Sample records for speed regulating system

  1. Research on H2 speed governor for diesel engine of marine power station

    NASA Astrophysics Data System (ADS)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  2. System simulation of direct-current speed regulation based on Simulink

    NASA Astrophysics Data System (ADS)

    Yang, Meiying

    2018-06-01

    Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.

  3. Research on speed control of secondary regulation lifting system of parking equipment

    NASA Astrophysics Data System (ADS)

    Zang, Faye

    2005-12-01

    Hydrostatic transmission with secondary regulation is a new kind of hydrostatic transmission that can regenerate inertial and gravitational energy of load. On the basis of an in-depth analysis of the working principles and energy-saving mechanisms of the parking equipment lifting systems with, secondary regulating technology, this paper proposes a method of regenerating a lifting system's inertial energy by controlling rotational speed and reclaiming the gravitational energy by use of a constant rotational speed. Considering large changes of the parameters of lifting systems and then non-linearity, a fuzzy control was adopted to control the lifting system, and a mathematical model of the system was established. By simulation and experiment of the lifting system, the conclusion was reached a lifting system's braking achieved by controlling rotational speed is reliable and stable at a definite speed. It also permits changing the efficiency of recovery by changing the rotational speed. The design power of the lifting system can be chosen in terms of the system's average power, so the system's power can be reduced and energy savings achieved.

  4. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  5. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    PubMed

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Design and develop speed/pressure regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    1993-09-01

    The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided withmore » the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.« less

  7. Engine control system having speed-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  8. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  9. Improvement of automatic control system for high-speed current collectors

    NASA Astrophysics Data System (ADS)

    Sidorov, O. A.; Goryunov, V. N.; Golubkov, A. S.

    2018-01-01

    The article considers the ways of regulation of pantographs to provide quality and reliability of current collection at high speeds. To assess impact of regulation was proposed integral criterion of the quality of current collection, taking into account efficiency and reliability of operation of the pantograph. The study was carried out using mathematical model of interaction of pantograph and catenary system, allowing to assess contact force and intensity of arcing at the contact zone at different movement speeds. The simulation results allowed us to estimate the efficiency of different methods of regulation of pantographs and determine the best option.

  10. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  11. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE PAGES

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...

    2017-04-18

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  12. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  13. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  14. Effectiveness and acceptance of the intelligent speeding prediction system (ISPS).

    PubMed

    Zhao, Guozhen; Wu, Changxu

    2013-03-01

    The intelligent speeding prediction system (ISPS) is an in-vehicle speed assistance system developed to provide quantitative predictions of speeding. Although the ISPS's prediction of speeding has been validated, whether the ISPS can regulate a driver's speed behavior or whether a driver accepts the ISPS needs further investigation. Additionally, compared to the existing intelligent speed adaptation (ISA) system, whether the ISPS performs better in terms of reducing excessive speeds and improving driving safety needs more direct evidence. An experiment was conducted to assess and compare the effectiveness and acceptance of the ISPS and the ISA. We conducted a driving simulator study with 40 participants. System type served as a between-subjects variable with four levels: no speed assistance system, pre-warning system developed based on the ISPS, post-warning system ISA, and combined pre-warning and ISA system. Speeding criterion served as a within-subjects variable with two levels: lower (posted speed limit plus 1 mph) and higher (posted speed limit plus 5 mph) speed threshold. Several aspects of the participants' driving speed, speeding measures, lead vehicle response, and subjective measures were collected. Both pre-warning and combined systems led to greater minimum time-to-collision. The combined system resulted in slower driving speed, fewer speeding exceedances, shorter speeding duration, and smaller speeding magnitude. The results indicate that both pre-warning and combined systems have the potential to improve driving safety and performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Method and system for controlling a rotational speed of a rotor of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2008-12-30

    A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.

  16. Global robust output regulation control for cascaded nonlinear systems using the internal model principle

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Bo; Zhao, Yan; Wu, Yu-Qiang

    2014-04-01

    This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.

  17. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service. 236.1007 Section 236.1007 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  18. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  19. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  20. Realization of PLC to the Variable Frequency Speed Regulation System of Mine Local Ventilator based on RS-485 Communication

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Li, Jian; Yun, Yichong

    2018-03-01

    The article first introduces the merits of serial communication in the PLC to the variable frequency speed regulation system of mine local ventilator, and then sets up a hardware application development platform of PLC and inverter based on RS-485 communication technology, next presents communication initialization of the PLC and Inverter. Finally according to the control requirements, PLC send run operation & monitoring instruction to Inverter, realizes the serial communication control between the PLC and Inverter.

  1. Design and analysis of an MR rotary brake for self-regulating braking torques.

    PubMed

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  2. Regulation of Conduction Time along Axons

    PubMed Central

    Seidl, Armin H.

    2013-01-01

    Timely delivery of information is essential for proper function of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies in the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal. PMID:23820043

  3. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.

    PubMed

    Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H

    2014-06-01

    The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds.

  4. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  5. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  6. Simulation of load traffic and steeped speed control of conveyor

    NASA Astrophysics Data System (ADS)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  7. REVIEW ARTICLE: How do biomolecular systems speed up and regulate rates?

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2005-09-01

    The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.

  8. Issues of Exploitation of Induction Motors in the Course of Underground Mining Operations

    NASA Astrophysics Data System (ADS)

    Gumula, Stanisław; Hudy, Wiktor; Piaskowska-Silarska, Malgorzata; Pytel, Krzysztof

    2017-09-01

    Mining industry is one of the most important customers of electric motors. The most commonly used in the contemporary mining industry is alternating current machines used for processing electrical energy into mechanical energy. The operating problems and the influence of qualitative interference acting on the inputs of individual regulators to field-oriented system in the course of underground mining operations has been presented in the publication. The object of controlling the speed is a slip-ring induction motor. Settings of regulators were calculated using an evolutionary algorithm. Examination of system dynamics was performed by a computer with the use of the MATLAB / Simulink software. According to analyzes, large distortion of input signals of regulators adversely affects the rotational speed that pursued by the control system, which may cause a large vibration of the whole system and, consequently, its much faster destruction. Designed system is characterized by a significantly better resistance to interference. The system is stable with the properly selected settings of regulators, which is particularly important during the operation of machinery used in underground mining.

  9. System frequency support of permanent magnet synchronous generator-based wind power plant

    NASA Astrophysics Data System (ADS)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.

  10. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  11. Automated mixed traffic vehicle control and scheduling study

    NASA Technical Reports Server (NTRS)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  12. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.

  14. 36 CFR 13.1176 - Speed restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Speed restrictions. 13.1176 Section 13.1176 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel...

  15. 36 CFR 13.1176 - Speed restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Speed restrictions. 13.1176 Section 13.1176 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel...

  16. 36 CFR 13.1176 - Speed restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Speed restrictions. 13.1176 Section 13.1176 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel...

  17. Role of pump hydro in electric power systems

    NASA Astrophysics Data System (ADS)

    Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.

    2017-04-01

    This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.

  18. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  19. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters

    PubMed Central

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong

    2016-01-01

    ABSTRACT The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. IMPORTANCE Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. PMID:27068592

  20. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.

    PubMed

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong; Alexandre, Gladys

    2016-06-15

    The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  2. 77 FR 51724 - Airworthiness Directives; The Boeing Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... ON Thrust Levers CLOSE Speed Brakes FLIGHT DETENT Target Speed MO/MMO'' Note 1 to paragraphs (j)(2... W. Palmer, Aerospace Engineer, Systems and Equipment Branch, ANM-130S, FAA, Seattle Aircraft... charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations...

  3. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  4. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).

    PubMed

    Barron, Andrew; Srinivasan, Mandyam V

    2006-03-01

    There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.

  5. Airbus windshear warning and guidance system

    NASA Technical Reports Server (NTRS)

    Bonafe, J. L.

    1990-01-01

    From its first designed airplane, Airbus considered mandatory a help in the crew's decision-making process to initiate an escape maneuver and help to successfully realize it. All the Airbus airplanes designed since 1975 included an alpha-floor function and a speed reference control law imbedded in the speed reference system (SRS) box for A 300 and FAC and FCC for A 310, A300/600 and the A 320. Alpha-Floor function takes into account the airplane energy situation considering angle of attack and observed longitudinal situation in order to apply immediately the full power without any pilot action. Speed reference managers control airspeed and/or ground speed in order to survive a maximum in shear situation. In order to comply with the new FAA regulation: Aerospatiale and Airbus developed more efficient systems. A comparison between 1975 and a newly developed system is given. It is explained how the new system improves the situation.

  6. A propulsion and steering control system for the Mars rover

    NASA Technical Reports Server (NTRS)

    Turner, J. M.

    1980-01-01

    The design of a propulsion and steering control system for the Rensselaer Polytechnic Institute prototype autonomous Mars roving vehicle is presented. The vehicle is propelled and steered by four independent electric motors. The control system must regulate the speeds of the motors so they work in unison during turns and on irregular terrain. An analysis of the motor coordination problem on irregular terrain, where each motor must supply a different torque at a different speed is presented. A procedure was developed to match the output of each motor to the varying load. A design for the control system is given. The controller uses a microprocessor which interprets speed and steering commands from an off-board computer, and produces the appropriate drive voltages for the motors.

  7. An advanced robust method for speed control of switched reluctance motor

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Ming, Zhengfeng; Su, Zhanping; Cai, Zhuang

    2018-05-01

    This paper presents an advanced robust controller for the speed system of a switched reluctance motor (SRM) in the presence of nonlinearities, speed ripple, and external disturbances. It proposes that the adaptive fuzzy control is applied to regulate the motor speed in the outer loop, and the detector is used to obtain rotor detection in the inner loop. The new fuzzy logic tuning rules are achieved from the experience of the operator and the knowledge of the specialist. The fuzzy parameters are automatically adjusted online according to the error and its change of speed in the transient period. The designed detector can obtain the rotor's position accurately in each phase module. Furthermore, a series of contrastive simulations are completed between the proposed controller and proportion integration differentiation controller including low speed, medium speed, and high speed. Simulations show that the proposed robust controller enables the system reduced by at least 3% in overshoot, 6% in rise time, and 20% in setting time, respectively, and especially under external disturbances. Moreover, an actual SRM control system is constructed at 220 V 370 W. The experiment results further prove that the proposed robust controller has excellent dynamic performance and strong robustness.

  8. Coal gasification system with a modulated on/off control system

    DOEpatents

    Fasching, George E.

    1984-01-01

    A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

  9. Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeonhee; Kang, Moses; Muljadi, Eduard

    This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less

  10. 33 CFR 401.28 - Speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...

  11. 33 CFR 401.28 - Speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...

  12. Permanent magnet DC motor control by using arduino and motor drive module BTS7960

    NASA Astrophysics Data System (ADS)

    Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.

    2018-05-01

    This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.

  13. Safety of High Speed Guided Ground Transportation Systems : Review of Existing EMF Guidelines, Standards and Regulations

    DOT National Transportation Integrated Search

    1993-08-01

    To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...

  14. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Putoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38% chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  15. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Puthoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38 percent chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  16. Design and performance of a no-single-failure control system for the mini-Brayton power conversion system. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Brichenough, A. G.

    1975-01-01

    The control system consists of the ac-dc conversion, voltage regulation, speed regulation through parasitic load control, and overload control. A no-single-failure configuration was developed to attain the required reliability for a 10-year design life of unattended operation. The design principles, complete schematics, and performance are reported. Testing was performed on an alternator simulator pending construction of the actual Mini-Brayton alternator.

  17. Improvement of automatic control systems of high-power turbines of PAO tubroatom for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. L.; Babaev, I. N.

    2017-09-01

    The main technical solutions applied by PAO Turboatom used as the compensatory measures at the increase of the period of nonstop operation of nuclear power plants' (NPP) turbines with VVER-1000 type reactors up to 18 months are (1) replacing the standard hydraulic speed controller with an electronic one, (2) introduction of overclocking protection, (3) modernization of units of stop-control valves of high pressures, (4) installation of locking dampers on the receiver tubes of turbines of the first and second modification, and (5) improving the quality of repairs by reviewing the requirements for their implementation. The introduction of complex diagnostics of a control system on the basis of automatic treatment of results of registration of working parameters of the turbine is allocated as a separate prospective direction. Using an electronic controller of speed makes it possible to simplify the procedure of its inclusion in work at the failure of an electro-hydraulic system of control and vice versa. The regimes of maintaining the turbine rotor speed, steam pressure on the outlet of turbine, and the positions of main servomotors were introduced into the functions of the electronic controller. An electronic controller of speed includes its own electro-hydraulic transducer, turbine rotor speed sensor, and sensors of the position of main servomotors. Into the functions of electro- hydraulic control system and electronic speed controller, the function of overclocking protection, which determines the formation of commands for stopping the turbine at the exceeding of both the defined level of rotation speed and the defined combination of achieved rotation speed and angular acceleration of rotor, was introduced. To simplify the correction of forces acting on the control valve cups, the design of the cups was changed, and it has the profiled inserts. The solutions proposed were implemented on K-1100-60/1500-2M turbines of Rostov NPP. From the composition of control system of already made turbines, the devices of speed switching of moving of control flaps for opening and hydraulic damper in the servomotors of regulating flaps were excluded; the fists of the control valves providing the increased valve stroke for opening and the construction of filters for regulation, electro-hydraulic converters, oil draining device, etc. was changed.

  18. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  19. Variable rate irrigation (VRI)

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  20. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  1. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Xu, Zhicheng

    2018-06-01

    According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  2. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    PubMed

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  3. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  4. S3: School Zone Safety System Based on Wireless Sensor Network

    PubMed Central

    Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung

    2009-01-01

    School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567

  5. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  6. Investigation of the I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. V - Operational Characteristics. 5; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Golladay, Richard L.; Gendler, Stanley L.

    1947-01-01

    An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.

  7. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and injuries resulting from engine overspeed caused by malfunctions in the accelerator control system. S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... components, except the fuel metering device, that regulate engine speed in direct response to movement of the...

  8. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  9. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  10. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  11. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  12. Summary of state speed laws

    DOT National Transportation Integrated Search

    2006-04-01

    This summary reports only the status of State statutes or regulations that are concerned with either speed limit or speed-related violations. Local laws are not reported. Unless otherwise indicated, the status of the State laws or regulations reporte...

  13. Summary of state speed laws

    DOT National Transportation Integrated Search

    2007-08-01

    This summary reports only the status of State statutes or regulations that are concerned with either speed limit or speed-related violations. Local laws are not reported. Unless otherwise indicated, the status of the State laws or regulations reporte...

  14. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  15. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    NASA Astrophysics Data System (ADS)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  16. Compliance with vessel speed restrictions to protect North Atlantic right whales.

