Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)
NASA Astrophysics Data System (ADS)
Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian
2007-01-01
High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.
Perceived visual speed constrained by image segmentation
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.
1996-01-01
Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.
Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung
2012-10-08
Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.
Architecture Of High Speed Image Processing System
NASA Astrophysics Data System (ADS)
Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru
1988-01-01
One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.
Video image processing to create a speed sensor
DOT National Transportation Integrated Search
1999-11-01
Image processing has been applied to traffic analysis in recent years, with different goals. In the report, a new approach is presented for extracting vehicular speed information, given a sequence of real-time traffic images. We extract moving edges ...
Mihaylova, Milena; Manahilov, Velitchko
2010-11-24
Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.
Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D
2012-07-01
Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.
Ultra-high-speed variable focus optics for novel applications in advanced imaging
NASA Astrophysics Data System (ADS)
Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.
2018-02-01
With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.
Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.
2014-01-01
Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6 mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868
Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P
2014-07-01
Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6 mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.
Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging.
Chang, Jin Ho; Sun, Lei; Yen, Jesse T; Shung, K Kirk
2009-07-01
For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution.
Low-Cost, High-Speed Back-End Processing System for High-Frequency Ultrasound B-Mode Imaging
Chang, Jin Ho; Sun, Lei; Yen, Jesse T.; Shung, K. Kirk
2009-01-01
For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution. PMID:19574160
A programmable computational image sensor for high-speed vision
NASA Astrophysics Data System (ADS)
Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian
2013-08-01
In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.
PScan 1.0: flexible software framework for polygon based multiphoton microscopy
NASA Astrophysics Data System (ADS)
Li, Yongxiao; Lee, Woei Ming
2016-12-01
Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.
Thread concept for automatic task parallelization in image analysis
NASA Astrophysics Data System (ADS)
Lueckenhaus, Maximilian; Eckstein, Wolfgang
1998-09-01
Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.
Design of a dataway processor for a parallel image signal processing system
NASA Astrophysics Data System (ADS)
Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu
1995-04-01
Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Zhu, J. G.; Yang, X. Y.; Ye, S. H.
2006-10-01
The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent.
Ultra high speed image processing techniques. [electronic packaging techniques
NASA Technical Reports Server (NTRS)
Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.
1981-01-01
Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.
Markov Processes in Image Processing
NASA Astrophysics Data System (ADS)
Petrov, E. P.; Kharina, N. L.
2018-05-01
Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.
High speed multiphoton imaging
NASA Astrophysics Data System (ADS)
Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming
2016-12-01
Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.
(abstract) A High Throughput 3-D Inner Product Processor
NASA Technical Reports Server (NTRS)
Daud, Tuan
1996-01-01
A particularily challenging image processing application is the real time scene acquisition and object discrimination. It requires spatio-temporal recognition of point and resolved objects at high speeds with parallel processing algorithms. Neural network paradigms provide fine grain parallism and, when implemented in hardware, offer orders of magnitude speed up. However, neural networks implemented on a VLSI chip are planer architectures capable of efficient processing of linear vector signals rather than 2-D images. Therefore, for processing of images, a 3-D stack of neural-net ICs receiving planar inputs and consuming minimal power are required. Details of the circuits with chip architectures will be described with need to develop ultralow-power electronics. Further, use of the architecture in a system for high-speed processing will be illustrated.
SKL algorithm based fabric image matching and retrieval
NASA Astrophysics Data System (ADS)
Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping
2017-07-01
Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.
Development of Neuromorphic Sift Operator with Application to High Speed Image Matching
NASA Astrophysics Data System (ADS)
Shankayi, M.; Saadatseresht, M.; Bitetto, M. A. V.
2015-12-01
There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie (Videogrammetry), 24 MP (UAV photogrammetry), and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable to current workflows.
a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications
NASA Astrophysics Data System (ADS)
Dhanda, A.; Remondino, F.; Santana Quintero, M.
2018-05-01
This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.
On-demand server-side image processing for web-based DICOM image display
NASA Astrophysics Data System (ADS)
Sakusabe, Takaya; Kimura, Michio; Onogi, Yuzo
2000-04-01
Low cost image delivery is needed in modern networked hospitals. If a hospital has hundreds of clients, cost of client systems is a big problem. Naturally, a Web-based system is the most effective solution. But a Web browser could not display medical images with certain image processing such as a lookup table transformation. We developed a Web-based medical image display system using Web browser and on-demand server-side image processing. All images displayed on a Web page are generated from DICOM files on a server, delivered on-demand. User interaction on the Web page is handled by a client-side scripting technology such as JavaScript. This combination makes a look-and-feel of an imaging workstation not only for its functionality but also for its speed. Real time update of images with tracing mouse motion is achieved on Web browser without any client-side image processing which may be done by client-side plug-in technology such as Java Applets or ActiveX. We tested performance of the system in three cases. Single client, small number of clients in a fast speed network, and large number of clients in a normal speed network. The result shows that there are very slight overhead for communication and very scalable in number of clients.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
Hardware-based image processing for high-speed inspection of grains
USDA-ARS?s Scientific Manuscript database
A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with slight color differences and small defects on grains The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) which...
Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.
Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles
2015-12-01
This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.
Design of light-small high-speed image data processing system
NASA Astrophysics Data System (ADS)
Yang, Jinbao; Feng, Xue; Li, Fei
2015-10-01
A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.
Method and apparatus for optical encoding with compressible imaging
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2006-01-01
The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.
A computational approach to real-time image processing for serial time-encoded amplified microscopy
NASA Astrophysics Data System (ADS)
Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi
2016-03-01
High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.
Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation
Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles
2014-01-01
Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230
Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe
NASA Astrophysics Data System (ADS)
Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy
2017-12-01
Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.
ERIC Educational Resources Information Center
Hendley, Tom
1995-01-01
Discussion of digital document image processing focuses on issues and options associated with greyscale and color image processing. Topics include speed; size of original document; scanning resolution; markets for different categories of scanners, including photographic libraries, publishing, and office applications; hybrid systems; data…
FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathke, P.M.
1993-09-01
The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less
Plasmonics and metamaterials based super-resolution imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Zhaowei
2017-05-01
In recent years, surface imaging of various biological dynamics and biomechanical phenomena has seen a surge of interest. Imaging of processes such as exocytosis and kinesin motion are most effective when depth is limited to a very thin region of interest at the edge of the cell or specimen. However, many objects and processes of interest are of size scales below the diffraction limit for safe, visible wavelength illumination. Super-resolution imaging methods such as structured illumination microscopy and others have offered various compromises between resolution, imaging speed, and bio-compatibility. In this talk, I will present our most recent progress in plasmonic structured illumination microscopy (PSIM) and localized plasmonic structured illumination microscopy (LPSIM), and their applications in bio-imaging. We have achieved wide-field surface imaging with resolution down to 75 nm while maintaining reasonable speed and compatibility with biological specimens. These plasmonic enhanced super resolution techniques offer unique solutions to obtain 50nm spatial resolution and 50 frames per second wide imaging speed at the same time.
Distributed processing method for arbitrary view generation in camera sensor network
NASA Astrophysics Data System (ADS)
Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki
2003-05-01
Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.
New-style defect inspection system of film
NASA Astrophysics Data System (ADS)
Liang, Yan; Liu, Wenyao; Liu, Ming; Lee, Ronggang
2002-09-01
An inspection system has been developed for on-line detection of film defects, which bases on combination of photoelectric imaging and digital image processing. The system runs in high speed of maximum 60m/min. Moving film is illuminated by LED array which emits even infrared (peak wavelength λp=940nm), and infrared images are obtained with a high quality and high speed CCD camera. The application software based on Visual C++6.0 under Windows processes images in real time by means of such algorithms as median filter, edge detection and projection, etc. The system is made up of four modules, which are introduced in detail in the paper. On-line experiment results shows that the inspection system can recognize defects precisely in high speed and run reliably in practical application.
NASA Astrophysics Data System (ADS)
Daluge, D. R.; Ruedger, W. H.
1981-06-01
Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.
NASA Astrophysics Data System (ADS)
Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh
2018-03-01
The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).
NASA Astrophysics Data System (ADS)
Shin, Jaewook; Bosworth, Bryan T.; Foster, Mark A.
2017-02-01
The process of multiple scattering has inherent characteristics that are attractive for high-speed imaging with high spatial resolution and a wide field-of-view. A coherent source passing through a multiple-scattering medium naturally generates speckle patterns with diffraction-limited features over an arbitrarily large field-of-view. In addition, the process of multiple scattering is deterministic allowing a given speckle pattern to be reliably reproduced with identical illumination conditions. Here, by exploiting wavelength dependent multiple scattering and compressed sensing, we develop a high-speed 2D time-stretch microscope. Highly chirped pulses from a 90-MHz mode-locked laser are sent through a 2D grating and a ground-glass diffuser to produce 2D speckle patterns that rapidly evolve with the instantaneous frequency of the chirped pulse. To image a scene, we first characterize the high-speed evolution of the generated speckle patterns. Subsequently we project the patterns onto the microscopic region of interest and collect the total light from the scene using a single high-speed photodetector. Thus the wavelength dependent speckle patterns serve as high-speed pseudorandom structured illumination of the scene. An image sequence is then recovered using the time-dependent signal received by the photodetector, the known speckle pattern evolution, and compressed sensing algorithms. Notably, the use of compressed sensing allows for reconstruction of a time-dependent scene using a highly sub-Nyquist number of measurements, which both increases the speed of the imager and reduces the amount of data that must be collected and stored. We will discuss our experimental demonstration of this approach and the theoretical limits on imaging speed.
Overview of High Speed Close-Up Imaging in an Icing Environment
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.
2004-01-01
The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.
Scientific instrument engineering at Japanese congresses devoted to high-speed imaging
NASA Astrophysics Data System (ADS)
Shchelev, Mikhail Ya
2011-06-01
The information about the congresses held in Japan and devoted to fast imaging processes and photonics is presented. Reports devoted to the technique and the results of applications of superhigh-speed recording instrumentation in different fields of science and technology are considered.
Extended depth of field imaging for high speed object analysis
NASA Technical Reports Server (NTRS)
Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)
2011-01-01
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
NASA Technical Reports Server (NTRS)
Daluge, D. R.; Ruedger, W. H.
1981-01-01
Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.
High-speed AFM and the reduction of tip-sample forces
NASA Astrophysics Data System (ADS)
Miles, Mervyn; Sharma, Ravi; Picco, Loren
High-speed DC-mode AFM has been shown to be routinely capable of imaging at video rate, and, if required, at over 1000 frames per second. At sufficiently high tip-sample velocities in ambient conditions, the tip lifts off the sample surface in a superlubricity process which reduces the level of shear forces imposed on the sample by the tip and therefore reduces the potential damage and distortion of the sample being imaged. High-frequency mechanical oscillations, both lateral and vertical, have been reported to reduced the tip-sample frictional forces. We have investigated the effect of combining linear high-speed scanning with these small amplitude high-frequency oscillations with the aim of reducing further the force interaction in high-speed imaging. Examples of this new version of high-speed AFM imaging will be presented for biological samples.
Parallel Guessing: A Strategy for High-Speed Computation
1984-09-19
for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or
CMOS Image Sensors for High Speed Applications.
El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David
2009-01-01
Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).
New concept high-speed and high-resolution color scanner
NASA Astrophysics Data System (ADS)
Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya
2003-05-01
We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.
Tse computers. [ultrahigh speed optical processing for two dimensional binary image
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III
1977-01-01
An ultra-high-speed computer that utilizes binary images as its basic computational entity is being developed. The basic logic components perform thousands of operations simultaneously. Technologies of the fiber optics, display, thin film, and semiconductor industries are being utilized in the building of the hardware.
High-speed and ultrahigh-speed cinematographic recording techniques
NASA Astrophysics Data System (ADS)
Miquel, J. C.
1980-12-01
A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented
High-performance image processing on the desktop
NASA Astrophysics Data System (ADS)
Jordan, Stephen D.
1996-04-01
The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.
NASA Technical Reports Server (NTRS)
Harrison, D. C.; Sandler, H.; Miller, H. A.
1975-01-01
The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.
Vibration compensation for high speed scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Croft, D.; Devasia, S.
1999-12-01
Low scanning speed is a fundamental limitation of scanning tunneling microscopes (STMs), making real time imaging of surface processes and nanofabrication impractical. The effective scanning bandwidth is currently limited by the smallest resonant vibrational frequency of the piezobased positioning system (i.e., scanner) used in the STM. Due to this limitation, the acquired images are distorted during high speed operations. In practice, the achievable scan rates are much less than 1/10th of the resonant vibrational frequency of the STM scanner. To alleviate the scanning speed limitation, this article describes an inversion-based approach that compensates for the structural vibrations in the scanner and thus, allows STM imaging at high scanning speeds (relative to the smallest resonant vibrational frequency). Experimental results are presented to show the increase in scanning speeds achievable by applying the vibration compensation methods.
Ding, Qiuning; Tao, Chao; Liu, Xiaojun
2017-03-20
Speed-of-sound and optical absorption reflect the structure and function of tissues from different aspects. A dual-mode microscopy system based on a concentric annular ultrasound array is proposed to simultaneously acquire the long depth-of-field images of speed-of-sound and optical absorption of inhomogeneous samples. First, speed-of-sound is decoded from the signal delay between each element of the annular array. The measured speed-of-sound could not only be used as an image contrast, but also improve the resolution and accuracy of spatial location of photoacoustic image in inhomogeneous acoustic media. Secondly, benefitting from dynamic focusing of annular array and the measured speed-of-sound, it is achieved an advanced acoustic-resolution photoacoustic microscopy with a precise position and a long depth-of-field. The performance of the dual-mode imaging system has been experimentally examined by using a custom-made annular array. The proposed dual-mode microscopy might have the significances in monitoring the biological physiological and pathological processes.
High resolution imaging of a subsonic projectile using automated mirrors with large aperture
NASA Astrophysics Data System (ADS)
Tateno, Y.; Ishii, M.; Oku, H.
2017-02-01
Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.
Development of an imaging system for single droplet characterization using a droplet generator.
Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D
2012-01-01
The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.
Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment
NASA Astrophysics Data System (ADS)
Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun
2016-09-01
This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473-833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T > 750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.
ERIC Educational Resources Information Center
Haapaniemi, Peter
1990-01-01
Describes imaging technology, which allows huge numbers of words and illustrations to be reduced to tiny fraction of space required by originals and discusses current applications. Highlights include image processing system at National Archives; use by banks for high-speed check processing; engineering document management systems (EDMS); folder…
NASA Astrophysics Data System (ADS)
Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo
2015-05-01
The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self-learning strategies were implemented with very promising results, demonstrating the feasibility of using low-cost high-speed infrared imagers in advancing towards a real-time / in-line zero-defect production systems.
High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners
Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk
2008-01-01
This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449
High-speed image processing system and its micro-optics application
NASA Astrophysics Data System (ADS)
Ohba, Kohtaro; Ortega, Jesus C. P.; Tanikawa, Tamio; Tanie, Kazuo; Tajima, Kenji; Nagai, Hiroshi; Tsuji, Masataka; Yamada, Shigeru
2003-07-01
In this paper, a new application system with high speed photography, i.e. an observational system for the tele-micro-operation, has been proposed with a dynamic focusing system and a high-speed image processing system using the "Depth From Focus (DFF)" criteria. In micro operation, such as for the microsurgery, DNA operation and etc., the small depth of a focus on the microscope makes bad observation. For example, if the focus is on the object, the actuator cannot be seen with the microscope. On the other hand, if the focus is on the actuator, the object cannot be observed. In this sense, the "all-in-focus image," which holds the in-focused texture all over the image, is useful to observe the microenvironments on the microscope. It is also important to obtain the "depth map" which could show the 3D micro virtual environments in real-time to actuate the micro objects, intuitively. To realize the real-time micro operation with DFF criteria, which has to integrate several images to obtain "all-in-focus image" and "depth map," at least, the 240 frames par second based image capture and processing system should be required. At first, this paper briefly reviews the criteria of "depth from focus" to achieve the all-in-focus image and the 3D microenvironments' reconstruction, simultaneously. After discussing the problem in our past system, a new frame-rate system is constructed with the high-speed video camera and FPGA hardware with 240 frames par second. To apply this system in the real microscope, a new criterion "ghost filtering" technique to reconstruct the all-in-focus image is proposed. Finally, the micro observation shows the validity of this system.
High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform
Chan, Kenny K. H.; Tang, Shuo
2010-01-01
The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551
Embedded system of image storage based on fiber channel
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong
2008-03-01
In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.
Characteristics of Kodak Insight, an F-speed intraoral film.
Ludlow, J B; Platin, E; Mol, A
2001-01-01
This study reports film speed, contrast, exposure latitude, resolution, and response to processing solution depletion of Kodak Insight intraoral film. Densitometric curves were generated by using International Standards Organization protocol. Additional curves were generated for Ultra-speed, Ektaspeed Plus, and Insight films developed in progressively depleted processing solutions. Eight observers viewed images of a resolution test tool for maximum resolution assessment. Images of an aluminum step-wedge were reviewed to determine useful exposure latitude. Insight's sensitivity in fresh automatic processor solutions places it in the F-speed group. An average gradient of 1.8 was found with all film types. Insight provided 93% of the useful exposure latitude of Ektaspeed Plus film. Insight maintained contrast in progressively depleted processing solutions. Like Ektaspeed Plus, Insight was able to resolve at least 20 line-pairs per millimeter. Under International Standards Organization conditions, Insight required only 77% of the exposure of Ektaspeed Plus film. Insight film provided stable contrast in depleted processing solutions.
Imaging of sound speed using reflection ultrasound tomography.
Nebeker, Jakob; Nelson, Thomas R
2012-09-01
The goal of this work was to obtain and evaluate measurements of tissue sound speed in the breast, particularly dense breasts, using backscatter ultrasound tomography. An automated volumetric breast ultrasound scanner was constructed for imaging the prone patient. A 5- to 7-MHz linear array transducer acquired 17,920 radiofrequency pulse echo A-lines from the breast, and a back-wall reflector rotated over 360° in 25 seconds. Sound speed images used reflector echoes that after preprocessing were uploaded into a graphics processing unit for filtered back-projection reconstruction. A velocimeter also was constructed to measure the sound speed and attenuation for comparison to scanner performance. Measurements were made using the following: (1) deionized water from 22°C to 90°C; (2) various fluids with sound speeds from 1240 to 1904 m/s; (3) acrylamide gel test objects with features from 1 to 15 mm in diameter; and (4) healthy volunteers. The mean error ± SD between sound speed reference and image data was -0.48% ± 9.1%, and the error between reference and velocimeter measurements was -1.78% ± 6.50%. Sound speed image and velocimeter measurements showed a difference of 0.10% ± 4.04%. Temperature data showed a difference between theory and imaging performance of -0.28% ± 0.22%. Images of polyacrylamide test objects showed detectability of an approximately 1% sound speed difference in a 2.4-mm cylindrical inclusion with a contrast to noise ratio of 7.9 dB. An automated breast scanner offers the potential to make consistent automated tomographic images of breast backscatter, sound speed, and attenuation, potentially improving diagnosis, particularly in dense breasts.
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
Onboard spectral imager data processor
NASA Astrophysics Data System (ADS)
Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.
1999-10-01
Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.
High speed imaging of dynamic processes with a switched source x-ray CT system
NASA Astrophysics Data System (ADS)
Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.
2015-05-01
Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aukema, Eline J.; Caan, Matthan W.A.; Delft University of Technology, Delft
2009-07-01
Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m{sup 2}) and 6 with low-dose MTX (3 x 2 g/m{sup 2})) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed ofmore » processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.« less
Field-based high-speed imaging of explosive eruptions
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.
2012-12-01
Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian explosion, with ejection velocities twice as high as previously recorded. Video-derived information on ejection velocity and ejecta mass can be combined with analytical and experimental models to constrain the physical parameters of the gas driving individual pulses. 2) Jet development. The ejection trajectory of pyroclasts can also be used to outline the spatial and temporal development of the eruptive jet and the dynamics of gas-pyroclast coupling within the jet, while high-speed thermal images add information on the temperature evolution in the jet itself as a function of the pyroclast size and content. 2) Pyroclasts settling. High-speed videos can be used to investigate the aerodynamic settling behavior of pyroclasts from bomb to ash in size and including ash aggregates, providing key parameters such as drag coefficient as a function of Re, and particle density. 3) The generation and propagation of acoustic and shock waves. Phase condensation in volcanic and atmospheric aerosol is triggered by the transit of pressure waves and can be recorded in high-speed videos, allowing the speed and wavelength of the waves to be measured and compared with the corresponding infrasonic signals and theoretical predictions.
NASA Astrophysics Data System (ADS)
Hui, Jie; Cao, Yingchun; Zhang, Yi; Kole, Ayeeshik; Wang, Pu; Yu, Guangli; Eakins, Gregory; Sturek, Michael; Chen, Weibiao; Cheng, Ji-Xin
2017-03-01
Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipidladen plaques by providing simultaneous morphological and lipid-specific chemical information of an artery wall. The clinical utility of IVPA-US technology requires real-time imaging and display at speed of video-rate level. Here, we demonstrate a compact and portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter, differentiated A-line strategy, and real-time image processing and display algorithms. By imaging pulsatile motion at different imaging speeds, 16 frames per second was deemed to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. Our lateral resolution results further verified the number of A-lines used for a cross-sectional IVPA image reconstruction. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology.
Otero, Jorge; Guerrero, Hector; Gonzalez, Laura; Puig-Vidal, Manel
2012-01-01
The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4× factor. PMID:22368491
NASA Technical Reports Server (NTRS)
Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel
2014-01-01
Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.
