained for speech sounds that belong to the native phonemic inventory of the listener, and especially for the dimensions that are phonetically relevant to the listener such as high frequency components. We recorded neural responses of American English and French native speakers, listening to natural syllables of both languages. Results showed that, independently of the stimulus, American participants exhibited greater neural representation of the fundamental frequency compared to French participants, consistent with the importance of the fundamental frequency to convey stress patterns in English. Furthermore, participants showed more robust encoding and more precise spectral representations of the first formant when listening to the syllable of their native language as compared to non-native language. These results align with the hypothesis that language experience shapes sensory processing of speech and that this plasticity occurs as a function of what is meaningful to a listener. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phrase-level speech simulation with an airway modulation model of speech production
Story, Brad H.
2012-01-01
Artificial talkers and speech synthesis systems have long been used as a means of understanding both speech production and speech perception. The development of an airway modulation model is described that simulates the time-varying changes of the glottis and vocal tract, as well as acoustic wave propagation, during speech production. The result is a type of artificial talker that can be used to study various aspects of how sound is generated by humans and how that sound is perceived by a listener. The primary components of the model are introduced and simulation of words and phrases are demonstrated. PMID:23503742
ERIC Educational Resources Information Center
Baker, Elise; McLeod, Sharynne
2011-01-01
Purpose: This article provides both a tutorial and a clinical example of how speech-language pathologists (SLPs) can conduct evidence-based practice (EBP) when working with children with speech sound disorders (SSDs). It is a companion paper to the narrative review of 134 intervention studies for children who have an SSD (Baker & McLeod, 2011).…
ERIC Educational Resources Information Center
Ferati, Mexhid Adem
2012-01-01
To access interactive systems, blind and visually impaired users can leverage their auditory senses by using non-speech sounds. The current structure of non-speech sounds, however, is geared toward conveying user interface operations (e.g., opening a file) rather than large theme-based information (e.g., a history passage) and, thus, is ill-suited…
ERIC Educational Resources Information Center
Apel, Kenn; Lawrence, Jessika
2011-01-01
Purpose: In this study, the authors compared the morphological awareness abilities of children with speech sound disorder (SSD) and children with typical speech skills and examined how morphological awareness ability predicted word-level reading and spelling performance above other known contributors to literacy development. Method: Eighty-eight…
ERIC Educational Resources Information Center
Waring, R.; Knight, R.
2013-01-01
Background: Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of…
Zipf's Law in Short-Time Timbral Codings of Speech, Music, and Environmental Sound Signals
Haro, Martín; Serrà, Joan; Herrera, Perfecto; Corral, Álvaro
2012-01-01
Timbre is a key perceptual feature that allows discrimination between different sounds. Timbral sensations are highly dependent on the temporal evolution of the power spectrum of an audio signal. In order to quantitatively characterize such sensations, the shape of the power spectrum has to be encoded in a way that preserves certain physical and perceptual properties. Therefore, it is common practice to encode short-time power spectra using psychoacoustical frequency scales. In this paper, we study and characterize the statistical properties of such encodings, here called timbral code-words. In particular, we report on rank-frequency distributions of timbral code-words extracted from 740 hours of audio coming from disparate sources such as speech, music, and environmental sounds. Analogously to text corpora, we find a heavy-tailed Zipfian distribution with exponent close to one. Importantly, this distribution is found independently of different encoding decisions and regardless of the audio source. Further analysis on the intrinsic characteristics of most and least frequent code-words reveals that the most frequent code-words tend to have a more homogeneous structure. We also find that speech and music databases have specific, distinctive code-words while, in the case of the environmental sounds, this database-specific code-words are not present. Finally, we find that a Yule-Simon process with memory provides a reasonable quantitative approximation for our data, suggesting the existence of a common simple generative mechanism for all considered sound sources. PMID:22479497
Hidden Markov models in automatic speech recognition
NASA Astrophysics Data System (ADS)
Wrzoskowicz, Adam
1993-11-01
This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.
The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives
Evans, S.; Kyong, J.S.; Rosen, S.; Golestani, N.; Warren, J.E.; McGettigan, C.; Mourão-Miranda, J.; Wise, R.J.S.; Scott, S.K.
2014-01-01
An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing. PMID:23585519
Waring, R; Knight, R
2013-01-01
Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.
Goldsworthy, Raymond L.; Delhorne, Lorraine A.; Desloge, Joseph G.; Braida, Louis D.
2014-01-01
This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution. PMID:25096120
Jiang, Cunmei; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J; Chen, Xuhai; Yang, Yufang
2012-01-01
Pitch processing is a critical ability on which humans' tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources.
Musical melody and speech intonation: singing a different tune.
Zatorre, Robert J; Baum, Shari R
2012-01-01
Music and speech are often cited as characteristically human forms of communication. Both share the features of hierarchical structure, complex sound systems, and sensorimotor sequencing demands, and both are used to convey and influence emotions, among other functions [1]. Both music and speech also prominently use acoustical frequency modulations, perceived as variations in pitch, as part of their communicative repertoire. Given these similarities, and the fact that pitch perception and production involve the same peripheral transduction system (cochlea) and the same production mechanism (vocal tract), it might be natural to assume that pitch processing in speech and music would also depend on the same underlying cognitive and neural mechanisms. In this essay we argue that the processing of pitch information differs significantly for speech and music; specifically, we suggest that there are two pitch-related processing systems, one for more coarse-grained, approximate analysis and one for more fine-grained accurate representation, and that the latter is unique to music. More broadly, this dissociation offers clues about the interface between sensory and motor systems, and highlights the idea that multiple processing streams are a ubiquitous feature of neuro-cognitive architectures.
Jiang, Cunmei; Hamm, Jeff P.; Lim, Vanessa K.; Kirk, Ian J.; Chen, Xuhai; Yang, Yufang
2012-01-01
Pitch processing is a critical ability on which humans’ tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources. PMID:22859982
SPAIDE: A Real-time Research Platform for the Clarion CII/90K Cochlear Implant
NASA Astrophysics Data System (ADS)
Van Immerseel, L.; Peeters, S.; Dykmans, P.; Vanpoucke, F.; Bracke, P.
2005-12-01
SPAIDE ( sound-processing algorithm integrated development environment) is a real-time platform of Advanced Bionics Corporation (Sylmar, Calif, USA) to facilitate advanced research on sound-processing and electrical-stimulation strategies with the Clarion CII and 90K implants. The platform is meant for testing in the laboratory. SPAIDE is conceptually based on a clear separation of the sound-processing and stimulation strategies, and, in specific, on the distinction between sound-processing and stimulation channels and electrode contacts. The development environment has a user-friendly interface to specify sound-processing and stimulation strategies, and includes the possibility to simulate the electrical stimulation. SPAIDE allows for real-time sound capturing from file or audio input on PC, sound processing and application of the stimulation strategy, and streaming the results to the implant. The platform is able to cover a broad range of research applications; from noise reduction and mimicking of normal hearing, over complex (simultaneous) stimulation strategies, to psychophysics. The hardware setup consists of a personal computer, an interface board, and a speech processor. The software is both expandable and to a great extent reusable in other applications.
Electrostimulation mapping of comprehension of auditory and visual words.
Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François
2015-10-01
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrasound analysis of tongue contour for the sound [j] in adults and children.
Barberena, Luciana da Silva; Simoni, Simone Nicolini de; Souza, Rosalina Correa Sobrinho de; Moraes, Denis Altieri de Oliveira; Berti, Larissa Cristina; Keske-Soares, Márcia
2017-12-11
Analyze and compare the mean tongue contours and articulatory gestures in the production of the sound [j] in adults and children with typical and atypical speech development. The children with atypical development presented speech sound disorders. The diagnosis was determined by speech assessments. The study sample was composed of 90 individuals divided into three groups: 30 adults with typical speech development aged 19-44 years (AT), 30 children with typical speech development (CT), and 30 children with speech sound disorders, named as atypical in this study, aged four years to eight years and eleven months (CA). Ultrasonography assessment of tongue movements was performed for all groups. Mean tongue contours were compared between three groups in different vocalic contexts following the sound [j]. The maximum elevation of the tongue tip was considered for delimitation of gestures using the Articulate Assistant Advanced (AAA) software and images in sagittal plane/Mode B. The points that intercepted the language curves were analyzed by the statistical tool R. The graphs of tongue contours were obtained adopting a 95% confidence interval. After that, the regions with significant statistical differences (p<0.05) between the CT and CA groups were obtained. The mean tongue contours demonstrated the gesture for the sound [j] in the comparison between typical and atypical children. For the semivowel [j], there is an articulatory gesture of tongue and dorsum towards the center of the hard palate, with significant differences observed between the children. The results showed differences between the groups of children regarding the ability to refine articulatory gestures.
Integration and segregation in auditory scene analysis
NASA Astrophysics Data System (ADS)
Sussman, Elyse S.
2005-03-01
Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..
Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S
2010-08-01
The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.
Zheng, Zane Z.; Munhall, Kevin G; Johnsrude, Ingrid S
2009-01-01
The fluency and reliability of speech production suggests a mechanism that links motor commands and sensory feedback. Here, we examine the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not, and examining the overlap with the network recruited during passive listening to speech sounds. We use real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word (‘Ted’) and either heard this clearly, or heard voice-gated masking noise. We compare this to when they listened to yoked stimuli (identical recordings of ‘Ted’ or noise) without speaking. Activity along the superior temporal sulcus (STS) and superior temporal gyrus (STG) bilaterally was significantly greater if the auditory stimulus was a) processed as the auditory concomitant of speaking and b) did not match the predicted outcome (noise). The network exhibiting this Feedback type by Production/Perception interaction includes an STG/MTG region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts, and that processes an error signal in speech-sensitive regions when this and the sensory data do not match. PMID:19642886
CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population.
Zhao, Yun-Jing; Wang, Yue-Ping; Yang, Wen-Zhu; Sun, Hong-Wei; Ma, Hong-Wei; Zhao, Ya-Ru
2015-11-01
Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism. © The Author(s) 2015.
Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence
Strait, Dana; Kraus, Nina
2012-01-01
Human hearing depends on a combination of cognitive and sensory processes that function by means of an interactive circuitry of bottom-up and top-down neural pathways, extending from the cochlea to the cortex and back again. Given that similar neural pathways are recruited to process sounds related to both music and language, it is not surprising that the auditory expertise gained over years of consistent music practice fine-tunes the human auditory system in a comprehensive fashion, strengthening neurobiological and cognitive underpinnings of both music and speech processing. In this review we argue not only that common neural mechanisms for speech and music exist, but that experience in music leads to enhancements in sensory and cognitive contributors to speech processing. Of specific interest is the potential for music training to bolster neural mechanisms that undergird language-related skills, such as reading and hearing speech in background noise, which are critical to academic progress, emotional health, and vocational success. PMID:22993456
Transitioning from analog to digital audio recording in childhood speech sound disorders.