    PubMed

    Silber, Gregory K; Adams, Jeffrey D; Fonnesbeck, Christopher J

    2014-01-01

    Environmental regulations can only be effective if they are adhered to, but the motivations for regulatory compliance are not always clear. We assessed vessel operator compliance with a December 2008 regulation aimed at reducing collisions with the endangered North Atlantic right whale that requires vessels 65 feet or greater in length to travel at speeds of 10 knots or less at prescribed times and locations along the U.S. eastern seaboard. Extensive outreach efforts were undertaken to notify affected entities both before and after the regulation went into effect. Vessel speeds of 201,862 trips made between November 2008 and August 2013 by 8,009 individual vessels were quantified remotely, constituting a nearly complete census of transits made by the regulated population. Of these, 437 vessels (or their parent companies), some of whom had been observed exceeding the speed limit, were contacted through one of four non-punitive information programs. A fraction (n = 26 vessels/companies) received citations and fines. Despite the efforts to inform mariners, initial compliance was low (<5% of the trips were completely <10 knots) but improved in the latter part of the study. Each notification/enforcement program improved compliance to some degree and some may have influenced compliance across the entire regulated community. Citations/fines appeared to have the greatest influence on improving compliance in notified vessels/companies, followed in order of effectiveness by enforcement-office information letters, monthly summaries of vessel operations, and direct at-sea radio contact. Trips by cargo vessels exhibited the greatest change in behavior followed by tanker and passenger vessels. These results have application to other regulatory systems, especially where remote monitoring is feasible, and any setting where regulatory compliance is sought.

  17. Compliance with vessel speed restrictions to protect North Atlantic right whales

    PubMed Central

    Adams, Jeffrey D.; Fonnesbeck, Christopher J.

    2014-01-01

    Environmental regulations can only be effective if they are adhered to, but the motivations for regulatory compliance are not always clear. We assessed vessel operator compliance with a December 2008 regulation aimed at reducing collisions with the endangered North Atlantic right whale that requires vessels 65 feet or greater in length to travel at speeds of 10 knots or less at prescribed times and locations along the U.S. eastern seaboard. Extensive outreach efforts were undertaken to notify affected entities both before and after the regulation went into effect. Vessel speeds of 201,862 trips made between November 2008 and August 2013 by 8,009 individual vessels were quantified remotely, constituting a nearly complete census of transits made by the regulated population. Of these, 437 vessels (or their parent companies), some of whom had been observed exceeding the speed limit, were contacted through one of four non-punitive information programs. A fraction (n = 26 vessels/companies) received citations and fines. Despite the efforts to inform mariners, initial compliance was low (<5% of the trips were completely <10 knots) but improved in the latter part of the study. Each notification/enforcement program improved compliance to some degree and some may have influenced compliance across the entire regulated community. Citations/fines appeared to have the greatest influence on improving compliance in notified vessels/companies, followed in order of effectiveness by enforcement-office information letters, monthly summaries of vessel operations, and direct at-sea radio contact. Trips by cargo vessels exhibited the greatest change in behavior followed by tanker and passenger vessels. These results have application to other regulatory systems, especially where remote monitoring is feasible, and any setting where regulatory compliance is sought. PMID:24949229

  18. 40 CFR 1037.801 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  19. 40 CFR 1037.801 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  20. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.

    PubMed

    Driscoll, R; Page, Y; Lassarre, S; Ehrlich, J

    2007-01-01

    This paper presents the potential safety benefits of the experimental French LAVIA Intelligent Speed Adaptation system, according to road network and system mode, based on observed driving speeds, distributions of crash severity and crash injury risk. Results are given for car frontal and side impacts that together, represent 80% of all serious and fatal injuries in France. Of the three system modes tested (advisory, driver select, mandatory), our results suggest that driver select would most significantly reduce serious injuries and death. We estimate this 100% utilization of cars equipped with this type of speed adaptation system would decrease injury rates by 6% to 16% over existing conditions depending on the type of crash (frontal or side) and road environment considered. Some limitations associated with the analysis are also identified. LAVIA is the acronym for Limiteur s'Adaptant à la VItesse Autorisée, a French Intelligent Speed Adaptation (ISA) project that was set up towards the end of 1999. At the time, 1998 French national road safety statistics recorded 8437 road related deaths, a figure which had shown virtually no positive evolution since 1994. Detailed analysis of the contributory factors involved in fatal road crashes highlighted the time-honoured crash and injury causation mechanisms - alcohol, speed and seatbelts. Of the three, excessive speed (over and above the posted speed limit) was a contributory factor in half of all fatal crashes Inappropriate behaviour such as excessive speeding can be dealt with either by legislative or driver-incentive programmes. The first of these two solutions involves the introduction of new legislation and/or the enforcement of existing laws. This is the domain of Public Authorities and will not be discussed in detail here. Alternatively, incentive schemes can involve the implementation of speed related driver assistance systems, categorised according to their voluntary or mandatory character and the degree of autonomy proposed to or imposed on the driver. The LAVIA project set out to address several possible combinations of these two factors. The generic term Intelligent Speed Adaptation (ISA) encompasses a wide range of different technologies aimed at improving road safety by reducing traffic speed and homogenising traffic flow, within the limit of posted speed limits. "Fixed speed limit" systems inform the vehicle of the posted speed limit whereas "variable speed limit" systems take into account certain locations on the road network where a speed below the posted limit is desirable, such as sharp curves, pedestrian crossings or crash black spots. Taken one step further, speed limit systems may also take into account weather and traffic flow conditions. These systems are known as "dynamic speed limit" systems and benefit from real time updates for a specific location. The different ISA systems are generally characterised by the degree of freedom of choice given to the driver in moderating his or her speed. Speed limit technologies may be advisory (informing drivers of the current speed limit and speed limit changes), voluntary (allowing the driver to decide whether or not to implement speed limitation) or mandatory (imposing the current speed limit). The information supplied may be provided by way of the road infrastructure (and associated equipment), may be acquired autonomously by the vehicle or may be based on an interaction between the infrastructure and the vehicle. Even the most basic of these systems should be considered as a very useful driver aid, helping the driver to stay within the posted speed limit, avoiding "unnecessary" speeding fines through inattention, modelling driver behaviour through the long term reduction of speeds and reducing driver workload by limiting visual speedometer controls. Vehicle-based ISA systems should not be confused with internal systems. These latter systems rely upon the driver entering the desired travel speed, which is then maintained by cruise control or set as a maximum value by automatic speed regulators. Although these systems will not be discussed in detail here, it should be noted that the engine management technologies that they employ are a vital component of ISA systems.

  1. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men.

    PubMed

    Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E

    2016-06-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.

  2. Direct Final Rule for Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    EPA Pesticide Factsheets

    Revises the heavy-duty diesel regulations to enable emergency vehicles to perform mission-critical life-saving work without risking that abnormal conditions of the emission control system could lead to decreased engine power, speed or torque.

  3. Spool valve cycles at controlled frequency

    NASA Technical Reports Server (NTRS)

    Charlton, K. W.; Van Arnam, D. E.

    1966-01-01

    Spool valve accurately controls the cycle of a pneumatically-actuated system over long periods. Regulation of pressure from the external source, positioning of the adjusting plugs, and magnet selection, together afford wide variation in cyclic timing and speed of closure in either direction.

  4. Quantum Speed Limit of a Photon under Non-Markovian Dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu; Zhu, Shi-Qun

    2014-02-01

    Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes—Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.

  5. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  6. Opportunities for ice storage to provide ancillary services to power grids incorporating wind turbine generation

    NASA Astrophysics Data System (ADS)

    Finley, Christopher

    Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.

  7. Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite

    NASA Astrophysics Data System (ADS)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2017-03-01

    This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.

  8. Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase

    NASA Technical Reports Server (NTRS)

    Born, G. J.; Kai, T.

    1975-01-01

    A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.

  9. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  10. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  11. 78 FR 22811 - Special Local Regulations; Mayaguez Grand Prix, Mayaguez Bay; Mayaguez, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ..., a high speed boat race. The event is scheduled to take place on Sunday, June 9, 2013. Approximately 30 high- speed power boats will be participating in the races. The special local regulation is... area, where all persons and vessels, except those persons and vessels participating in the high-speed...

  12. Taxi driver speeding: Who, when, where and how? A comparative study between Shanghai and New York City.

    PubMed

    Huang, Yizhe; Sun, Daniel Jian; Tang, Juanyu

    2018-04-03

    The 3 objectives of this study are to (1) identify the driving style characteristics of taxi drivers in Shanghai and New York City (NYC) using taxi Global Positioning System (GPS) data and make a comparative analysis; (2) explore the influence of different driving style characteristics on the frequency of speeding (who and how?) and (3) explore the influence of driving style characteristics, road attributes, and environmental factors on the speeding rate (when, where, and how?) Methods: This study proposes a driver-road-environment identification (DREI) method to investigate the determinant factors of taxi speeding violations. Driving style characteristics, together with road and environment variables, were obtained based on the GPS data and auxiliary spatiotemporal data in Shanghai and NYC. The daily working hours of taxi drivers in Shanghai (18.6 h) was far more than in NYC (8.5 h). The average occupancy speed of taxi drivers in Shanghai (21.3 km/h) was similar to that of NYC (20.3 km/h). Speeders in both cities had shorter working hours and longer daily driving distance than other taxi drivers, though their daily income was similar. Speeding drivers routinely took long-distance trips (>10 km) and preferred relatively faster routes. Length of segments (1.0-1.5 km) and good traffic condition were associated with high speeding rates, whereas central business district area and secondary road were associated with low speeding rates. Moreover, many speeding violations were identified between 4:00 a.m. and 7:00 a.m. in both Shanghai and NYC and the worst period was between 5:00 a.m. and 6:00 a.m. in both cities. Characteristics of drivers, road attributes, and environment variables should be considered together when studying driver speeding behavior. Findings of this study may assist in stipulating relevant laws and regulations such as stricter offense monitoring in the early morning, long segment supervision, shift rule regulation, and working hour restriction to mitigate the risk of potential crashes.

  13. Application of Multifunctional Doppler LIDAR for Noncontact Track Speed, Distance, and Curvature Assessment

    NASA Astrophysics Data System (ADS)

    Munoz, Joshua

    The primary focus of this research is evaluation of feasibility, applicability, and accuracy of Doppler Light Detection And Ranging (LIDAR) sensors as non-contact means for measuring track speed, distance traveled, and curvature. Speed histories, currently measured with a rotary, wheelmounted encoder, serve a number of useful purposes, one significant use involving derailment investigations. Distance calculation provides a spatial reference system for operators to locate track sections of interest. Railroad curves, using an IMU to measure curvature, are monitored to maintain track infrastructure within regulations. Speed measured with high accuracy leads to highfidelity distance and curvature data through utilization of processor clock rate and left-and rightrail speed differentials during curve navigation, respectively. Wheel-mounted encoders, or tachometers, provide a relatively low-resolution speed profile, exhibit increased noise with increasing speed, and are subject to the inertial behavior of the rail car which affects output data. The IMU used to measure curvature is dependent on acceleration and yaw rate sensitivity and experiences difficulty in low-speed conditions. Preliminary system tests onboard a "Hy-Rail" utility vehicle capable of traveling on rail show speed capture is possible using the rails as the reference moving target and furthermore, obtaining speed profiles from both rails allows for the calculation of speed differentials in curves to estimate degrees curvature. Ground truth distance calibration and curve measurement were also carried out. Distance calibration involved placement of spatial landmarks detected by a sensor to synchronize distance measurements as a pre-processing procedure. Curvature ground truth measurements provided a reference system to confirm measurement results and observe alignment variation throughout a curve. Primary testing occurred onboard a track geometry rail car, measuring rail speed over substantial mileage in various weather conditions, providing highaccuracy data to further calculate distance and curvature along the test routes. Tests results indicate the LIDAR system measures speed at higher accuracy than the encoder, absent of noise influenced by increasing speed. Distance calculation is also high in accuracy, results showing high correlation with encoder and ground truth data. Finally, curvature calculation using speed data is shown to have good correlation with IMU measurements and a resolution capable of revealing localized track alignments. Further investigations involve a curve measurement algorithm and speed calibration method independent from external reference systems, namely encoder and ground truth data. The speed calibration results show a high correlation with speed data from the track geometry vehicle. It is recommended that the study be extended to provide assessment of the LIDAR's sensitivity to car body motion in order to better isolate the embedded behavior in the speed and curvature profiles. Furthermore, in the interest of progressing the system toward a commercially viable unit, methods for self-calibration and pre-processing to allow for fully independent operation is highly encouraged.

  14. Anticipatory postural adjustments for altering direction during walking.

    PubMed

    Xu, Dali; Carlton, Les G; Rosengren, Karl S

    2004-09-01

    The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.

  15. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  16. 78 FR 26246 - Special Local Regulation, 50 Aniversario Balneario de Boqueron, Bahia de Boqueron; Boqueron, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Balneario de Boqueron, a high speed boat race. The event is scheduled to take place on Sunday, May 5, 2013. Approximately 40 high- speed power boats will be participating in the races. It is anticipated that 5 spectator... regulation will establish the following three areas: a high speed boat race area, where all persons and...

  17. Watt steam governor stability

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2002-05-01

    The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

  18. Charge control microcomputer device for vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-10-14

    This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less

  19. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  20. Scale-free gravitational collapse as the origin of ρ ˜ r-2 density profile - a possible role of turbulence in regulating gravitational collapse

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing

    2018-03-01

    Astrophysical systems, such as clumps that form star clusters share a density profile that is close to ρ ˜ r-2. We prove analytically this density profile is the result of the scale-free nature of the gravitational collapse. Therefore, it should emerge in many different situations as long as gravity is dominating the evolution for a period that is comparable or longer than the free-fall time, and this does not necessarily imply an isothermal model, as many have previously believed. To describe the collapse process, we construct a model called the turbulence-regulated gravitational collapse model, where turbulence is sustained by accretion and dissipates in roughly a crossing time. We demonstrate that a ρ ˜ r-2 profile emerges due to the scale-free nature the system. In this particular case, the rate of gravitational collapse is regulated by the rate at which turbulence dissipates the kinetic energy such that the infall speed can be 20-50% of the free-fall speed(which also depends on the interpretation of the crossing time based on simulations of driven turbulence). These predictions are consistent with existing observations, which suggests that these clumps are in the stage of turbulence-regulated gravitational collapse. Our analysis provides a unified description of gravitational collapse in different environments.

  1. 49 CFR 236.811 - Speed, medium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...

  2. 49 CFR 236.811 - Speed, medium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...

  3. 49 CFR 236.811 - Speed, medium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...

  4. 49 CFR 236.813 - Speed, slow.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed, slow. 236.813 Section 236.813 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, slow. A speed not exceeding 20 miles per hour. ...

  5. 49 CFR 236.813 - Speed, slow.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, slow. 236.813 Section 236.813 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, slow. A speed not exceeding 20 miles per hour. ...

  6. 49 CFR 236.811 - Speed, medium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...

  7. 49 CFR 236.811 - Speed, medium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...

  8. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less

  9. Low Speed Control for Automatic Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  10. Control system design for the MOD-5A 7.3 mW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Barton, Robert S.; Hosp, Theodore J.; Schanzenbach, George P.