Yiu, Edwin M-L; Wang, Gaowu; Lo, Andy C Y; Chan, Karen M-K; Ma, Estella P-M; Kong, Jiangping; Barrett, Elizabeth Ann
2013-11-01
The present study aimed to determine whether there were physiological differences in the vocal fold vibration between nonfatigued and fatigued voices using high-speed laryngoscopic imaging and quantitative analysis. Twenty participants aged from 18 to 23 years (mean, 21.2 years; standard deviation, 1.3 years) with normal voice were recruited to participate in an extended singing task. Vocal fatigue was induced using a singing task. High-speed laryngoscopic image recordings of /i/ phonation were taken before and after the singing task. The laryngoscopic images were semiautomatically analyzed with the quantitative high-speed video processing program to extract indices related to the anteroposterior dimension (length), transverse dimension (width), and the speed of opening and closing. Significant reduction in the glottal length-to-width ratio index was found after vocal fatigue. Physiologically, this indicated either a significantly shorter (anteroposteriorly) or a wider (transversely) glottis after vocal fatigue. The high-speed imaging technique using quantitative analysis has the potential for early identification of vocally fatigued voice. Copyright © 2013 The Voice Foundation. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuroda, R.; Sugawa, S.
2017-02-01
Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.
Novel wavelength diversity technique for high-speed atmospheric turbulence compensation
NASA Astrophysics Data System (ADS)
Arrasmith, William W.; Sullivan, Sean F.
2010-04-01
The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.
A New Test Method of Circuit Breaker Spring Telescopic Characteristics Based Image Processing
NASA Astrophysics Data System (ADS)
Huang, Huimin; Wang, Feifeng; Lu, Yufeng; Xia, Xiaofei; Su, Yi
2018-06-01
This paper applied computer vision technology to the fatigue condition monitoring of springs, and a new telescopic characteristics test method is proposed for circuit breaker operating mechanism spring based on image processing technology. High-speed camera is utilized to capture spring movement image sequences when high voltage circuit breaker operated. Then the image-matching method is used to obtain the deformation-time curve and speed-time curve, and the spring expansion and deformation parameters are extracted from it, which will lay a foundation for subsequent spring force analysis and matching state evaluation. After performing simulation tests at the experimental site, this image analyzing method could solve the complex problems of traditional mechanical sensor installation and monitoring online, status assessment of the circuit breaker spring.
Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.
2017-01-01
Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508
Image processing for safety assessment in civil engineering.
Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David
2013-06-20
Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.
NASA Astrophysics Data System (ADS)
Graves, Mark; Smith, Alexander; Batchelor, Bruce G.; Palmer, Stephen C.
1994-10-01
In the food industry there is an ever increasing need to control and monitor food quality. In recent years fully automated x-ray inspection systems have been used to detect food on-line for foreign body contamination. These systems involve a complex integration of x- ray imaging components with state of the art high speed image processing. The quality of the x-ray image obtained by such systems is very poor compared with images obtained from other inspection processes, this makes reliable detection of very small, low contrast defects extremely difficult. It is therefore extremely important to optimize the x-ray imaging components to give the very best image possible. In this paper we present a method of analyzing the x-ray imaging system in order to consider the contrast obtained when viewing small defects.
Horowitz-Kraus, Tzipi; Farah, Rola; DiFrancesco, Mark; Vannest, Jennifer
2017-02-01
Story listening in children relies on brain regions supporting speech perception, auditory word recognition, syntax, semantics, and discourse abilities, along with the ability to attend and process information (part of executive functions). Speed-of-processing is an early-developed executive function. We used functional and structural magnetic resonance imaging (MRI) to demonstrate the relationship between story listening and speed-of-processing in preschool-age children. Eighteen participants performed story-listening tasks during MRI scans. Functional and structural connectivity analysis was performed using the speed-of-processing scores as regressors. Activation in the superior frontal gyrus during story listening positively correlated with speed-of-processing scores. This region was functionally connected with the superior temporal gyrus, insula, and hippocampus. Fractional anisotropy in the inferior frontooccipital fasciculus, which connects the superior frontal and temporal gyri, was positively correlated with speed-of-processing scores. Our results suggest that speed-of-processing skills in preschool-age children are reflected in functional activation and connectivity during story listening and may act as a biomarker for future academic abilities. Georg Thieme Verlag KG Stuttgart · New York.
Ultrafast Imaging using Spectral Resonance Modulation
NASA Astrophysics Data System (ADS)
Huang, Eric; Ma, Qian; Liu, Zhaowei
2016-04-01
CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.
Vehicle counting system using real-time video processing
NASA Astrophysics Data System (ADS)
Crisóstomo-Romero, Pedro M.
2006-02-01
Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.
The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices
An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei
2014-01-01
All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033
NASA Astrophysics Data System (ADS)
Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin
2016-03-01
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.
Image processing system design for microcantilever-based optical readout infrared arrays
NASA Astrophysics Data System (ADS)
Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu
2012-12-01
Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.
The application of digital techniques to the analysis of metallurgical experiments
NASA Technical Reports Server (NTRS)
Rathz, T. J.
1977-01-01
The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.
1981-12-01
ocessors has led to the possibility of implementing a large number of image processing functions in near real time . ~CC~ jnro _ j:% UNLSSFE (b-.YC ASIIAINO...to the possibility of implementing a large number of image processing functions in near " real - time ," a result which is essential to establishing a...for example, and S) rapid image handling for near real - time in- teraction by a user at a display. For example, for a large resolution image, say
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.
Thermographic measurements of high-speed metal cutting
NASA Astrophysics Data System (ADS)
Mueller, Bernhard; Renz, Ulrich
2002-03-01
Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1992-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1991-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
NASA Astrophysics Data System (ADS)
O'Connor, A. S.; Justice, B.; Harris, A. T.
2013-12-01
Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.
NASA Astrophysics Data System (ADS)
Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long
2012-01-01
The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.
NASA Astrophysics Data System (ADS)
Jantzen, Connie; Slagle, Rick
1997-05-01
The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.
Imaging system design and image interpolation based on CMOS image sensor
NASA Astrophysics Data System (ADS)
Li, Yu-feng; Liang, Fei; Guo, Rui
2009-11-01
An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.
Design and implementation of non-linear image processing functions for CMOS image sensor
NASA Astrophysics Data System (ADS)
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Document Image Parsing and Understanding using Neuromorphic Architecture
2015-03-01
processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel
Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters
NASA Astrophysics Data System (ADS)
James, S. F.
2017-11-01
Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Jin, Di; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Due to the large number of available mirrors, the patterning speed, low-cost, and compactness, digital-micromirror devices (DMDs) have been extensively used in biomedical imaging system. Recently, DMDs have been brought to the quantitative phase microscopy (QPM) field to achieve synthetic-aperture imaging and tomographic imaging. Last year, our group demonstrated using DMD for QPM, where the phase-retrieval is based on a recently developed Fourier ptychography algorithm. In our previous system, the illumination angle was varied through coding the aperture plane of the illumination system, which has a low efficiency on utilizing the laser power. In our new DMD-based QPM system, we use the Lee-holograms, which is conjugated to the sample plane, to change the illumination angles for much higher power efficiency. Multiple-angle illumination can also be achieved with this method. With this versatile system, we can achieve FPM-based high-resolution phase imaging with 250 nm lateral resolution using the Rayleigh criteria. Due to the use of a powerful laser, the imaging speed would only be limited by the camera acquisition speed. With a fast camera, we expect to achieve close to 100 fps phase imaging speed that has not been achieved in current FPM imaging systems. By adding reference beam, we also expect to achieve synthetic-aperture imaging while directly measuring the phase of the sample fields. This would reduce the phase-retrieval processing time to allow for real-time imaging applications in the future.
Synchronous high speed multi-point velocity profile measurement by heterodyne interferometry
NASA Astrophysics Data System (ADS)
Hou, Xueqin; Xiao, Wen; Chen, Zonghui; Qin, Xiaodong; Pan, Feng
2017-02-01
This paper presents a synchronous multipoint velocity profile measurement system, which acquires the vibration velocities as well as images of vibrating objects by combining optical heterodyne interferometry and a high-speed CMOS-DVR camera. The high-speed CMOS-DVR camera records a sequence of images of the vibrating object. Then, by extracting and processing multiple pixels at the same time, a digital demodulation technique is implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. This method is validated with an experiment. A piezoelectric ceramic plate with standard vibration characteristics is used as the vibrating target, which is driven by a standard sinusoidal signal.
Fuzzy Logic Enhanced Digital PIV Processing Software
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1999-01-01
Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.
Yang, Fan; Paindavoine, M
2003-01-01
This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
NASA Astrophysics Data System (ADS)
Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.
2017-03-01
The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.
NASA Technical Reports Server (NTRS)
1997-01-01
In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.
Measuring the circular motion of small objects using laser stroboscopic images.
Wang, Hairong; Fu, Y; Du, R
2008-01-01
Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.
A CMOS high speed imaging system design based on FPGA
NASA Astrophysics Data System (ADS)
Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui
2015-10-01
CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.
High-speed photoacoustic imaging using an LED-based photoacoustic imaging system
NASA Astrophysics Data System (ADS)
Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka
2018-02-01
Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.
Radiographic trends of dental offices and dental schools.
Suleiman, O H; Spelic, D C; Conway, B; Hart, J C; Boyce, P R; Antonsen, R G
1999-07-01
A survey of private practice facilities in the United States that perform dental radiography was conducted in 1993 and repeated in dental schools in 1995-1996. Both surveys were conducted as part of the Nationwide Evaluation of X-ray Trends, or NEXT, survey program. A representative sample of dental facilities from each participating state were surveyed, and data on patient radiation exposure, radiographic technique, film-image quality, film-processing quality and darkroom fog were collected. The authors found that dental schools use E-speed film more frequently than do private practice facilities. The use of E-speed film and better film processing by dental schools resulted in lower patient radiation exposures without sacrificing image quality. The authors also found that dental school darkrooms had lower ambient fog levels than did those of private practice facilities. The distribution for the 1993 NEXT survey facilities was greater than that observed for dental schools for radiation exposure, film-processing quality and darkroom fog. Dental schools, in general, had better film quality and lower radiation exposures than did private practice facilities. Facilities need to emphasize better quality processing and the use of E-speed film to reduce patient exposure and improve image quality.
High resolution image processing on low-cost microcomputers
NASA Technical Reports Server (NTRS)
Miller, R. L.
1993-01-01
Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.
High speed real-time wavefront processing system for a solid-state laser system
NASA Astrophysics Data System (ADS)
Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing
2008-03-01
A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.
Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong
2013-01-07
Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.
Jin, Shuo; Li, Dengwang; Yin, Yong
2013-01-01
Accurate registration of 18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from 18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
NASA Astrophysics Data System (ADS)
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
Inspecting rapidly moving surfaces for small defects using CNN cameras
NASA Astrophysics Data System (ADS)
Blug, Andreas; Carl, Daniel; Höfler, Heinrich
2013-04-01
A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.
Accuracy improvement of multimodal measurement of speed of sound based on image processing
NASA Astrophysics Data System (ADS)
Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu
2017-07-01
Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.
Application of automatic threshold in dynamic target recognition with low contrast
NASA Astrophysics Data System (ADS)
Miao, Hua; Guo, Xiaoming; Chen, Yu
2014-11-01
Hybrid photoelectric joint transform correlator can realize automatic real-time recognition with high precision through the combination of optical devices and electronic devices. When recognizing targets with low contrast using photoelectric joint transform correlator, because of the difference of attitude, brightness and grayscale between target and template, only four to five frames of dynamic targets can be recognized without any processing. CCD camera is used to capture the dynamic target images and the capturing speed of CCD is 25 frames per second. Automatic threshold has many advantages like fast processing speed, effectively shielding noise interference, enhancing diffraction energy of useful information and better reserving outline of target and template, so this method plays a very important role in target recognition with optical correlation method. However, the automatic obtained threshold by program can not achieve the best recognition results for dynamic targets. The reason is that outline information is broken to some extent. Optimal threshold is obtained by manual intervention in most cases. Aiming at the characteristics of dynamic targets, the processing program of improved automatic threshold is finished by multiplying OTSU threshold of target and template by scale coefficient of the processed image, and combining with mathematical morphology. The optimal threshold can be achieved automatically by improved automatic threshold processing for dynamic low contrast target images. The recognition rate of dynamic targets is improved through decreased background noise effect and increased correlation information. A series of dynamic tank images with the speed about 70 km/h are adapted as target images. The 1st frame of this series of tanks can correlate only with the 3rd frame without any processing. Through OTSU threshold, the 80th frame can be recognized. By automatic threshold processing of the joint images, this number can be increased to 89 frames. Experimental results show that the improved automatic threshold processing has special application value for the recognition of dynamic target with low contrast.
IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.
1993-01-01
Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
High speed quantitative digital microscopy
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.
1984-01-01
Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.
Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi
2017-07-12
The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.
Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie
2010-09-13
In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.
Non-invasive In vivo measurement of the shear modulus of human vocal fold tissue
Kazemirad, Siavash; Bakhshaee, Hani; Mongeau, Luc; Kost, Karen
2014-01-01
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects’ vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 to 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI. PMID:24433668
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
2001-01-01
In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.
The "c" Equivalence Principle and the Correct form of Writing Maxwell's Equations
ERIC Educational Resources Information Center
Heras, Jose A.
2010-01-01
It is well known that the speed [image omitted] is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c[subscript u] is then physically different from the observed speed of propagation c associated with…
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
Fast Fourier transform-based Retinex and alpha-rooting color image enhancement
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Agaian, Sos S.; Gonzales, Analysa M.
2015-05-01
Efficiency in terms of both accuracy and speed is highly important in any system, especially when it comes to image processing. The purpose of this paper is to improve an existing implementation of multi-scale retinex (MSR) by utilizing the fast Fourier transforms (FFT) within the illumination estimation step of the algorithm to improve the speed at which Gaussian blurring filters were applied to the original input image. In addition, alpha-rooting can be used as a separate technique to achieve a sharper image in order to fuse its results with those of the retinex algorithm for the sake of achieving the best image possible as shown by the values of the considered color image enhancement measure (EMEC).
Single-chip microcomputer for image processing in the photonic measuring system
NASA Astrophysics Data System (ADS)
Smoleva, Olga S.; Ljul, Natalia Y.
2002-04-01
The non-contact measuring system has been designed for rail- track parameters control on the Moscow Metro. It detects some significant parameters: rail-track width, rail-track height, gage, rail-slums, crosslevel, pickets, and car speed. The system consists of three subsystems: non-contact system of rail-track width, height, and gage inspection, non-contact system of rail-slums inspection and subsystem for crosslevel, speed, and pickets detection. Data from subsystems is transferred to pre-processing unit. In order to process data received from subsystems, the single-chip signal processor ADSP-2185 must be used due to providing required processing speed. After data will be processed, it is send to PC, which processes it and outputs it in the readable form.
Data processing device test apparatus and method therefor
Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.
2003-04-08
A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.
Chen, Kuo-mei; Chen, Yu-wei
2011-04-07
For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.
High-performance computing in image registration
NASA Astrophysics Data System (ADS)
Zanin, Michele; Remondino, Fabio; Dalla Mura, Mauro
2012-10-01
Thanks to the recent technological advances, a large variety of image data is at our disposal with variable geometric, radiometric and temporal resolution. In many applications the processing of such images needs high performance computing techniques in order to deliver timely responses e.g. for rapid decisions or real-time actions. Thus, parallel or distributed computing methods, Digital Signal Processor (DSP) architectures, Graphical Processing Unit (GPU) programming and Field-Programmable Gate Array (FPGA) devices have become essential tools for the challenging issue of processing large amount of geo-data. The article focuses on the processing and registration of large datasets of terrestrial and aerial images for 3D reconstruction, diagnostic purposes and monitoring of the environment. For the image alignment procedure, sets of corresponding feature points need to be automatically extracted in order to successively compute the geometric transformation that aligns the data. The feature extraction and matching are ones of the most computationally demanding operations in the processing chain thus, a great degree of automation and speed is mandatory. The details of the implemented operations (named LARES) exploiting parallel architectures and GPU are thus presented. The innovative aspects of the implementation are (i) the effectiveness on a large variety of unorganized and complex datasets, (ii) capability to work with high-resolution images and (iii) the speed of the computations. Examples and comparisons with standard CPU processing are also reported and commented.
NASA Astrophysics Data System (ADS)
Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping
2014-01-01
Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.
Murray, Andrea L; Scratch, Shannon E; Thompson, Deanne K; Inder, Terrie E; Doyle, Lex W; Anderson, Jacqueline F. I.; Anderson, Peter J
2014-01-01
Objective This study aimed to examine attention and processing speed outcomes in very preterm (VPT; <32 weeks' gestational age) or very low birth weight (VLBW; <1500 g) children, and to assess the ability of brain abnormalities measured by neonatal magnetic resonance imaging (MRI) to predict outcome in these domains. Methods A cohort of 198 children born <30 weeks' gestational age and/or <1250 g and 70 term controls were examined. Neonatal MRI scans at term equivalent age were quantitatively assessed for white matter, cortical gray matter, deep gray matter, and cerebellar abnormalities. Attention and processing speed were assessed at 7 years using standardized neuropsychological tests. Group differences were tested in attention and processing speed, and the relationships between these cognitive domains and brain abnormalities at birth were investigated. Results At 7 years of age, the VPT/VLBW group performed significantly poorer than term controls on all attention and processing speed outcomes. Associations between adverse attention and processing speed performances at 7 years and higher neonatal brain abnormality scores were found; in particular, white matter and deep gray matter abnormalities were reasonable predictors of long-term cognitive outcomes. Conclusion Attention and processing speed are significant areas of concern in VPT/VLBW children. This is the first study to show that adverse attention and processing speed outcomes at 7 years are associated with neonatal brain pathology. PMID:24708047
High-speed AFM for scanning the architecture of living cells
NASA Astrophysics Data System (ADS)
Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong
2013-08-01
We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Towards real-time medical diagnostics using hyperspectral imaging technology
NASA Astrophysics Data System (ADS)
Bjorgan, Asgeir; Randeberg, Lise L.
2015-07-01
Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.
Image processing analysis on the air-water slug two-phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto
2016-06-01
Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.
High-Speed Edge-Detecting Line Scan Smart Camera
NASA Technical Reports Server (NTRS)
Prokop, Norman F.
2012-01-01
A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..
NASA Astrophysics Data System (ADS)
Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen
2018-06-01
Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.
Prototype Focal-Plane-Array Optoelectronic Image Processor
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey
1995-01-01
Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.
NASA Astrophysics Data System (ADS)
Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya
2017-09-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs
NASA Astrophysics Data System (ADS)
Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
Cui, Yang; Hanley, Luke
2015-01-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872
NASA Astrophysics Data System (ADS)
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
1981-01-01
Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777
Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging
NASA Astrophysics Data System (ADS)
Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.
2014-03-01
Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering
Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro
2017-01-01
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.
Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2017-11-09
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.
Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574
2011-04-01
Proceedings, Bristol, UK (2006). 5. M. A. Mentzer, Applied Optics Fundamentals and Device Applications: Nano, MOEMS , and Biotechnology, CRC Taylor...ballistic sensing, flash x-ray cineradiography, digital image correlation, image processing al- gorithms, and applications of MOEMS to nano- and
Calibration and Image Reconstruction for the Hurricane Imaging Radiometer (HIRAD)
NASA Technical Reports Server (NTRS)
Ruf, Christopher; Roberts, J. Brent; Biswas, Sayak; James, Mark W.; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne passive microwave synthetic aperture radiometer designed to provide wide swath images of ocean surface wind speed under heavy precipitation and, in particular, in tropical cyclones. It operates at 4, 5, 6 and 6.6 GHz and uses interferometric signal processing to synthesize a pushbroom imager in software from a low profile planar antenna with no mechanical scanning. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during Fall 2010 as its first science field campaign. HIRAD produced images of upwelling brightness temperature over a aprox 70 km swath width with approx 3 km spatial resolution. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The calibration and image reconstruction algorithms that were used to verify HIRAD functional performance during and immediately after GRIP were only preliminary and used a number of simplifying assumptions and approximations about the instrument design and performance. The development and performance of a more detailed and complete set of algorithms are reported here.
Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Froehlich, Alyson L.; Ennis, Chad; Lange, Nicholas; Nielsen, Jared A.; Prigge, Molly B. D.; Alexander, Andrew L.; Lainhart, Janet E.
2014-01-01
The present study used an accelerated longitudinal design to examine group differences and age-related changes in processing speed in 81 individuals with Autism Spectrum Disorder (ASD) compared to 56 age-matched individuals with typical development (ages 6–39 years). Processing speed was assessed using the Wechsler Intelligence Scale for Children-3rd edition (WISC-III) and the Wechsler Adult Intelligence Scale-3rd edition (WAIS-III). Follow-up analyses examined processing speed subtest performance and relations between processing speed and white matter microstructure (as measured with diffusion tensor imaging [DTI] in a subset of these participants). After controlling for full scale IQ, the present results show that processing speed index standard scores were on average 12 points lower in the group with ASD compared to the group with typical development. There were, however, no significant group differences in standard score age-related changes within this age range. For subtest raw scores, the group with ASD demonstrated robustly slower processing speeds in the adult versions of the IQ test (i.e., WAIS-III) but not in the child versions (WISC-III), even though age-related changes were similar in both the ASD and typically developing groups. This pattern of results may reflect difficulties that become increasingly evident in ASD on more complex measures of processing speed. Finally, DTI measures of whole-brain white matter microstructure suggested that fractional anisotropy (but not mean diffusivity, radial diffusivity, or axial diffusivity) made significant but small-sized contributions to processing speed standard scores across our entire sample. Taken together, the present findings suggest that robust decreases in processing speed may be present in ASD, more pronounced in adulthood, and partially attributable to white matter microstructural integrity. PMID:24269298
Comparison of approaches for mobile document image analysis using server supported smartphones
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-03-01
With the recent advances in mobile technologies, new capabilities are emerging, such as mobile document image analysis. However, mobile phones are still less powerful than servers, and they have some resource limitations. One approach to overcome these limitations is performing resource-intensive processes of the application on remote servers. In mobile document image analysis, the most resource consuming process is the Optical Character Recognition (OCR) process, which is used to extract text in mobile phone captured images. In this study, our goal is to compare the in-phone and the remote server processing approaches for mobile document image analysis in order to explore their trade-offs. For the inphone approach, all processes required for mobile document image analysis run on the mobile phone. On the other hand, in the remote-server approach, core OCR process runs on the remote server and other processes run on the mobile phone. Results of the experiments show that the remote server approach is considerably faster than the in-phone approach in terms of OCR time, but adds extra delays such as network delay. Since compression and downscaling of images significantly reduce file sizes and extra delays, the remote server approach overall outperforms the in-phone approach in terms of selected speed and correct recognition metrics, if the gain in OCR time compensates for the extra delays. According to the results of the experiments, using the most preferable settings, the remote server approach performs better than the in-phone approach in terms of speed and acceptable correct recognition metrics.