Shriberg, Lawrence D; McSweeny, Jane L; Anderson, Bruce E; Campbell, Thomas F; Chial, Michael R; Green, Jordan R; Hauner, Katherina K; Moore, Christopher A; Rusiewicz, Heather L; Wilson, David L
2005-06-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants' speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise.
Transitioning from analog to digital audio recording in childhood speech sound disorders
Shriberg, Lawrence D.; McSweeny, Jane L.; Anderson, Bruce E.; Campbell, Thomas F.; Chial, Michael R.; Green, Jordan R.; Hauner, Katherina K.; Moore, Christopher A.; Rusiewicz, Heather L.; Wilson, David L.
2014-01-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants’ speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise. PMID:16019779
ERIC Educational Resources Information Center
Harrison, Linda J.; McLeod, Sharynne; McAllister, Lindy; McCormack, Jane
2017-01-01
This study sought to assess the level of correspondence between parent and teacher report of concern about young children's speech and specialist assessment of speech sound disorders (SSD). A sample of 157 children aged 4-5 years was recruited in preschools and long day care centres in Victoria and New South Wales (NSW). SSD was assessed…
Klein, Mike E.; Zatorre, Robert J.
2015-01-01
In categorical perception (CP), continuous physical signals are mapped to discrete perceptual bins: mental categories not found in the physical world. CP has been demonstrated across multiple sensory modalities and, in audition, for certain over-learned speech and musical sounds. The neural basis of auditory CP, however, remains ambiguous, including its robustness in nonspeech processes and the relative roles of left/right hemispheres; primary/nonprimary cortices; and ventral/dorsal perceptual processing streams. Here, highly trained musicians listened to 2-tone musical intervals, which they perceive categorically while undergoing functional magnetic resonance imaging. Multivariate pattern analyses were performed after grouping sounds by interval quality (determined by frequency ratio between tones) or pitch height (perceived noncategorically, frequency ratios remain constant). Distributed activity patterns in spheres of voxels were used to determine sound sample identities. For intervals, significant decoding accuracy was observed in the right superior temporal and left intraparietal sulci, with smaller peaks observed homologously in contralateral hemispheres. For pitch height, no significant decoding accuracy was observed, consistent with the non-CP of this dimension. These results suggest that similar mechanisms are operative for nonspeech categories as for speech; espouse roles for 2 segregated processing streams; and support hierarchical processing models for CP. PMID:24488957
Korean speech sound development in children from bilingual Japanese-Korean environments
Kim, Jeoung Suk; Lee, Jun Ho; Choi, Yoon Mi; Kim, Hyun Gi; Kim, Sung Hwan; Lee, Min Kyung
2010-01-01
Purpose This study investigates Korean speech sound development, including articulatory error patterns, among the Japanese-Korean children whose mothers are Japanese immigrants to Korea. Methods The subjects were 28 Japanese-Korean children with normal development born to Japanese women immigrants who lived in Jeonbuk province, Korea. They were assessed through Computerized Speech Lab 4500. The control group consisted of 15 Korean children who lived in the same area. Results The values of the voice onset time of consonants /ph/, /t/, /th/, and /k*/ among the children were prolonged. The children replaced the lenis sounds with aspirated or fortis sounds rather than replacing the fortis sounds with lenis or aspirated sounds, which are typical among Japanese immigrants. The children showed numerous articulatory errors for /c/ and /l/ sounds (similar to Koreans) rather than errors on /p/ sounds, which are more frequent among Japanese immigrants. The vowel formants of the children showed a significantly prolonged vowel /o/ as compared to that of Korean children (P<0.05). The Japanese immigrants and their children showed a similar substitution /n/ for /ɧ/ [Japanese immigrants (62.5%) vs Japanese-Korean children (14.3%)], which is rarely seen among Koreans. Conclusion The findings suggest that Korean speech sound development among Japanese-Korean children is influenced not only by the Korean language environment but also by their maternal language. Therefore, appropriate language education programs may be warranted not only or immigrant women but also for their children. PMID:21189968
Attentional modulation of informational masking on early cortical representations of speech signals.
Zhang, Changxin; Arnott, Stephen R; Rabaglia, Cristina; Avivi-Reich, Meital; Qi, James; Wu, Xihong; Li, Liang; Schneider, Bruce A
2016-01-01
To recognize speech in a noisy auditory scene, listeners need to perceptually segregate the target talker's voice from other competing sounds (stream segregation). A number of studies have suggested that the attentional demands placed on listeners increase as the acoustic properties and informational content of the competing sounds become more similar to that of the target voice. Hence we would expect attentional demands to be considerably greater when speech is masked by speech than when it is masked by steady-state noise. To investigate the role of attentional mechanisms in the unmasking of speech sounds, event-related potentials (ERPs) were recorded to a syllable masked by noise or competing speech under both active (the participant was asked to respond when the syllable was presented) or passive (no response was required) listening conditions. The results showed that the long-latency auditory response to a syllable (/bi/), presented at different signal-to-masker ratios (SMRs), was similar in both passive and active listening conditions, when the masker was a steady-state noise. In contrast, a switch from the passive listening condition to the active one, when the masker was two-talker speech, significantly enhanced the ERPs to the syllable. These results support the hypothesis that the need to engage attentional mechanisms in aid of scene analysis increases as the similarity (both acoustic and informational) between the target speech and the competing background sounds increases. Copyright © 2015 Elsevier B.V. All rights reserved.
Participation of the Classical Speech Areas in Auditory Long-Term Memory
Karabanov, Anke Ninija; Paine, Rainer; Chao, Chi Chao; Schulze, Katrin; Scott, Brian; Hallett, Mark; Mishkin, Mortimer
2015-01-01
Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results. PMID:25815813
Participation of the classical speech areas in auditory long-term memory.
Karabanov, Anke Ninija; Paine, Rainer; Chao, Chi Chao; Schulze, Katrin; Scott, Brian; Hallett, Mark; Mishkin, Mortimer
2015-01-01
Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results.
A longitudinal study of the bilateral benefit in children with bilateral cochlear implants.
Asp, Filip; Mäki-Torkko, Elina; Karltorp, Eva; Harder, Henrik; Hergils, Leif; Eskilsson, Gunnar; Stenfelt, Stefan
2015-02-01
To study the development of the bilateral benefit in children using bilateral cochlear implants by measurements of speech recognition and sound localization. Bilateral and unilateral speech recognition in quiet, in multi-source noise, and horizontal sound localization was measured at three occasions during a two-year period, without controlling for age or implant experience. Longitudinal and cross-sectional analyses were performed. Results were compared to cross-sectional data from children with normal hearing. Seventy-eight children aged 5.1-11.9 years, with a mean bilateral cochlear implant experience of 3.3 years and a mean age of 7.8 years, at inclusion in the study. Thirty children with normal hearing aged 4.8-9.0 years provided normative data. For children with cochlear implants, bilateral and unilateral speech recognition in quiet was comparable whereas a bilateral benefit for speech recognition in noise and sound localization was found at all three test occasions. Absolute performance was lower than in children with normal hearing. Early bilateral implantation facilitated sound localization. A bilateral benefit for speech recognition in noise and sound localization continues to exist over time for children with bilateral cochlear implants, but no relative improvement is found after three years of bilateral cochlear implant experience.
Perceptual learning of speech under optimal and adverse conditions.
Zhang, Xujin; Samuel, Arthur G
2014-02-01
Humans have a remarkable ability to understand spoken language despite the large amount of variability in speech. Previous research has shown that listeners can use lexical information to guide their interpretation of atypical sounds in speech (Norris, McQueen, & Cutler, 2003). This kind of lexically induced perceptual learning enables people to adjust to the variations in utterances due to talker-specific characteristics, such as individual identity and dialect. The current study investigated perceptual learning in two optimal conditions: conversational speech (Experiment 1) versus clear speech (Experiment 2), and three adverse conditions: noise (Experiment 3a) versus two cognitive loads (Experiments 4a and 4b). Perceptual learning occurred in the two optimal conditions and in the two cognitive load conditions, but not in the noise condition. Furthermore, perceptual learning occurred only in the first of two sessions for each participant, and only for atypical /s/ sounds and not for atypical /f/ sounds. This pattern of learning and nonlearning reflects a balance between flexibility and stability that the speech system must have to deal with speech variability in the diverse conditions that speech is encountered. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Tran, Phuong K; Letowski, Tomasz R; McBride, Maranda E
2013-06-01
Speech signals can be converted into electrical audio signals using either conventional air conduction (AC) microphone or a contact bone conduction (BC) microphone. The goal of this study was to investigate the effects of the location of a BC microphone on the intensity and frequency spectrum of the recorded speech. Twelve locations, 11 on the talker's head and 1 on the collar bone, were investigated. The speech sounds were three vowels (/u/, /a/, /i/) and two consonants (/m/, /∫/). The sounds were produced by 12 talkers. Each sound was recorded simultaneously with two BC microphones and an AC microphone. Analyzed spectral data showed that the BC recordings made at the forehead of the talker were the most similar to the AC recordings, whereas the collar bone recordings were most different. Comparison of the spectral data with speech intelligibility data collected in another study revealed a strong negative relationship between BC speech intelligibility and the degree of deviation of the BC speech spectrum from the AC spectrum. In addition, the head locations that resulted in the highest speech intelligibility were associated with the lowest output signals among all tested locations. Implications of these findings for BC communication are discussed.
... of the palate is because of abnormal speech. The speech has a nasal sound because air is lost through the nose. In such cases the child’s speech should be evaluated by a speech pathologist who, ...
Cortical activity patterns predict speech discrimination ability
Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P
2010-01-01
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123
Kjellberg, A
2004-01-01
The paper presents a theoretical analysis of possible effects of reverberation time on the cognitive load in speech communication. Speech comprehension requires not only phonological processing of the spoken words. Simultaneously, this information must be further processed and stored. All this processing takes place in the working memory, which has a limited processing capacity. The more resources that are allocated to word identification, the fewer resources are therefore left for the further processing and storing of the information. Reverberation conditions that allow the identification of almost all words may therefore still interfere with speech comprehension and memory storing. These problems are likely to be especially serious in situations where speech has to be followed continuously for a long time. An unfavourable reverberation time (RT) then could contribute to the development of cognitive fatigue, which means that working memory resources are gradually reduced. RT may also affect the cognitive load in two other ways: RT may change the distracting effects of a sound and a person's mood. Both effects could influence the cognitive load of a listener. It is argued that we need studies of RT effects in realistic long-lasting listening situations to better understand the effect of RT on speech communication. Furthermore, the effect of RT on distraction and mood need to be better understood.
Effects of utterance length and vocal loudness on speech breathing in older adults.