    1995-01-01

    This paper provides descriptions of the requirements analysis, hardware development and software development phases of the Control System design for the MOD-5A 7.3 mW Wind Turbine Generator. The system, designed by General Electric Company, Advanced Energy Programs Department, under contract DEN 3-153 with NASA Lewis Research Center and DOE, provides real time regulation of rotor speed by control of both generator torque and rotor torque. A variable speed generator system is used to provide both airgap torque control and reactive power control. The wind rotor is designed with segmented ailerons which are positioned to control blade torque. The central component of the control system, selected early in the design process, is a programmable controller used for sequencing, alarm monitoring, communication, and real time control. Development of requirements for use of aileron controlled blades and a variable speed generator required an analytical simulation that combined drivetrain, tower and blade elastic modes with wind disturbances and control behavior. An orderly two phase plan was used for controller software development. A microcomputer based turbine simulator was used to facilitate hardware and software integration and test.

  11. Flow and pressure regulation in the cardiovascular system. [engineering systems model

    NASA Technical Reports Server (NTRS)

    Iberall, A.

    1974-01-01

    Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.

  12. Precision increase in electric drive speed loop of robotic complexes and process lines

    NASA Astrophysics Data System (ADS)

    Tulegenov, E.; Imanova, A. A.; Platonov, V. V.

    2018-05-01

    The article presents the principles of synthesis of control structures for highprecision electric drives of robotic complexes and manipulators. It has been theoretically shown and experimentally confirmed that improved characteristics of speed maintenance in the zone of significant overloads are achieved in systems of series excitation. They are achieved due to the redistribution of control signals both in the zone of setting the armature current and in the excitation currents. At the same time, the characteristic of the electromagnetic torque becomes linear because the demagnetizing effect of the armature response is compensated by the setting of the excitation current. It is recommended in those cases when it is necessary to extend the range of speed control with a significant reduction in load to apply structures with two-zone speed control. The regulation of the weakening of the excitation flow is more convenient as a function of the voltage in the armature windings.

  13. The application of LQR synthesis techniques to the turboshaft engine control problem

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1984-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  14. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  15. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  16. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  17. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  18. Fire and the Design of Educational Buildings. Building Bulletin 7. Sixth Edition.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    This bulletin offers guidance on English school premises regulations applying to safety protection against fires in the following general areas: means of escape in case of fire; precautionary measures to prevent fire; fire warning systems and fire fighting; fire spreading speed; structures and materials resistant to fires; and damage control. It…

  19. 78 FR 22808 - Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ...-AA08 Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL AGENCY: Coast Guard, DHS... regulation on the waters on Lake Dora in Tavares, Florida during the Pro Hydro-X Tour, a series of high-speed... Hydro-X Tour, a series of high-speed personal watercraft races. The Pro Hydro-X Tour will be held on...

  20. Effectiveness of changeable message signs in controlling vehicle speeds in work zones.

    DOT National Transportation Integrated Search

    1994-01-01

    Work zone speeds have customarily been regulated by standard regulatory or advisory speed signs. However, most drivers do not slow down in response to these static speed control measures. The changeable message sign (CMS) with radar unit has dynamic ...

  1. Cost-benefit evaluation of large truck-automobile speed limit differentials on rural interstate highways.

    DOT National Transportation Integrated Search

    2005-11-01

    Speed differentials between large trucks and automobiles on rural interstate highways are due to : both state regulated speed limits and commercial trucking company policies that restrict maximum truck : speeds. The initial portion of this effort inv...

  2. 49 CFR 236.812 - Speed, restricted.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed, restricted. 236.812 Section 236.812 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, restricted. A speed that will permit stopping within one-half the range of vision, but not...

  3. 49 CFR 236.812 - Speed, restricted.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, restricted. 236.812 Section 236.812 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, restricted. A speed that will permit stopping within one-half the range of vision, but not...

  4. 45 CFR 3.26 - Speed limit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Speed limit. 3.26 Section 3.26 Public Welfare... INSTITUTES OF HEALTH FEDERAL ENCLAVE Traffic Regulations § 3.26 Speed limit. The speed limit is 25 miles per hour, unless otherwise posted. A driver of a vehicle may not exceed the speed limit. ...

  5. 45 CFR 3.26 - Speed limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Speed limit. 3.26 Section 3.26 Public Welfare... INSTITUTES OF HEALTH FEDERAL ENCLAVE Traffic Regulations § 3.26 Speed limit. The speed limit is 25 miles per hour, unless otherwise posted. A driver of a vehicle may not exceed the speed limit. ...

  6. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  7. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  8. 77 FR 4407 - Modernization of Poultry Slaughter Inspection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ...The Food Safety and Inspection Service (FSIS) is proposing a new inspection system for young chicken and turkey slaughter establishments that would replace the current Streamlined Inspection System (SIS), the New Line Speed Inspection System (NELS), and the New Turkey Inspection System (NTIS). The Agency is also proposing several changes that would affect all establishments that slaughter poultry other than ratites, regardless of the inspection system under which they operate. This proposed rule is a result of the Agency's 2011 regulatory review efforts conducted under Executive Order 13563 on Improving Regulation and Regulatory Review.

  9. 15 CFR 265.12 - Speeding or reckless driving.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Speeding or reckless driving. 265.12 Section 265.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE REGULATIONS GOVERNING TRAFFIC AND CONDUCT...

  10. Electric scooter pilot project

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Dedek, Jan; Golembiovsky, Matej

    2016-09-01

    This article describes the issue of electric scooter development for educational and demonstration purposes on the Technical University of Ostrava. Electric scooter is equipped with a brushless motor with permanent magnets and engine controller, measuring and monitoring system for speed regulation, energy flow control and both online and off-line data analysis, visualization system for real-time diagnostics and battery management with balancing modules system. Implemented device brings a wide area for the following scientific research. This article also includes some initial test results and electric vehicles experiences.

  11. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  12. [Children exposure to PM10 on the way to school: Regulatory impact of speed regulation under 30km/h].

    PubMed

    Prud'homme, J

    2018-03-01

    In Paris, air pollution is now a persistent environmental problem, especially linked to diesel cars in circulation. Exposure of children to air pollution during the journey from home to school, which takes place during peak hours of traffic, is poorly documented. The purpose of this work was to identify spaces less exposed to PM10 pollution. We identified spatial recurrences in the relative distribution of air pollution levels using PM10 geolocated measures taken along a fixed circuit, crossing, among others, a speed regulation zone (<30km/h). Measurements were made eight mornings between 8 and 9 a.m., in April and September 2016 in the 14th district of Paris. We obtained a hierarchical classification of spaces in terms of recurrence of relative levels of PM10 concentration. The cartography of the results revealed that the spaces more exposed to high concentrations were found similarly along main roads, side streets and speed regulation<30km/h) zones. These findings suggest speed regulation is insufficient to reduce individual exposure in city streets. Elements linked to the functional aspects of the street (commercial/residential) were apparently as important as traffic speed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Stride-to-stride variability and complexity between novice and experienced runners during a prolonged run at anaerobic threshold speed.

    PubMed

    Mo, Shiwei; Chow, Daniel H K

    2018-05-19

    Motor control, related to running performance and running related injuries, is affected by progression of fatigue during a prolonged run. Distance runners are usually recommended to train at or slightly above anaerobic threshold (AT) speed for improving performance. However, running at AT speed may result in accelerated fatigue. It is not clear how one adapts running gait pattern during a prolonged run at AT speed and if there are differences between runners with different training experience. To compare characteristics of stride-to-stride variability and complexity during a prolonged run at AT speed between novice runners (NR) and experienced runners (ER). Both NR (n = 17) and ER (n = 17) performed a treadmill run for 31 min at his/her AT speed. Stride interval dynamics was obtained throughout the run with the middle 30 min equally divided into six time intervals (denoted as T1, T2, T3, T4, T5 and T6). Mean, coefficient of variation (CV) and scaling exponent alpha of stride intervals were calculated for each interval of each group. This study revealed mean stride interval significantly increased with running time in a non-linear trend (p<0.001). The stride interval variability (CV) maintained relatively constant for NR (p = 0.22) and changed nonlinearly for ER (p = 0.023) throughout the run. Alpha was significantly different between groups at T2, T5 and T6, and nonlinearly changed with running time for both groups with slight differences. These findings provided insights into how the motor control system adapts to progression of fatigue and evidences that long-term training enhances motor control. Although both ER and NR could regulate gait complexity to maintain AT speed throughout the prolonged run, ER also regulated stride interval variability to achieve the goal. Copyright © 2018. Published by Elsevier B.V.

  14. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars.

    PubMed

    Schiffner, Ingo; Srinivasan, Mandyam V

    2015-06-05

    We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds' flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints.

  15. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars

    PubMed Central

    Schiffner, Ingo; Srinivasan, Mandyam V.

    2015-01-01

    We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds’ flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints. PMID:26046799

  16. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  17. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  18. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.

  19. Dynamics and regulation of locomotion of a human swing leg as a double-pendulum considering self-impact joint constraint.

    PubMed

    Bazargan-Lari, Y; Eghtesad, M; Khoogar, A; Mohammad-Zadeh, A

    2014-09-01

    Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion. The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modeling the swing leg as a SIDP. This paper also presents the control design for a SIDP by a nonlinear model-based control method. To achieve this goal, the available data of normal human gait will be taken as the desired trajectories of the hip and knee joints. The model is characterized by the constraint that occurs at the knee joint (the lower joint of the model) in both dynamic modeling and control design. Since the system dynamics is nonlinear, the MIMO Input-Output Feedback Linearization method will be employed for control purposes. The first constraint in forward impact simulation happens at 0.5 rad where the speed of the upper link is increased to 2.5 rad/sec. and the speed of the lower link is reduced to -5 rad/sec. The subsequent constraints occur rather moderately. In the case of both backward and forward constraints simulation, the backward impact occurs at -0.5 rad and the speeds of the upper and lower links increase to 2.2 and 1.5 rad/sec., respectively. The designed controller performed suitably well and regulated the system accurately.

  20. 45 CFR 3.26 - Speed limit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Speed limit. 3.26 Section 3.26 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CONDUCT OF PERSONS AND TRAFFIC ON THE NATIONAL INSTITUTES OF HEALTH FEDERAL ENCLAVE Traffic Regulations § 3.26 Speed limit. The speed limit is 25 miles per...

  1. 45 CFR 3.26 - Speed limit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Speed limit. 3.26 Section 3.26 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CONDUCT OF PERSONS AND TRAFFIC ON THE NATIONAL INSTITUTES OF HEALTH FEDERAL ENCLAVE Traffic Regulations § 3.26 Speed limit. The speed limit is 25 miles per...

  2. 45 CFR 3.26 - Speed limit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Speed limit. 3.26 Section 3.26 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CONDUCT OF PERSONS AND TRAFFIC ON THE NATIONAL INSTITUTES OF HEALTH FEDERAL ENCLAVE Traffic Regulations § 3.26 Speed limit. The speed limit is 25 miles per...

  3. Feedback control of a Darrieus wind turbine and optimization of the produced energy

    NASA Astrophysics Data System (ADS)

    Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.

    1984-03-01

    A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.

  4. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  5. Strength Enhancement of Car Front Bumper for Slow Speed Impact by FEA Method as per IIHS Regulation

    NASA Astrophysics Data System (ADS)

    Sonawane, Chandrakant Rameshchandra; Shelar, Ajit Lavaji

    2017-05-01

    Low speed collisions happen significantly due to on road slow moving heavy traffic as well as during parking of vehicles. The bumpers are provided in front and back side of a vehicle has two main purposes: first is to absorb the energy generated during these kinds of slow speed impacts and secondly to protect the expensive parts like main engine parts, radiators and connected engine cooling mechanism, headlights, taillights, etc, by slowing down the vehicles. The problem often in various cars bumper is that they doesn't line-up vertically during low speed impact and leads to damage of various parts which are costly to repair. Many a times bumper design does not have sufficient capacity to absorb the energy generated during these impact. Guideline by International Institute Highway Safety (IIHS) regulation provides useful insight for such low speed impact study. In this paper, slow speed impact test were conducted as per IIHS regulation in three positions namely central impact, left hand corner impact and right hand corner impact. Parameters including bumper material, shape, thickness and impact condition are analyzed using fine element analysis (FEA) to enhance crashworthiness design in low speed impact. Then the vehicle front structure has been modified suitably. It has been observed that lining up the front metal bumper with suitable stiffness provides the best result which ultimately reduces the damage to the vehicle parts.

  6. Approach Considerations in Aircraft with High-Lift Propeller Systems

    NASA Technical Reports Server (NTRS)

    Patterson, Michael D.; Borer, Nicholas K.

    2017-01-01

    NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented.

  7. 78 FR 34884 - Special Local Regulations; ODBA Draggin' on the Waccamaw, Atlantic Intracoastal Waterway...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... during the Outboard Drag Boat Association (ODBA) Draggin' on the Waccamaw, a series of high-speed boat... high-speed race boats are anticipated to participate in the races. This special local regulation is... Draggin' on the Waccamaw boat races. C. Discussion of Rule On Saturday, June 22, 2013, and Sunday, June 23...

  8. 77 FR 69572 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... inadvertently or intentionally exceeding a speed approximately equivalent to V FC or attaining V DF . Current Title 14 Code of Federal Regulations (14 CFR) part 25 do not relate to a high speed limiter that might...

  9. Counterbalance of cutting force for advanced milling operations

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  10. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    NASA Astrophysics Data System (ADS)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area increases with increase in distance away from tailpipe. Also indicating the cooling and dilution of the exhaust begins at close vicinity to the tailpipe. The rate of cooling and dilution are greatest in early stages of the dilution process for the areas with high turbulence intensity (TI), where strong mixing phenomena occurs, leading to the formation of a predominant nucleation mode. On the other hand, the core of the plume observes a slower cooling and dilution rate. This difference is reflected in the PM formation and evolution of these two distinct regions, as shown by the particle size distributions and number concentrations. Continuous mixing will tend to mellow those differences, but its ;final; result is related to the dilution history.

  11. Integrated mixed signal control IC for 500-kHz switching frequency buck regulator

    NASA Astrophysics Data System (ADS)

    Chen, Keng; Zhang, Hong

    2015-12-01

    The main purpose for this work is to study the challenges of designing a digital buck regulator using pipelined analog to digital converter (ADC). Although pipelined ADC can achieve high sampling speed, it will introduce additional phase lag to the buck circuit. Along with the latency brought by processing time of additional digital circuits, as well as the time delay associated with the switching frequency, the closed loop will be unstable; moreover, raw ADC outputs have low signal-to-noise ratio, which usually need back-end calibration. In order to compensate these phase lag and make control loop unconditional stable, as well as boost up signal-to-noise ratio of the ADC block with cost-efficient design, a finite impulse response filter followed by digital proportional-integral-derivative blocks were designed. All these digital function blocks were optimised with processing speed. In the system simulation, it can be found that this controller achieved output regulation within 10% of nominal 5 V output voltage under 1 A/µs load transient condition; moreover, with the soft-start method, there is no turn-on overshooting. The die size of this controller is controlled within 3 mm2 by using 180 nm CMOS technology.

  12. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    PubMed

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Simulation of Flywheel Energy Storage System Controls

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  14. Identifying Stride-To-Stride Control Strategies in Human Treadmill Walking

    PubMed Central

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2015-01-01

    Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance. PMID:25910253

  15. 76 FR 68314 - Special Local Regulations; Key West World Championship, Atlantic Ocean; Key West, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...-AA08 Special Local Regulations; Key West World Championship, Atlantic Ocean; Key West, FL AGENCY: Coast... World Championship, a series of high-speed boat races. The event is scheduled to take place on Wednesday... Key West World Championship, a series of high-speed boat races. The event will be held on the waters...