Motes, Michael A; Yezhuvath, Uma S; Aslan, Sina; Spence, Jeffrey S; Rypma, Bart; Chapman, Sandra B
2018-02-01
Higher-order cognitive training has shown to enhance performance in older adults, but the neural mechanisms underlying performance enhancement have yet to be fully disambiguated. This randomized trial examined changes in processing speed and processing speed-related neural activity in older participants (57-71 years of age) who underwent cognitive training (CT, N = 12) compared with wait-listed (WLC, N = 15) or exercise-training active (AC, N = 14) controls. The cognitive training taught cognitive control functions of strategic attention, integrative reasoning, and innovation over 12 weeks. All 3 groups worked through a functional magnetic resonance imaging processing speed task during 3 sessions (baseline, mid-training, and post-training). Although all groups showed faster reaction times (RTs) across sessions, the CT group showed a significant increase, and the WLC and AC groups showed significant decreases across sessions in the association between RT and BOLD signal change within the left prefrontal cortex (PFC). Thus, cognitive training led to a change in processing speed-related neural activity where faster processing speed was associated with reduced PFC activation, fitting previously identified neural efficiency profiles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
NASA Astrophysics Data System (ADS)
Zhao, Feng; Frietman, Edward E. E.; Han, Zhong; Chen, Ray T.
1999-04-01
A characteristic feature of a conventional von Neumann computer is that computing power is delivered by a single processing unit. Although increasing the clock frequency improves the performance of the computer, the switching speed of the semiconductor devices and the finite speed at which electrical signals propagate along the bus set the boundaries. Architectures containing large numbers of nodes can solve this performance dilemma, with the comment that main obstacles in designing such systems are caused by difficulties to come up with solutions that guarantee efficient communications among the nodes. Exchanging data becomes really a bottleneck should al nodes be connected by a shared resource. Only optics, due to its inherent parallelism, could solve that bottleneck. Here, we explore a multi-faceted free space image distributor to be used in optical interconnects in massively parallel processing. In this paper, physical and optical models of the image distributor are focused on from diffraction theory of light wave to optical simulations. the general features and the performance of the image distributor are also described. The new structure of an image distributor and the simulations for it are discussed. From the digital simulation and experiment, it is found that the multi-faceted free space image distributing technique is quite suitable for free space optical interconnection in massively parallel processing and new structure of the multifaceted free space image distributor would perform better.
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment
NASA Astrophysics Data System (ADS)
Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter
2017-07-01
Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.
Analysis of base fuze functioning of HESH ammunitions through high-speed photographic technique
NASA Astrophysics Data System (ADS)
Biswal, T. K.
2007-01-01
High-speed photography plays a major role in a Test Range where the direct access is possible through imaging in order to understand a dynamic process thoroughly and both qualitative and quantitative data are obtained thereafter through image processing and analysis. In one of the trials it was difficult to understand the performance of HESH ammunitions on rolled homogeneous armour. There was no consistency in scab formation even though all other parameters like propellant charge mass, charge temperature, impact velocity etc are maintained constant. To understand the event thoroughly high-speed photography was deployed to have a frontal view of the total process. Clear information of shell impact, embedding of HE propellant on armour and base fuze initiation are obtained. In case of scab forming rounds these three processes are clearly observed in sequence. However in non-scab ones base fuze is initiated before the completion of the embedding process resulting non-availability of threshold thrust on to the armour to cause scab. This has been revealed in two rounds where there was a failure of scab formation. As a quantitative measure, fuze delay was calculated for each round and there after premature functioning of base fuze was ascertained in case of non-scab rounds. Such potency of high-speed photography has been depicted in details in this paper.
[Development of a video image system for wireless capsule endoscopes based on DSP].
Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua
2008-02-01
A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.
Quality Assurance By Laser Scanning And Imaging Techniques
NASA Astrophysics Data System (ADS)
SchmalfuB, Harald J.; Schinner, Karl Ludwig
1989-03-01
Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
NASA Astrophysics Data System (ADS)
Chu, Zhe-Qi; Yuan, Jie; Stephen, Z. Pinter; Oliver, D. Kripfgans; Wang, Xue-Ding; Paul, L. Carson; Liu, Xiao-Jun
2015-10-01
Hyperthermia is a promising method to enhance chemo and radiation therapy of breast cancer. In the process of hyperthermia, temperature monitoring is of great importance to assure the effectiveness of treatment. The transmission speed of ultrasound in biomedical tissue changes with temperature. However, when mapping the speed of sound directly to temperature in each pixel as desired for using all speeds of ultrasound data, temperature bipolar edge enhancement artifacts occur near the boundary of two tissues with different speeds of ultrasound. After the analysis of the reasons for causing these artifacts, an optimized method is introduced to rebuild the temperature field image by using the continuity constraint as the judgment criterion. The significant smoothness of the rebuilding image in the transitional area shows that our proposed method can build a more precise temperature image for controlling the medical thermal treatment. Project supported in part by DoD/BCRP Idea Award, BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131280), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China, and the National Institutes of Health (NIH) of United States (Grant Nos. R01AR060350, R01CA91713, and R01AR055179).
Compensator design for improved counterbalancing in high speed atomic force microscopy.
Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics
Compensator design for improved counterbalancing in high speed atomic force microscopy
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-01-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989
Compensator design for improved counterbalancing in high speed atomic force microscopy
NASA Astrophysics Data System (ADS)
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.
Takeuchi, Hikaru; Sugiura, Motoaki; Sassa, Yuko; Sekiguchi, Atsushi; Yomogida, Yukihito; Taki, Yasuyuki; Kawashima, Ryuta
2012-01-01
The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings.
Visual Processing in Rapid-Chase Systems: Image Processing, Attention, and Awareness
Schmidt, Thomas; Haberkamp, Anke; Veltkamp, G. Marina; Weber, Andreas; Seydell-Greenwald, Anna; Schmidt, Filipp
2011-01-01
Visual stimuli can be classified so rapidly that their analysis may be based on a single sweep of feedforward processing through the visuomotor system. Behavioral criteria for feedforward processing can be evaluated in response priming tasks where speeded pointing or keypress responses are performed toward target stimuli which are preceded by prime stimuli. We apply this method to several classes of complex stimuli. (1) When participants classify natural images into animals or non-animals, the time course of their pointing responses indicates that prime and target signals remain strictly sequential throughout all processing stages, meeting stringent behavioral criteria for feedforward processing (rapid-chase criteria). (2) Such priming effects are boosted by selective visual attention for positions, shapes, and colors, in a way consistent with bottom-up enhancement of visuomotor processing, even when primes cannot be consciously identified. (3) Speeded processing of phobic images is observed in participants specifically fearful of spiders or snakes, suggesting enhancement of feedforward processing by long-term perceptual learning. (4) When the perceived brightness of primes in complex displays is altered by means of illumination or transparency illusions, priming effects in speeded keypress responses can systematically contradict subjective brightness judgments, such that one prime appears brighter than the other but activates motor responses as if it was darker. We propose that response priming captures the output of the first feedforward pass of visual signals through the visuomotor system, and that this output lacks some characteristic features of more elaborate, recurrent processing. This way, visuomotor measures may become dissociated from several aspects of conscious vision. We argue that “fast” visuomotor measures predominantly driven by feedforward processing should supplement “slow” psychophysical measures predominantly based on visual awareness. PMID:21811484
Genova, Helen M.; DeLuca, John; Chiaravalloti, Nancy; Wylie, Glenn
2014-01-01
The primary purpose of the current study was to examine the relationship between performance on executive tasks and white matter integrity, assessed by diffusion tensor imaging (DTI) in Multiple Sclerosis (MS). A second aim was to examine how processing speed affects the relationship between executive functioning and FA. This relationship was examined in two executive tasks that rely heavily on processing speed: the Color-Word Interference Test and Trail-Making Test (Delis-Kaplan Executive Function System). It was hypothesized that reduced fractional anisotropy (FA) is related to poor performance on executive tasks in MS, but that this relationship would be affected by the statistical correction of processing speed from the executive tasks. 15 healthy controls and 25 persons with MS participated. Regression analyses were used to examine the relationship between executive functioning and FA, both before and after processing speed was removed from the executive scores. Before processing speed was removed from the executive scores, reduced FA was associated with poor performance on Color-Word Interference Test and Trail-Making Test in a diffuse network including corpus callosum and superior longitudinal fasciculus. However, once processing speed was removed, the relationship between executive functions and FA was no longer significant on the Trail Making test, and significantly reduced and more localized on the Color-Word Interference Test. PMID:23777468
Demosaiced pixel super-resolution for multiplexed holographic color imaging
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2016-01-01
To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242
NASA Astrophysics Data System (ADS)
Renken, Hartmut; Oelze, Holger W.; Rath, Hans J.
1998-04-01
The design and application of a digital high sped image data capturing system with a following image processing system applied to the Bremer Hochschul Hyperschallkanal BHHK is the content of this presentation. It is also the result of the cooperation between the departments aerodynamic and image processing at the ZARM-institute at the Drop Tower of Brennen. Similar systems are used by the combustion working group at ZARM and other external project partners. The BHHK, camera- and image storage system as well as the personal computer based image processing software are described next. Some examples of images taken at the BHHK are shown to illustrate the application. The new and very user-friendly Windows 32-bit system is capable to capture all camera data with a maximum pixel clock of 43 MHz and to process complete sequences of images in one step by using only one comfortable program.
Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte
2010-09-27
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.
A change detection method for remote sensing image based on LBP and SURF feature
NASA Astrophysics Data System (ADS)
Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun
2018-04-01
Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.
High-speed imaging on static tensile test for unidirectional CFRP
NASA Astrophysics Data System (ADS)
Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke
2008-11-01
The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
Ultra-high throughput real-time instruments for capturing fast signals and rare events
NASA Astrophysics Data System (ADS)
Buckley, Brandon Walter
Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and processing. The act of time-stretching effectively boosts the performance of the back-end electronics and digital signal processors. The slowed down signals reach the back-end electronics with reduced bandwidth, and are therefore less affected by high-frequency roll-off and distortion. Time-stretching also increases the effective sampling rate of analog-to-digital converters and reduces aperture jitter, thereby improving resolution. Finally, the instantaneous throughputs of digital signal processors are enhanced by the stretch factor to otherwise unattainable speeds. Leveraging these unique capabilities, TiSER becomes the ideal tool for capturing high-speed signals and characterizing rare phenomena. For this thesis, I have developed techniques to improve the spectral efficiency, bandwidth, and resolution of TiSER using polarization multiplexing, all-optical modulation, and coherent dispersive Fourier transformation. To reduce the latency and improve the data handling capacity, I have also designed and implemented a real-time digital signal processing electronic backend, achieving 1.5 tera-bit per second instantaneous processing throughput. Finally, I will present results from experiments highlighting TiSER's impact in real-world applications. Confocal fluorescence microscopy is the most widely used method for unveiling the molecular composition of biological specimens. However, the weak optical emission of fluorescent probes and the tradeoff between imaging speed and sensitivity is problematic for acquiring blur-free images of fast phenomena and cells flowing at high speed. Here I introduce a new fluorescence imaging modality, which leverages techniques from wireless communication to reach record pixel and frame rates. Termed Fluorescence Imaging using Radio-frequency tagged Emission (FIRE), this new imaging modality is capable of resolving never before seen dynamics in living cells - such as action potentials in neurons and metabolic waves in astrocytes - as well as performing high-content image assays of cells and particles in high-speed flow.
NASA Astrophysics Data System (ADS)
Yang, Yanlong; Zhou, Xing; Li, Runze; Van Horn, Mark; Peng, Tong; Lei, Ming; Wu, Di; Chen, Xun; Yao, Baoli; Ye, Tong
2015-03-01
Bessel beams have been used in many applications due to their unique optical properties of maintaining their intensity profiles unchanged during propagation. In imaging applications, Bessel beams have been successfully used to provide extended focuses for volumetric imaging and uniformed illumination plane in light-sheet microscopy. Coupled with two-photon excitation, Bessel beams have been successfully used in realizing fluorescence projected volumetric imaging. We demonstrated previously a stereoscopic solution-two-photon fluorescence stereomicroscopy (TPFSM)-for recovering the depth information in volumetric imaging with Bessel beams. In TPFSM, tilted Bessel beams were used to generate stereoscopic images on a laser scanning two-photon fluorescence microscope; upon post image processing we could successfully provide 3D perception of acquired volume images by wearing anaglyph 3D glasses. However, tilted Bessel beams were generated by shifting either an axicon or an objective laterally; the slow imaging speed and severe aberrations made it hard to use in real-time volume imaging. In this article, we report recent improvements of TPFSM with newly designed scanner and imaging software, which allows 3D stereoscopic imaging without moving any of the optical components on the setup. This improvement has dramatically improved focusing qualities and imaging speed so that the TPFSM can be performed potentially in real-time to provide 3D visualization in scattering media without post image processing.
Improvements in Speed and Functionality of a 670-GHz Imaging Radar
NASA Technical Reports Server (NTRS)
Dengler, Robert J.; Cooper, Ken B.; Mehdi, Imran; Siegel, Peter H.; Tarsala, Jan A.; Bryllert, Thomas E.
2011-01-01
Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second pixel was added, automatically reducing the imaging time by a factor of two. Although adding a second pixel to the system doubles the amount of submillimeter components required, some savings in microwave hardware can be realized by using a common low-noise source.
NASA Astrophysics Data System (ADS)
Hu, X.; Li, X.
2012-08-01
The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM) directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU) is much more powerful than central processing unit (CPU). We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.
High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.
Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien
2016-01-01
Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.
High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips
Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien
2016-01-01
Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340
Hardware Implementation of a Bilateral Subtraction Filter
NASA Technical Reports Server (NTRS)
Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven
2009-01-01
A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for its position in the window as well as the pixel value for the central pixel of the window. The absolute difference between these two pixel values is calculated and used as an address in a lookup table. Each processing element has a lookup table, unique for its position in the window, containing the weight coefficients for the Gaussian function for that position. The pixel value is multiplied by the weight, and the outputs of the processing element are the weight and pixel-value weight product. The products and weights are fed to the adder tree. The sum of the products and the sum of the weights are fed to the divider, which computes the sum of products the sum of weights. The output of the divider is denoted the bilateral smoothed image. The smoothing function is a simple weighted average computed over a 3 3 subwindow centered in the 9 9 window. After smoothing, the image is delayed by an additional amount of time needed to match the processing time for computing the bilateral smoothed image. The bilateral smoothed image is then subtracted from the 3 3 smoothed image to produce the final output. The prototype filter as implemented in a commercially available FPGA processes one pixel per clock cycle. Operation at a clock speed of 66 MHz has been demonstrated, and results of a static timing analysis have been interpreted as suggesting that the clock speed could be increased to as much as 100 MHz.
Image jitter enhances visual performance when spatial resolution is impaired.
Watson, Lynne M; Strang, Niall C; Scobie, Fraser; Love, Gordon D; Seidel, Dirk; Manahilov, Velitchko
2012-09-06
Visibility of low-spatial frequency stimuli improves when their contrast is modulated at 5 to 10 Hz compared with stationary stimuli. Therefore, temporal modulations of visual objects could enhance the performance of low vision patients who primarily perceive images of low-spatial frequency content. We investigated the effect of retinal-image jitter on word recognition speed and facial emotion recognition in subjects with central visual impairment. Word recognition speed and accuracy of facial emotion discrimination were measured in volunteers with AMD under stationary and jittering conditions. Computer-driven and optoelectronic approaches were used to induce retinal-image jitter with duration of 100 or 166 ms and amplitude within the range of 0.5 to 2.6° visual angle. Word recognition speed was also measured for participants with simulated (Bangerter filters) visual impairment. Text jittering markedly enhanced word recognition speed for people with severe visual loss (101 ± 25%), while for those with moderate visual impairment, this effect was weaker (19 ± 9%). The ability of low vision patients to discriminate the facial emotions of jittering images improved by a factor of 2. A prototype of optoelectronic jitter goggles produced similar improvement in facial emotion discrimination. Word recognition speed in participants with simulated visual impairment was enhanced for interjitter intervals over 100 ms and reduced for shorter intervals. Results suggest that retinal-image jitter with optimal frequency and amplitude is an effective strategy for enhancing visual information processing in the absence of spatial detail. These findings will enable the development of novel tools to improve the quality of life of low vision patients.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
Combined Acquisition/Processing For Data Reduction
NASA Astrophysics Data System (ADS)
Kruger, Robert A.
1982-01-01
Digital image processing systems necessarily consist of three components: acquisition, storage/retrieval and processing. The acquisition component requires the greatest data handling rates. By coupling together the acquisition witn some online hardwired processing, data rates and capacities for short term storage can be reduced. Furthermore, long term storage requirements can be reduced further by appropriate processing and editing of image data contained in short term memory. The net result could be reduced performance requirements for mass storage, processing and communication systems. Reduced amounts of data also snouid speed later data analysis and diagnostic decision making.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...
2017-06-15
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Research based on the SoPC platform of feature-based image registration
NASA Astrophysics Data System (ADS)
Shi, Yue-dong; Wang, Zhi-hui
2015-12-01
This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.
Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G
2014-11-13
A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.
Murayama, Kodai; Ishikawa, Daitaro; Genkawa, Takuma; Sugino, Hiroyuki; Komiyama, Makoto; Ozaki, Yukihiro
2015-03-03
In the present study we have developed a new version (ND-NIRs) of a polychromator-type near-infrared (NIR) spectrometer with a high-resolution photo diode array detector, which we built before (D-NIRs). The new version has four 5 W halogen lamps compared with the three lamps for the older version. The new version also has a condenser lens with a shorter focal point length. The increase in the number of the lamps and the shortening of the focal point of the condenser lens realize high signal-to-noise ratio and high-speed NIR imaging measurement. By using the ND-NIRs we carried out the in-line monitoring of pharmaceutical blending and determined an end point of the blending process. Moreover, to determinate a more accurate end point, a NIR image of the blending sample was acquired by means of a portable NIR imaging device based on ND-NIRs. The imaging result has demonstrated that the mixing time of 8 min is enough for homogeneous mixing. In this way the present study has demonstrated that ND-NIRs and the imaging system based on a ND-NIRs hold considerable promise for process analysis.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
NASA Astrophysics Data System (ADS)
Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael
Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.
Bruce, H A; Kochunov, P; Paciga, S A; Hyde, C L; Chen, X; Xie, Z; Zhang, B; Xi, H S; O'Donnell, P; Whelan, C; Schubert, C R; Bellon, A; Ament, S A; Shukla, D K; Du, X; Rowland, L M; O'Neill, H; Hong, L E
2017-06-01
Patients with schizophrenia show decreased processing speed on neuropsychological testing and decreased white matter integrity as measured by diffusion tensor imaging, two traits shown to be both heritable and genetically associated indicating that there may be genes that influence both traits as well as schizophrenia disease risk. The potassium channel gene family is a reasonable candidate to harbor such a gene given the prominent role potassium channels play in the central nervous system in signal transduction, particularly in myelinated axons. We genotyped members of the large potassium channel gene family focusing on putatively functional single nucleotide polymorphisms (SNPs) in a population of 363 controls, 194 patients with schizophrenia spectrum disorder (SSD) and 28 patients with affective disorders with psychotic features who completed imaging and neuropsychological testing. We then performed three association analyses using three phenotypes - processing speed, whole-brain white matter fractional anisotropy (FA) and schizophrenia spectrum diagnosis. We extracted SNPs showing an association at a nominal P value of <0.05 with all three phenotypes in the expected direction: decreased processing speed, decreased FA and increased risk of SSD. A single SNP, rs8234, in the 3' untranslated region of voltage-gated potassium channel subfamily Q member 1 (KCNQ1) was identified. Rs8234 has been shown to affect KCNQ1 expression levels, and KCNQ1 levels have been shown to affect neuronal action potentials. This exploratory analysis provides preliminary data suggesting that KCNQ1 may contribute to the shared risk for diminished processing speed, diminished white mater integrity and increased risk of schizophrenia. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Scantlebury, Nadia; Bouffet, Eric; Laughlin, Suzanne; Strother, Douglas; McConnell, Dina; Hukin, Juliette; Fryer, Christopher; Laperriere, Normand; Montour-Proulx, Isabelle; Keene, Daniel; Fleming, Adam; Jabado, Nada; Liu, Fang; Riggs, Lily; Law, Nicole; Mabbott, Donald J
2016-05-01
We compared the structure of specific white matter tracts and information processing speed between children treated for posterior fossa tumors with cranial-spinal radiation (n = 30), or with surgery +/- focal radiation (n = 29), and healthy children (n = 37). Probabilistic diffusion tensor imaging (DTI) tractography was used to delineate the inferior longitudinal fasciculi, optic radiation, inferior frontal occipital fasciculi, and uncinate fasciculi bilaterally. Information processing speed was measured using the coding and symbol search subtests of the Wechsler Intelligence Scales, and visual matching, pair cancellation, and rapid picture naming subtests of the Woodcock-Johnson Test of Cognitive Ability, 3rd revision. We examined group differences using repeated measures MANOVAs and path analyses were used to test the relations between treatment, white matter structure of the tracts, and information processing speed. DTI indices of the optic radiations, the inferior longitudinal fasciculi, and the inferior fronto-occipital fasciculi differed between children treated with cranial-spinal radiation and children treated with surgery +/- focal radiation, and healthy controls (p = .045). Children treated with cranial-spinal radiation also exhibited lower processing speed scores relative to healthy control subjects (p = .002). Notably, we observed that group differences in information processing speed were related to the structure of the right optic radiation (p = .002). We show that cranial-spinal radiation may have a negative impact on information processing speed via insult to the right optic radiations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Wavelet analysis for wind fields estimation.
Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.