Huber, Jessica E
2008-12-31
Age-related reductions in pulmonary elastic recoil and respiratory muscle strength can affect how older adults generate subglottal pressure required for speech production. The present study examined age-related changes in speech breathing by manipulating utterance length and loudness during a connected speech task (monologue). Twenty-three older adults and twenty-eight young adults produced a monologue at comfortable loudness and pitch and with multi-talker babble noise playing in the room to elicit louder speech. Dependent variables included sound pressure level, speech rate, and lung volume initiation, termination, and excursion. Older adults produced shorter utterances than young adults overall. Age-related effects were larger for longer utterances. Older adults demonstrated very different lung volume adjustments for loud speech than young adults. These results suggest that older adults have a more difficult time when the speech system is being taxed by both utterance length and loudness. The data were consistent with the hypothesis that both young and older adults use utterance length in premotor speech planning processes.
Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I
Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions regarding the direction of change for error type proportions. The current findings argued for an alternative concept of the role of activation and decay in influencing types of serial-order sound errors. Rather than a slow activation decay rate (Dell, 1986), the results of the current study were more compatible with an alternative explanation of rapid activation decay or slow build-up of residual activation.
Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Pinheiro da Silva, Joyce; Wertzner, Haydée Fiszbein
2017-05-22
The purpose of the study was to determine the sensitivity and specificity, and to establish cutoff points for the severity index Percentage of Consonants Correct - Revised (PCC-R) in Brazilian Portuguese-speaking children with and without speech sound disorders. 72 children between 5:00 and 7:11 years old - 36 children without speech and language complaints and 36 children with speech sound disorders. The PCC-R was applied to the figure naming and word imitation tasks that are part of the ABFW Child Language Test. Results were statistically analyzed. The ROC curve was performed and sensitivity and specificity values of the index were verified. The group of children without speech sound disorders presented greater PCC-R values in both tasks, regardless of the gender of the participants. The cutoff value observed for the picture naming task was 93.4%, with a sensitivity value of 0.89 and specificity of 0.94 (age independent). For the word imitation task, results were age-dependent: for age group ≤6:5 years old, the cutoff value was 91.0% (sensitivity of 0.77 and specificity of 0.94) and for age group >6:5 years-old, the cutoff value was 93.9% (sensitivity of 0.93 and specificity of 0.94). Given the high sensitivity and specificity of PCC-R, we can conclude that the index was effective in discriminating and identifying children with and without speech sound disorders.
How learning to abstract shapes neural sound representations
Ley, Anke; Vroomen, Jean; Formisano, Elia
2014-01-01
The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes—even in absence of changes in overall signal level—these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations. PMID:24917783
ERIC Educational Resources Information Center
McLeod, Sharynne; Baker, Elise; McCormack, Jane; Wren, Yvonne; Roulstone, Sue; Crowe, Kathryn; Masso, Sarah; White, Paul; Howland, Charlotte
2017-01-01
Purpose: The aim was to evaluate the effectiveness of computer-assisted input-based intervention for children with speech sound disorders (SSD). Method: The Sound Start Study was a cluster-randomized controlled trial. Seventy-nine early childhood centers were invited to participate, 45 were recruited, and 1,205 parents and educators of 4- and…
Masterson, Julie J.; Preston, Jonathan L.
2015-01-01
Purpose This archival investigation examined the relationship between preliteracy speech sound production skill (SSPS) and spelling in Grade 3 using a dataset in which children's receptive vocabulary was generally within normal limits, speech therapy was not provided until Grade 2, and phonological awareness instruction was discouraged at the time data were collected. Method Participants (N = 250), selected from the Templin Archive (Templin, 2004), varied on prekindergarten SSPS. Participants' real word spellings in Grade 3 were evaluated using a metric of linguistic knowledge, the Computerized Spelling Sensitivity System (Masterson & Apel, 2013). Relationships between kindergarten speech error types and later spellings also were explored. Results Prekindergarten children in the lowest SPSS (7th percentile) scored poorest among articulatory subgroups on both individual spelling elements (phonetic elements, junctures, and affixes) and acceptable spelling (using relatively more omissions and illegal spelling patterns). Within the 7th percentile subgroup, there were no statistical spelling differences between those with mostly atypical speech sound errors and those with mostly typical speech sound errors. Conclusions Findings were consistent with predictions from dual route models of spelling that SSPS is one of many variables associated with spelling skill and that children with impaired SSPS are at risk for spelling difficulty. PMID:26380965
Sounds and silence: An optical topography study of language recognition at birth
NASA Astrophysics Data System (ADS)
Peña, Marcela; Maki, Atsushi; Kovaic, Damir; Dehaene-Lambertz, Ghislaine; Koizumi, Hideaki; Bouquet, Furio; Mehler, Jacques
2003-09-01
Does the neonate's brain have left hemisphere (LH) dominance for speech? Twelve full-term neonates participated in an optical topography study designed to assess whether the neonate brain responds specifically to linguistic stimuli. Participants were tested with normal infant-directed speech, with the same utterances played in reverse and without auditory stimulation. We used a 24-channel optical topography device to assess changes in the concentration of total hemoglobin in response to auditory stimulation in 12 areas of the right hemisphere and 12 areas of the LH. We found that LH temporal areas showed significantly more activation when infants were exposed to normal speech than to backward speech or silence. We conclude that neonates are born with an LH superiority to process specific properties of speech.
Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.
Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa
2016-07-01
The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.
Electrocorticographic representations of segmental features in continuous speech
Lotte, Fabien; Brumberg, Jonathan S.; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Guan, Cuntai; Schalk, Gerwin
2015-01-01
Acoustic speech output results from coordinated articulation of dozens of muscles, bones and cartilages of the vocal mechanism. While we commonly take the fluency and speed of our speech productions for granted, the neural mechanisms facilitating the requisite muscular control are not completely understood. Previous neuroimaging and electrophysiology studies of speech sensorimotor control has typically concentrated on speech sounds (i.e., phonemes, syllables and words) in isolation; sentence-length investigations have largely been used to inform coincident linguistic processing. In this study, we examined the neural representations of segmental features (place and manner of articulation, and voicing status) in the context of fluent, continuous speech production. We used recordings from the cortical surface [electrocorticography (ECoG)] to simultaneously evaluate the spatial topography and temporal dynamics of the neural correlates of speech articulation that may mediate the generation of hypothesized gestural or articulatory scores. We found that the representation of place of articulation involved broad networks of brain regions during all phases of speech production: preparation, execution and monitoring. In contrast, manner of articulation and voicing status were dominated by auditory cortical responses after speech had been initiated. These results provide a new insight into the articulatory and auditory processes underlying speech production in terms of their motor requirements and acoustic correlates. PMID:25759647
Koelewijn, Thomas; Zekveld, Adriana A; Festen, Joost M; Kramer, Sophia E
2014-03-01
A recent pupillometry study on adults with normal hearing indicates that the pupil response during speech perception (cognitive processing load) is strongly affected by the type of speech masker. The current study extends these results by recording the pupil response in 32 participants with hearing impairment (mean age 59 yr) while they were listening to sentences masked by fluctuating noise or a single-talker. Efforts were made to improve audibility of all sounds by means of spectral shaping. Additionally, participants performed tests measuring verbal working memory capacity, inhibition of interfering information in working memory, and linguistic closure. The results showed worse speech reception thresholds for speech masked by single-talker speech compared to fluctuating noise. In line with previous results for participants with normal hearing, the pupil response was larger when listening to speech masked by a single-talker compared to fluctuating noise. Regression analysis revealed that larger working memory capacity and better inhibition of interfering information related to better speech reception thresholds, but these variables did not account for inter-individual differences in the pupil response. In conclusion, people with hearing impairment show more cognitive load during speech processing when there is interfering speech compared to fluctuating noise.
Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Gorospe, José M; Ruiz, Santiago Santa Cruz; Benito, Fernando; Wilson, Blake S
2017-05-01
We have recently proposed a binaural cochlear implant (CI) sound processing strategy inspired by the contralateral medial olivocochlear reflex (the MOC strategy) and shown that it improves intelligibility in steady-state noise (Lopez-Poveda et al., 2016, Ear Hear 37:e138-e148). The aim here was to evaluate possible speech-reception benefits of the MOC strategy for speech maskers, a more natural type of interferer. Speech reception thresholds (SRTs) were measured in six bilateral and two single-sided deaf CI users with the MOC strategy and with a standard (STD) strategy. SRTs were measured in unilateral and bilateral listening conditions, and for target and masker stimuli located at azimuthal angles of (0°, 0°), (-15°, +15°), and (-90°, +90°). Mean SRTs were 2-5 dB better with the MOC than with the STD strategy for spatially separated target and masker sources. For bilateral CI users, the MOC strategy (1) facilitated the intelligibility of speech in competition with spatially separated speech maskers in both unilateral and bilateral listening conditions; and (2) led to an overall improvement in spatial release from masking in the two listening conditions. Insofar as speech is a more natural type of interferer than steady-state noise, the present results suggest that the MOC strategy holds potential for promising outcomes for CI users. Copyright © 2017. Published by Elsevier B.V.
Precision of working memory for speech sounds.
Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud
2015-01-01
Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.
Pfiffner, Flurin; Kompis, Martin; Stieger, Christof
2009-10-01
To investigate correlations between preoperative hearing thresholds and postoperative aided thresholds and speech understanding of users of Bone-anchored Hearing Aids (BAHA). Such correlations may be useful to estimate the postoperative outcome with BAHA from preoperative data. Retrospective case review. Tertiary referral center. : Ninety-two adult unilaterally implanted BAHA users in 3 groups: (A) 24 subjects with a unilateral conductive hearing loss, (B) 38 subjects with a bilateral conductive hearing loss, and (C) 30 subjects with single-sided deafness. Preoperative air-conduction and bone-conduction thresholds and 3-month postoperative aided and unaided sound-field thresholds as well as speech understanding using German 2-digit numbers and monosyllabic words were measured and analyzed. Correlation between preoperative air-conduction and bone-conduction thresholds of the better and of the poorer ear and postoperative aided thresholds as well as correlations between gain in sound-field threshold and gain in speech understanding. Aided postoperative sound-field thresholds correlate best with BC threshold of the better ear (correlation coefficients, r2 = 0.237 to 0.419, p = 0.0006 to 0.0064, depending on the group of subjects). Improvements in sound-field threshold correspond to improvements in speech understanding. When estimating expected postoperative aided sound-field thresholds of BAHA users from preoperative hearing thresholds, the BC threshold of the better ear should be used. For the patient groups considered, speech understanding in quiet can be estimated from the improvement in sound-field thresholds.
Improving speech perception in noise for children with cochlear implants.