  16. 78 FR 22814 - Special Local Regulations; Miami Super Boat Grand Prix, Atlantic Ocean; Miami Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ...-AA08 Special Local Regulations; Miami Super Boat Grand Prix, Atlantic Ocean; Miami Beach, FL AGENCY... Super Boat Grand Prix. The Miami Super Boat Grand Prix will consist of a series of high-speed boat races... of the participants, spectators, and the general public during the high-speed boat races. The special...

  17. 77 FR 15600 - Special Local Regulation; Emerald Coast Super Boat Grand Prix; Saint Andrew Bay; Panama City, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ...-AA08 Special Local Regulation; Emerald Coast Super Boat Grand Prix; Saint Andrew Bay; Panama City, FL... navigable waters during the Emerald Coast Super Boat Grand Prix high speed boat races. Entry into... Marine Event Permit on January 31, 2011 from Super Boat International, Inc. to conduct a high speed boat...

  18. 77 FR 15006 - Special Local Regulations; Third Annual Space Coast Super Boat Grand Prix, Atlantic Ocean, Cocoa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-AA08 Special Local Regulations; Third Annual Space Coast Super Boat Grand Prix, Atlantic Ocean, Cocoa..., Florida during the Third Annual Space Coast Super Boat Grand Prix, a series of high-speed boat races. The event is scheduled to take place on Sunday, May 20, 2012. Approximately 30 high-speed race boats are...

  19. Summary of state speed laws, current as of January 1, 1997

    DOT National Transportation Integrated Search

    1997-01-01

    This summary reports the status of State statutes (or regulations) that are concerned with either speed limit or speed related violations as of January 1, 1997. The summary is divided into three areas: (1) Introduction; (2) Summary Tables; and (3) a ...

  20. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    PubMed

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderfer, R.R.; Futa, P.W.

    This patent describes a fuel system for an engine having a filter through which fuel from a pump passes to a regulator in response to an operator input. The regulator controls the flow of fuel presented to a combustion chamber in the engine, the regulator having a feedback apparatus to provide an operator with a signal indicative of the fuel supplied to the combustion chamber. It comprises: bypass means having a housing with a chamber therein, the chamber having an entrance port connected to the pump and an exit port connected to the regulator; piston means located in the chambermore » for separating the entrance port from the exit port, the piston having a face with a projection extending therefrom; stop means located in the chamber; resilient means located is the chamber for urging the piston means toward the stop means to prevent the flow of fuel from the pump through the housing to the regulator; and indicator means having a body retained in the housing with a first end which extends through the housing into the from a full-open position at which the closed circuit is fully opened to a full-closed position at which the closed circuit is fully blocked; ratio detecting means which detects the speed reduction ratio to find if the speed reduction ratio becomes substantially 1; and valve position detecting means which detects position of the direct clutch valve to find if the direct clutch valve is moved to a slight-open position at which the closed circuit is slightly opened.« less

  2. 33 CFR 165.T10-0693 - Regulated Navigation Area; Greenville Bridge Demolition, Lower Mississippi River, Mile 531.3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vessel shall adjust its speed so as to avoid a meeting situation in the RNA. (ii) If the RNA is... its speed so as to avoid a meeting situation in the RNA. (ii) If the RNA is temporarily closed to... regulated navigation area (RNA): All waters of the Lower Mississippi River beginning at mile 528 and ending...

  3. 33 CFR 165.T10-0693 - Regulated Navigation Area; Greenville Bridge Demolition, Lower Mississippi River, Mile 531.3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vessel shall adjust its speed so as to avoid a meeting situation in the RNA. (ii) If the RNA is... its speed so as to avoid a meeting situation in the RNA. (ii) If the RNA is temporarily closed to... regulated navigation area (RNA): All waters of the Lower Mississippi River beginning at mile 528 and ending...

  4. Improving homogeneity by dynamic speed limit systems.

    PubMed

    van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera

    2010-05-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. 32 CFR 636.22 - Speed regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). (d) The following special speed limits apply: (1) When passing troop formations, 10 miles per hour... vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails, 4 MPH...

  6. 32 CFR 636.22 - Speed regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section). (d) The following special speed limits apply: (1) When passing troop formations, 10... tactical vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails...

  7. 32 CFR 636.22 - Speed regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). (d) The following special speed limits apply: (1) When passing troop formations, 10 miles per hour... vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails, 4 MPH...

  8. 32 CFR 636.22 - Speed regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Drivers will operate their vehicles at a reasonable and prudent speed based on traffic and road... drivers will obey posted speed limits; however, drivers will not exceed 40 miles per hour on paved roads and 25 miles per hour on unpaved roads and tank trails. Commercial Utility Cargo Vehicles (CUCV's) are...

  9. 32 CFR 636.22 - Speed regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operate their vehicles at a reasonable and prudent speed based on traffic and road conditions, regardless... obey posted speed limits; however, drivers will not exceed 40 miles per hour on paved roads and 25 miles per hour on unpaved roads and tank trails. Commercial Utility Cargo Vehicles (CUCV's) are tactical...

  10. Electromagnetic interference in electrical systems of motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  11. Speed Consistency in the Smart Tachograph.

    PubMed

    Borio, Daniele; Cano, Eduardo; Baldini, Gianmarco

    2018-05-16

    In the transportation sector, safety risks can be significantly reduced by monitoring the behaviour of drivers and by discouraging possible misconducts that entail fatigue and can increase the possibility of accidents. The Smart Tachograph (ST), the new revision of the Digital Tachograph (DT), has been designed with this purpose: to verify that speed limits and compulsory rest periods are respected by drivers. In order to operate properly, the ST periodically checks the consistency of data from different sensors, which can be potentially manipulated to avoid the monitoring of the driver behaviour. In this respect, the ST regulation specifies a test procedure to detect motion conflicts originating from inconsistencies between Global Navigation Satellite System (GNSS) and odometry data. This paper provides an experimental evaluation of the speed verification procedure specified by the ST regulation. Several hours of data were collected using three vehicles and considering light urban and highway environments. The vehicles were equipped with an On-Board Diagnostics (OBD) data reader and a GPS/Galileo receiver. The tests prescribed by the regulation were implemented with specific focus on synchronization aspects. The experimental analysis also considered aspects such as the impact of tunnels and the presence of data gaps. The analysis shows that the metrics selected for the tests are resilient to data gaps, latencies between GNSS and odometry data and simplistic manipulations such as data scaling. The new ST forces an attacker to falsify data from both sensors at the same time and in a coherent way. This makes more difficult the implementation of frauds in comparison to the current version of the DT.

  12. Development of Permanent Magnet Reluctance Motor Suitable for Variable-Speed Drive for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu

    Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.

  13. The design and analysis of single flank transmission error tester for loaded gears

    NASA Technical Reports Server (NTRS)

    Bassett, Duane E.; Houser, Donald R.

    1987-01-01

    To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.

  14. Altering the Speed Profiles of Wheelchair Rugby Players With Game-Simulation Drill Design.

    PubMed

    Rhodes, James M; Mason, Barry S; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L

    2018-01-01

    To examine the speed profiles of elite wheelchair rugby (WCR) players during game-simulation training drills of differing player number and shot-clock regulations. A secondary aim was to determine whether the profiles were further influenced by player classification. Eight elite WCR players (low-point n = 3, high-point n = 5) were monitored using a radio-frequency-based indoor tracking system during training sessions over a 5-mo period. Speed profiles were collected for 3 modified game-simulation drills-3-versus-3 drills (n = 8 observations), 30-s shot clock (n = 24 observations), and 15-s shot clock (n = 16 observations)-and were compared with regular game-simulation drills (4 vs 4, 40-s shot clock; n = 16 observations). Measures included mean and peak speed; exercise-intensity ratios, defined as the ratio of time spent performing at high and low speeds; and the number of high-speed activities performed. Compared with regular game-simulation drills, 3-versus-3 drills elicited a moderate increase in mean speed (6.3%; effect size [ES] = 0.7) and the number of high-speed activities performed (44.1%; ES = 1.1). Minimal changes in speed profiles were observed during the 30-s shot clock, although moderate to large increases in all measures were observed during the 15-s shot-clock drills. Classification-specific differences were further identified, with increased activity observed for high-point players during the 3-versus-3 drill and for low-point players during the 15-s shot clock. By reducing the number of players on court and the shot clock to 15 s, coaches can significantly increase elite WCR players' speed profiles during game-simulation drills.

  15. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  16. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  17. An FPGA Testbed for Characterizing and Mapping DOD Applications

    DTIC Science & Technology

    2017-12-27

    series expansion helps to linearize pitch control design for wind turbine using linear quadratic regulator (LQR) [15]. In multi-static radar system...A. Mahmud, M. A. Chowdhury, and J. Zhang, “Stability enhancement of dfig wind turbine using lqr pitch control over rated wind speed,” in 2016 IEEE...the problem of meeting payload design specifications is exacerbated by the need to identify manufacturers with interfaces that match the sensors

  18. Research on the Control Strategy for Grid-side Converter of PWM Doubly Fed Induction Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Liu, Yifang; Wang, Zhijie; Li, Renfu; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu; Liu, Sanming

    2017-05-01

    When the grid voltage drop, over current of transient rotor and over voltage may damage the power electronic devices. The attenuation of electromagnetic torque will lead to speed up. This paper proposes an improved feed-forward control strategy and its application in the PWM converter. When the PWM converter on voltage drops, bus voltage will be more stable. So over current problems of the DFIG rotor side can be reduced, and it also can improve voltage regulation speed of the DC bus voltage and reduce the oscillation amplitude. Furthermore, the stability of doubly fed wind generator system can be improved. The simulation results verify the validity of the modified control strategy.

  19. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  20. Seawater Hydraulics: A Multi-Function Tool System for U.S. Navy Construction Divers.

    DTIC Science & Technology

    1991-05-01

    0.80. Each tool was designed so that it can be repaired in a minimum time. Tool maintenance at the end of the day is satisfied by a fresh- water rinse...oil hydraulic system is used to regulate the speed of the centrifugal pump. The centrifugal pump supplies 200 psi water to a jet eductor pump suspended...in the ocean. The jet eductor pump returns a larger volume of water to fill the 50-gallon reservoir. The seawater output from the jet eductor pump is

  1. Antenna Beam Pattern Characteristics of HAPS User Terminal

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob

    High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.

  2. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    NASA Astrophysics Data System (ADS)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems and limitations on battery charging/discharging, (2) Reviewed standards for interconnection of distributed resources and electric vehicle charging [1], [2], (3) Explored strategies for distributed control of PHEV charging, (4) Developed controllers to accommodate PHEV regulation, and (5) Developed a simulator combining a power system model and PHEV/V2G components.

  3. Discovering causal signaling pathways through gene-expression patterns

    PubMed Central

    Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils

    2010-01-01

    High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976

  4. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  5. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.

  6. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood.

    PubMed

    Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King

    2007-10-01

    EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm in 30 km/h reduced head injury values for both skull fractures and brain injuries. An earlier study showed that the corresponding value for a test speed of 40 km/h is 100 mm. A 10 km/h reduction in head impact velocity, as in automatic braking, allowed 20 mm less under-hood clearance with maintained head protection of the vulnerable road user.

  7. Higher speed freight truck design : performance requirements.

    DOT National Transportation Integrated Search

    2013-10-01

    This proposed requirements document combines a set of requirements for high-speed freight car truck design and performance : from the generally accepted standards in the U.S. Code of Federal Regulation (CFR), the Association of American Railroads : (...

  8. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system

    NASA Astrophysics Data System (ADS)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang

    2017-12-01

    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  9. Comparison of FRA regulations to international high-speed rail standards.

    DOT National Transportation Integrated Search

    2013-05-01

    This report compares international standards with selected parts of Federal Railroad Administration (FRA) Code of Federal Regulation Title 49 CFR Transportation. The parts were preselected by FRA and are meant to reflect those areas of the regulation...

  10. 78 FR 28164 - Special Local Regulation; Aguada Offshore Grand Prix, Bahia de Aguadilla; Aguada, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Aguada Offshore Grand Prix, a high speed boat race. The event is scheduled to take place on Sunday, August 4, 2013. Approximately 30 high-speed power boats will be participating in the races. It is... Series, Inc. is sponsoring the Aguada Offshore Grand Prix, a series of high-speed boat races. The races...

  11. Regulation of Cilium Length and Intraflagellar Transport by the RCK-Kinases ICK and MOK in Renal Epithelial Cells

    PubMed Central

    Broekhuis, Joost R.; Verhey, Kristen J.; Jansen, Gert

    2014-01-01

    Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed. PMID:25243405

  12. Control concepts for the alleviation of windshears and gusts

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Govindaraj, K. S.

    1982-01-01

    Automatic control system design methods for gust and shear alleviation were studied. It is shown that automatic gust/shear alleviation systems can be quite effective if both throttle and elevator are used in harmony to produce the forces and moments required to counter the effects of the windshear. Regulation with respect to ground speed or airspeed results in very similar system designs. The application of the NASA total energy probe in the detection of windshear and criteria for alleviation is considered. The theory and application of robust output observers is extended. Design examples show how implementation of the control laws can be accomplished using observers, and thereby resulting in less complex control system configurations.

  13. Final Environmental Assessment for Fireworks Display and Cleanup for the Luke Air Force Base, Arizona, Fourth of July Celebrations

    DTIC Science & Technology

    2015-04-21

    perchlorates; reducing agents can be sulfur and charcoal; metals can be added to regulate the speed of reaction; starch is typically used as a binder; and...textured soil, or desert pavements consisting of gravel or rock. Plants are drought- resistant with hardened leaves and shortened distances between...reducing agents can be sulfur and charcoal; metals can be added to regulate the speed of reaction; starch is typically used as a binder; and metals

  14. The most important "factor" in producing clubhead speed in golf.

    PubMed

    Joyce, Christopher

    2017-10-01

    Substantial experiential research into x-factor, and to a lesser extent crunch-factor has been undertaken with the aim of increasing clubhead speed. However, a direct comparison of the golf swing kinematics associated with each 'factor' has not, and possible differences when using a driver compared to an iron. Fifteen low handicap male golfers who displayed a modern swing had their golf swing kinematic data measured when hitting their own driver and five-iron, using a 10-camera motion analysis system operating at 250Hz. Clubhead speed was collected using a validated launch monitor. No between-club differences in x-factor and crunch-factor existed. Correlation analyses revealed within-club segment (trunk and lower trunk) interaction was different for the driver, compared to the five-iron, and that a greater number of kinematic variables associated with x-factor, compared to crunch-factor were shown to be correlated with faster clubhead speeds. This was further explained in the five-iron regression model, where a significant amount of variance in clubhead speed was associated with increased lower trunk x-factor stretch, and reduced trunk lateral bending. Given that greens in regulation was shown to be the strongest correlated variable with PGA Tour earnings (1990-2004), the findings suggests a link to player performance for approach shots. These findings support other empiric research into the importance of x-factor as well as anecdotal evidence on how crunch-factor can negatively affect clubhead speed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 78 FR 25574 - Special Local Regulations; Third Annual Space Coast Super Boat Grand Prix, Atlantic Ocean; Cocoa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... the Space Coast Super Boat Grand Prix, a series of high-speed boat races. The event is scheduled to take place on Saturday and Sunday, May 18-19, 2013, and approximately 30 high-speed race boats are... inherent dangers involved with a high-speed race and the number of vessels involved, it is in the best...