Brady, Ryan J; Hampton, Robert R
2018-06-01
Working memory is a system by which a limited amount of information can be kept available for processing after the cessation of sensory input. Because working memory resources are limited, it is adaptive to focus processing on the most relevant information. We used a retro-cue paradigm to determine the extent to which monkey working memory possesses control mechanisms that focus processing on the most relevant representations. Monkeys saw a sample array of images, and shortly after the array disappeared, they were visually cued to a location that had been occupied by one of the sample images. The cue indicated which image should be remembered for the upcoming recognition test. By determining whether the monkeys were more accurate and quicker to respond to cued images compared to un-cued images, we tested the hypothesis that monkey working memory focuses processing on relevant information. We found a memory benefit for the cued image in terms of accuracy and retrieval speed with a memory load of two images. With a memory load of three images, we found a benefit in retrieval speed but only after shortening the onset latency of the retro-cue. Our results demonstrate previously unknown flexibility in the cognitive control of memory in monkeys, suggesting that control mechanisms in working memory likely evolved in a common ancestor of humans and monkeys more than 32 million years ago. Future work should be aimed at understanding the interaction between memory load and the ability to control memory resources, and the role of working memory control in generating differences in cognitive capacity among primates. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri
Friction-stir-welding (FSW) is a cost-effective and high quality joining process for aluminum alloys (especially heat-treatable allo ys) that has been applied successfully in the aerospace industry. However, the full potential of FSW on more cost-sensitive applications is still limited by the production rate, namely the welding speed of the process. The majority of literature evaluating FSW of aluminum alloys is based on welds made in the range of welding speeds around hundreds of millimeters per minute, and only a handful are at a moderate speed of 1 m/min. In this study we present a microstructural analysis of friction stir weldedmore » AA7075-T6 blanks with welding speeds up to 3 m/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. Results are coupled with welding parameters to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high speed processing.« less
Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic
2016-01-01
Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519
NASA Astrophysics Data System (ADS)
Ren, Juan
Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.
Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H
2007-01-01
Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.
Characterizing challenged Minnesota ballots
NASA Astrophysics Data System (ADS)
Nagy, George; Lopresti, Daniel; Barney Smith, Elisa H.; Wu, Ziyan
2011-01-01
Photocopies of the ballots challenged in the 2008 Minnesota elections, which constitute a public record, were scanned on a high-speed scanner and made available on a public radio website. The PDF files were downloaded, converted to TIF images, and posted on the PERFECT website. Based on a review of relevant image-processing aspects of paper-based election machinery and on additional statistics and observations on the posted sample data, robust tools were developed for determining the underlying grid of the targets on these ballots regardless of skew, clipping, and other degradations caused by high-speed copying and digitization. The accuracy and robustness of a method based on both index-marks and oval targets are demonstrated on 13,435 challenged ballot page images.
A Highly Accurate Face Recognition System Using Filtering Correlation
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ishikawa, Sayuri; Kodate, Kashiko
2007-09-01
The authors previously constructed a highly accurate fast face recognition optical correlator (FARCO) [E. Watanabe and K. Kodate: Opt. Rev. 12 (2005) 460], and subsequently developed an improved, super high-speed FARCO (S-FARCO), which is able to process several hundred thousand frames per second. The principal advantage of our new system is its wide applicability to any correlation scheme. Three different configurations were proposed, each depending on correlation speed. This paper describes and evaluates a software correlation filter. The face recognition function proved highly accurate, seeing that a low-resolution facial image size (64 × 64 pixels) has been successfully implemented. An operation speed of less than 10 ms was achieved using a personal computer with a central processing unit (CPU) of 3 GHz and 2 GB memory. When we applied the software correlation filter to a high-security cellular phone face recognition system, experiments on 30 female students over a period of three months yielded low error rates: 0% false acceptance rate and 2% false rejection rate. Therefore, the filtering correlation works effectively when applied to low resolution images such as web-based images or faces captured by a monitoring camera.
Process techniques of charge transfer time reduction for high speed CMOS image sensors
NASA Astrophysics Data System (ADS)
Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu
2014-11-01
This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo
2012-01-01
A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.
Advanced Secure Optical Image Processing for Communications
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2018-04-01
New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-01
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable. PMID:29342908
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-14
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.
A Flexible Annular-Array Imaging Platform for Micro-Ultrasound
Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei
2013-01-01
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923
Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm
Hesterman, Jacob Y.; Caucci, Luca; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.
2010-01-01
A fast search algorithm capable of operating in multi-dimensional spaces is introduced. As a sample application, we demonstrate its utility in the 2D and 3D maximum-likelihood position-estimation problem that arises in the processing of PMT signals to derive interaction locations in compact gamma cameras. We demonstrate that the algorithm can be parallelized in pipelines, and thereby efficiently implemented in specialized hardware, such as field-programmable gate arrays (FPGAs). A 2D implementation of the algorithm is achieved in Cell/BE processors, resulting in processing speeds above one million events per second, which is a 20× increase in speed over a conventional desktop machine. Graphics processing units (GPUs) are used for a 3D application of the algorithm, resulting in processing speeds of nearly 250,000 events per second which is a 250× increase in speed over a conventional desktop machine. These implementations indicate the viability of the algorithm for use in real-time imaging applications. PMID:20824155
Software implementation of the SKIPSM paradigm under PIP
NASA Astrophysics Data System (ADS)
Hack, Ralf; Waltz, Frederick M.; Batchelor, Bruce G.
1997-09-01
SKIPSM (separated-kernel image processing using finite state machines) is a technique for implementing large-kernel binary- morphology operators and many other operations. While earlier papers on SKIPSM concentrated mainly on implementations using pipelined hardware, there is considerable scope for achieving major speed improvements in software systems. Using identical control software, one-pass binary erosion and dilation structuring elements (SEs) ranging from the trivial (3 by 3) to the gigantic (51 by 51, or even larger), are readily available. Processing speed is independent of the size of the SE, making the SKIPSM approach practical for work with very large SEs on ordinary desktop computers. PIP (prolog image processing) is an interactive machine vision prototyping environment developed at the University of Wales Cardiff. It consists of a large number of image processing operators embedded within the standard AI language Prolog. This paper describes the SKIPSM implementation of binary morphology operators within PIP. A large set of binary erosion and dilation operations (circles, squares, diamonds, octagons, etc.) is available to the user through a command-line driven dialogue, via pull-down menus, or incorporated into standard (Prolog) programs. Little has been done thus far to optimize speed on this first software implementation of SKIPSM. Nevertheless, the results are impressive. The paper describes sample applications and presents timing figures. Readers have the opportunity to try out these operations on demonstration software written by the University of Wales, or via their WWW home page at http://bruce.cs.cf.ac.uk/bruce/index.html .
Speed skills: measuring the visual speed analyzing properties of primate MT neurons.
Perrone, J A; Thiele, A
2001-05-01
Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.
High speed infrared imaging system and method
Zehnder, Alan T.; Rosakis, Ares J.; Ravichandran, G.
2001-01-01
A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.
The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox
NASA Astrophysics Data System (ADS)
Harris, A. T., III; Goodman, J.; Justice, B.
2014-12-01
As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.
SR high-speed K-edge subtraction angiography in the small animal (abstract)
NASA Astrophysics Data System (ADS)
Takeda, T.; Akisada, M.; Nakajima, T.; Anno, I.; Ueda, K.; Umetani, K.; Yamaguchi, C.
1989-07-01
To assess the ability of the high-speed K-edge energy subtraction system which was made at beamline 8C of Photon Factory, Tsukuba, we performed an animal experiment. Rabbits were used for the intravenous K-edge subtraction angiography. In this paper, the actual images of the artery obtained by this system, are demonstrated. The high-speed K-edge subtraction system consisted of movable silicon (111) monocrystals, II-ITV, and digital memory system. Image processing was performed by 68000-IP computer. The monochromatic x-ray beam size was 50×60 mm. Photon energy above and below iodine K edge was changed within 16 ms and 32 frames of images were obtained sequentially. The rabbits were anaesthetized by phenobarbital and a 5F catheter was inserted into inferior vena cava via the femoral vein. 1.5 ml/kg of contrast material (Conlaxin H) was injected at the rate of 0.5 ml/kg/s. TV images were obtained 3 s after the starting point of injection. By using this system, the clear K-edge subtracted images were obtained sequentially as a conventional DSA system. The quality of the images were better than that obtained by DSA. The dynamical blood flow was analyzed, and the best arterial image could be selected from the sequential images. The structures of aortic arch, common carotid arteries, right subclavian artery, and internal thoracic artery were obtained at the chest. Both common carotid arteries and vertebral arteries were recorded at the neck. The diameter of about 0.3-0.4 mm artery could be clearly revealed. The high-speed K-edge subtraction system demonstrates the very sharp arterial images clearly and dynamically.
An Optimal Partial Differential Equations-based Stopping Criterion for Medical Image Denoising.
Khanian, Maryam; Feizi, Awat; Davari, Ali
2014-01-01
Improving the quality of medical images at pre- and post-surgery operations are necessary for beginning and speeding up the recovery process. Partial differential equations-based models have become a powerful and well-known tool in different areas of image processing such as denoising, multiscale image analysis, edge detection and other fields of image processing and computer vision. In this paper, an algorithm for medical image denoising using anisotropic diffusion filter with a convenient stopping criterion is presented. In this regard, the current paper introduces two strategies: utilizing the efficient explicit method due to its advantages with presenting impressive software technique to effectively solve the anisotropic diffusion filter which is mathematically unstable, proposing an automatic stopping criterion, that takes into consideration just input image, as opposed to other stopping criteria, besides the quality of denoised image, easiness and time. Various medical images are examined to confirm the claim.
NASA Astrophysics Data System (ADS)
Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan
2018-01-01
Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.
Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation
NASA Astrophysics Data System (ADS)
Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo
2016-05-01
In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.
High speed imaging for assessment of impact damage in natural fibre biocomposites
NASA Astrophysics Data System (ADS)
Ramakrishnan, Karthik Ram; Corn, Stephane; Le Moigne, Nicolas; Ienny, Patrick; Leger, Romain; Slangen, Pierre R.
2017-06-01
The use of Digital Image Correlation has been generally limited to the estimation of mechanical properties and fracture behaviour at low to moderate strain rates. High speed cameras dedicated to ballistic testing are often used to measure the initial and residual velocities of the projectile but rarely for damage assessment. The evaluation of impact damage is frequently achieved post-impact using visual inspection, ultrasonic C-scan or other NDI methods. Ultra-high speed cameras and developments in image processing have made possible the measurement of surface deformations and stresses in real time during dynamic cracking. In this paper, a method is presented to correlate the force- displacement data from the sensors to the slow motion tracking of the transient failure cracks using real-time high speed imaging. Natural fibre reinforced composites made of flax fibres and polypropylene matrix was chosen for the study. The creation of macro-cracks during the impact results in the loss of stiffness and a corresponding drop in the force history. However, optical instrumentation shows that the initiation of damage is not always evident and so the assessment of damage requires the use of a local approach. Digital Image Correlation is used to study the strain history of the composite and to identify the initiation and progression of damage. The effect of fly-speckled texture on strain measurement by image correlation is also studied. The developed method can be used for the evaluation of impact damage for different composite materials.
Parallel fuzzy connected image segmentation on GPU
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.
2011-01-01
Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037
Parallel fuzzy connected image segmentation on GPU.
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W
2011-07-01
Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.
Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer
Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N
2016-01-01
Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.
2018-01-01
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.
High-Speed Observer: Automated Streak Detection in SSME Plumes
NASA Technical Reports Server (NTRS)
Rieckoff, T. J.; Covan, M.; OFarrell, J. M.
2001-01-01
A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.
GPU-based real-time trinocular stereo vision
NASA Astrophysics Data System (ADS)
Yao, Yuanbin; Linton, R. J.; Padir, Taskin
2013-01-01
Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.
Chhatbar, Pratik Y.; Kara, Prakash
2013-01-01
Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature. PMID:23807877
Optical diagnostics of turbulent mixing in explosively-driven shock tube
NASA Astrophysics Data System (ADS)
Anderson, James; Hargather, Michael
2016-11-01
Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.
NASA Astrophysics Data System (ADS)
Wang, Binbin; Socolofsky, Scott A.
2015-10-01
Development, testing, and application of a deep-sea, high-speed, stereoscopic imaging system are presented. The new system is designed for field-ready deployment, focusing on measurement of the characteristics of natural seep bubbles and droplets with high-speed and high-resolution image capture. The stereo view configuration allows precise evaluation of the physical scale of the moving particles in image pairs. Two laboratory validation experiments (a continuous bubble chain and an airstone bubble plume) were carried out to test the calibration procedure, performance of image processing and bubble matching algorithms, three-dimensional viewing, and estimation of bubble size distribution and volumetric flow rate. The results showed that the stereo view was able to improve the individual bubble size measurement over the single-camera view by up to 90% in the two validation cases, with the single-camera being biased toward overestimation of the flow rate. We also present the first application of this imaging system in a study of natural gas seeps in the Gulf of Mexico. The high-speed images reveal the rigidity of the transparent bubble interface, indicating the presence of clathrate hydrate skins on the natural gas bubbles near the source (lowest measurement 1.3 m above the vent). We estimated the dominant bubble size at the seep site Sleeping Dragon in Mississippi Canyon block 118 to be in the range of 2-4 mm and the volumetric flow rate to be 0.2-0.3 L/min during our measurements from 17 to 21 July 2014.
An Ultra-High Speed Whole Slide Image Viewing System
Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J.; Frosch, Matthew P.; Louis, David N.
2012-01-01
Background: One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. Method: A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Results: Pathologists were being able to use the system comfortably after 0–15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. Conclusion: The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice. PMID:22063731
An ultra-high speed Whole Slide Image viewing system.
Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N
2012-01-01
One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.
An ultra-high speed whole slide image viewing system.
Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N
2012-01-01
One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.
Vehicle speed detection based on gaussian mixture model using sequential of images
NASA Astrophysics Data System (ADS)
Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang
2017-09-01
Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.
Large area high-speed metrology SPM system.
Klapetek, P; Valtr, M; Picco, L; Payton, O D; Martinek, J; Yacoot, A; Miles, M
2015-02-13
We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm(2) regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.
Large area high-speed metrology SPM system
NASA Astrophysics Data System (ADS)
Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.
2015-02-01
We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.
Wavelet Analysis for Wind Fields Estimation
Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699
Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery
NASA Astrophysics Data System (ADS)
Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong
2015-07-01
Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.
NASA Astrophysics Data System (ADS)
Zareei, Zahra; Navi, Keivan; Keshavarziyan, Peiman
2018-03-01
In this paper, three novel low-power and high-speed 1-bit inexact Full Adder cell designs are presented based on current mode logic in 32 nm carbon nanotube field effect transistor technology for the first time. The circuit-level figures of merits, i.e. power, delay and power-delay product as well as application-level metric such as error distance, are considered to assess the efficiency of the proposed cells over their counterparts. The effect of voltage scaling and temperature variation on the proposed cells is studied using HSPICE tool. Moreover, using MATLAB tool, the peak signal to noise ratio of the proposed cells is evaluated in an image-processing application referred to as motion detector. Simulation results confirm the efficiency of the proposed cells.
Mishchenko, Yuriy
2009-01-30
We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.
Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Schmidt, Tim
2016-01-01
Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.
The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm
NASA Astrophysics Data System (ADS)
Tan, Linglong; Li, Changkai; Wang, Yueqin
2018-04-01
SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
Loehfelm, Thomas W; Prater, Adam B; Debebe, Tequam; Sekhar, Aarti K
2017-02-01
We digitized the radiography teaching file at Black Lion Hospital (Addis Ababa, Ethiopia) during a recent trip, using a standard digital camera and a fluorescent light box. Our goal was to photograph every radiograph in the existing library while optimizing the final image size to the maximum resolution of a high quality tablet computer, preserving the contrast resolution of the radiographs, and minimizing total library file size. A secondary important goal was to minimize the cost and time required to take and process the images. Three workers were able to efficiently remove the radiographs from their storage folders, hang them on the light box, operate the camera, catalog the image, and repack the radiographs back to the storage folder. Zoom, focal length, and film speed were fixed, while aperture and shutter speed were manually adjusted for each image, allowing for efficiency and flexibility in image acquisition. Keeping zoom and focal length fixed, which kept the view box at the same relative position in all of the images acquired during a single photography session, allowed unused space to be batch-cropped, saving considerable time in post-processing, at the expense of final image resolution. We present an analysis of the trade-offs in workflow efficiency and final image quality, and demonstrate that a few people with minimal equipment can efficiently digitize a teaching file library.
Design of an MR image processing module on an FPGA chip
NASA Astrophysics Data System (ADS)
Li, Limin; Wyrwicz, Alice M.
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.
Design of an MR image processing module on an FPGA chip
Li, Limin; Wyrwicz, Alice M.
2015-01-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646
NASA Astrophysics Data System (ADS)
Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao
2017-12-01
The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.
Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.
Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas
2013-10-01
This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes. © 2013.
Deliyski, Dimitar D.; Hillman, Robert E.
2015-01-01
Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398
Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun
2017-09-14
Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.
Research of flaw image collecting and processing technology based on multi-baseline stereo imaging
NASA Astrophysics Data System (ADS)
Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan
2008-03-01
Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.
Playback system designed for X-Band SAR
NASA Astrophysics Data System (ADS)
Yuquan, Liu; Changyong, Dou
2014-03-01
SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.
A new level set model for cell image segmentation
NASA Astrophysics Data System (ADS)
Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun
2011-02-01
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
Digital Photography and Its Impact on Instruction.
ERIC Educational Resources Information Center
Lantz, Chris
Today the chemical processing of film is being replaced by a virtual digital darkroom. Digital image storage makes new levels of consistency possible because its nature is less volatile and more mutable than traditional photography. The potential of digital imaging is great, but issues of disk storage, computer speed, camera sensor resolution,…
fMRI evidence for a dual process account of the speed-accuracy tradeoff in decision-making.
Ivanoff, Jason; Branning, Philip; Marois, René
2008-07-09
The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy trade-off (SAT) in decision-making, its neural basis is still unknown. Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speed-accuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions. These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decision-making.
High-Speed Noninvasive Eye-Tracking System
NASA Technical Reports Server (NTRS)
Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin
2007-01-01
The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.
Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W; Chen, Zhuo Georgia; Fei, Baowei
2015-01-01
Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.
NASA Astrophysics Data System (ADS)
Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei
2015-12-01
Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.
Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.
2014-01-01
In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248
Freud, Erez; Avidan, Galia; Ganel, Tzvi
2015-02-01
Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information embedded in LSF, whereas HSF information may underlie the visual system's susceptibility to distortions in objects' spatial layouts.
NASA Astrophysics Data System (ADS)
Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien
2014-10-01
Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.
Development of a low-cost multiple diode PIV laser for high-speed flow visualization
NASA Astrophysics Data System (ADS)
Bhakta, Raj; Hargather, Michael
2017-11-01
Particle imaging velocimetry (PIV) is an optical visualization technique that typically incorporates a single high-powered laser to illuminate seeded particles in a fluid flow. Standard PIV lasers are extremely costly and have low frequencies that severely limit its capability in high speed, time-resolved imaging. The development of a multiple diode laser system consisting of continuous lasers allows for flexible high-speed imaging with a wider range of test parameters. The developed laser system was fabricated with off-the-shelf parts for approximately 500. A series of experimental tests were conducted to compare the laser apparatus to a standard Nd:YAG double-pulsed PIV laser. Steady and unsteady flows were processed to compare the two systems and validate the accuracy of the multiple laser design. PIV results indicate good correlation between the two laser systems and verifies the construction of a precise laser instrument. The key technical obstacle to this approach was laser calibration and positioning which will be discussed. HDTRA1-14-1-0070.
True color blood flow imaging using a high-speed laser photography system
NASA Astrophysics Data System (ADS)
Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi
2012-10-01
Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.
Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.
Vyas, N; Dehghani, H; Sammons, R L; Wang, Q X; Leppinen, D M; Walmsley, A D
2017-11-01
Cavitation is a potentially effective and less damaging method of removing biofilm from biomaterial surfaces. The aim of this study is to characterise individual microbubbles around ultrasonic scaler tips using high speed imaging and image processing. This information will provide improved understanding on the disruption of dental biofilm and give insights into how the instruments can be optimised for ultrasonic cleaning. Individual cavitation microbubbles around ultrasonic scalers were analysed using high speed recordings up to a million frames per second with image processing of the bubble movement. The radius and rate of bubble growth together with the collapse was calculated by tracking multiple points on bubbles over time. The tracking method to determine bubble speed demonstrated good inter-rater reliability (intra class correlation coefficient: 0.993) and can therefore be a useful method to apply in future studies. The bubble speed increased over its oscillation cycle and a maximum of 27ms -1 was recorded during the collapse phase. The maximum bubble radii ranged from 40 to 80μm. Bubble growth was observed when the ultrasonic scaler tip receded from an area and similarly bubble collapse was observed when the tip moved towards an area, corresponding to locations of low pressure around the scaler tip. Previous work shows that this cavitation is involved in biofilm removal. Future experimental work can be based on these findings by using the protocols developed to experimentally analyse cavitation around various clinical instruments and comparing with theoretical calculations. This will help to determine the main cleaning mechanisms of cavitation and how clinical instruments such as ultrasonic scalers can be optimised. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen
2017-03-01
Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.
Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM
NASA Technical Reports Server (NTRS)
Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip
2017-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Coincidence ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen
2014-12-01
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek
2010-08-24
Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.
Experimental study of icing accretion on a rotating conical spinner
NASA Astrophysics Data System (ADS)
Chen, Ningli; Ji, Honghu; Hu, Yaping; Wang, Jian; Cao, Guangzhou
2015-12-01
A reduced scale experiment has been conducted to investigate the icing accretion procedure on a rotating spinner of 60° cone angle. The experiment was carried out in a small scale ice wind tunnel with three different rotating speeds of the spinner. The experimental conditions were determined from the actual icing condition of the spinner of a turbofan engine by using the similarity theory, which considers the rotating effects. The ice thickness on the spinner was got from the image taken by the high speed camera, by image processing. The results of this investigation show that under the experimental condition, ice on the spinner's tip of three different rotating speeds are all glaze ice and about the same thick. However, on the downstream surface of the spinner, ice shape on the rotating spinner is different from that on the stationary spinner. It is uneven glaze ice on the stationary spinner while it is `particle ice' when the rotating speed is 8240 rpm and it is `needle ice' when the rotating speed is 15,200 rpm. The experiment also reveals that when the rotating speed is higher, the ice layer is thicker.
Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L
2013-01-01
Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.
Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.
2013-01-01
Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587
Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas
2011-01-01
Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.
New NASA Images of Irma's Towering Clouds
2017-09-08
On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 a.m. local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. The animated GIF shows Irma's motion over the seven minutes of the MISR imagery. North is toward the top of the image. This composite image shows Hurricane Irma as viewed by the central, downward-looking camera (left), as well as the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. At the time the image was acquired, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour, according to the National Oceanic and Atmospheric Administration. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. These data were captured during Terra orbit 94267. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21946
Aupperle, Robin L; Allard, Carolyn B; Grimes, Erin M; Simmons, Alan N; Flagan, Taru; Behrooznia, Michelle; Cissell, Shadha H; Twamley, Elizabeth W; Thorp, Steven R; Norman, Sonya B; Paulus, Martin P; Stein, Murray B
2012-04-01
Posttraumatic stress disorder (PTSD) has been associated with executive or attentional dysfunction and problems in emotion processing. However, it is unclear whether these two domains of dysfunction are related to common or distinct neurophysiological substrates. To examine the hypothesis that greater neuropsychological impairment in PTSD relates to greater disruption in prefrontal-subcortical networks during emotional anticipation. Case-control, cross-sectional study. General community and hospital and community psychiatric clinics. Volunteer sample of 37 women with PTSD related to intimate partner violence and 34 age-comparable healthy control women. We used functional magnetic resonance imaging (fMRI) to examine neural responses during anticipation of negative and positive emotional images. The Clinician-Administered PTSD Scale was used to characterize PTSD symptom severity. The Wechsler Adult Intelligence Scale, Third Edition, Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test, and Wisconsin Card Sorting Test were used to characterize neuropsychological performance. Women with PTSD performed worse on complex visuomotor processing speed (Digit Symbol Test) and executive function (Color-Word Interference Inhibition/Switching subtest) measures compared with control subjects. Posttraumatic stress disorder was associated with greater anterior insula and attenuated lateral prefrontal cortex (PFC) activation during emotional anticipation. Greater dorsolateral PFC activation (anticipation of negative images minus anticipation of positive images) was associated with lower PTSD symptom severity and better visuomotor processing speed and executive functioning. Greater medial PFC and amygdala activation related to slower visuomotor processing speed. During emotional anticipation, women with PTSD show exaggerated activation in the anterior insula, a region important for monitoring internal bodily state. Greater dorsolateral PFC response in PTSD patients during emotional anticipation may reflect engagement of cognitive control networks that are beneficial for emotional and cognitive functioning. Novel treatments could be aimed at strengthening the balance between cognitive control (dorsolateral PFC) and affective processing (medial PFC and amygdala) networks to improve overall functioning for PTSD patients.
Non-contact Real-time heart rate measurements based on high speed circuit technology research
NASA Astrophysics Data System (ADS)
Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin
2015-08-01
In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.
Research@ARL. Imaging & Image Processing. Volume 3, Issue 1
2014-01-01
goal, the focal plane arrays (FPAs) the Army deploys must excel in all areas of performance including thermal sensitivity, image resolution, speed of...are available only in relatively small sizes. Further, the difference in thermal expansion coefficients between a CZT substrate and its silicon (Si...read-out integrated circuitry reduces the reliability of large format FPAs due to repeated thermal cycling. Some in the community believed this
3D frequency-domain ultrasound waveform tomography breast imaging
NASA Astrophysics Data System (ADS)
Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb
2017-03-01
Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
NASA Astrophysics Data System (ADS)
Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib
2016-09-01
Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.
Feature Detection of Curve Traffic Sign Image on The Bandung - Jakarta Highway
NASA Astrophysics Data System (ADS)
Naseer, M.; Supriadi, I.; Supangkat, S. H.
2018-03-01
Unsealed roadside and problems with the road surface are common causes of road crashes, particularly when those are combined with curves. Curve traffic sign is an important component for giving early warning to driver on traffic, especially on high-speed traffic like on the highway. Traffic sign detection has became a very interesting research now, and in this paper will be discussed about the detection of curve traffic sign. There are two types of curve signs are discussed, namely the curve turn to the left and the curve turn to the right and the all data sample used are the curves taken / recorded from some signs on the Bandung - Jakarta Highway. Feature detection of the curve signs use Speed Up Robust Feature (SURF) method, where the detected scene image is 800x450. From 45 curve turn to the right images, the system can detect the feature well to 35 images, where the success rate is 77,78%, while from the 45 curve turn to the left images, the system can detect the feature well to 34 images and the success rate is 75,56%, so the average accuracy in the detection process is 76,67%. While the average time for the detection process is 0.411 seconds.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
New scheme for image edge detection using the switching mechanism of nonlinear optical material
NASA Astrophysics Data System (ADS)
Pahari, Nirmalya; Mukhopadhyay, Sourangshu
2006-03-01
The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.
A MultiDiscipline Approach to Digitizing Historic Seismograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Andrew
2016-04-07
Retriever Technology has developed and has made available free of charge a seismogram digitization software package called SKATE (Seismogram Kit for Automatic Trace Extraction). We have developed an extensive set of algorithms that process seismogram image files, provide editing tools, and output time series data. The software is available online and free of charge at seismo.redfish.com. To demonstrate the speed and cost effectiveness of the software, we have processed over 30,000 images.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Polarization Imaging Apparatus
NASA Technical Reports Server (NTRS)
Zou, Yingyin K.; Chen, Qiushui
2010-01-01
A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.
Implementing An Image Understanding System Architecture Using Pipe
NASA Astrophysics Data System (ADS)
Luck, Randall L.
1988-03-01
This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.
Development of a piecewise linear omnidirectional 3D image registration method
NASA Astrophysics Data System (ADS)
Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo
2016-12-01
This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.
Fast Laser Holographic Interferometry For Wind Tunnels
NASA Technical Reports Server (NTRS)
Lee, George
1989-01-01
Proposed system makes holographic interferograms quickly in wind tunnels. Holograms reveal two-dimensional flows around airfoils and provide information on distributions of pressure, structures of wake and boundary layers, and density contours of flow fields. Holograms form quickly in thermoplastic plates in wind tunnel. Plates rigid and left in place so neither vibrations nor photgraphic-development process degrades accuracy of holograms. System processes and analyzes images quickly. Semiautomatic micro-computer-based desktop image-processing unit now undergoing development moves easily to wind tunnel, and its speed and memory adequate for flows about airfoils.
Fast optically sectioned fluorescence HiLo endomicroscopy.
Ford, Tim N; Lim, Daryl; Mertz, Jerome
2012-02-01
We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.
Fast optically sectioned fluorescence HiLo endomicroscopy
NASA Astrophysics Data System (ADS)
Ford, Tim N.; Lim, Daryl; Mertz, Jerome
2012-02-01
We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.
A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei
2016-03-01
Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.
High speed automated microtomography of nuclear emulsions and recent application
NASA Astrophysics Data System (ADS)
Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.
2015-12-01
The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.
Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...
2015-11-09
Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm 2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.
Real-time Mesoscale Visualization of Dynamic Damage and Reaction in Energetic Materials under Impact
NASA Astrophysics Data System (ADS)
Chen, Wayne; Harr, Michael; Kerschen, Nicholas; Maris, Jesus; Guo, Zherui; Parab, Niranjan; Sun, Tao; Fezzaa, Kamel; Son, Steven
Energetic materials may be subjected to impact and vibration loading. Under these dynamic loadings, local stress or strain concentrations may lead to the formation of hot spots and unintended reaction. To visualize the dynamic damage and reaction processes in polymer bonded energetic crystals under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar and a light gas gun. Controlled compressive loading was applied on PBX specimens with a single or multiple energetic crystal particles and impact-induced damage and reaction processes were captured using the high speed X-ray imaging setup. Impact velocities were systematically varied to explore the critical conditions for reaction. At lower loading rates, ultrasonic exercitations were also applied to progressively damage the crystals, eventually leading to reaction. AFOSR, ONR.
NASA Technical Reports Server (NTRS)
Nichols, D. A.
1982-01-01
The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.
Variety and evolution of American endoscopic image management and recording systems.
Korman, L Y
1996-03-01
The rapid evolution of computing technology has and will continue to alter the practice of gastroenterology and gastrointestinal endoscopy. Development of communication standards for text, images, and security systems will be necessary for medicine to take advantage of high-speed computing and communications. Professional societies can have an important role in guiding the development process.
Automated and unsupervised detection of malarial parasites in microscopic images.
Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis
2011-12-13
Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.
White matter integrity and processing speed in sickle cell anemia.
Stotesbury, Hanne; Kirkham, Fenella J; Kölbel, Melanie; Balfour, Philippa; Clayden, Jonathan D; Sahota, Sati; Sakaria, Simrat; Saunders, Dawn E; Howard, Jo; Kesse-Adu, Rachel; Inusa, Baba; Pelidis, Maria; Chakravorty, Subarna; Rees, David C; Awogbade, Moji; Wilkey, Olu; Layton, Mark; Clark, Christopher A; Kawadler, Jamie M
2018-05-11
The purpose of this retrospective cross-sectional study was to investigate whether changes in white matter integrity are related to slower processing speed in sickle cell anemia. Thirty-seven patients with silent cerebral infarction, 46 patients with normal MRI, and 32 sibling controls (age range 8-37 years) underwent cognitive assessment using the Wechsler scales and 3-tesla MRI. Tract-based spatial statistics analyses of diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) parameters were performed. Processing speed index (PSI) was lower in patients than controls by 9.34 points (95% confidence interval: 4.635-14.855, p = 0.0003). Full Scale IQ was lower by 4.14 scaled points (95% confidence interval: -1.066 to 9.551, p = 0.1), but this difference was abolished when PSI was included as a covariate ( p = 0.18). There were no differences in cognition between patients with and without silent cerebral infarction, and both groups had lower PSI than controls (both p < 0.001). In patients, arterial oxygen content, socioeconomic status, age, and male sex were identified as predictors of PSI, and correlations were found between PSI and DTI scalars (fractional anisotropy r = 0.614, p < 0.00001; r = -0.457, p < 0.00001; mean diffusivity r = -0.341, p = 0.0016; radial diffusivity r = -0.457, p < 0.00001) and NODDI parameters (intracellular volume fraction r = 0.364, p = 0.0007) in widespread regions. Our results extend previous reports of impairment that is independent of presence of infarction and may worsen with age. We identify processing speed as a vulnerable domain, with deficits potentially mediating difficulties across other domains, and provide evidence that reduced processing speed is related to the integrity of normal-appearing white matter using microstructure parameters from DTI and NODDI. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Liu, Gangjun; Zhang, Jun; Yu, Lingfeng; Xie, Tuqiang; Chen, Zhongping
2010-01-01
With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated. PMID:19904337
Post-modelling of images from a laser-induced wavy boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2015-12-01
Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35-43%, owing to its Fresnel characteristics.
Integrated test system of infrared and laser data based on USB 3.0
NASA Astrophysics Data System (ADS)
Fu, Hui Quan; Tang, Lin Bo; Zhang, Chao; Zhao, Bao Jun; Li, Mao Wen
2017-07-01
Based on USB3.0, this paper presents the design method of an integrated test system for both infrared image data and laser signal data processing module. The core of the design is FPGA logic control, the design uses dual-chip DDR3 SDRAM to achieve high-speed laser data cache, and receive parallel LVDS image data through serial-to-parallel conversion chip, and it achieves high-speed data communication between the system and host computer through the USB3.0 bus. The experimental results show that the developed PC software realizes the real-time display of 14-bit LVDS original image after 14-to-8 bit conversion and JPEG2000 compressed image after decompression in software, and can realize the real-time display of the acquired laser signal data. The correctness of the test system design is verified, indicating that the interface link is normal.
Efficient fuzzy C-means architecture for image segmentation.
Li, Hui-Ya; Hwang, Wen-Jyi; Chang, Chia-Yen
2011-01-01
This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.
Increasing the speed of medical image processing in MatLab®
Bister, M; Yap, CS; Ng, KH; Tok, CH
2007-01-01
MatLab® has often been considered an excellent environment for fast algorithm development but is generally perceived as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – vectorization, pre-allocation and specialization – applications in MatLab® can run as fast as in C language. In this article, this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. PMID:21614269
Optical coherence tomography for embryonic imaging: a review
Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503
High-speed bipolar phototransistors in a 180 nm CMOS process.
Kostov, P; Gaberl, W; Zimmermann, H
2013-03-01
Several high-speed pnp phototransistors built in a standard 180 nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40 μm 2 and 100×100 μm 2 . Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p + wafer with a p - epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850 nm. Bandwidths up to 92 MHz and dynamic responsivities up to 2.95 A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc.
Jakesch, Martina; Leder, Helmut; Forster, Michael
2013-01-01
Ambiguity is often associated with negative affective responses, and enjoying ambiguity seems restricted to only a few situations, such as experiencing art. Nevertheless, theories of judgment formation, especially the “processing fluency account”, suggest that easy-to-process (non-ambiguous) stimuli are processed faster and are therefore preferred to (ambiguous) stimuli, which are hard to process. In a series of six experiments, we investigated these contrasting approaches by manipulating fluency (presentation duration: 10ms, 50ms, 100ms, 500ms, 1000ms) and testing effects of ambiguity (ambiguous versus non-ambiguous pictures of paintings) on classification performance (Part A; speed and accuracy) and aesthetic appreciation (Part B; liking and interest). As indicated by signal detection analyses, classification accuracy increased with presentation duration (Exp. 1a), but we found no effects of ambiguity on classification speed (Exp. 1b). Fifty percent of the participants were able to successfully classify ambiguous content at a presentation duration of 100 ms, and at 500ms even 75% performed above chance level. Ambiguous artworks were found more interesting (in conditions 50ms to 1000ms) and were preferred over non-ambiguous stimuli at 500ms and 1000ms (Exp. 2a - 2c, 3). Importantly, ambiguous images were nonetheless rated significantly harder to process as non-ambiguous images. These results suggest that ambiguity is an essential ingredient in art appreciation even though or maybe because it is harder to process. PMID:24040172
Test and Verification of AES Used for Image Encryption
NASA Astrophysics Data System (ADS)
Zhang, Yong
2018-03-01
In this paper, an image encryption program based on AES in cipher block chaining mode was designed with C language. The encryption/decryption speed and security performance of AES based image cryptosystem were tested and used to compare the proposed cryptosystem with some existing image cryptosystems based on chaos. Simulation results show that AES can apply to image encryption, which refutes the widely accepted point of view that AES is not suitable for image encryption. This paper also suggests taking the speed of AES based image encryption as the speed benchmark of image encryption algorithms. And those image encryption algorithms whose speeds are lower than the benchmark should be discarded in practical communications.
Fringe image processing based on structured light series
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Li, Hongyan
2009-11-01
The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.
Visual Communications And Image Processing
NASA Astrophysics Data System (ADS)
Hsing, T. Russell; Tzou, Kou-Hu
1989-07-01
This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.
An approach of point cloud denoising based on improved bilateral filtering
NASA Astrophysics Data System (ADS)
Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin
2018-04-01
An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Quantum image pseudocolor coding based on the density-stratified method
NASA Astrophysics Data System (ADS)
Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na
2015-05-01
Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.
A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer
NASA Astrophysics Data System (ADS)
Luckman, Adrian J.; Allinson, Nigel M.
1989-03-01
A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.
Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng
2018-05-01
Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jaanimagi, Paul A.
1992-01-01
This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.
Design of an MR image processing module on an FPGA chip.
Li, Limin; Wyrwicz, Alice M
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing
Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge
2011-01-01
This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739
Hielscher, Andreas H; Bartel, Sebastian
2004-02-01
Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
Performance evaluation of canny edge detection on a tiled multicore architecture
NASA Astrophysics Data System (ADS)
Brethorst, Andrew Z.; Desai, Nehal; Enright, Douglas P.; Scrofano, Ronald
2011-01-01
In the last few years, a variety of multicore architectures have been used to parallelize image processing applications. In this paper, we focus on assessing the parallel speed-ups of different Canny edge detection parallelization strategies on the Tile64, a tiled multicore architecture developed by the Tilera Corporation. Included in these strategies are different ways Canny edge detection can be parallelized, as well as differences in data management. The two parallelization strategies examined were loop-level parallelism and domain decomposition. Loop-level parallelism is achieved through the use of OpenMP,1 and it is capable of parallelization across the range of values over which a loop iterates. Domain decomposition is the process of breaking down an image into subimages, where each subimage is processed independently, in parallel. The results of the two strategies show that for the same number of threads, programmer implemented, domain decomposition exhibits higher speed-ups than the compiler managed, loop-level parallelism implemented with OpenMP.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Jin, S.; Tian, Y.; Wang, M.
2017-09-01
To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.
Real-time single image dehazing based on dark channel prior theory and guided filtering
NASA Astrophysics Data System (ADS)
Zhang, Zan
2017-10-01
Images and videos taken outside the foggy day are serious degraded. In order to restore degraded image taken in foggy day and overcome traditional Dark Channel prior algorithms problems of remnant fog in edge, we propose a new dehazing method.We first find the fog area in the dark primary color map to obtain the estimated value of the transmittance using quadratic tree. Then we regard the gray-scale image after guided filtering as atmospheric light map and remove haze based on it. Box processing and image down sampling technology are also used to improve the processing speed. Finally, the atmospheric light scattering model is used to restore the image. A plenty of experiments show that algorithm is effective, efficient and has a wide range of application.
NASA Astrophysics Data System (ADS)
Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.
1986-06-01
In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.
Optical head tracking for functional magnetic resonance imaging using structured light.
Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D
2008-07-01
An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.
NASA Astrophysics Data System (ADS)
Weydanz, W. J.; Reisenweber, H.; Gottschalk, A.; Schulz, M.; Knoche, T.; Reinhart, G.; Masuch, M.; Franke, J.; Gilles, R.
2018-03-01
The process of filling electrolyte into lithium ion cells is time consuming and critical to the overall battery quality. However, this process is not well understood. This is partially due to the fact, that it is hard to observe it in situ. A powerful tool for visualization of the process is neutron imaging. The filling and wetting process of the electrode stack can be clearly visualized in situ without destruction of the actual cell. The wetting of certain areas inside the electrode stack can clearly be seen when using this technique. Results showed that wetting of the electrode stack takes place in a mostly isotropic manner from the outside towards a center point of the cell at very similar speed. When the electrolyte reaches the center point, the wetting process can be considered complete. The electrode wetting is a slow but rather steady process for hard case prismatic cells. It starts with a certain speed, which is reduced over the progress of the wetting. Vacuum can assist the process and accelerate it by about a factor of two as was experimentally shown. This gives a considerable time and cost advantage for designing the production process for large-scale battery cell production.
Real-time orthorectification by FPGA-based hardware acceleration
NASA Astrophysics Data System (ADS)
Kuo, David; Gordon, Don
2010-10-01
Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.
Multiple-frame IR photo-recorder KIT-3M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, E; Wilkins, P; Nebeker, N
2006-05-15
This paper reports the experimental results of a high-speed multi-frame infrared camera which has been developed in Sarov at VNIIEF. Earlier [1] we discussed the possibility of creation of the multi-frame infrared radiation photo-recorder with framing frequency about 1 MHz. The basis of the photo-recorder is a semiconductor ionization camera [2, 3], which converts IR radiation of spectral range 1-10 micrometers into a visible image. Several sequential thermal images are registered by using the IR converter in conjunction with a multi-frame electron-optical camera. In the present report we discuss the performance characteristics of a prototype commercial 9-frame high-speed IR photo-recorder.more » The image converter records infrared images of thermal fields corresponding to temperatures ranging from 300 C to 2000 C with an exposure time of 1-20 {micro}s at a frame frequency up to 500 KHz. The IR-photo-recorder camera is useful for recording the time evolution of thermal fields in fast processes such as gas dynamics, ballistics, pulsed welding, thermal processing, automotive industry, aircraft construction, in pulsed-power electric experiments, and for the measurement of spatial mode characteristics of IR-laser radiation.« less
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.
Statistical Deconvolution for Superresolution Fluorescence Microscopy
Mukamel, Eran A.; Babcock, Hazen; Zhuang, Xiaowei
2012-01-01
Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ∼10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame. PMID:22677393
NASA Astrophysics Data System (ADS)
Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf
2007-03-01
Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.
NASA Astrophysics Data System (ADS)
Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf
2007-02-01
Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.
High speed automated microtomography of nuclear emulsions and recent application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tioukov, V.; Aleksandrov, A.; Consiglio, L.
2015-12-31
The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scalemore » and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.« less
Digital image processing of bone - Problems and potentials
NASA Technical Reports Server (NTRS)
Morey, E. R.; Wronski, T. J.
1980-01-01
The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.
NASA Technical Reports Server (NTRS)
Kocurek, Michael J.
2005-01-01
The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.
Research of aerial imaging spectrometer data acquisition technology based on USB 3.0
NASA Astrophysics Data System (ADS)
Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan
2016-11-01
With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.
NASA Astrophysics Data System (ADS)
Butt, Ali
Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.
NASA Astrophysics Data System (ADS)
Ma, Siyu; Wang, Rui; Goodwin, Richard L.; Markwald, Roger R.; Borg, Thomas K.; Runyan, Raymond B.; Gao, Zhi
2013-02-01
Congenital Heart Disease (CHD) is the most common congenital malformation in newborns in the US. Although knowledge of CHD is limited, altered hemodynamic conditions are suspected as the factor that stimulates cardiovascular cell response, resulting in the heart morphology remodeling that ultimately causes CHDs. Therefore, one of recent efforts in CHD study is to develop high-speed imaging tools to correlate the rapidly changing hemodynamic condition and the morphological adaptations of an embryonic heart in vivo. We have developed a high-speed streak mode OCT that works at the center wavelength of 830 nm and is capable of providing images (292x220 μm2) of the outflow tract of an embryonic chick heart at the rate of 1000 Hz. The modality can provide a voxel resolution in the range of 10 μm3, and the spectral resolution allows a depth range of 1.63 mm. In the study reported here, each of the 4D images of an outflow tract was recorded for 2 seconds. The recording was conducted every 2 hours (HH17 to HH18), 3 hours (HH14 to HH17), and 4 hours (HH18 to HH19). Because of the fast scan speed, there is no need for postacquisition processing such as use of gating techniques to provide a fine 3D structure. In addition, more details of the outflow tract are preserved in the recorded images. The 4D images can be used in the future to determine the role of blood flow in CHD development.