Gifford, René H; Olund, Amy P; Dejong, Melissa
2011-10-01
Current cochlear implant recipients are achieving increasingly higher levels of speech recognition; however, the presence of background noise continues to significantly degrade speech understanding for even the best performers. Newer generation Nucleus cochlear implant sound processors can be programmed with SmartSound strategies that have been shown to improve speech understanding in noise for adult cochlear implant recipients. The applicability of these strategies for use in children, however, is not fully understood nor widely accepted. To assess speech perception for pediatric cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether Nucleus sound processor SmartSound strategies yield improved sentence recognition in noise for children who learn language through the implant. Single subject, repeated measures design. Twenty-two experimental subjects with cochlear implants (mean age 11.1 yr) and 25 control subjects with normal hearing (mean age 9.6 yr) participated in this prospective study. Speech reception thresholds (SRT) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the experimental subjects' everyday program incorporating Adaptive Dynamic Range Optimization (ADRO) as well as with the addition of Autosensitivity control (ASC). Adaptive SRTs with the Hearing In Noise Test (HINT) sentences were obtained for all 22 experimental subjects, and performance-in percent correct-was assessed in a fixed +6 dB SNR (signal-to-noise ratio) for a six-subject subset. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the SmartSound setting on the SRT in noise. The primary findings mirrored those reported previously with adult cochlear implant recipients in that the addition of ASC to ADRO significantly improved speech recognition in noise for pediatric cochlear implant recipients. The mean degree of improvement in the SRT with the addition of ASC to ADRO was 3.5 dB for a mean SRT of 10.9 dB SNR. Thus, despite the fact that these children have acquired auditory/oral speech and language through the use of their cochlear implant(s) equipped with ADRO, the addition of ASC significantly improved their ability to recognize speech in high levels of diffuse background noise. The mean SRT for the control subjects with normal hearing was 0.0 dB SNR. Given that the mean SRT for the experimental group was 10.9 dB SNR, despite the improvements in performance observed with the addition of ASC, cochlear implants still do not completely overcome the speech perception deficit encountered in noisy environments accompanying the diagnosis of severe-to-profound hearing loss. SmartSound strategies currently available in latest generation Nucleus cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise for pediatric cochlear implant recipients. Despite the reluctance of pediatric audiologists to utilize SmartSound settings for regular use, the results of the current study support the addition of ASC to ADRO for everyday listening environments to improve speech perception in a child's typical everyday program. American Academy of Audiology.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Stop consonant voicing in young children's speech: Evidence from a cross-sectional study
NASA Astrophysics Data System (ADS)
Ganser, Emily
There are intuitive reasons to believe that speech-sound acquisition and language acquisition should be related in development. Surprisingly, only recently has research begun to parse just how the two might be related. This study investigated possible correlations between speech-sound acquisition and language acquisition, as part of a large-scale, longitudinal study of the relationship between different types of phonological development and vocabulary growth in the preschool years. Productions of voiced and voiceless stop-initial words were recorded from 96 children aged 28-39 months. Voice Onset Time (VOT, in ms) for each token context was calculated. A mixed-model logistic regression was calculated which predicted whether the sound was intended to be voiced or voiceless based on its VOT. This model estimated the slopes of the logistic function for each child. This slope was referred to as Robustness of Contrast (based on Holliday, Reidy, Beckman, and Edwards, 2015), defined as being the degree of categorical differentiation between the production of two speech sounds or classes of sounds, in this case, voiced and voiceless stops. Results showed a wide range of slopes for individual children, suggesting that slope-derived Robustness of Contrast could be a viable means of measuring a child's acquisition of the voicing contrast. Robustness of Contrast was then compared to traditional measures of speech and language skills to investigate whether there was any correlation between the production of stop voicing and broader measures of speech and language development. The Robustness of Contrast measure was found to correlate with all individual measures of speech and language, suggesting that it might indeed be predictive of later language skills.
Maitre, Nathalie L.; Slaughter, James C.; Aschner, Judy L.; Key, Alexandra P.
2014-01-01
Neurodevelopmental delays in intensive care neonates are common but difficult to predict. In children, hemisphere differences in cortical processing of speech are predictive of cognitive performance. We hypothesized that hemisphere differences in auditory event-related potentials in intensive care neonates are predictive of neurodevelopment in infancy, even in those born preterm. Event-related potentials to speech sounds were prospectively recorded in 57 infants (gestational age 24–40 weeks) prior to discharge. The Developmental Assessment of Young Children was performed at 6 and 12 months. Hemisphere differences in mean amplitudes increased with postnatal age (P < .01) but not with gestational age. Greater hemisphere differences were associated with improved communication and cognitive scores at 6 and 12 months, but decreased in significance at 12 months after adjusting for socioeconomic and clinical factors. Auditory cortical responses can be used in intensive care neonates to help identify infants at higher risk for delays in infancy. PMID:23864588
Using the structure of natural scenes and sounds to predict neural response properties in the brain
NASA Astrophysics Data System (ADS)
Deweese, Michael
2014-03-01
The natural scenes and sounds we encounter in the world are highly structured. The fact that animals and humans are so efficient at processing these sensory signals compared with the latest algorithms running on the fastest modern computers suggests that our brains can exploit this structure. We have developed a sparse mathematical representation of speech that minimizes the number of active model neurons needed to represent typical speech sounds. The model learns several well-known acoustic features of speech such as harmonic stacks, formants, onsets and terminations, but we also find more exotic structures in the spectrogra representation of sound such as localized checkerboard patterns and frequency-modulated excitatory subregions flanked by suppressive sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported in the Inferior Colliculus (IC), as well as auditory thalamus (MGBv) and primary auditory cortex (A1), and our model neurons exhibit the same tradeoff in spectrotemporal resolution as has been observed in IC. To our knowledge, this is the first demonstration that receptive fields of neurons in the ascending mammalian auditory pathway beyond the auditory nerve can be predicted based on coding principles and the statistical properties of recorded sounds. We have also developed a biologically-inspired neural network model of primary visual cortex (V1) that can learn a sparse representation of natural scenes using spiking neurons and strictly local plasticity rules. The representation learned by our model is in good agreement with measured receptive fields in V1, demonstrating that sparse sensory coding can be achieved in a realistic biological setting.
Sound-direction identification with bilateral cochlear implants.
Neuman, Arlene C; Haravon, Anita; Sislian, Nicole; Waltzman, Susan B
2007-02-01
The purpose of this study was to compare the accuracy of sound-direction identification in the horizontal plane by bilateral cochlear implant users when localization was measured with pink noise and with speech stimuli. Eight adults who were bilateral users of Nucleus 24 Contour devices participated in the study. All had received implants in both ears in a single surgery. Sound-direction identification was measured in a large classroom by using a nine-loudspeaker array. Localization was tested in three listening conditions (bilateral cochlear implants, left cochlear implant, and right cochlear implant), using two different stimuli (a speech stimulus and pink noise bursts) in a repeated-measures design. Sound-direction identification accuracy was significantly better when using two implants than when using a single implant. The mean root-mean-square error was 29 degrees for the bilateral condition, 54 degrees for the left cochlear implant, and 46.5 degrees for the right cochlear implant condition. Unilateral accuracy was similar for right cochlear implant and left cochlear implant performance. Sound-direction identification performance was similar for speech and pink noise stimuli. The data obtained in this study add to the growing body of evidence that sound-direction identification with bilateral cochlear implants is better than with a single implant. The similarity in localization performance obtained with the speech and pink noise supports the use of either stimulus for measuring sound-direction identification.
Extensions to the Speech Disorders Classification System (SDCS)
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.
2010-01-01
This report describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). Part I describes a classification extension to the SDCS to differentiate motor speech disorders from speech delay and to differentiate among three sub-types of motor speech disorders.…
On the Acoustics of Emotion in Audio: What Speech, Music, and Sound have in Common
Weninger, Felix; Eyben, Florian; Schuller, Björn W.; Mortillaro, Marcello; Scherer, Klaus R.
2013-01-01
Without doubt, there is emotional information in almost any kind of sound received by humans every day: be it the affective state of a person transmitted by means of speech; the emotion intended by a composer while writing a musical piece, or conveyed by a musician while performing it; or the affective state connected to an acoustic event occurring in the environment, in the soundtrack of a movie, or in a radio play. In the field of affective computing, there is currently some loosely connected research concerning either of these phenomena, but a holistic computational model of affect in sound is still lacking. In turn, for tomorrow’s pervasive technical systems, including affective companions and robots, it is expected to be highly beneficial to understand the affective dimensions of “the sound that something makes,” in order to evaluate the system’s auditory environment and its own audio output. This article aims at a first step toward a holistic computational model: starting from standard acoustic feature extraction schemes in the domains of speech, music, and sound analysis, we interpret the worth of individual features across these three domains, considering four audio databases with observer annotations in the arousal and valence dimensions. In the results, we find that by selection of appropriate descriptors, cross-domain arousal, and valence regression is feasible achieving significant correlations with the observer annotations of up to 0.78 for arousal (training on sound and testing on enacted speech) and 0.60 for valence (training on enacted speech and testing on music). The high degree of cross-domain consistency in encoding the two main dimensions of affect may be attributable to the co-evolution of speech and music from multimodal affect bursts, including the integration of nature sounds for expressive effects. PMID:23750144
Unicomb, Rachael; Hewat, Sally; Spencer, Elizabeth; Harrison, Elisabeth
2017-06-01
There is a paucity of evidence to guide treatment for children with co-occurring stuttering and speech sound disorder. Some guidelines suggest treating the two disorders simultaneously using indirect treatment approaches; however, the research supporting these recommendations is over 20 years old. In this clinical case series, we investigate whether these co-occurring disorders could be treated concurrently using direct treatment approaches supported by up-to-date, high-level evidence, and whether this could be done in an efficacious, safe and efficient manner. Five pre-school-aged participants received individual concurrent, direct intervention for both stuttering and speech sound disorder. All participants used the Lidcombe Program, as manualised. Direct treatment for speech sound disorder was individualised based on analysis of each child's sound system. At 12 months post commencement of treatment, all except one participant had completed the Lidcombe Program, and were less than 1.0% syllables stuttered on samples gathered within and beyond the clinic. These four participants completed Stage 1 of the Lidcombe Program in between 14 and 22 clinic visits, consistent with current benchmark data for this programme. At the same assessment point, all five participants exhibited significant increases in percentage of consonants correct and were in alignment with age-expected estimates of this measure. Further, they were treated in an average number of clinic visits that compares favourably with other research on treatment for speech sound disorder. These preliminary results indicate that young children with co-occurring stuttering and speech sound disorder may be treated concurrently using direct treatment approaches. This method of service delivery may have implications for cost and time efficiency and may also address the crucial need for early intervention in both disorders. These positive findings highlight the need for further research in the area and contribute to the limited evidence base.
Monkey vocal tracts are speech-ready.