  16. 75 FR 61096 - Regulated Navigation Area; Reserved Channel, Boston Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... transiting the RNA must do so at such a speed as to maintain bare steerage or not cause a wake. Vessels... the RNA to provide notice of the RNA as well as to control vessel speed, vessel access to the Reserved... will be enforced: (1) Vessels must transit through the RNA at such a speed as to not cause a wake or...

  17. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  18. Modelling how drivers respond to a bicyclist crossing their path at an intersection: How do test track and driving simulator compare?

    PubMed

    Boda, Christian-Nils; Dozza, Marco; Bohman, Katarina; Thalya, Prateek; Larsson, Annika; Lubbe, Nils

    2018-02-01

    Bicyclist fatalities are a great concern in the European Union. Most of them are due to crashes between motorized vehicles and bicyclists at unsignalised intersections. Different countermeasures are currently being developed and implemented in order to save lives. One type of countermeasure, active safety systems, requires a deep understanding of driver behaviour to be effective without being annoying. The current study provides new knowledge about driver behaviour which can inform assessment programmes for active safety systems such as Euro NCAP. This study investigated how drivers responded to bicyclists crossing their path at an intersection. The influences of car speed and cyclist speed on the driver response process were assessed for three different crossing configurations. The same experimental protocol was tested in a fixed-base driving simulator and on a test track. A virtual model of the test track was used in the driving simulator to keep the protocol as consistent as possible across testing environments. Results show that neither car speed nor bicycle speed directly influenced the response process. The crossing configuration did not directly influence the braking response process either, but it did influence the strategy chosen by the drivers to approach the intersection. The point in time when the bicycle became visible (which depended on the car speed, the bicycle speed, and the crossing configuration) and the crossing configuration alone had the largest effects on the driver response process. Dissimilarities between test-track and driving-simulator studies were found; however, there were also interesting similarities, especially in relation to the driver braking behaviour. Drivers followed the same strategy to initiate braking, independent of the test environment. On the other hand, the test environment affected participants' strategies for releasing the gas pedal and regulating deceleration. Finally, a mathematical model, based on both experiments, is proposed to characterize driver braking behaviour in response to bicyclists crossing at intersections. This model has direct implications on what variables an in-vehicle safety system should consider and how tests in evaluation programs should be designed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    PubMed

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  20. Steering a virtual blowfly: simulation of visual pursuit.

    PubMed

    Boeddeker, Norbert; Egelhaaf, Martin

    2003-09-22

    The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.

  1. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  2. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  3. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  4. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  5. 36 CFR § 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  6. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  7. USSR Report, Engineering and Equipment

    DTIC Science & Technology

    1984-04-17

    MEKHANIKA ZHIDKOSTI I GAZA, No 5, May 83). 17 Wave Drag of Elongated Astroid Bodies at Moderate Supersonic Flight Velocities (M, I. Follej...mechanical components of such a test stand include an electric drive motor with speed regulation, a Belt transmission, a worm gear for speed

  8. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  9. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  10. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  11. Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming

    2017-12-01

    Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.

  12. 78 FR 67026 - Special Local Regulations; Recurring Marine Events in the Seventh Coast Guard District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... special local regulations pertaining to the Key West World Championship in the Atlantic Ocean, off Key...-speed boat races. The special local regulations establish regulated areas on the waters of the Key West Main Ship Channel, Key West Turning Basin, and Key West Harbor Entrance. During the enforcement period...

  13. Realization of Intelligent Measurement and Control System for Limb Rehabilitation Based on PLC and Touch Screen

    NASA Astrophysics Data System (ADS)

    Liu, Xiangquan

    According to the treatment needs of patients with limb movement disorder, on the basis of the limb rehabilitative training prototype, function of measure and control system are analyzed, design of system hardware and software is completed. The touch screen which is adopt as host computer and man-machine interaction window is responsible for sending commands and training information display; The PLC which is adopt as slave computer is responsible for receiving control command from touch screen, collecting the sensor data, regulating torque and speed of motor by analog output according to the different training mode, realizing ultimately active and passive training for limb rehabilitation therapy.

  14. The increase in the starting torque of PMSM motor by applying of FOC method

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-05-01

    The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.

  15. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    NASA Astrophysics Data System (ADS)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  16. A cycle timer for testing electric vehicles

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.

    1978-01-01

    A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.

  17. Muscular control of a learned movement: the speed control system hypothesis.

    PubMed

    Enoka, R M

    1983-01-01

    The "speed control system" hypothesis, which represents an attempt to identify an invariant characteristic of learned movements, postulates that movements of variable extent are controlled by regulating the intensity of muscle contractions such that the contraction duration remains constant. The contingency set originally utilized to develop this hypothesis was expanded by examining a movement that was multidirectional and multiarticular, and executed by large muscle groups generating near maximum torques. The investigation focused on the techniques utilized by weightlifters to control lower extremity displacement during the initial phase of the double knee bend execution of the "clean" in Olympic weightlifting. The combination of the quantified muscle activity and the angular velocity, both about the knee joint, revealed a sequence of shortening-lengthening muscle contractions throughout the movement. The first two periods of net muscular activity, one extensor and the other flexor, were utilized to examine the movement for invariant characteristics. As predicted by the speed control system hypothesis, the duration of the first period of net muscle torque activity (extensor) did not vary significantly, for either group of subjects, over the relative loads examined. The duration of the second period of activity (resultant flexor muscle torque), however, was not constant across loads, and further, the direction of the change depended upon the level of expertise. The more capable lifters tended to increase the duration of the resultant flexor involvement while the less skilled athletes utilized the reverse strategy when the load was increased. Conversely, the intensity of the muscle activity for both groups of subjects and both the extensor and flexor periods covaried with load, as predicted by the hypothesis. The speed control system hypothesis, therefore, provided an appropriate explanation for the first component of the movement, the period of extensor dominated (shortening contraction) muscle torque, but was inappropriate for the subsequent interval, a resultant flexor (largely lengthening contraction) muscle torque.

  18. Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Keller, Jonathan; Wallen, Robb

    2016-08-31

    This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed andmore » generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.« less

  19. How humans use visual optic flow to regulate stepping during walking.

    PubMed

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects on speed and safety of point-to-point speed enforcement systems: evaluation on the urban motorway A56 Tangenziale di Napoli.

    PubMed

    Montella, Alfonso; Imbriani, Lella Liana; Marzano, Vittorio; Mauriello, Filomena

    2015-02-01

    In this paper, we evaluated the effects on speed and safety of the point-to-point (P2P) speed enforcement system activated on the urban motorway A56 in Italy. The P2P speed enforcement is a relatively new approach to traffic law enforcement that involves the calculation of the average speed over a section. To evaluate the speed effects, we performed a before-after analysis of speed data investigating also effects on non-compliance to speed limits. To evaluate the safety effects, we carried out an empirical Bayes observational before-and-after study. The P2P system led to very positive effects on both speed and safety. As far as the effects on the section average travel speeds, the system yielded to a reduction in the mean speed, the 85th percentile speed, the standard deviation of speed, and the proportion of drivers exceeding the speed limits, exceeding the speed limits more than 10km/h, and exceeding the speed limits more than 20km/h. The best results were the decrease of the speed variability and the reduction of the excessive speeding behaviour. The decrease in the standard deviation of speed was 26% while the proportion of light and heavy vehicles exceeding the speed limits more than 20km/h was reduced respectively by 84 and 77%. As far as the safety effects, the P2P system yielded to a 32% reduction in the total crashes, with a lower 95% confidence limit of the estimate equal to 22%. The greatest crash reductions were in rainy weather (57%), on wet pavement (51%), on curves (49%), for single vehicle crashes (44%), and for injury crashes (37%). It is noteworthy that the system produced a statistically significant reduction of 21% in total crashes also in the part of the motorway where it was not activated, thus generating a significant spillover effect. The investigation of the effects of the P2P system on speed and safety over time allowed to develop crash modification functions where the relationship between crash modification factors and speed parameters (mean speed, 85th percentile speed, and standard deviation of speed) was expressed by a power function. Crash modification functions show that the effect of speed on safety is greater on curves and for injury crashes. Even though the study results show excellent outcomes, we must point out that the crash reduction effects decreased over time and speed, speed variability, and non-compliance to speed limits significantly increased over time. To maintain its effectiveness over time, P2P speed enforcement must be actively managed, i.e. constantly monitored and supported by appropriate sanctions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Embodied linearity of speed control in Drosophila melanogaster.

    PubMed

    Medici, V; Fry, S N

    2012-12-07

    Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.

  2. Embodied linearity of speed control in Drosophila melanogaster

    PubMed Central

    Medici, V.; Fry, S. N.

    2012-01-01

    Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles. PMID:22933185

  3. Study of a safety margin system for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.

    1978-01-01

    A study was conducted to explore the feasibility of a safety margin system for powered-lift aircraft which require a backside piloting technique. The objective of the safety margin system was to present multiple safety margin criteria as a single variable which could be tracked manually or automatically and which could be monitored for the purpose of deriving safety margin status. The study involved a pilot-in-the-loop analysis of several safety margin system concepts and a simulation experiment to evaluate those concepts which showed promise of providing a good solution. A system was ultimately configured which offered reasonable compromises in controllability, status information content, and the ability to regulate the safety margin at some expense of the allowable low speed flight path envelope.

  4. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  5. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  6. Study on fault diagnosis and load feedback control system of combine harvester

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Kun

    2017-01-01

    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  7. An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-09-01

    We describe a model for the regulation of fast, single-joint movements, based on the equilibrium-point hypothesis. Limb movement follows constant rate shifts of independently regulated neuromuscular variables. The independently regulated variables are tentatively identified as thresholds of a length sensitive reflex for each of the participating muscles. We use the model to predict EMG patterns associated with changes in the conditions of movement execution, specifically, changes in movement times, velocities, amplitudes, and moments of limb inertia. The approach provides a theoretical neural framework for the dual-strategy hypothesis, which considers certain movements to be results of one of two basic, speed-sensitive or speed-insensitive strategies. This model is advanced as an alternative to pattern-imposing models based on explicit regulation of timing and amplitudes of signals that are explicitly manifest in the EMG patterns.

  8. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  9. Experimental verification of a real-time power curve for downregulated offshore wind power plants

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Göcmen Bozkurt, Tuhfe; Sørensen, Poul; Rajczyk Skjelmose, Mads; Runge Kristoffersen, Jesper

    2015-04-01

    Wind farm scale experiments with wakes under downregulation have been initiated in Horns Rev wind farm in the frame of the PossPOW project (see posspow.dtu.dk). The experiments will be compared with the results of the calibrated GCLarsen wake model for real-time which is used not only to obtain real-time power curve but also to estimate the available power in wind farm level. Available (or Possible) Power is the power that a down-regulated (or curtailed) turbine or a wind power plant would produce if it were to operate in normal operational conditions and it is becoming more of particular interest due to increasing number of curtailment periods. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a down-regulated wind farm and the PossPOW project is addressing that need. What makes available power calculation interesting at the wind farm level is the change in the wake characteristics for different operational states. Even though the single turbine level available power is easily estimated, the sum of those signals from all turbines in a wind farm overestimates the power since the wake losses significantly decrease during curtailment. In order to calculate that effect, the turbine wind speed is estimated real-time from the produced power, the pitch angle and the rotor speed using a proximate Cp curve. A real-time wake estimation of normal operation is then performed and advected to the next downstream turbine, and so on until the entire wind farm is calculated. The estimation of the rotor effective wind speed, the parameterization of the GCLarsen wake model for real-time use (i.e., 1-sec data from Horns Rev and Thanet) and the details of the advection are the topic can be found in Göcmen et al. [1] Here we plan to describe the experiments using the Horns Rev wind farm and hopefully present the first validation results. Assuming similarity of the wind speeds between neighbouring rows of turbines, the power produced by the second turbines in the line can be compared when some of the front row turbines are down-regulated. To get a good signal, a trigger mechanism is employed which assures that the experiment is only started if the wind is blowing directly down the line of turbines, and in a strength which is below rated power. The design of the experiments is finalized and the triggers have been introduced to the controller - they will run during the first quarter of 2015. A verified algorithm could be employed by manufacturers and operators world-wide, both for the determination of compensation payments during mandated down-regulation as well as for the exact determination of reserve power for use in ancillary services markets. [1] T. Göcmen Bozkurt, G. Giebel, P. Rethore, M. Mirzaei, N. Poulsen, Effective wind speed estimation and real-time wake model re-calibration for down-regulated turbines, in: Wind Integration Workshop 2014.

  10. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  11. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  12. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  13. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  14. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  15. 78 FR 19632 - Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ...-AA08 Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St... proposes to establish a special local regulation on the waters of Charlotte Amalie Harbor in St Thomas, USVI during the St. Thomas Carnival Watersport Activities, a high speed boat race. The event is...

  16. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  17. Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Zhang, Yang; Yang, Yujing; Sun, Yong; Lin, Tingting

    2017-06-01

    Compared to other geophysical techniques, the surface nuclear magnetic resonance (SNMR) method could provide unique insights into the hydrologic properties of groundwater in the subsurface. However, the SNMR signal is in the order of nanovolts (10-9 V), and the complex environmental noise, i.e., the spike and the harmony noise (10-4 V), can reach up to 105 times the signal amplitude. Saturation of the amplifier is therefore a serious problem in current SNMR systems. In this study, we propose an anti-saturation method based on an instantaneous floating-point amplifier. The gain of a programmable amplifier is controlled by the value of the input signal. A regulating speed of 50 kS/s is thus achieved to satisfy the self-adaptive adjustment of the real-time SNMR system, which replaces the original man-made setting gain. A large dynamic range of 192.65 dB with a 24-bit high speed analog-digital converter module is then implemented. Compared to traditional SNMR instruments, whose magnification factor is fixed during the experiment, our system can effectively inhibit the distortion of the SNMR signal in both laboratory and field settings. Furthermore, an improved SNR, which is realized by the real-time SNMR system, enables the accurate inversion of the aquifer. Our study broadens the applicability of SNMR systems to use in and around developed areas.

  18. Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian

    2007-01-01

    High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.

  19. Development of monitoring and control system for a mine main fan based on frequency converter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  20. [High-contrast resolution of film-screen systems in oral and maxillofacial radiology].

    PubMed

    Kaeppler, G; Reinert, S

    2007-11-01

    The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.