Chang, Zheng; Xiang, Qing-San; Shen, Hao; Yin, Fang-Fang
2010-03-01
To accelerate non-contrast-enhanced MR angiography (MRA) with inflow inversion recovery (IFIR) with a fast imaging method, Skipped Phase Encoding and Edge Deghosting (SPEED). IFIR imaging uses a preparatory inversion pulse to reduce signals from static tissue, while leaving inflow arterial blood unaffected, resulting in sparse arterial vasculature on modest tissue background. By taking advantage of vascular sparsity, SPEED can be simplified with a single-layer model to achieve higher efficiency in both scan time reduction and image reconstruction. SPEED can also make use of information available in multiple coils for further acceleration. The techniques are demonstrated with a three-dimensional renal non-contrast-enhanced IFIR MRA study. Images are reconstructed by SPEED based on a single-layer model to achieve an undersampling factor of up to 2.5 using one skipped phase encoding direction. By making use of information available in multiple coils, SPEED can achieve an undersampling factor of up to 8.3 with four receiver coils. The reconstructed images generally have comparable quality as that of the reference images reconstructed from full k-space data. As demonstrated with a three-dimensional renal IFIR scan, SPEED based on a single-layer model is able to reduce scan time further and achieve higher computational efficiency than the original SPEED.
Parallel evolution of image processing tools for multispectral imagery
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.
2000-11-01
We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.
Observations of breakup processes of liquid jets using real-time X-ray radiography
NASA Technical Reports Server (NTRS)
Char, J. M.; Kuo, K. K.; Hsieh, K. C.
1988-01-01
To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.
Garty, Guy; Chen, Youhua; Turner, Helen C; Zhang, Jian; Lyulko, Oleksandra V; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Lawrence Yao, Y; Brenner, David J
2011-08-01
Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.
Garty, Guy; Chen, Youhua; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Brenner, David J.
2011-01-01
Purpose Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. Materials and methods The RABiT analyzes fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cutoff dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. Results We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Conclusions Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day. PMID:21557703
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
NASA Astrophysics Data System (ADS)
Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki
2016-04-01
The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.
A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy.
Kirkby, Paul A; Srinivas Nadella, K M Naga; Silver, R Angus
2010-06-21
We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 mum; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space.
Mesospheric circulation at the cloud top level of Venus according to Venus Monitoring Camera images
NASA Astrophysics Data System (ADS)
Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Titov, Dmitri; Markiewicz, Wojciech; Turin, Alexander
We present results of wind speed measurements at the cloud top level of Venus derived from manual cloud tracking in the UV (365 nm) and IR (965 nm) channels of the Venus Monitoring Camera Experiment (VMC) [1] on board the Venus Express mission. Cloud details have a maximal contrast in the UV range. More then 90 orbits have been processed. 30000 manual vectors were obtained. The period of the observations covers more than 4 venusian year. Zonal wind speed demonstrates the local solar time dependence. Possible diurnal and semidiurnal components are observed [2]. According to averaged latitude profile of winds at level of the upper clouds: -The zonal speed is slightly increasing by absolute values from 90 on the equator to 105 m/s at latitudes —47 degrees; -The period of zonal rotation has the maximum at the equator (5 earth days). It has the minimum (3 days) at altitudes —50 degrees. After minimum periods are slightly increasing toward the South pole; -The meridional speed has a value 0 on the equator, and then it is linear increasing up to 10 m/s (by absolute value) at 50 degrees latitude. "-" denotes movement from the equator to the pole. -From 50 to 80 degrees the meridional speed is again decreasing by absolute value up to 0. IR (965+10 nm) day side images can be used for wind tracking. The obtained speed of the zonal wind in the low and middle latitudes are systematically less than the wind speed derived from the UV images. The average zonal speed obtained from IR day side images in the low and average latitudes is about 65-70 m/s. The given fact can be interpreted as observation of deeper layers of mesosphere in the IR range in comparison with UV. References [1] Markiewicz W. J. et al. (2007) Planet. Space Set V55(12). P.1701-1711. [2] Moissl R., et al. (2008) J. Geophys. Res. 2008. doi:10.1029/2008JE003117. V.113.
Frequency domain zero padding for accurate autofocusing based on digital holography
NASA Astrophysics Data System (ADS)
Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha
2018-01-01
The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.
Mazerolle, Erin L; Wojtowicz, Magdalena A; Omisade, Antonina; Fisk, John D
2013-01-01
Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing-remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing-remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain-behavior relationships in neurologic disorders with widespread white matter pathology.
Coincidence ion imaging with a fast frame camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei
2014-12-15
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less
Automated seamline detection along skeleton for remote sensing image mosaicking
NASA Astrophysics Data System (ADS)
Zhang, Hansong; Chen, Jianyu; Liu, Xin
2015-08-01
The automatic generation of seamline along the overlap region skeleton is a concerning problem for the mosaicking of Remote Sensing(RS) images. Along with the improvement of RS image resolution, it is necessary to ensure rapid and accurate processing under complex conditions. So an automated seamline detection method for RS image mosaicking based on image object and overlap region contour contraction is introduced. By this means we can ensure universality and efficiency of mosaicking. The experiments also show that this method can select seamline of RS images with great speed and high accuracy over arbitrary overlap regions, and realize RS image rapid mosaicking in surveying and mapping production.
Comparison of sound speed measurements on two different ultrasound tomography devices
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina
2014-03-01
Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy between the sound speed values could be easily handled by uniformly increasing the DICOM sound speed by approximately 0.5 m/s. These results suggest that there is no fundamental difference in sound speed measurement for the two systems and support combining data generated with these instruments in future studies.
High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu
In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less
High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.
Ren, Juan; Zou, Qingze
2014-07-01
In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.
High speed parallel spectral-domain OCT using spectrally encoded line-field illumination
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo
2018-01-01
We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.
Measuring impact rebound with photography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumali, Hartono
2010-05-01
To study the rebound of a sphere colliding against a flat wall, a test setup was developed where the sphere is suspended with strings as a pendulum, elevated, and gravity-released to impact the wall. The motion of the sphere was recorded with a highspeed camera and traced with an image-processing program. From the speed of the sphere before and after each collision, the coefficient of restitution was computed, and shown to be a function of impact speed as predicted analytically.
PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1998-01-01
This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.
NASA Astrophysics Data System (ADS)
Zaripov, D. I.; Renfu, Li
2018-05-01
The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.
Image analysis of multiple moving wood pieces in real time
NASA Astrophysics Data System (ADS)
Wang, Weixing
2006-02-01
This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.
Hybrid imaging: a quantum leap in scientific imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark V.
2004-01-01
ImagerLabs has advanced its patented next generation imaging technology called the Hybrid Imaging Technology (HIT) that offers scientific quality performance. The key to the HIT is the merging of the CCD and CMOS technologies through hybridization rather than process integration. HIT offers exceptional QE, fill factor, broad spectral response and very low noise properties of the CCD. In addition, it provides the very high-speed readout, low power, high linearity and high integration capability of CMOS sensors. In this work, we present the benefits, and update the latest advances in the performance of this exciting technology.
Fast optically sectioned fluorescence HiLo endomicroscopy
Lim, Daryl; Mertz, Jerome
2012-01-01
Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023
NASA Technical Reports Server (NTRS)
Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine
1996-01-01
This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
On-line 3-dimensional confocal imaging in vivo.
Li, J; Jester, J V; Cavanagh, H D; Black, T D; Petroll, W M
2000-09-01
In vivo confocal microscopy through focusing (CMTF) can provide a 3-D stack of high-resolution corneal images and allows objective measurements of corneal sublayer thickness and backscattering. However, current systems require time-consuming off-line image processing and analysis on multiple software platforms. Furthermore, there is a trade off between the CMTF speed and measurement precision. The purpose of this study was to develop a novel on-line system for in vivo corneal imaging and analysis that overcomes these limitations. A tandem scanning confocal microscope (TSCM) was used for corneal imaging. The TSCM video camera was interfaced directly to a PC image acquisition board to implement real-time digitization. Software was developed to allow in vivo 2-D imaging, CMTF image acquisition, interactive 3-D reconstruction, and analysis of CMTF data to be performed on line in a single user-friendly environment. A procedure was also incorporated to separate the odd/even video fields, thereby doubling the CMTF sampling rate and theoretically improving the precision of CMTF thickness measurements by a factor of two. In vivo corneal examinations of a normal human and a photorefractive keratectomy patient are presented to demonstrate the capabilities of the new system. Improvements in the convenience, speed, and functionality of in vivo CMTF image acquisition, display, and analysis are demonstrated. This is the first full-featured software package designed for in vivo TSCM imaging of the cornea, which performs both 2-D and 3-D image acquisition, display, and processing as well as CMTF analysis. The use of a PC platform and incorporation of easy to use, on line, and interactive features should help to improve the clinical utility of this technology.
Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon
2013-11-01
Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew
The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less
PyDBS: an automated image processing workflow for deep brain stimulation surgery.
D'Albis, Tiziano; Haegelen, Claire; Essert, Caroline; Fernández-Vidal, Sara; Lalys, Florent; Jannin, Pierre
2015-02-01
Deep brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call upon several image processing and visualization tasks, such as image registration, image segmentation, image fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which adopt differing formats and geometrical conventions and require patient-specific parameterization or interactive tuning. To overcome these issues, we introduce in this article PyDBS, a fully integrated and automated image processing workflow for DBS surgery. PyDBS consists of three image processing pipelines and three visualization modules assisting clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to the postoperative assessment of electrode placement. The system's robustness, speed, and accuracy were assessed by means of a retrospective validation, based on 92 clinical cases. The complete PyDBS workflow achieved satisfactory results in 92 % of tested cases, with a median processing time of 28 min per patient. The results obtained are compatible with the adoption of PyDBS in clinical practice.
NASA Astrophysics Data System (ADS)
Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda
2009-11-01
In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.
Automatic tissue image segmentation based on image processing and deep learning
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.
NASA Astrophysics Data System (ADS)
Wickersham, Andrew Joseph
There are two critical research needs for the study of hydrocarbon combustion in high speed flows: 1) combustion diagnostics with adequate temporal and spatial resolution, and 2) mathematical techniques that can extract key information from large datasets. The goal of this work is to address these needs, respectively, by the use of high speed and multi-perspective chemiluminescence and advanced mathematical algorithms. To obtain the measurements, this work explored the application of high speed chemiluminescence diagnostics and the use of fiber-based endoscopes (FBEs) for non-intrusive and multi-perspective chemiluminescence imaging up to 20 kHz. Non-intrusive and full-field imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of FBEs for non-intrusive imaging to supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the aforementioned difficulties and provided datasets from multiple angular positions up to 20 kHz in a supersonic combustor. The combustor operated on ethylene fuel at Mach 2 with an inlet stagnation temperature and pressure of approximately 640 degrees Fahrenheit and 70 psia, respectively. The imaging measurements were obtained from eight perspectives simultaneously, providing full-field datasets under such flow conditions for the first time, allowing the possibility of inferring multi-dimensional measurements. Due to the high speed and multi-perspective nature, such new diagnostic capability generates a large volume of data and calls for analysis algorithms that can process the data and extract key physics effectively. To extract the key combustion dynamics from the measurements, three mathematical methods were investigated in this work: Fourier analysis, proper orthogonal decomposition (POD), and wavelet analysis (WA). These algorithms were first demonstrated and tested on imaging measurements obtained from one perspective in a sub-sonic combustor (up to Mach 0.2). The results show that these algorithms are effective in extracting the key physics from large datasets, including the characteristic frequencies of flow-flame interactions especially during transient processes such as lean blow off and ignition. After these relatively simple tests and demonstrations, these algorithms were applied to process the measurements obtained from multi-perspective in the supersonic combustor. compared to past analyses (which have been limited to data obtained from one perspective only), the availability of data at multiple perspective provide further insights into the flame and flow structures in high speed flows. In summary, this work shows that high speed chemiluminescence is a simple yet powerful combustion diagnostic. Especially when combined with FBEs and the analyses algorithms described in this work, such diagnostics provide full-field imaging at high repetition rate in challenging flows. Based on such measurements, a wealth of information can be obtained from proper analysis algorithms, including characteristic frequency, dominating flame modes, and even multi-dimensional flame and flow structures.
The use of high-speed imaging in education
NASA Astrophysics Data System (ADS)
Kleine, H.; McNamara, G.; Rayner, J.
2017-02-01
Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.
NASA Astrophysics Data System (ADS)
Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.
2004-02-01
This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming
2014-07-28
Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less
Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing
NASA Astrophysics Data System (ADS)
Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.
2014-12-01
After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.
Intermediate Cognitive Phenotypes in Bipolar Disorder
Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.
2013-01-01
Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130
Optical correlators for automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1991-01-01
The paper begins with a description of optical correlation. In this process, the propagation physics of coherent light is used to process images and extract information. The processed image is operated on as an area, rather than as a collection of points. An essentially instantaneous convolution is performed on that image to provide the sensory data. In this process, an image is sensed and encoded onto a coherent wavefront, and the propagation is arranged to create a bright spot of the image to match a model of the desired object. The brightness of the spot provides an indication of the degree of resemblance of the viewed image to the mode, and the location of the bright spot provides pointing information. The process can be utilized for AR&C to achieve the capability to identify objects among known reference types, estimate the object's location and orientation, and interact with the control system. System characteristics (speed, robustness, accuracy, small form factors) are adequate to meet most requirements. The correlator exploits the fact that Bosons and Fermions pass through each other. Since the image source is input as an electronic data set, conventional imagers can be used. In systems where the image is input directly, the correlating element must be at the sensing location.
Comparison and analysis of nonlinear algorithms for compressed sensing in MRI.
Yu, Yeyang; Hong, Mingjian; Liu, Feng; Wang, Hua; Crozier, Stuart
2010-01-01
Compressed sensing (CS) theory has been recently applied in Magnetic Resonance Imaging (MRI) to accelerate the overall imaging process. In the CS implementation, various algorithms have been used to solve the nonlinear equation system for better image quality and reconstruction speed. However, there are no explicit criteria for an optimal CS algorithm selection in the practical MRI application. A systematic and comparative study of those commonly used algorithms is therefore essential for the implementation of CS in MRI. In this work, three typical algorithms, namely, the Gradient Projection For Sparse Reconstruction (GPSR) algorithm, Interior-point algorithm (l(1)_ls), and the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm are compared and investigated in three different imaging scenarios, brain, angiogram and phantom imaging. The algorithms' performances are characterized in terms of image quality and reconstruction speed. The theoretical results show that the performance of the CS algorithms is case sensitive; overall, the StOMP algorithm offers the best solution in imaging quality, while the GPSR algorithm is the most efficient one among the three methods. In the next step, the algorithm performances and characteristics will be experimentally explored. It is hoped that this research will further support the applications of CS in MRI.
Femtosecond photography lessons
NASA Astrophysics Data System (ADS)
Fanchenko, S. D.
1999-06-01
Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.
Srinivasan, Vivek J.; Adler, Desmond C.; Chen, Yueli; Gorczynska, Iwona; Huber, Robert; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.
2009-01-01
Purpose To demonstrate ultrahigh-speed optical coherence tomography (OCT) imaging of the retina and optic nerve head at 249,000 axial scans per second and a wavelength of 1060 nm. To investigate methods for visualization of the retina, choroid, and optic nerve using high-density sampling enabled by improved imaging speed. Methods A swept-source OCT retinal imaging system operating at a speed of 249,000 axial scans per second was developed. Imaging of the retina, choroid, and optic nerve were performed. Display methods such as speckle reduction, slicing along arbitrary planes, en face visualization of reflectance from specific retinal layers, and image compounding were investigated. Results High-definition and three-dimensional (3D) imaging of the normal retina and optic nerve head were performed. Increased light penetration at 1060 nm enabled improved visualization of the choroid, lamina cribrosa, and sclera. OCT fundus images and 3D visualizations were generated with higher pixel density and less motion artifacts than standard spectral/Fourier domain OCT. En face images enabled visualization of the porous structure of the lamina cribrosa, nerve fiber layer, choroid, photoreceptors, RPE, and capillaries of the inner retina. Conclusions Ultrahigh-speed OCT imaging of the retina and optic nerve head at 249,000 axial scans per second is possible. The improvement of ∼5 to 10× in imaging speed over commercial spectral/Fourier domain OCT technology enables higher density raster scan protocols and improved performance of en face visualization methods. The combination of the longer wavelength and ultrahigh imaging speed enables excellent visualization of the choroid, sclera, and lamina cribrosa. PMID:18658089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reza Akrami, Seyed Mohammad; Miyata, Kazuki; Asakawa, Hitoshi
High-speed atomic force microscopy has attracted much attention due to its unique capability of visualizing nanoscale dynamic processes at a solid/liquid interface. However, its usability and resolution have yet to be improved. As one of the solutions for this issue, here we present a design of a high-speed Z-tip scanner with screw holding mechanism. We perform detailed comparison between designs with different actuator size and screw arrangement by finite element analysis. Based on the design giving the best performance, we have developed a Z tip scanner and measured its performance. The measured frequency response of the scanner shows a flatmore » response up to ∼10 kHz. This high frequency response allows us to achieve wideband tip-sample distance regulation. We demonstrate the applicability of the scanner to high-speed atomic-resolution imaging by visualizing atomic-scale calcite crystal dissolution process in water at 2 s/frame.« less
Processing Distracting Non-face Emotional Images: No Evidence of an Age-Related Positivity Effect
Madill, Mark; Murray, Janice E.
2017-01-01
Cognitive aging may be accompanied by increased prioritization of social and emotional goals that enhance positive experiences and emotional states. The socioemotional selectivity theory suggests this may be achieved by giving preference to positive information and avoiding or suppressing negative information. Although there is some evidence of a positivity bias in controlled attention tasks, it remains unclear whether a positivity bias extends to the processing of affective stimuli presented outside focused attention. In two experiments, we investigated age-related differences in the effects of to-be-ignored non-face affective images on target processing. In Experiment 1, 27 older (64–90 years) and 25 young adults (19–29 years) made speeded valence judgments about centrally presented positive or negative target images taken from the International Affective Picture System. To-be-ignored distractor images were presented above and below the target image and were either positive, negative, or neutral in valence. The distractors were considered task relevant because they shared emotional characteristics with the target stimuli. Both older and young adults responded slower to targets when distractor valence was incongruent with target valence relative to when distractors were neutral. Older adults responded faster to positive than to negative targets but did not show increased interference effects from positive distractors. In Experiment 2, affective distractors were task irrelevant as the target was a three-digit array and did not share emotional characteristics with the distractors. Twenty-six older (63–84 years) and 30 young adults (18–30 years) gave speeded responses on a digit disparity task while ignoring the affective distractors positioned in the periphery. Task performance in either age group was not influenced by the task-irrelevant affective images. In keeping with the socioemotional selectivity theory, these findings suggest that older adults preferentially process task-relevant positive non-face images but only when presented within the main focus of attention. PMID:28450848
Processing Distracting Non-face Emotional Images: No Evidence of an Age-Related Positivity Effect.
Madill, Mark; Murray, Janice E
2017-01-01
Cognitive aging may be accompanied by increased prioritization of social and emotional goals that enhance positive experiences and emotional states. The socioemotional selectivity theory suggests this may be achieved by giving preference to positive information and avoiding or suppressing negative information. Although there is some evidence of a positivity bias in controlled attention tasks, it remains unclear whether a positivity bias extends to the processing of affective stimuli presented outside focused attention. In two experiments, we investigated age-related differences in the effects of to-be-ignored non-face affective images on target processing. In Experiment 1, 27 older (64-90 years) and 25 young adults (19-29 years) made speeded valence judgments about centrally presented positive or negative target images taken from the International Affective Picture System. To-be-ignored distractor images were presented above and below the target image and were either positive, negative, or neutral in valence. The distractors were considered task relevant because they shared emotional characteristics with the target stimuli. Both older and young adults responded slower to targets when distractor valence was incongruent with target valence relative to when distractors were neutral. Older adults responded faster to positive than to negative targets but did not show increased interference effects from positive distractors. In Experiment 2, affective distractors were task irrelevant as the target was a three-digit array and did not share emotional characteristics with the distractors. Twenty-six older (63-84 years) and 30 young adults (18-30 years) gave speeded responses on a digit disparity task while ignoring the affective distractors positioned in the periphery. Task performance in either age group was not influenced by the task-irrelevant affective images. In keeping with the socioemotional selectivity theory, these findings suggest that older adults preferentially process task-relevant positive non-face images but only when presented within the main focus of attention.
Locally adaptive vector quantization: Data compression with feature preservation
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Sayano, M.
1992-01-01
A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.
A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy
Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus
2010-01-01
We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506
Drop impact on flowing liquid films: asymmetric splashing
NASA Astrophysics Data System (ADS)
Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar
2015-11-01
The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
NASA Astrophysics Data System (ADS)
Narayanan, V. L.
2017-12-01
For the first time, high speed imaging of lightning from few isolated tropical thunderstorms are observed from India. The recordings are made from Tirupati (13.6oN, 79.4oE, 180 m above mean sea level) during summer months with a digital camera capable of recording high speed videos up to 480 fps. At 480 fps, each individual video file is recorded for 30 s resulting in 14400 deinterlaced images per video file. An automatic processing algorithm is developed for quick identification and analysis of the lightning events which will be discussed in detail. Preliminary results indicating different types of phenomena associated with lightning like stepped leader, dart leader, luminous channels corresponding to continuing current and M components are discussed. While most of the examples show cloud to ground discharges, few interesting cases of intra-cloud, inter-cloud and cloud-air discharges will also be displayed. This indicates that though high speed cameras with few 1000 fps are preferred for a detailed study on lightning, moderate range CMOS sensor based digital cameras can provide important information as well. The lightning imaging activity presented herein is initiated as an amateur effort and currently plans are underway to propose a suite of supporting instruments to conduct coordinated campaigns. The images discussed here are acquired from normal residential area and indicate how frequent lightning strikes are in such tropical locations during thunderstorms, though no towering structures are nearby. It is expected that popularizing of such recordings made with affordable digital cameras will trigger more interest in lightning research and provide a possible data source from amateur observers paving the way for citizen science.