Fitch, W Tecumseh; de Boer, Bart; Mathur, Neil; Ghazanfar, Asif A
2016-12-01
For four decades, the inability of nonhuman primates to produce human speech sounds has been claimed to stem from limitations in their vocal tract anatomy, a conclusion based on plaster casts made from the vocal tract of a monkey cadaver. We used x-ray videos to quantify vocal tract dynamics in living macaques during vocalization, facial displays, and feeding. We demonstrate that the macaque vocal tract could easily produce an adequate range of speech sounds to support spoken language, showing that previous techniques based on postmortem samples drastically underestimated primate vocal capabilities. Our findings imply that the evolution of human speech capabilities required neural changes rather than modifications of vocal anatomy. Macaques have a speech-ready vocal tract but lack a speech-ready brain to control it.
Linking sounds to meanings: infant statistical learning in a natural language.
Hay, Jessica F; Pelucchi, Bruna; Graf Estes, Katharine; Saffran, Jenny R
2011-09-01
The processes of infant word segmentation and infant word learning have largely been studied separately. However, the ease with which potential word forms are segmented from fluent speech seems likely to influence subsequent mappings between words and their referents. To explore this process, we tested the link between the statistical coherence of sequences presented in fluent speech and infants' subsequent use of those sequences as labels for novel objects. Notably, the materials were drawn from a natural language unfamiliar to the infants (Italian). The results of three experiments suggest that there is a close relationship between the statistics of the speech stream and subsequent mapping of labels to referents. Mapping was facilitated when the labels contained high transitional probabilities in the forward and/or backward direction (Experiment 1). When no transitional probability information was available (Experiment 2), or when the internal transitional probabilities of the labels were low in both directions (Experiment 3), infants failed to link the labels to their referents. Word learning appears to be strongly influenced by infants' prior experience with the distribution of sounds that make up words in natural languages. Copyright © 2011 Elsevier Inc. All rights reserved.
Yu, Alan C. L.
2010-01-01
Variation is a ubiquitous feature of speech. Listeners must take into account context-induced variation to recover the interlocutor's intended message. When listeners fail to normalize for context-induced variation properly, deviant percepts become seeds for new perceptual and production norms. In question is how deviant percepts accumulate in a systematic fashion to give rise to sound change (i.e., new pronunciation norms) within a given speech community. The present study investigated subjects' classification of /s/ and // before /a/ or /u/ spoken by a male or a female voice. Building on modern cognitive theories of autism-spectrum condition, which see variation in autism-spectrum condition in terms of individual differences in cognitive processing style, we established a significant correlation between individuals' normalization for phonetic context (i.e., whether the following vowel is /a/ or /u/) and talker voice variation (i.e., whether the talker is male or female) in speech and their “autistic” traits, as measured by the Autism Spectrum Quotient (AQ). In particular, our mixed-effect logistic regression models show that women with low AQ (i.e., the least “autistic”) do not normalize for phonetic coarticulation as much as men and high AQ women. This study provides first direct evidence that variability in human's ability to compensate for context-induced variations in speech perceptually is governed by the individual's sex and cognitive processing style. These findings lend support to the hypothesis that the systematic infusion of new linguistic variants (i.e., the deviant percepts) originate from a sub-segment of the speech community that consistently under-compensates for contextual variation in speech. PMID:20808859
On hemispheric differences in evoked potentials to speech stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.; Benson, P.
1975-01-01
Subjects were asked to count the number of times a 'target' sound occurred in lists of speech sounds (pa or ba) or pure tones (250 or 600 c/sec) in which one of the sounds (the 'frequent') appeared about four times as often as the target. The response to both targets and frequents were separately averaged from electrodes at vertex at symmetrical left and right parietal locations. The expected sequence of deflections, including P3 waves with about 350 msec latency, was found in the responses to target stimuli. Very little difference was found between the right and left hemispheric responses to speech or pure tones, either frequent or target.
Temporal modulations in speech and music.
Ding, Nai; Patel, Aniruddh D; Chen, Lin; Butler, Henry; Luo, Cheng; Poeppel, David
2017-10-01
Speech and music have structured rhythms. Here we discuss a major acoustic correlate of spoken and musical rhythms, the slow (0.25-32Hz) temporal modulations in sound intensity and compare the modulation properties of speech and music. We analyze these modulations using over 25h of speech and over 39h of recordings of Western music. We show that the speech modulation spectrum is highly consistent across 9 languages (including languages with typologically different rhythmic characteristics). A different, but similarly consistent modulation spectrum is observed for music, including classical music played by single instruments of different types, symphonic, jazz, and rock. The temporal modulations of speech and music show broad but well-separated peaks around 5 and 2Hz, respectively. These acoustically dominant time scales may be intrinsic features of speech and music, a possibility which should be investigated using more culturally diverse samples in each domain. Distinct modulation timescales for speech and music could facilitate their perceptual analysis and its neural processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kalinowski, Joseph; Saltuklaroglu, Tim
2003-04-01
'Choral speech', 'unison speech', or 'imitation speech' has long been known to immediately induce reflexive, spontaneous, and natural sounding fluency, even the most severe cases of stuttering. Unlike typical post-therapeutic speech, a hallmark characteristic of choral speech is the sense of 'invulnerability' to stuttering, regardless of phonetic context, situational environment, or audience size. We suggest that choral speech immediately inhibits stuttering by engaging mirror systems of neurons, innate primitive neuronal substrates that dominate the initial phases of language development due to their predisposition to reflexively imitate gestural action sequences in a fluent manner. Since mirror systems are primordial in nature, they take precedence over the much later developing stuttering pathology. We suggest that stuttering may best be ameliorated by reengaging mirror neurons via choral speech or one of its derivatives (using digital signal processing technology) to provide gestural mirrors, that are nature's way of immediately overriding the central stuttering block. Copyright 2003 Elsevier Science Ltd.
Listeners modulate temporally selective attention during natural speech processing
Astheimer, Lori B.; Sanders, Lisa D.
2009-01-01
Spatially selective attention allows for the preferential processing of relevant stimuli when more information than can be processed in detail is presented simultaneously at distinct locations. Temporally selective attention may serve a similar function during speech perception by allowing listeners to allocate attentional resources to time windows that contain highly relevant acoustic information. To test this hypothesis, event-related potentials were compared in response to attention probes presented in six conditions during a narrative: concurrently with word onsets, beginning 50 and 100 ms before and after word onsets, and at random control intervals. Times for probe presentation were selected such that the acoustic environments of the narrative were matched for all conditions. Linguistic attention probes presented at and immediately following word onsets elicited larger amplitude N1s than control probes over medial and anterior regions. These results indicate that native speakers selectively process sounds presented at specific times during normal speech perception. PMID:18395316
Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva
2017-03-01
Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the speech signal by 90° compared with unaided listening. Personal FM systems are feasible in stroke patients, and may be of benefit in just under 20% of this population, who are not eligible for conventional hearing aids.
Chalupper, Josef
2017-01-01
The benefits of combining a cochlear implant (CI) and a hearing aid (HA) in opposite ears on speech perception were examined in 15 adult unilateral CI recipients who regularly use a contralateral HA. A within-subjects design was carried out to assess speech intelligibility testing, listening effort ratings, and a sound quality questionnaire for the conditions CI alone, CIHA together, and HA alone when applicable. The primary outcome of bimodal benefit, defined as the difference between CIHA and CI, was statistically significant for speech intelligibility in quiet as well as for intelligibility in noise across tested spatial conditions. A reduction in effort on top of intelligibility at the highest tested signal-to-noise ratio was found. Moreover, the bimodal listening situation was rated to sound more voluminous, less tinny, and less unpleasant than CI alone. Listening effort and sound quality emerged as feasible and relevant measures to demonstrate bimodal benefit across a clinically representative range of bimodal users. These extended dimensions of speech perception can shed more light on the array of benefits provided by complementing a CI with a contralateral HA. PMID:28874096
Optimizing Classroom Acoustics Using Computer Model Studies.
ERIC Educational Resources Information Center
Reich, Rebecca; Bradley, John
1998-01-01
Investigates conditions relating to the maximum useful-to-detrimental sound ratios present in classrooms and determining the optimum conditions for speech intelligibility. Reveals that speech intelligibility is more strongly influenced by ambient noise levels and that the optimal location for sound absorbing material is on a classroom's upper…
NASA Astrophysics Data System (ADS)
O'Donnell, Michael J.; Bisnovatyi, Ilia
2000-11-01
Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer scientists with that of numerical mathematicians studying sonification, psychologists, linguists, bioacousticians, and musicians to illuminate the structure of sound from different angles. Each of these disciplines deals with the use of sound to carry a different sort of information, under different requirements and constraints. By combining their insights, we can learn to understand of the structure of sound in general.
Phoneme Similarity and Confusability
ERIC Educational Resources Information Center
Bailey, T.M.; Hahn, U.
2005-01-01
Similarity between component speech sounds influences language processing in numerous ways. Explanation and detailed prediction of linguistic performance consequently requires an understanding of these basic similarities. The research reported in this paper contrasts two broad classes of approach to the issue of phoneme similarity-theoretically…
Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2009-01-01
Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.
Acoustic assessment of speech privacy curtains in two nursing units
Pope, Diana S.; Miller-Klein, Erik T.
2016-01-01
Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959
Acoustic assessment of speech privacy curtains in two nursing units.
Pope, Diana S; Miller-Klein, Erik T
2016-01-01
Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.
On the importance of early reflections for speech in rooms.
Bradley, J S; Sato, H; Picard, M
2003-06-01
This paper presents the results of new studies based on speech intelligibility tests in simulated sound fields and analyses of impulse response measurements in rooms used for speech communication. The speech intelligibility test results confirm the importance of early reflections for achieving good conditions for speech in rooms. The addition of early reflections increased the effective signal-to-noise ratio and related speech intelligibility scores for both impaired and nonimpaired listeners. The new results also show that for common conditions where the direct sound is reduced, it is only possible to understand speech because of the presence of early reflections. Analyses of measured impulse responses in rooms intended for speech show that early reflections can increase the effective signal-to-noise ratio by up to 9 dB. A room acoustics computer model is used to demonstrate that the relative importance of early reflections can be influenced by the room acoustics design.
Müller, Rainer; Höhlein, Andreas; Wolf, Annette; Markwardt, Jutta; Schulz, Matthias C; Range, Ursula; Reitemeier, Bernd
2013-01-01
Ablative surgery of oropharyngeal tumors frequently leads to defects in the speech organs, resulting in impairment of speech up to the point of unintelligibility. The aim of the present study was the assessment of selected parameters of speech with and without resection prostheses. The speech sounds of 22 patients suffering from maxillary and mandibular defects were recorded using a digital audio tape (DAT) recorder with and without resection prostheses. Evaluation of the resonance and the production of the sounds /s/, /sch/, and /ch/ was performed by 2 experienced speech therapists. Additionally, the patients completed a non-standardized questionnaire containing a linguistic self-assessment. After prosthesis supply, the number of patients with rhinophonia aperta decreased from 7 to 2 while the number of patients with intelligible speech increased from 2 to 20. Correct production of the sounds /s/, /sch/, and /ch/ increased from 2 to 13 patients. A significant improvement of the evaluated parameters could be observed only in patients with maxillary defects. The linguistic self-assessment showed a higher satisfaction in patients with maxillary defects. In patients with maxillary defects due to ablative tumor surgery, an increase in speech performance and intelligibility is possible by supplying resection prostheses. © 2013 S. Karger GmbH, Freiburg.