  1. Radiology on handheld devices: image display, manipulation, and PACS integration issues.

    PubMed

    Raman, Bhargav; Raman, Raghav; Raman, Lalithakala; Beaulieu, Christopher F

    2004-01-01

    Handheld personal digital assistants (PDAs) have undergone continuous and substantial improvements in hardware and graphics capabilities, making them a compelling platform for novel developments in teleradiology. The latest PDAs have processor speeds of up to 400 MHz and storage capacities of up to 80 Gbytes with memory expansion methods. A Digital Imaging and Communications in Medicine (DICOM)-compliant, vendor-independent handheld image access system was developed in which a PDA server acts as the gateway between a picture archiving and communication system (PACS) and PDAs. The system is compatible with most currently available PDA models. It is capable of both wired and wireless transfer of images and includes custom PDA software and World Wide Web interfaces that implement a variety of basic image manipulation functions. Implementation of this system, which is currently undergoing debugging and beta testing, required optimization of the user interface to efficiently display images on smaller PDA screens. The PDA server manages user work lists and implements compression and security features to accelerate transfer speeds, protect patient information, and regulate access. Although some limitations remain, PDA-based teleradiology has the potential to increase the efficiency of the radiologic work flow, increasing productivity and improving communication with referring physicians and patients. Copyright RSNA, 2004

  2. High-speed civil transport flight- and propulsion-control technological issues

    NASA Technical Reports Server (NTRS)

    Ray, J. K.; Carlin, C. M.; Lambregts, A. A.

    1992-01-01

    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.

  3. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE PAGES

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.; ...

    2016-12-30

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  4. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alex H.; O'Donnell, Cian; Sejnowski, Terrence J.

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’. Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimatesmore » of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. In conclusion, these findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.« less

  5. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  6. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  7. ISG hybrid powertrain: a rule-based driver model incorporating look-ahead information

    NASA Astrophysics Data System (ADS)

    Shen, Shuiwen; Zhang, Junzhi; Chen, Xiaojiang; Zhong, Qing-Chang; Thornton, Roger

    2010-03-01

    According to European regulations, if the amount of regenerative braking is determined by the travel of the brake pedal, more stringent standards must be applied, otherwise it may adversely affect the existing vehicle safety system. The use of engine or vehicle speed to derive regenerative braking is one way to avoid strict design standards, but this introduces discontinuity in powertrain torque when the driver releases the acceleration pedal or applies the brake pedal. This is shown to cause oscillations in the pedal input and powertrain torque when a conventional driver model is adopted. Look-ahead information, together with other predicted vehicle states, are adopted to control the vehicle speed, in particular, during deceleration, and to improve the driver model so that oscillations can be avoided. The improved driver model makes analysis and validation of the control strategy for an integrated starter generator (ISG) hybrid powertrain possible.

  8. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Electric drive motors for industrial robots

    NASA Astrophysics Data System (ADS)

    Fichtner, K.

    1985-04-01

    In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.

  10. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  11. Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2006-03-01

    Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  12. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    NASA Astrophysics Data System (ADS)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  13. Study of the Time Response of a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Simani, S.; Alvisi, S.; Venturini, M.

    2014-12-01

    This paper addresses the design of an advanced control strategy for a typical hydroelectric dynamic process, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solution, the proposed methodology relies on an adaptive control designed by means of the on-line identification of the system model under monitoring. Extensive simulations and comparison with respect to a classic hydraulic turbine speed PID regulator show the effectiveness of the proposed modelling and control tools.

  14. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  15. A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors.

    PubMed

    Roubieu, Frédéric L; Serres, Julien R; Colonnier, Fabien; Franceschini, Nicolas; Viollet, Stéphane; Ruffier, Franck

    2014-09-01

    Here we present the first systematic comparison between the visual guidance behaviour of a biomimetic robot and those of honeybees flying in similar environments. We built a miniature hovercraft which can travel safely along corridors with various configurations. For the first time, we implemented on a real physical robot the 'lateral optic flow regulation autopilot', which we previously studied computer simulations. This autopilot inspired by the results of experiments on various species of hymenoptera consists of two intertwined feedback loops, the speed and lateral control loops, each of which has its own optic flow (OF) set-point. A heading-lock system makes the robot move straight ahead as fast as 69 cm s(-1) with a clearance from one wall as small as 31 cm, giving an unusually high translational OF value (125° s(-1)). Our biomimetic robot was found to navigate safely along straight, tapered and bent corridors, and to react appropriately to perturbations such as the lack of texture on one wall, the presence of a tapering or non-stationary section of the corridor and even a sloping terrain equivalent to a wind disturbance. The front end of the visual system consists of only two local motion sensors (LMS), one on each side. This minimalistic visual system measuring the lateral OF suffices to control both the robot's forward speed and its clearance from the walls without ever measuring any speeds or distances. We added two additional LMSs oriented at +/-45° to improve the robot's performances in stiffly tapered corridors. The simple control system accounts for worker bees' ability to navigate safely in six challenging environments: straight corridors, single walls, tapered corridors, straight corridors with part of one wall moving or missing, as well as in the presence of wind.

  16. 77 FR 23123 - Special Local Regulation; Smokin The Lake; Gulfport Lake; Gulfport, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-AA08 Special Local Regulation; Smokin The Lake; Gulfport Lake; Gulfport, MS AGENCY: Coast Guard, DHS... regulation for a portion of Gulfport Lake in Gulfport, MS. This action is necessary for the safeguard of... The Lake high speed boat races on May 5 and 6, 2012. Entry into, transiting or anchoring in this area...

  17. 78 FR 34570 - Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...-AA08 Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL AGENCY: Coast Guard, DHS... waters of Lake Dora in Tavares, Florida, during the Pro Hydro-X Tour, a series of high-speed personal... published a notice of proposed rulemaking (NPRM) entitled Special Local Regulations; Pro Hydro-X Tour, Lake...

  18. Examples of variable speed limit applications : speed management workshop

    DOT National Transportation Integrated Search

    2000-01-09

    VSL systems are a type of Intelligent Transportation System (ITS) that utilizes traffic : speed and volume detection, weather information, and road surface condition technology to determine appropriate speeds at which drivers should be traveling, giv...

  19. Speed control: cogs and gears that drive the circadian clock.

    PubMed

    Zheng, Xiangzhong; Sehgal, Amita

    2012-09-01

    In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Curran, E.T.

    1991-01-01

    Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.

  1. A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique: application to SEIG wind turbine control system

    NASA Astrophysics Data System (ADS)

    Kenné, Godpromesse; Fotso, Armel Simo; Lamnabhi-Lagarrigue, Françoise

    2017-04-01

    In this paper, a new hybrid method which combines radial basis function (RBF) neural network with a sliding-mode technique to take advantage of their common features is used to control a class of nonlinear systems. A real-time dynamic nonlinear learning law of the weight vector is synthesized and the closed-loop stability has been demonstrated using Lyapunov theory. The solution presented in this work does not need the knowledge of the perturbation bounds, neither the knowledge of the full state of the nonlinear system. In addition, the bounds of the nonlinear functions are assumed to be unknown and the proposed RBF structure uses reduced number of hidden units. This hybrid control strategy is applied to extract the maximum available energy from a stand-alone self-excited variable low-wind speed energy conversion system and design the dc-voltage and rotor flux controllers as well as the load-side frequency and voltage regulators assuming that the measured outputs are the rotor speed, stator currents, load-side currents and voltages despite large variation of the rotor resistance and uncertainties on the inductances. Finally, simulation results compared with those obtained using the well-known second-order sliding-mode controller are given to show the effectiveness and feasibility of the proposed approach.

  2. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels

    NASA Astrophysics Data System (ADS)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon

    2012-03-01

    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  3. Modernising the regulation of medical migration: moving from national monopolies to international markets.

    PubMed

    Epstein, Richard J; Epstein, Stephen D

    2012-10-05

    Traditional top-down national regulation of internationally mobile doctors and nurses is fast being rendered obsolete by the speed of globalisation and digitisation. Here we propose a bottom-up system in which responsibility for hiring and accrediting overseas staff begins to be shared by medical employers, managers, and insurers. In this model, professional Boards would retain authority for disciplinary proceedings in response to local complaints, but would lose their present power of veto over foreign practitioners recruited by employers who have independently evaluated and approved such candidates' ability. Evaluations of this kind could be facilitated by globally accessible National Registers of professional work and conduct. A decentralised system of this kind could also dispense with time-consuming national oversight of continuing professional education and license revalidation, which tasks could be replaced over time by tighter institutional audit supported by stronger powers to terminate underperforming employees. Market forces based on the reputation (and, hence, financial and political viability) of employers and institutions could continue to ensure patient safety in the future, while at the same time improving both national system efficiency and international professional mobility.

  4. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  5. Using SHRP 2 naturalistic driving data to assess drivers' speed choice while being engaged in different secondary tasks.

    PubMed

    Schneidereit, Tina; Petzoldt, Tibor; Keinath, Andreas; Krems, Josef F

    2017-09-01

    The engagement in secondary tasks while driving has been found to result in considerable impairments of driving performance. Texting has especially been suspected to be associated with an increased crash risk. At the same time, there is evidence that drivers use various self-regulating strategies to compensate for the increased demands caused by secondary task engagement. One of the findings reported from multiple studies is a reduction in driving speed. However, most of these studies are of experimental nature and do not let the drivers decide for themselves to (not) engage in the secondary task, and therefore, eliminate other strategies of self-regulation (e.g., postponing the task). The goal of the present analysis was to investigate if secondary task engagement results in speed adjustment also under naturalistic conditions. Our analysis relied on data of the SHRP 2 naturalistic driving study. To minimize the influence of potentially confounding factors on drivers' speed choice, we focused on episodes of free flow driving on interstates/highways. Driving speed was analyzed before, during, and after texting, smoking, eating, and adjusting/monitoring radio or climate control; in a total of 403 episodes. Data show some indication for speed adjustment for texting, especially when driving with high speed. However, the effect sizes were small and behavioral patterns varied considerably between drivers. The engagement in the other tasks did not influence drivers' speed behavior significantly. While drivers might indeed reduce speed slightly to accommodate for secondary task engagement, other forms of adaptation (e.g., strategic decisions) might play a more important role in a natural driving environment. The use of naturalistic driving data to study drivers' self-regulatory behavior at an operational level has proven to be promising. Still, in order to obtain a comprehensive understanding about drivers' self-regulatory behavior, a mixed-method approach is required. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  6. Adapting ISA system warnings to enhance user acceptance.

    PubMed

    Jiménez, Felipe; Liang, Yingzhen; Aparicio, Francisco

    2012-09-01

    Inappropriate speed is a major cause of traffic accidents. Different measures have been considered to control traffic speed, and intelligent speed adaptation (ISA) systems are one of the alternatives. These systems know the speed limits and try to improve compliance with them. This paper deals with an informative ISA system that provides the driver with an advance warning before reaching a road section with singular characteristics that require a lower safe speed than the current speed. In spite of the extensive tests performed using ISA systems, few works show how warnings can be adapted to the driver. This paper describes a method to adapt warning parameters (safe speed on curves, zone of influence of a singular stretch, deceleration process and reaction time) to normal driving behavior. The method is based on a set of tests with and without the ISA system. This adjustment, as well as the analysis of driver acceptance before and after the adaptation and changes in driver behavior (changes in speed and path) resulting from the tested ISA regarding a driver's normal driving style, is shown in this paper. The main conclusion is that acceptance by drivers increased significantly after redefining the warning parameters, but the effect of speed homogenization was not reduced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Automated manual transmission clutch controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  8. Automated manual transmission shift sequence controller

    DOEpatents

    Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  9. Automated manual transmission mode selection controller

    DOEpatents

    Lawrie, Robert E.

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  10. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  11. Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.

    PubMed

    Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk

    2015-07-01

    Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.

  12. Effectiveness of a self-regulated remedial program for handwriting difficulties.

    PubMed

    Van Waelvelde, Hilde; De Roubaix, Amy; Steppe, Lien; Troubleyn, Evy; De Mey, Barbara; Dewitte, Griet; Debrabant, Julie; Van de Velde, Dominique

    2017-09-01

    Handwriting difficulties may have pervasive effects on a child's school performance. I Can! is a remedial handwriting program with a focus on self-regulated learning and applying motor learning principles combined with a behavioural approach. It is developed for typically developing children with handwriting problems. The study aim was to evaluate the program's effectiveness. Thirty-one children aged 7-8 year participated in a cross-over study. Handwriting quality and speed were repeatedly assessed by means of the Systematic Screening of Handwriting Difficulties test. Difficulties addressed were fluency in letter formation, fluency in letter connections, letter height, regularity of letter height, space between words, and line path. Mixed model analysis revealed improved quality of writing and speed for all children but significantly more improvement in handwriting quality for the children participating in the program. Although writing speed improved over time, no additional effects of the program occurred. 'I Can!' is found to be an effective instructive program to ameliorate handwriting quality in typically developing children with handwriting difficulties. The program's success was by a therapy burst of only 7 weeks focusing on the child's self-regulated learning capacities, within an individualized education plan according to their needs and goals.

  13. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  14. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  15. The Design of the Automatic Control System of the Gripping-Belt Speed in Long-Rootstalk Traditional Chinese Herbal Harvester

    NASA Astrophysics Data System (ADS)

    Huang, Jinxia; Wang, Junfa; Yu, Yonghong

    This article aims to design a kind of gripping-belt speed automatic tracking system of traditional Chinese herbal harvester by AT89C52 single-chip micro computer as a core combined with fuzzy PID control algorithm. The system can adjust the gripping-belt speed in accordance with the variation of the machine's operation, so there is a perfect matching between the machine operation speed and the gripping-belt speed. The harvesting performance of the machine can be improved greatly. System design includes hardware and software.

  16. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  17. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch

    PubMed Central

    Hwang, Yung; Futran, Melinda; Hidalgo, Daniel; Pop, Ramona; Iyer, Divya Ramalingam; Scully, Ralph; Rhind, Nicholas; Socolovsky, Merav

    2017-01-01

    Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase–dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions. PMID:28560351

  18. Study to Establish Ride Comfort Criteria for High Speed Magnetically Levitated Transportation Systems

    DOT National Transportation Integrated Search

    1994-06-01

    Advanced high speed fixed guideway transportation systems such as magnetic levitation systems have speed, acceleration, : and banking capabilities which present new guideway design issues. This increased performance results in new concerns : for pass...

  19. Demonstration of variable speed permanent magnet generator at small, low-head hydro site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown Kinloch, David

    Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less

  20. What benefit does Intelligent Speed Adaptation deliver: a close examination of its effect on vehicle speeds.

    PubMed

    Lai, Frank; Carsten, Oliver

    2012-09-01

    Intelligent Speed Adaptation (ISA) is a driver support system which brings the speed limit information into the vehicle. This paper describes the UK ISA field trials taken place between 2004 and 2006 and presents evidence on how drivers' choice of speed is altered. The ISA system was observed to have a distinctive effect in transforming the speed distribution from a conventional bell shape to an asymmetric distribution biased towards the high speed end. ISA not only diminished excessive speeding, but also led to a reduction in speed variation, prompting a positive implication to accident reduction. The use of an overridable ISA system also provided an opportunity to investigate where drivers would choose to have ISA based on observed behaviour instead of opinion. Evidence shows that ISA tends to be overridden on roads where it was perhaps needed most. Behavioural difference among driver groups also suggests that ISA tends to be overridden by those drivers who in safety terms stand to benefit most from using it, as with other safety systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1972-01-01

    A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.

  2. The experimental studies of operating modes of a diesel-generator set at variable speed

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.