Online image classification under monotonic decision boundary constraint
NASA Astrophysics Data System (ADS)
Lu, Cheng; Allebach, Jan; Wagner, Jerry; Pitta, Brandi; Larson, David; Guo, Yandong
2015-01-01
Image classification is a prerequisite for copy quality enhancement in all-in-one (AIO) device that comprises a printer and scanner, and which can be used to scan, copy and print. Different processing pipelines are provided in an AIO printer. Each of the processing pipelines is designed specifically for one type of input image to achieve the optimal output image quality. A typical approach to this problem is to apply Support Vector Machine to classify the input image and feed it to its corresponding processing pipeline. The online training SVM can help users to improve the performance of classification as input images accumulate. At the same time, we want to make quick decision on the input image to speed up the classification which means sometimes the AIO device does not need to scan the entire image to make a final decision. These two constraints, online SVM and quick decision, raise questions regarding: 1) what features are suitable for classification; 2) how we should control the decision boundary in online SVM training. This paper will discuss the compatibility of online SVM and quick decision capability.
Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C; Aerts, Hugo J W L; Bendriem, Bernard; Bendtsen, Claus; Boellaard, Ronald; Boone, John M; Cole, Patricia E; Conklin, James J; Dorfman, Gary S; Douglas, Pamela S; Eidsaunet, Willy; Elsinger, Cathy; Frank, Richard A; Gatsonis, Constantine; Giger, Maryellen L; Gupta, Sandeep N; Gustafson, David; Hoekstra, Otto S; Jackson, Edward F; Karam, Lisa; Kelloff, Gary J; Kinahan, Paul E; McLennan, Geoffrey; Miller, Colin G; Mozley, P David; Muller, Keith E; Patt, Rick; Raunig, David; Rosen, Mark; Rupani, Haren; Schwartz, Lawrence H; Siegel, Barry A; Sorensen, A Gregory; Wahl, Richard L; Waterton, John C; Wolf, Walter; Zahlmann, Gudrun; Zimmerman, Brian
2011-06-01
Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1. RSNA, 2011
Gigantic Cosmic Corkscrew Reveals New Details About Mysterious Microquasar
NASA Astrophysics Data System (ADS)
2004-10-01
Making an extra effort to image a faint, gigantic corkscrew traced by fast protons and electrons shot out from a mysterious microquasar paid off for a pair of astrophysicists who gained new insights into the beast's inner workings and also resolved a longstanding dispute over the object's distance. Microquasar SS 433 VLA Image of Microquasar SS 433 CREDIT: Blundell & Bowler, NRAO/AUI/NSF (Click on Image for Larger Version) The astrophysicists used the National Science Foundation's Very Large Array (VLA) radio telescope to capture the faintest details yet seen in the plasma jets emerging from the microquasar SS 433, an object once dubbed the "enigma of the century." As a result, they have changed scientists' understanding of the jets and settled the controversy over its distance "beyond all reasonable doubt," they said. SS 433 is a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole draws material from the stellar wind of its companion into an accretion disk of material tightly circling the dense central object prior to being pulled onto it. This disk propels jets of fast protons and electrons outward from its poles at about a quarter of the speed of light. The disk in SS 433 wobbles like a child's top, causing its jets to trace a corkscrew in the sky every 162 days. The new VLA study indicates that the speed of the ejected particles varies over time, contrary to the traditional model for SS 433. "We found that the actual speed varies between 24 percent to 28 percent of light speed, as opposed to staying constant," said Katherine Blundell, of the University of Oxford in the United Kingdom. "Amazingly, the jets going in both directions change their speeds simultaneously, producing identical speeds in both directions at any given time," Blundell added. Blundell worked with Michael Bowler, also of Oxford. The scientists' findings have been accepted by the Astrophysical Journal Letters. SS 433 New VLA Image of SS 433: Red-and-Blue Line Shows Path of Constant-Speed Jets. Note Poor Match of Path to Image. CREDIT: Blundell & Bowler, NRAO/AUI/NSF SS 433 Same Image, With Colored Beads Representing Particle Ejections at Different Speeds. Particle Path Now Matches. CREDIT: Blundell & Bowler, NRAO/AUI/NSF Click Here for Page of Full-Sized Graphics The new VLA image shows two full turns of the jets' corkscrew on both sides of the core. Analyzing the image showed that if material came from the core at a constant speed, the jet paths would not accurately match the details of the image. "By simulating ejections at varying speeds, we were able to produce an exact match to the observed structure," Blundell explained. The scientists first did their match to one of the jets. "We then were stunned to see that the varying speeds that matched the structure of one jet also exactly reproduced the other jet's path," Blundell said. Matching the speeds in the two jets reproduced the observed structure even allowing for the fact that, because one jet is moving more nearly away from us than the other, it takes light longer to reach us from it, she added. The astrophysicists speculate that the changes in ejection speed may be caused by changes in the rate at which material is transferred from the companion star onto the accretion disk. The detailed new VLA image also allowed the astrophysicists to determine that SS 433 is nearly 18,000 light-years distant from Earth. Earlier estimates had the object, in the constellation Aquila, as near as 10,000 light-years. An accurate distance, the scientists said, now allows them to better determine the age of the shell of debris blown out by the supernova explosion that created the dense, compact object in the microquasar. Knowing the distance accurately also allows them to measure the actual brightness of the microquasar's components, and this, they said, improves their understanding of the physical processes at work in the system. The breakthrough image was made using 10 hours of observing time with the VLA in a configuration that maximizes the VLA's ability to see fine detail. It represents the longest "time exposure" of SS 433 at radio wavelengths, and thus shows the faintest details. It also represents the best such image that can be done with current technology. Because the jets in SS 433 are moving, their image would be "smeared" in a longer observation. In order to see even fainter details in the jets, the astrophysicists must await the greater sensitivity of the Expanded VLA, set to become available in a few years. SS 433 was the first example of what now are termed microquasars, binary systems with either a neutron star or black hole orbited by another star, and emitting jets of material at high speeds. The strange stellar system received a wealth of media coverage in the late 1970s and early 1980s. A 1981 Sky & Telescope article was entitled, "SS 433 -- Enigma of the Century." Because microquasars in our own Milky Way Galaxy are thought to produce their high-speed jets of material through processes similar to those that produce jets from the cores of galaxies, the nearby microquasars serve as a convenient "laboratory" for studying the physics of jets. The microquasars are closer and show changes more quickly than their larger cousins. Katherine Blundell is a University Research Fellow funded by the UK's Royal Society. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde
2018-03-01
This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.
Wang, Jianji; Zheng, Nanning
2013-09-01
Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.
NASA Astrophysics Data System (ADS)
Tran, M. D.; Rakov, V. A.
2017-12-01
Synchronized high-speed (124 or 210 kiloframes per second) video images and wideband electromagnetic field records of the attachment process were obtained for 4 negative strokes in natural lightning at the Lightning Observatory in Gainesville, Florida. The apparent strike objects were trees, whose heights were less than 30 m or so. Upward connecting leaders (UCLs) and multiple upward unconnected leaders were imaged in multiple frames. The majority of these upward positive leaders exhibited a pulsating behavior (brightening/fading cycles). UCLs, whose maximum extent ranged from 11 to 25 m, propagated at speeds ranging from 1.8×105 to 6.0×105 m/s with a mean of 3.4×105 m/s. Within about 100 m of the ground, the ratio of speeds of the downward negative leader and the corresponding UCL was about 3-4 for 2 events and 0.5 for 1 event. The breakthrough phase (BTP), corresponding to leader extensions inside the common streamer zone (CSZ), was imaged for 2 events. The initial length of CSZ was estimated to be about 30-40 m. For 2 events, estimated speeds of positive and negative leaders inside the CSZ were found to be between 2.4×106 and 3.7×106 m/s. For 1 event, opposite polarity leaders were observed to accelerate inside the CSZ. Further, in this same event, a space-leader-like formation, accompanied by significant intensification of UCL and apparently associated with the onset of BTP, was imaged. We speculate that the step-wise extension of the downward leader facilitated corona streamer bursts from both the downward negative and upward positive (UCL) leader tips, resulting in the establishment of CSZ. First speed profiles for colliding positive and negative leaders were obtained. In one event, the negative leader speed increased from 7.2 ×105 in virgin air to 2.5×106 (by a factor of 3.5), and then to 3.2×106 m/s just prior to the fast transition (FT) in the return-stroke field waveform. The positive leader accelerated from 1.8×105 (in virgin air) to 2.5×106 (by a factor of 14), and then to 3.2×106 m/s. Using integrated dB/dt waveforms, a transmission-line-type model, and peak current reported by the U.S. National Lightning Detection Network, we inferred the current increases during the BTP and FT to be on average 16 and 18 kA, respectively, indicating that these two processes contribute about equally to the overall current peak.
Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars
2012-03-01
Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Wong, Nichol M. L.; Ma, Ernie Po-Wing; Lee, Tatia M. C.
2017-01-01
Hypertension is a risk factor for cognitive impairment in older age. However, evidence of the neural basis of the relationship between the deterioration of cognitive function and elevated blood pressure is sparse. Based on previous research, we speculate that variations in brain connectivity are closely related to elevated blood pressure even before the onset of clinical conditions and apparent cognitive decline in individuals over 60 years of age. Forty cognitively healthy adults were recruited. Each received a blood pressure test before and after the cognitive assessment in various domains. Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) data were collected. Our findings confirm that elevated blood pressure is associated with brain connectivity variations in cognitively healthy individuals. The integrity of the splenium of the corpus callosum is closely related to individual differences in systolic blood pressure. In particular, elevated systolic blood pressure is related to resting-state ventral attention network (VAN) and information processing speed. Serial mediation analyses have further revealed that lower integrity of the splenium statistically predicts elevated systolic blood pressure, which in turn predicts weakened functional connectivity (FC) within the VAN and eventually poorer processing speed. The current study sheds light on how neural correlates are involved in the impact of elevated blood pressure on cognitive functioning. PMID:28484386
Real-time 3D measurement based on structured light illumination considering camera lens distortion
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing
2014-12-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.
Ship Speed Retrieval From Single Channel TerraSAR-X Data
NASA Astrophysics Data System (ADS)
Soccorsi, Matteo; Lehner, Susanne
2010-04-01
A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.
Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics
NASA Astrophysics Data System (ADS)
GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu
2016-06-01
This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.
Center determination for trailed sources in astronomical observation images
NASA Astrophysics Data System (ADS)
Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu
2014-11-01
Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.
Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.
Li, Ying; Cui, Can; Liu, Zexi; Liu, Bingxin; Xu, Jin; Zhu, Xueyuan; Hou, Yongchao
2017-07-01
Current marine oil spill detection and monitoring methods using high-resolution remote sensing imagery are quite limited. This study presented a new bottom-up and top-down visual saliency model. We used Landsat 8, GF-1, MAMS, HJ-1 oil spill imagery as dataset. A simplified, graph-based visual saliency model was used to extract bottom-up saliency. It could identify the regions with high visual saliency object in the ocean. A spectral similarity match model was used to obtain top-down saliency. It could distinguish oil regions and exclude the other salient interference by spectrums. The regions of interest containing oil spills were integrated using these complementary saliency detection steps. Then, the genetic neural network was used to complete the image classification. These steps increased the speed of analysis. For the test dataset, the average running time of the entire process to detect regions of interest was 204.56 s. During image segmentation, the oil spill was extracted using a genetic neural network. The classification results showed that the method had a low false-alarm rate (high accuracy of 91.42%) and was able to increase the speed of the detection process (fast runtime of 19.88 s). The test image dataset was composed of different types of features over large areas in complicated imaging conditions. The proposed model was proved to be robust in complex sea conditions.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.
Yang, Z; Chen, H; Yu, T; Li, B
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
NASA Astrophysics Data System (ADS)
Yang, Z.; Chen, H.; Yu, T.; Li, B.
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T.; Chen, H.
2016-08-15
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images whenmore » the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.« less
Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko
2015-06-01
Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Vulgarakis Minov, Sofija; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David
2016-01-01
Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA). PMID:26861338
Minov, Sofija Vulgarakis; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David
2016-02-06
Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA).
NASA Astrophysics Data System (ADS)
Sakano, Toshikazu; Yamaguchi, Takahiro; Fujii, Tatsuya; Okumura, Akira; Furukawa, Isao; Ono, Sadayasu; Suzuki, Junji; Ando, Yutaka; Kohda, Ehiichi; Sugino, Yoshinori; Okada, Yoshiyuki; Amaki, Sachi
2000-05-01
We constructed a high-speed medical information network testbed, which is one of the largest testbeds in Japan, and applied it to practical medical checkups for the first time. The constructed testbed, which we call IMPACT, consists of a Super-High Definition Imaging system, a video conferencing system, a remote database system, and a 6 - 135 Mbps ATM network. The interconnected facilities include the School of Medicine in Keio University, a company's clinic, and an NTT R&D center, all in and around Tokyo. We applied IMPACT to the mass screening of the upper gastrointestinal (UGI) tract at the clinic. All 5419 radiographic images acquired at them clinic for 523 employees were digitized (2048 X 1698 X 12 bits) and transferred to a remote database in NTT. We then picked up about 50 images from five patients and sent them to nine radiological specialists at Keio University. The processing, which includes film digitization, image data transfer, and database registration, took 574 seconds per patient in average. The average reading time at Keio Univ. was 207 seconds. The overall processing time was estimated to be 781 seconds per patient. From these experimental results, we conclude that quasi-real time tele-medical checkups are possible with our prototype system.
Detailed study of scratch drive actuator characteristics using high-speed imaging
NASA Astrophysics Data System (ADS)
Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.
2001-10-01
Microactuators are one of the key components in MEMS and Microsystems technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the characteristics of SDAs fabricated using the Cronos Microsystems MUMPs process. The motivation is to compare the response of SDAs located on the same die, and SDAs located on the different dies from the same fabrication batch. A high-speed imaging camera has been used to precisely determine important SDA characteristics such as step size, velocity, maximum velocity, and acceleration over long travel distance. These measurements are important from a repeatability point of view, and in order to fully exploit the potential of the SDA as a precise positioning mechanism. 2- and 3-stage SDAs have been designed and fabricated for these experiments. Typical step sizes varying from 7 nm at a driving voltage of 60 V to 23 nm at 290 V have been obtained.
In situ measurement of plasma and shock wave properties inside laser-drilled metal holes
NASA Astrophysics Data System (ADS)
Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar
2008-10-01
High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.
NASA Astrophysics Data System (ADS)
Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.
2004-06-01
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
syris: a flexible and efficient framework for X-ray imaging experiments simulation.
Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo
2017-11-01
An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.
Terahertz imaging with compressed sensing and phase retrieval.
Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M
2008-05-01
We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G
2014-05-13
Optical coherence tomography (OCT) is a contact-free non-destructive high-resolution imaging technique based on low-coherence interferometry. This study investigates the application of spectral-domain OCT as an in-line quality control tool for monitoring pharmaceutical film-coated tablets. OCT images of several commercially-available film-coated tablets of different shapes, formulations and coating thicknesses were captured off-line using two OCT systems with centre wavelengths of 830nm and 1325nm. Based on the off-line image evaluation, another OCT system operating at a shorter wavelength was selected to study the feasibility of OCT as an in-line monitoring method. Since in spectral-domain OCT motion artefacts can occur as a result of the tablet or sensor head movement, a basic understanding of the relationship between the tablet speed and the motion effects is essential for correct quantifying and qualifying of the tablet coating. Experimental data was acquired by moving the sensor head of the OCT system across a static tablet bed. Although examining the homogeneity of the coating turned more difficult with increasing transverse speed of the tablets, the determination of the coating thickness was still highly accurate at a speed up to 0.7m/s. The presented OCT setup enables the investigation of the intra- and inter-tablet coating uniformity in-line during the coating process. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
Low-level processing for real-time image analysis
NASA Technical Reports Server (NTRS)
Eskenazi, R.; Wilf, J. M.
1979-01-01
A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.
Improved Bat Algorithm Applied to Multilevel Image Thresholding
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
Enhanced FIB-SEM systems for large-volume 3D imaging.
Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F
2017-05-13
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 µm 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.
Shear wave speed recovery in sonoelastography using crawling wave data.
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-07-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
Shear wave speed recovery in sonoelastography using crawling wave data
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-01-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204
High-speed line-scan camera with digital time delay integration
NASA Astrophysics Data System (ADS)
Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.
ACE: Automatic Centroid Extractor for real time target tracking
NASA Technical Reports Server (NTRS)
Cameron, K.; Whitaker, S.; Canaris, J.
1990-01-01
A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.
Laser Speckle Imaging of Cerebral Blood Flow
NASA Astrophysics Data System (ADS)
Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.
Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.
Real-time image dehazing using local adaptive neighborhoods and dark-channel-prior
NASA Astrophysics Data System (ADS)
Valderrama, Jesus A.; Díaz-Ramírez, Víctor H.; Kober, Vitaly; Hernandez, Enrique
2015-09-01
A real-time algorithm for single image dehazing is presented. The algorithm is based on calculation of local neighborhoods of a hazed image inside a moving window. The local neighborhoods are constructed by computing rank-order statistics. Next the dark-channel-prior approach is applied to the local neighborhoods to estimate the transmission function of the scene. By using the suggested approach there is no need for applying a refining algorithm to the estimated transmission such as the soft matting algorithm. To achieve high-rate signal processing the proposed algorithm is implemented exploiting massive parallelism on a graphics processing unit (GPU). Computer simulation results are carried out to test the performance of the proposed algorithm in terms of dehazing efficiency and speed of processing. These tests are performed using several synthetic and real images. The obtained results are analyzed and compared with those obtained with existing dehazing algorithms.
Ferrer, E.; Whitaker, K.J.; Steele, J.; Green, C.T.; Wendelken, C.; Bunge, S.A.
2013-01-01
The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability. PMID:24118718
High speed color imaging through scattering media with a large field of view
NASA Astrophysics Data System (ADS)
Zhuang, Huichang; He, Hexiang; Xie, Xiangsheng; Zhou, Jianying
2016-09-01
Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.
High-speed railway signal trackside equipment patrol inspection system
NASA Astrophysics Data System (ADS)
Wu, Nan
2018-03-01
High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya
2015-02-01
We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.
2010-01-01
This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.
Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view
NASA Astrophysics Data System (ADS)
Cao, Tam P.; Deng, Guang; Elton, Darrell
2009-02-01
In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.
Real-time stereo generation for surgical vision during minimal invasive robotic surgery
NASA Astrophysics Data System (ADS)
Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod
2016-03-01
This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.
Standoff concealed weapon detection using a 350-GHz radar imaging system
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.
2010-04-01
The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented.
Potsaid, Benjamin; Gorczynska, Iwona; Srinivasan, Vivek J.; Chen, Yueli; Jiang, James; Cable, Alex; Fujimoto, James G.
2009-01-01
We demonstrate ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000 - 312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5 - 3.0 micron axial image resolution is demonstrated at ∼ 100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at >300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with ∼ 8 - 9 micron axial resolution at 250,000 axial scans per second, a 512 × 512 × 400 voxel volumetric 3D-OCT data set can be acquired in only ∼ 1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease progression and response to therapy in ophthalmology, as well as have a wide range of research and clinical applications in other areas. PMID:18795054
Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system
NASA Astrophysics Data System (ADS)
Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen
2018-02-01
In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.
Vibration extraction based on fast NCC algorithm and high-speed camera.
Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an
2015-09-20
In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.
High-speed railway real-time localization auxiliary method based on deep neural network
NASA Astrophysics Data System (ADS)
Chen, Dongjie; Zhang, Wensheng; Yang, Yang
2017-11-01
High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.
Levin, Harvey S.; Wilde, Elisabeth A.; Chu, Zili; Yallampalli, Ragini; Hanten, Gerri R.; Li, Xiaoqi; Chia, Jon; Vasquez, Carmen; Hunter, Jill V.
2008-01-01
Objective To investigate the relation of white matter integrity using diffusion tensor imaging (DTI) to cognitive and functional outcome of moderate to severe traumatic brain injury (TBI) in children. Design Prospective observational study of children who had sustained moderate to severe TBI and a comparison group of children who had sustained orthopedic injury (OI). Participants Thirty-two children who had sustained moderate to severe TBI and 36 children with OI were studied. Methods Fiber tracking analysis of DTI acquired at 3-month postinjury and assessment of global outcome and cognitive function within 2 weeks of brain imaging. Global outcome was assessed using the Glasgow Outcome Scale and the Flanker task was used to measure cognitive processing speed and resistance to interference. Results Fractional anisotropy and apparent diffusion coefficient values differentiated the groups and both cognitive and functional outcome measures were related to the DTI findings. Dissociations were present wherein the relation of Fractional anisotropy to cognitive performance differed between the TBI and OI groups. A DTI composite measure of white matter integrity was related to global outcome in the children with TBI. Conclusions DTI is sensitive to white matter injury at 3 months following moderate to severe TBI in children, including brain regions that appear normal on conventional magnetic resonance imaging. DTI measures reflecting diffusion of water parallel and perpendicular to white matter tracts as calculated by fiber tracking analysis are related to global outcome, cognitive processing speed, and speed of resolving interference in children with moderate to severe TBI. Longitudinal data are needed to determine whether these relations between DTI and neurobehavioral outcome of TBI in children persist at longer follow-up intervals. PMID:18650764
Self-calibrated correlation imaging with k-space variant correlation functions.
Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J
2018-03-01
Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Image motion environments: background noise for movement-based animal signals.