Caversaccio, Marco
2014-01-01
Objective. To compare hearing and speech understanding between a new, nonskin penetrating Baha system (Baha Attract) to the current Baha system using a skin-penetrating abutment. Methods. Hearing and speech understanding were measured in 16 experienced Baha users. The transmission path via the abutment was compared to a simulated Baha Attract transmission path by attaching the implantable magnet to the abutment and then by adding a sample of artificial skin and the external parts of the Baha Attract system. Four different measurements were performed: bone conduction thresholds directly through the sound processor (BC Direct), aided sound field thresholds, aided speech understanding in quiet, and aided speech understanding in noise. Results. The simulated Baha Attract transmission path introduced an attenuation starting from approximately 5 dB at 1000 Hz, increasing to 20–25 dB above 6000 Hz. However, aided sound field threshold shows smaller differences and aided speech understanding in quiet and in noise does not differ significantly between the two transmission paths. Conclusion. The Baha Attract system transmission path introduces predominately high frequency attenuation. This attenuation can be partially compensated by adequate fitting of the speech processor. No significant decrease in speech understanding in either quiet or in noise was found. PMID:25140314
Fuller, Christina; Free, Rolien; Maat, Bert; Başkent, Deniz
2012-08-01
In normal-hearing listeners, musical background has been observed to change the sound representation in the auditory system and produce enhanced performance in some speech perception tests. Based on these observations, it has been hypothesized that musical background can influence sound and speech perception, and as an extension also the quality of life, by cochlear-implant users. To test this hypothesis, this study explored musical background [using the Dutch Musical Background Questionnaire (DMBQ)], and self-perceived sound and speech perception and quality of life [using the Nijmegen Cochlear Implant Questionnaire (NCIQ) and the Speech Spatial and Qualities of Hearing Scale (SSQ)] in 98 postlingually deafened adult cochlear-implant recipients. In addition to self-perceived measures, speech perception scores (percentage of phonemes recognized in words presented in quiet) were obtained from patient records. The self-perceived hearing performance was associated with the objective speech perception. Forty-one respondents (44% of 94 respondents) indicated some form of formal musical training. Fifteen respondents (18% of 83 respondents) judged themselves as having musical training, experience, and knowledge. No association was observed between musical background (quantified by DMBQ), and self-perceived hearing-related performance or quality of life (quantified by NCIQ and SSQ), or speech perception in quiet.
Real time speech formant analyzer and display
Holland, George E.; Struve, Walter S.; Homer, John F.
1987-01-01
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.
Real time speech formant analyzer and display
Holland, G.E.; Struve, W.S.; Homer, J.F.
1987-02-03
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.
Musical intervention enhances infants’ neural processing of temporal structure in music and speech
Zhao, T. Christina; Kuhl, Patricia K.
2016-01-01
Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512
Musical intervention enhances infants' neural processing of temporal structure in music and speech.
Zhao, T Christina; Kuhl, Patricia K
2016-05-10
Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.
Double Fourier analysis for Emotion Identification in Voiced Speech
NASA Astrophysics Data System (ADS)
Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.
2016-04-01
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.
Seeing a singer helps comprehension of the song's lyrics.
Jesse, Alexandra; Massaro, Dominic W
2010-06-01
When listening to speech, we often benefit when also seeing the speaker's face. If this advantage is not domain specific for speech, the recognition of sung lyrics should also benefit from seeing the singer's face. By independently varying the sight and sound of the lyrics, we found a substantial comprehension benefit of seeing a singer. This benefit was robust across participants, lyrics, and repetition of the test materials. This benefit was much larger than the benefit for sung lyrics obtained in previous research, which had not provided the visual information normally present in singing. Given that the comprehension of sung lyrics benefits from seeing the singer, just like speech comprehension benefits from seeing the speaker, both speech and music perception appear to be multisensory processes.
Coelho, Ana Cristina; Brasolotto, Alcione Ghedini; Bevilacqua, Maria Cecília
2015-06-01
To compare some perceptual and acoustic characteristics of the voices of children who use the advanced combination encoder (ACE) or fine structure processing (FSP) speech coding strategies, and to investigate whether these characteristics differ from children with normal hearing. Acoustic analysis of the sustained vowel /a/ was performed using the multi-dimensional voice program (MDVP). Analyses of sequential and spontaneous speech were performed using the real time pitch. Perceptual analyses of these samples were performed using visual-analogic scales of pre-selected parameters. Seventy-six children from three years to five years and 11 months of age participated. Twenty-eight were users of ACE, 23 were users of FSP, and 25 were children with normal hearing. Although both groups with CI presented with some deviated vocal features, the users of ACE presented with voice quality more like children with normal hearing than the users of FSP. Sound processing of ACE appeared to provide better conditions for auditory monitoring of the voice, and consequently, for better control of the voice production. However, these findings need to be further investigated due to the lack of comparative studies published to understand exactly which attributes of sound processing are responsible for differences in performance.
Anderson, Karen L; Goldstein, Howard
2004-04-01
Children typically learn in classroom environments that have background noise and reverberation that interfere with accurate speech perception. Amplification technology can enhance the speech perception of students who are hard of hearing. This study used a single-subject alternating treatments design to compare the speech recognition abilities of children who are, hard of hearing when they were using hearing aids with each of three frequency modulated (FM) or infrared devices. Eight 9-12-year-olds with mild to severe hearing loss repeated Hearing in Noise Test (HINT) sentence lists under controlled conditions in a typical kindergarten classroom with a background noise level of +10 dB signal-to-noise (S/N) ratio and 1.1 s reverberation time. Participants listened to HINT lists using hearing aids alone and hearing aids in combination with three types of S/N-enhancing devices that are currently used in mainstream classrooms: (a) FM systems linked to personal hearing aids, (b) infrared sound field systems with speakers placed throughout the classroom, and (c) desktop personal sound field FM systems. The infrared ceiling sound field system did not provide benefit beyond that provided by hearing aids alone. Desktop and personal FM systems in combination with personal hearing aids provided substantial improvements in speech recognition. This information can assist in making S/N-enhancing device decisions for students using hearing aids. In a reverberant and noisy classroom setting, classroom sound field devices are not beneficial to speech perception for students with hearing aids, whereas either personal FM or desktop sound field systems provide listening benefits.
Deconvolution of magnetic acoustic change complex (mACC).
Bardy, Fabrice; McMahon, Catherine M; Yau, Shu Hui; Johnson, Blake W
2014-11-01
The aim of this study was to design a novel experimental approach to investigate the morphological characteristics of auditory cortical responses elicited by rapidly changing synthesized speech sounds. Six sound-evoked magnetoencephalographic (MEG) responses were measured to a synthesized train of speech sounds using the vowels /e/ and /u/ in 17 normal hearing young adults. Responses were measured to: (i) the onset of the speech train, (ii) an F0 increment; (iii) an F0 decrement; (iv) an F2 decrement; (v) an F2 increment; and (vi) the offset of the speech train using short (jittered around 135ms) and long (1500ms) stimulus onset asynchronies (SOAs). The least squares (LS) deconvolution technique was used to disentangle the overlapping MEG responses in the short SOA condition only. Comparison between the morphology of the recovered cortical responses in the short and long SOAs conditions showed high similarity, suggesting that the LS deconvolution technique was successful in disentangling the MEG waveforms. Waveform latencies and amplitudes were different for the two SOAs conditions and were influenced by the spectro-temporal properties of the sound sequence. The magnetic acoustic change complex (mACC) for the short SOA condition showed significantly lower amplitudes and shorter latencies compared to the long SOA condition. The F0 transition showed a larger reduction in amplitude from long to short SOA compared to the F2 transition. Lateralization of the cortical responses were observed under some stimulus conditions and appeared to be associated with the spectro-temporal properties of the acoustic stimulus. The LS deconvolution technique provides a new tool to study the properties of the auditory cortical response to rapidly changing sound stimuli. The presence of the cortical auditory evoked responses for rapid transition of synthesized speech stimuli suggests that the temporal code is preserved at the level of the auditory cortex. Further, the reduced amplitudes and shorter latencies might reflect intrinsic properties of the cortical neurons to rapidly presented sounds. This is the first demonstration of the separation of overlapping cortical responses to rapidly changing speech sounds and offers a potential new biomarker of discrimination of rapid transition of sound. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
Fluid-acoustic interactions and their impact on pathological voiced speech
NASA Astrophysics Data System (ADS)
Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.; Plesniak, Michael W.
2011-11-01
Voiced speech is produced by vibration of the vocal fold structures. Vocal fold dynamics arise from aerodynamic pressure loadings, tissue properties, and acoustic modulation of the driving pressures. Recent speech science advancements have produced a physiologically-realistic fluid flow solver (BLEAP) capable of prescribing asymmetric intraglottal flow attachment that can be easily assimilated into reduced order models of speech. The BLEAP flow solver is extended to incorporate acoustic loading and sound propagation in the vocal tract by implementing a wave reflection analog approach for sound propagation based on the governing BLEAP equations. This enhanced physiological description of the physics of voiced speech is implemented into a two-mass model of speech. The impact of fluid-acoustic interactions on vocal fold dynamics is elucidated for both normal and pathological speech through linear and nonlinear analysis techniques. Supported by NSF Grant CBET-1036280.
ERIC Educational Resources Information Center
Ruscello, Dennis M.; Douglas, Cara; Tyson, Tabitha; Durkee, Mark
2005-01-01
A young child with macroglossia of unknown cause was seen for treatment to modify resting tongue posture and improve speech sound production. Evaluation of the treatments indicated positive change in resting tongue posture and a modest change in speech sound production. Treatment for such patients can be complex and must consider orthodontic…
Analyzing Stimulus-Stimulus Pairing Effects on Preferences for Speech Sounds
ERIC Educational Resources Information Center
Petursdottir, Anna Ingeborg; Carp, Charlotte L.; Matthies, Derek W.; Esch, Barbara E.
2011-01-01
Several studies have demonstrated effects of stimulus-stimulus pairing (SSP) on children's vocalizations, but numerous treatment failures have also been reported. The present study attempted to isolate procedural variables related to failures of SSP to condition speech sounds as reinforcers. Three boys diagnosed with autism-spectrum disorders…
Children with Speech Sound Disorders at School: Challenges for Children, Parents and Teachers
ERIC Educational Resources Information Center
Daniel, Graham R.; McLeod, Sharynne
2017-01-01
Teachers play a major role in supporting children's educational, social, and emotional development although may be unprepared for supporting children with speech sound disorders. Interviews with 34 participants including six focus children, their parents, siblings, friends, teachers and other significant adults in their lives highlighted…
Severe Speech Sound Disorders: An Integrated Multimodal Intervention
ERIC Educational Resources Information Center
King, Amie M.; Hengst, Julie A.; DeThorne, Laura S.