    2017-02-01

    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  3. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-01-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  4. Concepts for Variable/Multi-Speed Rotorcraft Drive System

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2008-01-01

    In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.

  5. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Feng, J; Huang, Z

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for themore » control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further quantify the benefits of the combined therapy.« less

  6. Railroad classification yard technology : assessment of car speed control systems

    DOT National Transportation Integrated Search

    1980-12-01

    The scope of this study has encompassed an evaluation of fourteen yard speed : control devices, an identification of four generic speed control systems, a : qualitative assessment of the four systems, and finally a quantitative analysis : of three hy...

  7. Retrofit device and method to improve humidity control of vapor compression cooling systems

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  8. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    NASA Astrophysics Data System (ADS)

    Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa

    2018-04-01

    Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  9. Evaluating the impacts of grades on vehicular speeds on interstate highways.

    PubMed

    Chen, Xinqiang; Li, Zhibin; Wang, Yinhai; Cui, Zhiyong; Shi, Chaojian; Wu, Huafeng

    2017-01-01

    Grade variation on interstate highways affects the roadway geometric design, vehicle performance and driver behavior, thus possibly exerting an unexpected effect on vehicular speed. Hence, determining the internal relationship between grade and speed is important and useful for drivers, traffic regulators and other traffic participants. However, the problem with performing this research is the lack of large-scale gradient and speed data. Google Earth (GE) provides an application programming interface for extracting elevation data worldwide. The elevation dataset from GE can be easily converted to grade data. In addition, our team has collected and stored speed series data for different freeways over several years. Based on the above obtainable grade and speed datasets, we conducted research on the effect of grades on free flow speeds from two perspectives. First, the influence of grades on speed was analyzed from both quantitative and qualitative aspects. The analysis of the distributions of four typical types of speeds demonstrated a decreasing tendency as the speed increased. Steeper grades generated a more intense speed fluctuation in terms of the four types of speeds. Second, a model based on the Student's t-test was developed to evaluate the level of significant difference among speed series under neighboring grades. The Student's t-test demonstrated that adjacent grades do not significantly influence the speeds. In summary, speeds under different grades showed obviously different tendencies. The findings of this study can help transport authorities set more reasonable speed limits and improve the geometric design of interstates with grade variation constraints.

  10. 78 FR 16205 - Special Local Regulations; Dragging on the Waccamaw, Atlantic Intracoastal Waterway; Bucksport, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Carolina during the Outboard Drag Boat Association (ODBA) dragging on the Waccamaw, a series of high-speed boat races. The event is scheduled to take place on 11:00 a.m. Saturday, June 22, 2013, through 7:30 p.m. Sunday, June 23, 2013. Approximately 50 high-speed race boats are anticipated to participate in...

  11. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  12. Empirical study of classification process for two-stage turbo air classifier in series

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Liu, Jiaxiang; Li, Gang

    2013-05-01

    The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the "fish-hook" effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the "fish-hook" effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.

  13. Examining impulse-variability in overarm throwing.

    PubMed

    Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David

    2012-01-01

    The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.

  14. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  15. Evaluating the operations capability of Freedom's Data Management System

    NASA Technical Reports Server (NTRS)

    Sowizral, Henry A.

    1990-01-01

    Three areas of Data Management System (DMS) performance are examined: raw processor speed, the subjective speed of the Lynx OS X-Window system, and the operational capacity of the Runtime Object Database (RODB). It is concluded that the proposed processor will operate at its specified rate of speed and that the X-Window system operates within users' subjective needs. It is also concluded that the RODB cannot provide the required level of service, even with a two-order of magnitude (100 fold) improvement in speed.

  16. Discrete wavelet transform and energy eigen value for rotor bars fault detection in variable speed field-oriented control of induction motor drive.

    PubMed

    Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness

    2018-05-03

    This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.

  17. Design of noise barrier inspection system for high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  18. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed... by this subpart, and which have been utilized on high-speed rail systems with similar technical and...

  19. An Ultra-High Speed Whole Slide Image Viewing System

    PubMed Central

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J.; Frosch, Matthew P.; Louis, David N.

    2012-01-01

    Background: One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. Method: A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Results: Pathologists were being able to use the system comfortably after 0–15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. Conclusion: The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice. PMID:22063731

  20. An ultra-high speed Whole Slide Image viewing system.

    PubMed

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  1. An ultra-high speed whole slide image viewing system.

    PubMed

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  2. Design and reliability analysis of high-speed and continuous data recording system based on disk array

    NASA Astrophysics Data System (ADS)

    Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo

    2002-12-01

    In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.

  3. Work zone variable speed limit systems: Effectiveness and system design issues.

    DOT National Transportation Integrated Search

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  4. Work zone variable speed limit systems : effectiveness and system design issues.

    DOT National Transportation Integrated Search

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  5. Nonlinear engine model for idle speed control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livshiz, M.; Sanvido, D.J.; Stiles, S.D.

    1994-12-31

    This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less

  6. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  7. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...

  8. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...

  9. 76 FR 50667 - Regulated Navigation Area; Portsmouth Naval Shipyard, Portsmouth, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... provide for the safety of life on the navigable waters during ongoing ship construction. DATES: This rule.... ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a regulated navigation area on the Piscataqua River near Portsmouth, NH. This temporary final rule places speed restrictions on all vessels...

  10. Temperature: Human Regulating, Ants Conforming

    ERIC Educational Resources Information Center

    Clopton, Joe R.

    2007-01-01

    Biological processes speed up as temperature rises. Procedures for demonstrating this with ants traveling on trails, and data gathered by students on the Argentine ant ("Linepithema humile") are presented. The concepts of temperature regulation and conformity are detailed with a focus on the processes rather than on terms that label the organisms.

  11. 33 CFR 334.610 - Key West Harbor, at U.S. Naval Base, Key West, Fla.; naval restricted areas and danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on shore at latitude 24°35.698′ N., longitude 81°41.981′ W. (b) The Regulations: (1) Entering or... this section shall proceed at speeds commensurate with minimum wake. (c) The regulations in this...

  12. Disturbance observer based pitch control of wind turbines for disturbance rejection

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Chen, Xu; Tang, Jiong

    2016-04-01

    In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.

  13. Vehicle automation: a remedy for driver stress?

    PubMed

    Funke, G; Matthews, G; Warm, J S; Emo, A K

    2007-08-01

    The present study addressed the effects of stress, vehicle automation and subjective state on driver performance and mood in a simulated driving task. A total of 168 college students participated. Participants in the stress-induction condition completed a 'winter' drive, which included periodic loss of control episodes. Participants in the no-stress-induction condition were not exposed to loss of control. An additional, independent manipulation of vehicle speed was also conducted, consisting of two control conditions requiring manual speed regulation and a third in which vehicle speed was automatically regulated by the simulation. Stress and automation both influenced subjective distress, but the two factors did not interact. Driver performance data indicated that vehicle automation impacted performance similarly in the stress and no-stress conditions. Individual differences in subjective stress response and performance were also investigated. Resource theory provides a framework that partially but not completely explains the relationship between vehicle automation and driver stress. Implications for driver workload, safety and training are discussed.

  14. LTA application of a long trailing wire high speed/low weight reeling system

    NASA Technical Reports Server (NTRS)

    Werb, D. F.

    1975-01-01

    The successful development of a unique yet simple reeling system for handling long trailing tensile members at high speeds is described. This high speed when combined with the system simplicity, low weight and effective motive power consumption make this reeling system particularly attractive to LTA planners and designers for numerous LTA missions.

  15. Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.

    PubMed

    Wang, Xiao Fan

    2002-06-01

    We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.

  16. Relativistic collective diffusion in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  17. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    NASA Astrophysics Data System (ADS)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  18. Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.

    2012-01-01

    This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  19. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    NASA Astrophysics Data System (ADS)

    Guo, Shanshan; Gu, Hanting; Wu, Lan; Jiang, Shuixiu

    2011-02-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  20. Underwater hydraulic shock shovel control system

    NASA Astrophysics Data System (ADS)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  1. Effect of In-Vehicle Audio Warning System on Driver’s Speed Control Performance in Transition Zones from Rural Areas to Urban Areas

    PubMed Central

    Yan, Xuedong; Wang, Jiali; Wu, Jiawei

    2016-01-01

    Speeding is a major contributing factor to traffic crashes and frequently happens in areas where there is a mutation in speed limits, such as the transition zones that connect urban areas from rural areas. The purpose of this study is to investigate the effects of an in-vehicle audio warning system and lit speed limit sign on preventing drivers’ speeding behavior in transition zones. A high-fidelity driving simulator was used to establish a roadway network with the transition zone. A total of 41 participants were recruited for this experiment, and the driving speed performance data were collected from the simulator. The experimental results display that the implementation of the audio warning system could significantly reduce drivers’ operating speed before they entered the urban area, while the lit speed limit sign had a minimal effect on improving the drivers’ speed control performance. Without consideration of different types of speed limit signs, it is found that male drivers generally had a higher operating speed both upstream and in the transition zones and have a larger maximum deceleration for speed reduction than female drivers. Moreover, the drivers who had medium-level driving experience had the higher operating speed and were more likely to have speeding behaviors in the transition zones than those who had low-level and high-level driving experience in the transition zones. PMID:27347990

  2. [Speed drugs].

    PubMed

    Piekoszewski, Wojciech; Florek, Ewa

    2009-01-01

    Until recently "speed drugs" have not awake higher social emotions. Usually they associate with Red Bull, allowed driving long time, and workaholic from modern enterprise to regenerate before next task. Currently on the base of new regulation on the list of controlled substances benzylpyperazine, its related compounds and 17 plants products were added. The article discussed the sources and biological action of these psychoactive substances, which are illegal in Poland.

  3. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  4. Evaluating the impacts of grades on vehicular speeds on interstate highways

    PubMed Central

    Li, Zhibin; Wang, Yinhai; Cui, Zhiyong; Shi, Chaojian; Wu, Huafeng

    2017-01-01

    Grade variation on interstate highways affects the roadway geometric design, vehicle performance and driver behavior, thus possibly exerting an unexpected effect on vehicular speed. Hence, determining the internal relationship between grade and speed is important and useful for drivers, traffic regulators and other traffic participants. However, the problem with performing this research is the lack of large-scale gradient and speed data. Google Earth (GE) provides an application programming interface for extracting elevation data worldwide. The elevation dataset from GE can be easily converted to grade data. In addition, our team has collected and stored speed series data for different freeways over several years. Based on the above obtainable grade and speed datasets, we conducted research on the effect of grades on free flow speeds from two perspectives. First, the influence of grades on speed was analyzed from both quantitative and qualitative aspects. The analysis of the distributions of four typical types of speeds demonstrated a decreasing tendency as the speed increased. Steeper grades generated a more intense speed fluctuation in terms of the four types of speeds. Second, a model based on the Student’s t-test was developed to evaluate the level of significant difference among speed series under neighboring grades. The Student’s t-test demonstrated that adjacent grades do not significantly influence the speeds. In summary, speeds under different grades showed obviously different tendencies. The findings of this study can help transport authorities set more reasonable speed limits and improve the geometric design of interstates with grade variation constraints. PMID:28863157

  5. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  6. Fulfilling the pedestrian protection directive using a long-wavelength infrared camera designed to meet both performance and cost targets

    NASA Astrophysics Data System (ADS)

    Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran

    2006-04-01

    Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.

  7. Rating of perceived exertion as a tool for prescribing and self regulating interval training: a pilot study

    PubMed Central

    Mantuani, SS; Neiva, CM; Verardi, CEL; Pessôa-Filho, DM

    2015-01-01

    The aim of the present study was to analyse the usefulness of the 6-20 rating of perceived exertion (RPE) scale for prescribing and self-regulating high-intensity interval training (HIT) in young individuals. Eight healthy young subjects (age = 27.5±6.7 years) performed maximal graded exercise testing to determine their maximal and reserve heart rate (HR). Subjects then performed two HIT sessions (20 min on a treadmill) prescribed and regulated by their HR (HR: 1 min at 50% alternated with 1 min at 85% of reserve HR) or RPE (RPE: 1 minute at the 9-11 level [very light-fairly light] alternated with 1 minute at the 15-17 level [hard-very hard]) in random order. HR response and walking/running speed during the 20 min of exercise were compared between sessions. No significant difference between sessions was observed in HR during low- (HR: 135±15 bpm; RPE: 138±20 bpm) and high-intensity intervals (HR: 168±15 bpm; RPE: 170±18 bpm). Walking/running speed during low- (HR: 5.7±1.2 km · h−1; RPE: 5.7±1.3 km · h−1) and high-intensity intervals (HR: 7.8±1.9 km · h−1; RPE: 8.2±1.7 km · h−1) was also not different between sessions. No significant differences were observed in HR response and walking/running speed between HIT sessions prescribed and regulated by HR or RPE. This finding suggests that the 6-20 RPE scale may be a useful tool for prescribing and self-regulating HIT in young subjects. PMID:26028809

  8. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts.

    PubMed

    Hara, Yuki; Merten, Christoph A

    2015-06-08

    Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    PubMed Central

    Williams, Alex H; O'Donnell, Cian; Sejnowski, Terrence J; O'Leary, Timothy

    2016-01-01

    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons. DOI: http://dx.doi.org/10.7554/eLife.20556.001 PMID:28034367

  10. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.

  11. Experimental evaluation of fog warning system.

    PubMed

    Al-Ghamdi, Ali S

    2007-11-01

    Highway safety is a major concern to the public and to transportation professionals, so the number of crashes caused by poor visibility due to fog form an alarming statistic. Drivers respond to poor visibility conditions in different ways: some slow down; others do not. Many drivers simply follow the taillights of the vehicle ahead. Accordingly, hazardous conditions are created in which speeds are both too high for the prevailing conditions and highly variable. Findings are presented from a study of traffic crashes due to fog in the southern region of Saudi Arabia. The primary objective was to assess the effectiveness of fog detection and warning system on driver behavior regarding speed and headway. This warning system includes visibility sensors that automatically activate a variable message sign that posts an advisory speed when hazardous conditions due to fog occur. The system was installed on a 2 km section of a two-lane, rural highway. A data set of 36,013 observations from both experimental and control sections at two study sites was collected and analyzed. The data included vehicle speed, volume, and classification; time headway, time of day, and visibility distance. Although the warning system was ineffective in reducing speed variability, mean speed throughout the experimental sections was reduced by about 6.5 kph. This reduction indicates that the warning system appeared to have a positive effect on driver behavior in fog even though the observed mean speeds were still higher than the posted advisory speed. From relationships found in the literature between mean driving speed and number of crashes, a speed reduction of only 5 kph would yield a 15% decrease in the number of crashes.

  12. Design and Validation of a Radio-Frequency Identification-Based Device for Routinely Assessing Gait Speed in a Geriatrics Clinic.