Peters, Richard; Hemmi, Jan; Zeil, Jochen
2008-05-01
Understanding the evolution of animal signals has to include consideration of the structure of signal and noise, and the sensory mechanisms that detect the signals. Considerable progress has been made in understanding sounds and colour signals, however, the degree to which movement-based signals are constrained by the particular patterns of environmental image motion is poorly understood. Here we have quantified the image motion generated by wind-blown plants at 12 sites in the coastal habitat of the Australian lizard Amphibolurus muricatus. Sampling across different plant communities and meteorological conditions revealed distinct image motion environments. At all locations, image motion became more directional and apparent speed increased as wind speeds increased. The magnitude of these changes and the spatial distribution of image motion, however, varied between locations probably as a function of plant structure and the topographic location. In addition, we show that the background motion noise depends strongly on the particular depth-structure of the environment and argue that such micro-habitat differences suggest specific strategies to preserve signal efficacy. Movement-based signals and motion processing mechanisms, therefore, may reveal the same type of habitat specific structural variation that we see for signals from other modalities.
Note: A simple image processing based fiducial auto-alignment method for sample registration.
Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne
2015-08-01
A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.
Study of process parameter on mist lubrication of Titanium (Grade 5) alloy
NASA Astrophysics Data System (ADS)
Maity, Kalipada; Pradhan, Swastik
2017-02-01
This paper deals with the machinability of Ti-6Al-4V alloy with mist cooling lubrication using carbide inserts. The influence of process parameter on the cutting forces, evolution of tool wear, surface finish of the workpiece, material removal rate and chip reduction coefficient have been investigated. Weighted principal component analysis coupled with grey relational analysis optimization is applied to identify the optimum setting of the process parameter. Optimal condition of the process parameter was cutting speed at 160 m/min, feed at 0.16 mm/rev and depth of cut at 1.6 mm. Effects of cutting speed and depth of cut on the type of chips formation were observed. Most of the chips forms were long tubular and long helical type. Image analyses of the segmented chip were examined to study the shape and size of the saw tooth profile of serrated chips. It was found that by increasing cutting speed from 95 m/min to 160 m/min, the free surface lamella of the chips increased and the visibility of the saw tooth segment became clearer.
Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.
2014-01-01
Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677
NASA Astrophysics Data System (ADS)
Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong
2016-12-01
To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.
Quantitative approach for optimizing e-beam condition of photoresist inspection and measurement
NASA Astrophysics Data System (ADS)
Lin, Chia-Jen; Teng, Chia-Hao; Cheng, Po-Chung; Sato, Yoshishige; Huang, Shang-Chieh; Chen, Chu-En; Maruyama, Kotaro; Yamazaki, Yuichiro
2018-03-01
Severe process margin in advanced technology node of semiconductor device is controlled by e-beam metrology system and e-beam inspection system with scanning electron microscopy (SEM) image. By using SEM, larger area image with higher image quality is required to collect massive amount of data for metrology and to detect defect in a large area for inspection. Although photoresist is the one of the critical process in semiconductor device manufacturing, observing photoresist pattern by SEM image is crucial and troublesome especially in the case of large image. The charging effect by e-beam irradiation on photoresist pattern causes deterioration of image quality, and it affect CD variation on metrology system and causes difficulties to continue defect inspection in a long time for a large area. In this study, we established a quantitative approach for optimizing e-beam condition with "Die to Database" algorithm of NGR3500 on photoresist pattern to minimize charging effect. And we enhanced the performance of measurement and inspection on photoresist pattern by using optimized e-beam condition. NGR3500 is the geometry verification system based on "Die to Database" algorithm which compares SEM image with design data [1]. By comparing SEM image and design data, key performance indicator (KPI) of SEM image such as "Sharpness", "S/N", "Gray level variation in FOV", "Image shift" can be retrieved. These KPIs were analyzed with different e-beam conditions which consist of "Landing Energy", "Probe Current", "Scanning Speed" and "Scanning Method", and the best e-beam condition could be achieved with maximum image quality, maximum scanning speed and minimum image shift. On this quantitative approach of optimizing e-beam condition, we could observe dependency of SEM condition on photoresist charging. By using optimized e-beam condition, measurement could be continued on photoresist pattern over 24 hours stably. KPIs of SEM image proved image quality during measurement and inspection was stabled enough.
Pelletier, Mathew G
2008-02-08
One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU) as an alternative to thePC's traditional use of the central processing unit (CPU). The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit "GPU", for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC's central processing unit "CPU", wasgained. The new parallel algorithm operating on the GPU was able to process a 1024x1024image in less than 17ms. At this improved speed, the image processing system's performance should now be sufficient to provide a system that would be capable of realtimefeed-back control that is in tight cooperation with the cleaning equipment.
A new template matching method based on contour information
NASA Astrophysics Data System (ADS)
Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong
2014-11-01
Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
NASA Astrophysics Data System (ADS)
Tenner, F.; Brock, C.; Klämpfl, F.; Schmidt, M.
2015-01-01
The process of laser metal welding is widely used in industry. Nevertheless, there is still a lack of complete process understanding and control. For analyzing the process we used two high-speed cameras. Therefore, we could image the plasma plume (which is directly accessible by a camera) and the keyhole (where most of the process instabilities occur) during laser welding isochronously. Applying different image processing steps we were able to find a correlation between those two process characteristics. Additionally we imaged the plasma plume from two directions and were able to calculate a volume with respect to the vaporized material the plasma plume carries. Due to these correlations we are able to conclude the keyhole stability from imaging the plasma plume and vice versa. We used the found correlation between the keyhole behavior and the plasma plume to explain the effect of changing laser power and feed rate on the keyhole geometry. Furthermore, we tried to outline the phenomena which have the biggest effect on the keyhole geometry during changes of feed rate and laser power.
Optimization of the Reconstruction Interval in Neurovascular 4D-CTA Imaging
Hoogenboom, T.C.H.; van Beurden, R.M.J.; van Teylingen, B.; Schenk, B.; Willems, P.W.A.
2012-01-01
Summary Time resolved whole brain CT angiography (4D-CTA) is a novel imaging technology providing information regarding blood flow. One of the factors that influence the diagnostic value of this examination is the temporal resolution, which is affected by the gantry rotation speed during acquisition and the reconstruction interval during post-processing. Post-processing determines the time spacing between two reconstructed volumes and, unlike rotation speed, does not affect radiation burden. The data sets of six patients who underwent a cranial 4D-CTA were used for this study. Raw data was acquired using a 320-slice scanner with a rotation speed of 2 Hz. The arterial to venous passage of an intravenous contrast bolus was captured during a 15 s continuous scan. The raw data was reconstructed using four different reconstruction-intervals: 0.2, 0.3, 0.5 and 1.0 s. The results were rated by two observers using a standardized score sheet. The appearance of each lesion was rated correctly in all readings. Scoring for quality of temporal resolution revealed a stepwise improvement from the 1.0 s interval to the 0.3 s interval, while no discernable improvement was noted between the 0.3 s and 0.2 s interval. An increase in temporal resolution may improve the diagnostic quality of cranial 4D-CTA. Using a rotation speed of 0.5 s, the optimal reconstruction interval appears to be 0.3 s, beyond which, changes can no longer be discerned. PMID:23217631
Implementation of total focusing method for phased array ultrasonic imaging on FPGA
NASA Astrophysics Data System (ADS)
Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2015-02-01
This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.
Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.
Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia
2010-01-01
To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.
Competitive code-based fast palmprint identification using a set of cover trees
NASA Astrophysics Data System (ADS)
Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan
2009-06-01
A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.
Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean
2015-08-01
Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.
Coincidence electron/ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin
2015-05-01
A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.
Three-dimensional device characterization by high-speed cinematography
NASA Astrophysics Data System (ADS)
Maier, Claus; Hofer, Eberhard P.
2001-10-01
Testing of micro-electro-mechanical systems (MEMS) for optimization purposes or reliability checks can be supported by device visualization whenever an optical access is available. The difficulty in such an investigation is the short time duration of dynamical phenomena in micro devices. This paper presents a test setup to visualize movements within MEMS in real-time and in two perpendicular directions. A three-dimensional view is achieved by the combination of a commercial high-speed camera system, which allows to take up to 8 images of the same process with a minimum interframe time of 10 ns for the first direction, with a second visualization system consisting of a highly sensitive CCD camera working with a multiple exposure LED illumination in the perpendicular direction. Well synchronized this provides 3-D information which is treated by digital image processing to correct image distortions and to perform the detection of object contours. Symmetric and asymmetric binary collisions of micro drops are chosen as test experiments, featuring coalescence and surface rupture. Another application shown here is the investigation of sprays produced by an atomizer. The second direction of view is a prerequisite for this measurement to select an intended plane of focus.
Ultrahigh-speed X-ray imaging of hypervelocity projectiles
NASA Astrophysics Data System (ADS)
Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.
2011-08-01
High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Architecture for a PACS primary diagnosis workstation
NASA Astrophysics Data System (ADS)
Shastri, Kaushal; Moran, Byron
1990-08-01
A major factor in determining the overall utility of a medical Picture Archiving and Communications (PACS) system is the functionality of the diagnostic workstation. Meyer-Ebrecht and Wendler [1] have proposed a modular picture computer architecture with high throughput and Perry et.al [2] have defined performance requirements for radiology workstations. In order to be clinically useful, a primary diagnosis workstation must not only provide functions of current viewing systems (e.g. mechanical alternators [3,4]) such as acceptable image quality, simultaneous viewing of multiple images, and rapid switching of image banks; but must also provide a diagnostic advantage over the current systems. This includes window-level functions on any image, simultaneous display of multi-modality images, rapid image manipulation, image processing, dynamic image display (cine), electronic image archival, hardcopy generation, image acquisition, network support, and an easy user interface. Implementation of such a workstation requires an underlying hardware architecture which provides high speed image transfer channels, local storage facilities, and image processing functions. This paper describes the hardware architecture of the Siemens Diagnostic Reporting Console (DRC) which meets these requirements.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragoda, Deepa K.; Matcher, Stephen J.
2011-03-01
We compare true 8 and 14 bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) at 1.3μm wavelength by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of an equine tendon sample indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. We also compare the resulting image quality when the image data sampled with the 14-bit DAQ from human finger skin is artificially bit-reduced during post-processing. However, in agreement with the results reported previously, we also observe that in our system that real-world 8-bit image shows more artifacts than the image acquired by numerically truncating to 8-bits from the raw 14-bit image data, especially in low intensity image area. This is due to the higher noise floor and reduced dynamic range of the 8-bit DAQ. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artefacts due to strong Fresnel reflection.
[Quantitative image of bone mineral content--dual energy subtraction in a single exposure].
Katoh, T
1990-09-25
A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.
Deneux, Thomas; Takerkart, Sylvain; Grinvald, Amiram; Masson, Guillaume S; Vanzetta, Ivo
2012-02-01
Comprehensive information on the spatio-temporal dynamics of the vascular response is needed to underpin the signals used in hemodynamics-based functional imaging. It has recently been shown that red blood cells (RBCs) velocity and its changes can be extracted from wide-field optical imaging recordings of intrinsic absorption changes in cortex. Here, we describe a complete processing work-flow for reliable RBC velocity estimation in cortical networks. Several pre-processing steps are implemented: image co-registration, necessary to correct for small movements of the vasculature, semi-automatic image segmentation for fast and reproducible vessel selection, reconstruction of RBC trajectories patterns for each micro-vessel, and spatio-temporal filtering to enhance the desired data characteristics. The main analysis step is composed of two robust algorithms for estimating the RBCs' velocity field. Vessel diameter and its changes are also estimated, as well as local changes in backscattered light intensity. This full processing chain is implemented with a software suite that is freely distributed. The software uses efficient data management for handling the very large data sets obtained with in vivo optical imaging. It offers a complete and user-friendly graphical user interface with visualization tools for displaying and exploring data and results. A full data simulation framework is also provided in order to optimize the performances of the algorithm with respect to several characteristics of the data. We illustrate the performance of our method in three different cases of in vivo data. We first document the massive RBC speed response evoked by a spreading depression in anesthetized rat somato-sensory cortex. Second, we show the velocity response elicited by a visual stimulation in anesthetized cat visual cortex. Finally, we report, for the first time, visually-evoked RBC speed responses in an extended vascular network in awake monkey extrastriate cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, Deborah J. (Inventor)
1998-01-01
An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.
Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data
NASA Technical Reports Server (NTRS)
Likens, W. C.; Wrigley, R. C.
1984-01-01
Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.
Design of video processing and testing system based on DSP and FPGA
NASA Astrophysics Data System (ADS)
Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na
2007-12-01
Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.
Design and Development of a High Speed Sorting System Based on Machine Vision Guiding
NASA Astrophysics Data System (ADS)
Zhang, Wenchang; Mei, Jiangping; Ding, Yabin
In this paper, a vision-based control strategy to perform high speed pick-and-place tasks on automation product line is proposed, and relevant control software is develop. Using Delta robot to control a sucker to grasp disordered objects from one moving conveyer and then place them on the other in order. CCD camera gets one picture every time the conveyer moves a distance of ds. Objects position and shape are got after image processing. Target tracking method based on "Servo motor + synchronous conveyer" is used to fulfill the high speed porting operation real time. Experiments conducted on Delta robot sorting system demonstrate the efficiency and validity of the proposed vision-control strategy.
Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Kodate, Kashiko
2005-11-01
We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.
Radiation effects in reconfigurable FPGAs
NASA Astrophysics Data System (ADS)
Quinn, Heather
2017-04-01
Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.
Waldron-Perrine, B; Kisser, J E; Brody, A; Haacke, E M; Dawood, R; Millis, S; Levy, P
2018-04-17
African Americans (AA) are at high risk for hypertension (HTN) and poor blood pressure (BP) control. Persistently elevated BP contributes to cardiovascular morbidity. White matter hyperintensities (WMH) are a definable magnetic resonance imaging (MRI) marker of cerebrovascular injury linked to impairments in higher level thinking (i.e., executive functions), memory formation and speed of perceptual-motor processing. This sub-investigation evaluated neuropsychological functioning in association with WMH on brain MRIs in 23 otherwise healthy hypertensive AAs participating in an NIH-funded study of the effects of Vitamin D on BP and cardiac remodeling in AA patients 30-74 years of age with HTN and left ventricular hypertrophy. Neuropsychological assessment included psychomotor processing speed [(Symbol Digit Modality Test (SDMT) and Trail Making Test], executive functioning (Controlled Oral Word Association Test and Trail Making Test Part B), memory (Rey Auditory Verbal Learning Test), and fine motor functioning (Finger Tapping). Significant correlations (p< .05) were found between volume of periventricular lesions and Trails A (r = .51) and dominant hand finger tapping speed (r = -.69) and between subcortical lesion volume and Trails A (r = .60), both dominant (r = -.62) and non-dominant hand finger tapping speed (r = -.76) and oral SDMT (r = -.60); higher lesion volumes correlated to worse neuropsychological performance. Psychomotor tests including the Trail Making Test and finger tapping speed are sensitive indicators of subclinical deficits in mental processing speed and could serve as early markers of deep subcortical cerebrovascular injury in otherwise-healthy individuals with uncontrolled chronic HTN.
A new hyperspectral image compression paradigm based on fusion
NASA Astrophysics Data System (ADS)
Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto
2016-10-01
The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko
2005-09-01
Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.
Image Size Variation Influence on Corrupted and Non-viewable BMP Image
NASA Astrophysics Data System (ADS)
Azmi, Tengku Norsuhaila T.; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Hamid, Isredza Rahmi A.; Chai Wen, Chuah
2017-08-01
Image is one of the evidence component seek in digital forensics. Joint Photographic Experts Group (JPEG) format is most popular used in the Internet because JPEG files are very lossy and easy to compress that can speed up Internet transmitting processes. However, corrupted JPEG images are hard to recover due to the complexities of determining corruption point. Nowadays Bitmap (BMP) images are preferred in image processing compared to another formats because BMP image contain all the image information in a simple format. Therefore, in order to investigate the corruption point in JPEG, the file is required to be converted into BMP format. Nevertheless, there are many things that can influence the corrupting of BMP image such as the changes of image size that make the file non-viewable. In this paper, the experiment indicates that the size of BMP file influences the changes in the image itself through three conditions, deleting, replacing and insertion. From the experiment, we learnt by correcting the file size, it can able to produce a viewable file though partially. Then, it can be investigated further to identify the corruption point.
High-speed 3D imaging using digital binary defocusing method vs sinusoidal method
NASA Astrophysics Data System (ADS)
Zhang, Song; Hyun, Jae-Sang; Li, Beiwen
2017-02-01
This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
Effects of developer depletion on image quality of Kodak Insight and Ektaspeed Plus films.
Casanova, M S; Casanova, M L S; Haiter-Neto, F
2004-03-01
To evaluate the effect of processing solution depletion on the image quality of F-speed dental X-ray film (Insight), compared with Ektaspeed Plus. The films were exposed with a phantom and developed in manual and automatic conditions, in fresh and progressively depleted solutions. The comparison was based on densitometric analysis and subjective appraisal. The processing solution depletion presented a different behaviour depending on whether manual or automatic technique was used. The films were distinctly affected by depleted processing solutions. The developer depletion was faster in automatic than manual conditions. Insight film was more resistant than Ektaspeed Plus to the effects of processing solution depletion. In the present study there was agreement between the objective and subjective appraisals.
Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang
2016-01-01
Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214
Feasibility of telemammography as biomedical application for breast imaging
NASA Astrophysics Data System (ADS)
Beckerman, Barbara G.; Batsell, Stephen G.; MacIntyre, Lawrence P.; Sarraf, Hamed S.; Gleason, Shaun S.; Schnall, Mitchell D.
1999-07-01
Mammographic screening is an important tool in the early detection of breast cancer. The migration of mammography from the current mode of x-ray mammography using a film screen image detector and display to a digital technology provides an opportunity to improve access and performance of breast cancer screening. The sheer size and volume of the typical screening exam, the need to have previous screening data readily available, and the need to view other breast imaging data together to provide a common consensus and to plan treatment, make telemammography an ideal application for breast imaging. For telemammography to be a viable option, it must overcome the technical challenges related to transmission, archiving, management, processing and retrieval of large data sets. Researchers from the University of Pennsylvania, the University of Chicago and Lockheed Martin Energy Systems/Oak Ridge National Laboratory have developed a framework for transmission of large-scale medical images over high-speed networks, leveraged existing high-speed networks between research and medical facilities; tested the feasibility of point-to-point transmission of mammographic images in a near-real time environment; evaluated network performance and transmission scenarios; and investigated the impact of image preprocessing on an experimental computer-aided diagnosis system. Results of the initial study are reported here.
3D Visual Tracking of an Articulated Robot in Precision Automated Tasks
Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.
2017-01-01
The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860
A Study on the Effects of Alternatives to Speed Humps Using a Driving Simulator
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Noh, Kwan-Sub
A road alignment which has a long straight section followed by sharp curve is dangerous, because drivers have the habit to accelerate on the long straight section and then accidents occur on the short curve as the result of speeding. This study evaluated the alternatives to speed humps in order to reduce speed safely and comfortably on roads with this incorrect road alignment. There are several speed control facilities to reduce speed on roads with wrong road alignment. The speed hump is dangerous at high speeds because drivers must reduce speed rapidly and because of the physical impact. The image hump provides less effect for drivers who already know of its presence. So, to resolve these matters, we propose a new type of speed control facility. An image hump with transverse grooving will be effective in reducing speed because the transverse grooving gives vibration and noise to drivers who are already aware of the presence of the image hump, but it does not give the hard physical impact to vehicles. The study on the effect of the alternatives to speed humps was carried out using the K-ROADS (KICT-Road Analysis Driving Simulator) which has been developed to analyze and evaluate road safety at the project HuRoSAS (Human & Road Safety Analysis System) since 2003. K-ROADS has two distinct functions. One is the visual system which has a 360 degree F. O. V. to reduce dead angles on black spots such as at-grade intersections. The other is the motion system which has high frequency vibration to reproduce vibrations made in irregular road surfaces. This study found out that the image hump with transverse grooving is a safe speed control facility in order to reduce driving speed safely and comfortably on a straight section followed by a sharp curve, even if drivers are known the existence of image hump.
Fast Fourier single-pixel imaging via binary illumination.
Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang
2017-09-20
Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.
Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.
Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.
2012-01-01
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477
NASA Astrophysics Data System (ADS)
Yokotani, Atushi; Mizuno, Toshio; Mukumoto, Toru; Kawahara, Kousuke; Ninomiya, Takahumi; Sawada, Hiroshi; Kurosawa, Kou
We have analyzed the drilling process with femtosecond laser on the silicon surface in order to investigate a degree of thermal effect during the dicing process of the very thin silicon substrate. A regenerative amplified Ti:Al2O3 laser (E= 30˜500 μJ/pulse, τ= 200 fs, λ= 780 nm, f= 10 Hz) was used and focused onto a 50 μm-thick silicon sample. ICCD (Intensified Charge coupled Device) camera with a high-speed gate of 5 ns was utilized to take images of processing hole. First, we investigated the dependence of laser energy on the speed of the formation of the drilled hole. As a result, it was found that the lager the energy, the slower the speed of the formation under the minimum hole was obtained. Consequently, in the case of defocused condition, even when the smaller the energy density was used, the very slow speed of formation and the much lager thermal effects are simultaneously observed. So we can say that the degree of the thermal effects is not simply related to energy density of the laser but strongly related to the speed of the formation, which can be measured by the ICCD camera. The similar tendency was also obtained for other materials, which are important for the fabrication of ICs (Al, Cu, SiO2 and acrylic resin).
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2018-01-01
The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.
Foucault's method for measuring the speed of light with modern apparatus
NASA Astrophysics Data System (ADS)
Vörös, Zoltán; Weihs, Gregor
2015-05-01
In this paper, we introduce two simple and inexpensive, yet quite accurate versions of the well-known Foucault method for measuring the speed of light. In a compact footprint of just 20 cm by 270 cm with readily available laboratory items, a rotating mirror taken from a laser printer, and a webcam, we obtained c=296\\720+/- 3000 km s-1, and c=302\\295+/- 3000 km s-1, respectively, both within less than a per cent of the defined value. The experiment also prepares students for extracting data through image processing.