2013-01-01
Purpose: This study introduces an integrated multimodal intervention (IMI) and examines its effectiveness for the treatment of persistent and severe speech sound disorders (SSD) in young children. The IMI is an activity-based intervention that focuses simultaneously on increasing the "quantity" of a child's meaningful productions of target words…
The functional neuroanatomy of language
NASA Astrophysics Data System (ADS)
Hickok, Gregory
2009-09-01
There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.
Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
Ventura, Sandra M Rua; Freitas, Diamantino Rui S; Tavares, João Manuel R S
2011-07-01
The most recent and significant magnetic resonance imaging (MRI) improvements allow for the visualization of the vocal tract during speech production, which has been revealed to be a powerful tool in dynamic speech research. However, a synchronization technique with enhanced temporal resolution is still required. The study design was transversal in nature. Throughout this work, a technique for the dynamic study of the vocal tract with MRI by using the heart's signal to synchronize and trigger the imaging-acquisition process is presented and described. The technique in question is then used in the measurement of four speech articulatory parameters to assess three different syllables (articulatory gestures) of European Portuguese Language. The acquired MR images are automatically reconstructed so as to result in a variable sequence of images (slices) of different vocal tract shapes in articulatory positions associated with Portuguese speech sounds. The knowledge obtained as a result of the proposed technique represents a direct contribution to the improvement of speech synthesis algorithms, thereby allowing for novel perceptions in coarticulation studies, in addition to providing further efficient clinical guidelines in the pursuit of more proficient speech rehabilitation processes. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Huber, Rainer; Meis, Markus; Klink, Karin; Bartsch, Christian; Bitzer, Joerg
2014-01-01
Within the Lower Saxony Research Network Design of Environments for Ageing (GAL), a personal activity and household assistant (PAHA), an ambient reminder system, has been developed. One of its central output modality to interact with the user is sound. The study presented here evaluated three different system technologies for sound reproduction using up to five loudspeakers, including the "phantom source" concept. Moreover, a technology for hearing loss compensation for the mostly older users of the PAHA was implemented and evaluated. Evaluation experiments with 21 normal hearing and hearing impaired test subjects were carried out. The results show that after direct comparison of the sound presentation concepts, the presentation by the single TV speaker was most preferred, whereas the phantom source concept got the highest acceptance ratings as far as the general concept is concerned. The localization accuracy of the phantom source concept was good as long as the exact listening position was known to the algorithm and speech stimuli were used. Most subjects preferred the original signals over the pre-processed, dynamic-compressed signals, although processed speech was often described as being clearer.
Button, Le; Peter, Beate; Stoel-Gammon, Carol; Raskind, Wendy H
2013-03-01
The purpose of this study was to address the hypothesis that childhood apraxia of speech (CAS) is influenced by an underlying deficit in sequential processing that is also expressed in other modalities. In a sample of 21 adults from five multigenerational families, 11 with histories of various familial speech sound disorders, 3 biologically related adults from a family with familial CAS showed motor sequencing deficits in an alternating motor speech task. Compared with the other adults, these three participants showed deficits in tasks requiring high loads of sequential processing, including nonword imitation, nonword reading and spelling. Qualitative error analyses in real word and nonword imitations revealed group differences in phoneme sequencing errors. Motor sequencing ability was correlated with phoneme sequencing errors during real word and nonword imitation, reading and spelling. Correlations were characterized by extremely high scores in one family and extremely low scores in another. Results are consistent with a central deficit in sequential processing in CAS of familial origin.
BUTTON, LE; PETER, BEATE; STOEL-GAMMON, CAROL; RASKIND, WENDY H.
2013-01-01
The purpose of this study was to address the hypothesis that childhood apraxia of speech (CAS) is influenced by an underlying deficit in sequential processing that is also expressed in other modalities. In a sample of 21 adults from five multigenerational families, 11 with histories of various familial speech sound disorders, 3 biologically related adults from a family with familial CAS showed motor sequencing deficits in an alternating motor speech task. Compared with the other adults, these three participants showed deficits in tasks requiring high loads of sequential processing, including nonword imitation, nonword reading and spelling. Qualitative error analyses in real word and nonword imitations revealed group differences in phoneme sequencing errors. Motor sequencing ability was correlated with phoneme sequencing errors during real word and nonword imitation, reading and spelling. Correlations were characterized by extremely high scores in one family and extremely low scores in another. Results are consistent with a central deficit in sequential processing in CAS of familial origin. PMID:23339292
Voice and Speech after Laryngectomy
ERIC Educational Resources Information Center
Stajner-Katusic, Smiljka; Horga, Damir; Musura, Maja; Globlek, Dubravka
2006-01-01
The aim of the investigation is to compare voice and speech quality in alaryngeal patients using esophageal speech (ESOP, eight subjects), electroacoustical speech aid (EACA, six subjects) and tracheoesophageal voice prosthesis (TEVP, three subjects). The subjects reading a short story were recorded in the sound-proof booth and the speech samples…
Clinical Validation of a Sound Processor Upgrade in Direct Acoustic Cochlear Implant Subjects
Kludt, Eugen; D’hondt, Christiane; Lenarz, Thomas; Maier, Hannes
2017-01-01
Objective: The objectives of the investigation were to evaluate the effect of a sound processor upgrade on the speech reception threshold in noise and to collect long-term safety and efficacy data after 2½ to 5 years of device use of direct acoustic cochlear implant (DACI) recipients. Study Design: The study was designed as a mono-centric, prospective clinical trial. Setting: Tertiary referral center. Patients: Fifteen patients implanted with a direct acoustic cochlear implant. Intervention: Upgrade with a newer generation of sound processor. Main Outcome Measures: Speech recognition test in quiet and in noise, pure tone thresholds, subject-reported outcome measures. Results: The speech recognition in quiet and in noise is superior after the sound processor upgrade and stable after long-term use of the direct acoustic cochlear implant. The bone conduction thresholds did not decrease significantly after long-term high level stimulation. Conclusions: The new sound processor for the DACI system provides significant benefits for DACI users for speech recognition in both quiet and noise. Especially the noise program with the use of directional microphones (Zoom) allows DACI patients to have much less difficulty when having conversations in noisy environments. Furthermore, the study confirms that the benefits of the sound processor upgrade are available to the DACI recipients even after several years of experience with a legacy sound processor. Finally, our study demonstrates that the DACI system is a safe and effective long-term therapy. PMID:28406848
Optimizing acoustical conditions for speech intelligibility in classrooms
NASA Astrophysics Data System (ADS)
Yang, Wonyoung
High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with SNS = 4 dB and increased to 0.8 and 1.2 s with decreased SNS = 0 dB, for both normal and hearing-impaired listeners. Hearing-impaired listeners required more early energy than normal-hearing listeners. Reflective ceiling barriers and ceiling reflectors---in particular, parallel front-back rows of semi-circular reflectors---achieved the goal of decreasing reverberation with the least speech-level reduction.
Rendall, Drew; Vasey, Paul L; McKenzie, Jared
2008-02-01
Popular stereotypes concerning the speech of homosexuals typically attribute speech patterns characteristic of the opposite-sex, i.e., broadly feminized speech in gay men and broadly masculinized speech in lesbian women. A small body of recent empirical research has begun to address the subject more systematically and to consider specific mechanistic hypotheses to account for the potentially distinctive features of homosexual speech. Results do not yet fully endorse the stereotypes but they do not entirely discount them either; nor do they cleanly favor any single mechanistic hypothesis. To contribute to this growing body of research, we report acoustic analyses of 2,875 vowel sounds from a balanced set of 125 speakers representing heterosexual and homosexual individuals of each sex from southern Alberta, Canada. Analyses focused on voice pitch and formant frequencies which together determine the principle perceptual features of vowels. There was no significant difference in mean voice pitch between heterosexual and homosexual men or between heterosexual and homosexual women, but there were significant differences in the formant frequencies of vowels produced by both homosexual groups compared to their heterosexual counterparts. Formant frequency differences were specific to only certain vowel sounds and some could be attributed to basic differences in body size between heterosexual and homosexual speakers. The remaining formant frequency differences were not obviously due to differences in vocal tract anatomy between heterosexual and homosexual speakers, nor did they reflect global feminization or masculinization of vowel production patterns in homosexual men and women, respectively. The vowel-specific differences observed could reflect social modeling processes in which only certain speech patterns of the opposite-sex, or of same-sex homosexuals, are selectively adopted. However, we introduce an alternative biosocial hypothesis, specifically that the distinctive, vowel-specific features of homosexual speakers relative to heterosexual speakers arise incidentally as a product of broader psychobehavioral differences between the two groups that are, in turn, continuous with and flow from the physiological processes that affect sexual orientation to begin with.
Mcleod, Sharynne; Baker, Elise
2014-01-01
A survey of 231 Australian speech-language pathologists (SLPs) was undertaken to describe practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders (SSD). The participants typically worked in private practice, education, or community health settings and 67.6% had a waiting list for services. For each child, most of the SLPs spent 10-40 min in pre-assessment activities, 30-60 min undertaking face-to-face assessments, and 30-60 min completing paperwork after assessments. During an assessment SLPs typically conducted a parent interview, single-word speech sampling, collected a connected speech sample, and used informal tests. They also determined children's stimulability and estimated intelligibility. With multilingual children, informal assessment procedures and English-only tests were commonly used and SLPs relied on family members or interpreters to assist. Common analysis techniques included determination of phonological processes, substitutions-omissions-distortions-additions (SODA), and phonetic inventory. Participants placed high priority on selecting target sounds that were stimulable, early developing, and in error across all word positions and 60.3% felt very confident or confident selecting an appropriate intervention approach. Eight intervention approaches were frequently used: auditory discrimination, minimal pairs, cued articulation, phonological awareness, traditional articulation therapy, auditory bombardment, Nuffield Centre Dyspraxia Programme, and core vocabulary. Children typically received individual therapy with an SLP in a clinic setting. Parents often observed and participated in sessions and SLPs typically included siblings and grandparents in intervention sessions. Parent training and home programs were more frequently used than the group therapy. Two-thirds kept up-to-date by reading journal articles monthly or every 6 months. There were many similarities with previously reported practices for children with SSD in the US, UK, and the Netherlands, with some (but not all) practices aligning with current research evidence.
Sapienza, C M; Crandell, C C; Curtis, B
1999-09-01
Voice problems are a frequent difficulty that teachers experience. Common complaints by teachers include vocal fatigue and hoarseness. One possible explanation for these symptoms is prolonged elevations in vocal loudness within the classroom. This investigation examined the effectiveness of sound-field frequency modulation (FM) amplification on reducing the sound pressure level (SPL) of the teacher's voice during classroom instruction. Specifically, SPL was examined during speech produced in a classroom lecture by 10 teachers with and without the use of sound-field amplification. Results indicated a significant 2.42-dB decrease in SPL with the use of sound-field FM amplification. These data support the use of sound-field amplification in the vocal hygiene regimen recommended to teachers by speech-language pathologists.
Noise and pitch interact during the cortical segregation of concurrent speech.
Bidelman, Gavin M; Yellamsetty, Anusha
2017-08-01
Behavioral studies reveal listeners exploit intrinsic differences in voice fundamental frequency (F0) to segregate concurrent speech sounds-the so-called "F0-benefit." More favorable signal-to-noise ratio (SNR) in the environment, an extrinsic acoustic factor, similarly benefits the parsing of simultaneous speech. Here, we examined the neurobiological substrates of these two cues in the perceptual segregation of concurrent speech mixtures. We recorded event-related brain potentials (ERPs) while listeners performed a speeded double-vowel identification task. Listeners heard two concurrent vowels whose F0 differed by zero or four semitones presented in either clean (no noise) or noise-degraded (+5 dB SNR) conditions. Behaviorally, listeners were more accurate in correctly identifying both vowels for larger F0 separations but F0-benefit was more pronounced at more favorable SNRs (i.e., pitch × SNR interaction). Analysis of the ERPs revealed that only the P2 wave (∼200 ms) showed a similar F0 x SNR interaction as behavior and was correlated with listeners' perceptual F0-benefit. Neural classifiers applied to the ERPs further suggested that speech sounds are segregated neurally within 200 ms based on SNR whereas segregation based on pitch occurs later in time (400-700 ms). The earlier timing of extrinsic SNR compared to intrinsic F0-based segregation implies that the cortical extraction of speech from noise is more efficient than differentiating speech based on pitch cues alone, which may recruit additional cortical processes. Findings indicate that noise and pitch differences interact relatively early in cerebral cortex and that the brain arrives at the identities of concurrent speech mixtures as early as ∼200 ms. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, H K; Bradley, J S
2009-07-01
This paper reports the results of an evaluation of the merits of standard airborne sound insulation measures with respect to subjective ratings of the annoyance and loudness of transmitted sounds. Subjects listened to speech and music sounds modified to represent transmission through 20 different walls with sound transmission class (STC) ratings from 34 to 58. A number of variations in the standard measures were also considered. These included variations in the 8-dB rule for the maximum allowed deficiency in the STC measure as well as variations in the standard 32-dB total allowed deficiency. Several spectrum adaptation terms were considered in combination with weighted sound reduction index (R(w)) values as well as modifications to the range of included frequencies in the standard rating contour. A STC measure without an 8-dB rule and an R(w) rating with a new spectrum adaptation term were better predictors of annoyance and loudness ratings of speech sounds. R(w) ratings with one of two modified C(tr) spectrum adaptation terms were better predictors of annoyance and loudness ratings of transmitted music sounds. Although some measures were much better predictors of responses to one type of sound than were the standard STC and R(w) values, no measure was remarkably improved for predicting annoyance and loudness ratings of both music and speech sounds.
Higgins, Paul; Searchfield, Grant; Coad, Gavin
2012-06-01
The aim of this study was to determine which level-dependent hearing aid digital signal-processing strategy (DSP) participants preferred when listening to music and/or performing a speech-in-noise task. Two receiver-in-the-ear hearing aids were compared: one using 32-channel adaptive dynamic range optimization (ADRO) and the other wide dynamic range compression (WDRC) incorporating dual fast (4 channel) and slow (15 channel) processing. The manufacturers' first-fit settings based on participants' audiograms were used in both cases. Results were obtained from 18 participants on a quick speech-in-noise (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) task and for 3 music listening conditions (classical, jazz, and rock). Participants preferred the quality of music and performed better at the QuickSIN task using the hearing aids with ADRO processing. A potential reason for the better performance of the ADRO hearing aids was less fluctuation in output with change in sound dynamics. ADRO processing has advantages for both music quality and speech recognition in noise over the multichannel WDRC processing that was used in the study. Further evaluations of which DSP aspects contribute to listener preference are required.
Searchfield, Grant D; Linford, Tania; Kobayashi, Kei; Crowhen, David; Latzel, Matthias
2018-03-01
To compare preference for and performance of manually selected programmes to an automatic sound classifier, the Phonak AutoSense OS. A single blind repeated measures study. Participants were fit with Phonak Virto V90 ITE aids; preferences for different listening programmes were compared across four different sound scenarios (speech in: quiet, noise, loud noise and a car). Following a 4-week trial preferences were reassessed and the users preferred programme was compared to the automatic classifier for sound quality and hearing in noise (HINT test) using a 12 loudspeaker array. Twenty-five participants with symmetrical moderate-severe sensorineural hearing loss. Participant preferences of manual programme for scenarios varied considerably between and within sessions. A HINT Speech Reception Threshold (SRT) advantage was observed for the automatic classifier over participant's manual selection for speech in quiet, loud noise and car noise. Sound quality ratings were similar for both manual and automatic selections. The use of a sound classifier is a viable alternative to manual programme selection.
Visual Influences on Speech Perception in Children with Autism
ERIC Educational Resources Information Center
Iarocci, Grace; Rombough, Adrienne; Yager, Jodi; Weeks, Daniel J.; Chua, Romeo
2010-01-01
The bimodal perception of speech sounds was examined in children with autism as compared to mental age--matched typically developing (TD) children. A computer task was employed wherein only the mouth region of the face was displayed and children reported what they heard or saw when presented with consonant-vowel sounds in unimodal auditory…
Pre-Literacy Skills of Subgroups of Children with Speech Sound Disorders
ERIC Educational Resources Information Center
Raitano, Nancy A.; Pennington, Bruce F.; Tunick, Rachel A.; Boada, Richard; Shriberg, Lawrence D.
2004-01-01
Background: The existing literature has conflicting findings about the literacy outcome of children with speech sound disorders (SSD), which may be due to the heterogeneity within SSD. Previous studies have documented that two important dimensions of heterogeneity are the presence of a comorbid language impairment (LI) and the persistence of SSD,…
Intervention Efficacy and Intensity for Children with Speech Sound Disorder
ERIC Educational Resources Information Center
Allen, Melissa M.
2013-01-01
Purpose: Clinicians do not have an evidence base they can use to recommend optimum intervention intensity for preschool children who present with speech sound disorder (SSD). This study examined the effect of dose frequency on phonological performance and the efficacy of the multiple oppositions approach. Method: Fifty-four preschool children with…
Impact of Aberrant Acoustic Properties on the Perception of Sound Quality in Electrolarynx Speech
ERIC Educational Resources Information Center
Meltzner, Geoffrey S.; Hillman, Robert E.
2005-01-01
A large percentage of patients who have undergone laryngectomy to treat advanced laryngeal cancer rely on an electrolarynx (EL) to communicate verbally. Although serviceable, EL speech is plagued by shortcomings in both sound quality and intelligibility. This study sought to better quantify the relative contributions of previously identified…
Reading Skills of Students with Speech Sound Disorders at Three Stages of Literacy Development
ERIC Educational Resources Information Center
Skebo, Crysten M.; Lewis, Barbara A.; Freebairn, Lisa A.; Tag, Jessica; Ciesla, Allison Avrich; Stein, Catherine M.
2013-01-01
Purpose: The relationship between phonological awareness, overall language, vocabulary, and nonlinguistic cognitive skills to decoding and reading comprehension was examined for students at 3 stages of literacy development (i.e., early elementary school, middle school, and high school). Students with histories of speech sound disorders (SSD) with…
What Influences Literacy Outcome in Children with Speech Sound Disorder?
ERIC Educational Resources Information Center
Peterson, Robin L.; Pennington, Bruce F.; Shriberg, Lawrence D.; Boada, Richard
2009-01-01
Purpose: In this study, the authors evaluated literacy outcome in children with histories of speech sound disorder (SSD) who were characterized along 2 dimensions: broader language function and persistence of SSD. In previous studies, authors have demonstrated that each dimension relates to literacy but have not disentangled their effects.…
Phonetic Variability in Residual Speech Sound Disorders: Exploration of Subtypes
ERIC Educational Resources Information Center
Preston, Jonathan L.; Koenig, Laura L.
2011-01-01
Purpose: To explore whether subgroups of children with residual speech sound disorders (R-SSDs) can be identified through multiple measures of token-to-token phonetic variability (changes in one spoken production to the next). Method: Children with R-SSDs were recorded during a rapid multisyllabic picture naming task and an oral diadochokinetic…
Correlates of Phonological Awareness in Preschoolers with Speech Sound Disorders
ERIC Educational Resources Information Center
Rvachew, Susan; Grawburg, Meghann
2006-01-01
Purpose: The purpose of this study was to examine the relationships among variables that may contribute to poor phonological awareness (PA) skills in preschool-aged children with speech sound disorders (SSD). Method: Ninety-five 4- and 5-year-old children with SSD were assessed during the spring of their prekindergarten year. Linear structural…
ERIC Educational Resources Information Center
Lousada, M.; Jesus, Luis M. T.; Hall, A.; Joffe, V.
2014-01-01
Background: The effectiveness of two treatment approaches (phonological therapy and articulation therapy) for treatment of 14 children, aged 4;0-6;7 years, with phonologically based speech-sound disorder (SSD) has been previously analysed with severity outcome measures (percentage of consonants correct score, percentage occurrence of phonological…
Stimulus Characteristics of Single-Word Tests of Children's Speech Sound Production
ERIC Educational Resources Information Center
Macrae, Toby
2017-01-01
Purpose: This clinical focus article provides readers with a description of the stimulus characteristics of 12 popular tests of speech sound production. Method: Using significance testing and descriptive analyses, stimulus items were compared in terms of the number of opportunities for production of all consonant singletons, clusters, and rhotic…
Perception of Spectral Contrast by Hearing-Impaired Listeners
ERIC Educational Resources Information Center
Dreisbach, Laura E.; Leek, Marjorie R.; Lentz, Jennifer J.
2005-01-01
The ability to discriminate the spectral shapes of complex sounds is critical to accurate speech perception. Part of the difficulty experienced by listeners with hearing loss in understanding speech sounds in noise may be related to a smearing of the internal representation of the spectral peaks and valleys because of the loss of sensitivity and…
Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech
ERIC Educational Resources Information Center
Švec, Jan G.; Granqvist, Svante
2018-01-01
Purpose: Sound pressure level (SPL) measurement of voice and speech is often considered a trivial matter, but the measured levels are often reported incorrectly or incompletely, making them difficult to compare among various studies. This article aims at explaining the fundamental principles behind these measurements and providing guidelines to…