    PubMed

    Barry, Lisa C; Hatchman, Laura; Fan, Zhaoyan; Guralnik, Jack M; Gao, Robert X; Kuchel, George A

    2018-05-01

    To evaluate the feasibility, acceptability, and validity of a radio-frequency identification (RFID)-based system to measure gait speed in a clinical setting as a first step to using unobtrusive gait speed assessment in routine clinical care. Feasibility study comparing gait speed assessed using an RFID-based system with gait speed assessed using handheld stopwatch, the criterion standard. Outpatient geriatrics clinic at a Connecticut-based academic medical center. Clinic attendees who could walk independently with or without an assistive device (N=50) and healthcare providers (N=9). Gait speed was measured in twice using 2 methods each time before participants entered an examination room. Participants walked at their usual pace while gait speed was recorded simultaneously using the RFID-based system and a handheld stopwatch operated by a trained study investigator. After 2 trials, participants completed a brief survey regarding their experience. At the end of the study period, clinic healthcare providers completed a separate survey. Test-retest reliability of the RFID-based system was high (intraclass correlation coefficient = 0.953). The mean difference ± standard deviation in gait speed between the RFID-based system and the stopwatch was -0.003±0.035 m/s (p=.53) and did not differ significantly according to age, sex, or use of an assistive walking aid. Acceptability of the device was high, and 8 of 9 providers indicated that measuring gait speed using the RFID-based system should be a part of routine clinical care. RFID technology may offer a practical means of overcoming barriers to routine measurement of gait speed in real-world outpatient clinical settings. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  13. Can enforced behaviour change attitudes: exploring the influence of Intelligent Speed Adaptation.

    PubMed

    Chorlton, Kathryn; Conner, Mark

    2012-09-01

    The Theory of Planned Behaviour model (Ajzen, 1985) was used to determine whether long-term experience with Intelligent Speed Adaption (ISA) prompts a change in speed related cognitions. The study examines data collected as part of a project examining driver behaviour with an intervening but overridable ISA system. Data was collected in four six-month field trials. The trials followed an A-B-A design (28 days driving with no ISA, 112 days driving with ISA, 28 days driving without ISA) to monitor changes in speeding behaviour as a result of the ISA system and any carry-over effect of the system. Findings suggested that following experience with the system, drivers' intention to speed significantly weakened, beyond the removal of ISA support. Drivers were also less likely to believe that exceeding the speed would 'get them to their destination more quickly' and less likely to believe that 'being in a hurry' would facilitate speeding. However, the positive change in intentions and beliefs failed to translate into behaviour. Experience with the ISA system significantly reduced the percentage of distance travelled whilst exceeding the speed limit but this effect was not evident when the ISA support was removed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  15. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    NASA Astrophysics Data System (ADS)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  16. U.S. Embargo Walls Us In

    ERIC Educational Resources Information Center

    Durand, Cliff; McGuire, Mike

    2004-01-01

    On June 30, the Bush administration imposed new regulations sharply curtailing already-limited travel to Cuba. A New York Times article published on June 24 characterized the regulations as "part of a broader plan that President Bush announced last month to be tougher on President Fidel Castro and speed a transition to democracy in Cuba.…

  17. Regulation of cold-induced sweetening in potatoes and markers for fast-track new variety development

    USDA-ARS?s Scientific Manuscript database

    Potato breeding is a tedious, time consuming process. With the growing requirements of the potato processing industry for new potato varieties, there is need for effective tools to speed-up new variety development. The purpose of this study was to understand the enzymatic regulation of cold-induce...

  18. 77 FR 42467 - Special Local Regulations; Fajardo Offshore Festival II, Fajardo, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... 1625-AA08 Special Local Regulations; Fajardo Offshore Festival II, Fajardo, PR AGENCY: Coast Guard, DHS... Festival II, a series of high-speed boat races. The event is scheduled to take place on Sunday, September... the Fajardo Offshore Festival II. C. Discussion of Proposed Rule On September 16, 2012, Puerto Rico...

  19. 78 FR 23843 - Special Local Regulations; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-AA08 Special Local Regulations; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary... Festival high speed boat races. Entry into, transiting or anchoring in this area is prohibited to all... Rockin' the Riverfront Festival; Robertson Lake & O'Leary Lake; Moss Point, MS. (a) Location. The...

  20. 78 FR 71495 - Regulated Navigation Area; Portsmouth Naval Shipyard, Piscataqua River, Portsmouth, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... rule is necessary to provide for the safety of life on the navigable waters during ongoing dive...: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a regulated navigation area (RNA) on the Piscataqua River near Portsmouth, NH. This temporary final rule places speed...

  1. 77 FR 63722 - Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...-AA08 Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL AGENCY... offshore of Jupiter, Florida during the Palm Beach World Championship, a high speed power boat race. The Palm Beach World Championship is scheduled to take place on Friday, October 19, and Sunday, October 21...

  2. 78 FR 59237 - Regulated Navigation Area-Weymouth Fore River, Fore River Bridge Construction, Weymouth and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ...-AA11 Regulated Navigation Area--Weymouth Fore River, Fore River Bridge Construction, Weymouth and... vicinity of the Fore River Bridge (Mile 3.5) between Weymouth and Quincy, MA. This rule will place temporary speed, wake, and entry restrictions on vessels during bridge replacement operations. This rule is...

  3. 78 FR 59231 - Regulated Navigation Area-Tappan Zee Bridge Construction Project, Hudson River; South Nyack and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... 1625-AA11 Regulated Navigation Area--Tappan Zee Bridge Construction Project, Hudson River; South Nyack... Hudson River surrounding the Tappan Zee Bridge. This temporary interim rule allows the Coast Guard to enforce speed and wake restrictions and prohibit all vessel traffic through the RNA during bridge...

  4. 78 FR 53668 - Regulated Navigation Area; Maine Kennebec Bridge Construction Zone, Kennebec River, Richmond, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA11 Regulated Navigation Area; Maine Kennebec Bridge Construction Zone, Kennebec River, Richmond, ME... surrounding the Maine Kennebec Bridge between Richmond, ME, and Dresden, ME. This RNA allows the Coast Guard to enforce speed and wake restrictions and prohibit all vessel traffic through the RNA during bridge...

  5. 76 FR 57910 - Regulated Navigation Area; Route 24 Bridge Construction, Tiverton and Portsmouth, RI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ...-AA11 Regulated Navigation Area; Route 24 Bridge Construction, Tiverton and Portsmouth, RI AGENCY: Coast... surrounding construction of the new Route 24 bridge that crosses the Sakonnet River between Tiverton and... channel beneath the bridge, speed restrictions, and suspension of all vessel traffic within the RNA during...

  6. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This papermore » explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.« less

  7. Fabrication and Testing of High-Speed-Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-05-04

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  8. Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-04-05

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  9. Modernising the regulation of medical migration: moving from national monopolies to international markets

    PubMed Central

    2012-01-01

    Background Traditional top-down national regulation of internationally mobile doctors and nurses is fast being rendered obsolete by the speed of globalisation and digitisation. Here we propose a bottom-up system in which responsibility for hiring and accrediting overseas staff begins to be shared by medical employers, managers, and insurers. Discussion In this model, professional Boards would retain authority for disciplinary proceedings in response to local complaints, but would lose their present power of veto over foreign practitioners recruited by employers who have independently evaluated and approved such candidates' ability. Evaluations of this kind could be facilitated by globally accessible National Registers of professional work and conduct. A decentralised system of this kind could also dispense with time-consuming national oversight of continuing professional education and license revalidation, which tasks could be replaced over time by tighter institutional audit supported by stronger powers to terminate underperforming employees. Summary Market forces based on the reputation (and, hence, financial and political viability) of employers and institutions could continue to ensure patient safety in the future, while at the same time improving both national system efficiency and international professional mobility. PMID:23039098

  10. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  11. Variable/Multispeed Rotorcraft Drive System Concepts

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2009-01-01

    Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.

  12. Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits.

    PubMed

    Gámez Serna, Citlalli; Ruichek, Yassine

    2017-06-14

    A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle's speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, 'curve analysis extraction' and 'speed limits database creation' are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger.

  13. Hydroelectric power plant with variable flow on drinking water adduction

    NASA Astrophysics Data System (ADS)

    Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.

    2018-01-01

    The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.

  14. Investigation of the use and feasibility of speed warning systems.

    DOT National Transportation Integrated Search

    2014-05-01

    This report summarizes a feasibility evaluation of a speed monitoring system that provided speed warning feedback to drivers enrolled in a voluntary program, with particular emphasis on at-risk drivers, especially chronic speeders. This project inclu...

  15. Comparison between variable and constant rotor speed operation on WINDMEL-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji

    1996-10-01

    On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.

  16. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.

  17. Quantum Speed Limits across the Quantum-to-Classical Transition

    NASA Astrophysics Data System (ADS)

    Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A.

    2018-02-01

    Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.

  18. Propagation dynamics for a spatially periodic integrodifference competition model

    NASA Astrophysics Data System (ADS)

    Wu, Ruiwen; Zhao, Xiao-Qiang

    2018-05-01

    In this paper, we study the propagation dynamics for a class of integrodifference competition models in a periodic habitat. An interesting feature of such a system is that multiple spreading speeds can be observed, which biologically means different species may have different spreading speeds. We show that the model system admits a single spreading speed, and it coincides with the minimal wave speed of the spatially periodic traveling waves. A set of sufficient conditions for linear determinacy of the spreading speed is also given.

  19. The effects of bending speed on the lumbo-pelvic kinematics and movement pattern during forward bending in people with and without low back pain.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Li, Linda M K; Wong, Dim C M; Yip, Millie M P; Lee, Raymond Y W

    2017-04-17

    Impaired lumbo-pelvic movement in people with low back pain during bending task has been reported previously. However, the regional mobility and the pattern of the lumbo-pelvic movement were found to vary across studies. The inconsistency of the findings may partly be related to variations in the speed at which the task was executed. This study examined the effects of bending speeds on the kinematics and the coordination lumbo-pelvic movement during forward bending, and to compare the performance of individuals with and without low back pain. The angular displacement, velocity and acceleration of the lumbo-pelvic movement during the repeated forward bending executed at five selected speeds were acquired using the three dimensional motion tracking system in seventeen males with low back pain and eighteen males who were asymptomatic. The regional kinematics and the degree of coordination of the lumbo-pelvic movement during bending was compared and analysed between two groups. Significantly compromised performance in velocity and acceleration of the lumbar spine and hip joint during bending task at various speed levels was shown in back pain group (p < 0.01). Both groups displayed a high degree of coordination of the lumbo-pelvic displacement during forward bending executed across the five levels of speed examined. Significant between-group difference was revealed in the coordination of the lumbo-pelvic velocity and acceleration (p < 0.01). Asymptomatic group moved with a progressively higher degree of lumbo-pelvic coordination for velocity and acceleration while the back pain group adopted a uniform lumbo-pelvic pattern across all the speed levels examined. The present findings show that bending speed imposes different levels of demand on the kinematics and pattern of the lumbo-pelvic movement. The ability to regulate the lumbo-pelvic movement pattern during the bending task that executed at various speed levels was shown only in pain-free individuals but not in those with low back pain. Individuals with low back pain moved with a stereotyped strategy at their lumbar spine and hip joints. This specific aberrant lumbo-pelvic movement pattern may have a crucial role in the maintenance of the chronicity in back pain.

  20. Passenger Acceptance of Alignments with Frequent Curves in Maglev or Other Very-High-Speed Ground Systems

    DOT National Transportation Integrated Search

    1995-10-31

    Proposed high-speed ground transportation systems, such as Maglev, may have motion characteristics : affecting passenger comfort which set them apart from anything previously experienced. Operating at : aircraft speeds along rights-of-way established...

  1. 49 CFR 230.68 - Speed indicators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed indicators. 230.68 Section 230.68... Tenders Speed Indicators § 230.68 Speed indicators. Steam locomotives that operate at speeds in excess of 20 miles per hour over the general system of railroad transportation shall be equipped with speed...

  2. 49 CFR 230.68 - Speed indicators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed indicators. 230.68 Section 230.68... Tenders Speed Indicators § 230.68 Speed indicators. Steam locomotives that operate at speeds in excess of 20 miles per hour over the general system of railroad transportation shall be equipped with speed...

  3. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  4. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  5. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  6. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  7. Evaluation of the effectiveness of a variable advisory speed system on queue mitigation in work zones.

    DOT National Transportation Integrated Search

    2011-04-01

    Variable Advisory Speed Systems (VASS) provide drivers with advanced warning regarding traffic speeds downstream to help them make better decisions. Vehicle use on highways is increasing and the need to improve highways brings increased construction ...

  8. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers.

    PubMed

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  9. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  10. Effects of walking speed on asymmetry and bilateral coordination of gait

    PubMed Central

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (p<0.001). Stepwise regression revealed that slowed gait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  11. Servomotor and Controller Having Large Dynamic Range

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott

    2007-01-01

    A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).

  12. A system for comparison of boring parameters of mini-HDD machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsaulis, F.R.

    A system has been developed to accurately evaluate changes in performance of a mini-horizontal directional drilling (HDD) system in the backreaming/pullback portion of a bore as the parameters influencing the backream are changed. Parameters incorporated in the study include spindle rotation rate, rate of pull, fluid flow rate, and backreamer design. The boring system is able to run at variable, operator-determined rates of spindle rotation and pullback speed utilizing electronic feedback controls for regulation. Spindle torque and pullback force are continuously measured and recorded giving an indication of the performance of the unit. A method has also been developed tomore » measure the pull load on the installed service line to determine the effect of the boring parameters on the service line. Variability of soil along the bore path is measured and quantified using a soil sampling system developed for the study. Sample results obtained with the system are included in the report. 2 refs., 5 figs., 2 tabs.« less

  13. Architecture and robustness tradeoffs in speed-scaled queues with application to energy management

    NASA Astrophysics Data System (ADS)

    Dinh, Tuan V.; Andrew, Lachlan L. H.; Nazarathy, Yoni

    2014-08-01

    We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate. Service rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing function of speed. The goal is to control the state dependent service rates such that both energy consumption and delay are kept low. We consider a linear combination of the mean job delay and energy consumption as the performance measure. We examine both the 'architecture' of the system, which we define as a specification of the number of speeds that the system can choose from, and the 'design' of the system, which we define as the actual speeds available. Previous work has illustrated that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view of parameter uncertainty, allowing a variable number of speeds improves robustness. We quantify the tradeoffs of architecture specification with respect to robustness, analysing both global robustness and a newly defined measure which we call local robustness.

  14. Is Intelligent Speed Adaptation ready for deployment?

    PubMed

    Carsten, Oliver

    2012-09-01

    There have been 30 years of research on Intelligent Speed Adaptation (ISA), the in-vehicle system that is designed to promote compliance with speed limits. Extensive trials of ISA in real-world driving have shown that ISA can significantly reduce speeding, users have been found to have generally positive attitudes and at least some sections of the public have been shown to be willing to purchase ISA systems. Yet large-scale deployment of a system that could deliver huge accident reductions is still by no means guaranteed. Copyright © 2012. Published by Elsevier Ltd.

  15. PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.

    2016-09-01

    PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.

  16. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology.

    PubMed

    Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D

    2015-08-12

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.

  17. Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits †

    PubMed Central

    Gámez Serna, Citlalli; Ruichek, Yassine

    2017-01-01

    A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle’s speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, ‘curve analysis extraction’ and ‘speed limits database creation’ are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger. PMID:28613251

  18. Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

    PubMed

    Ruaud, Anne-Françoise; Katic, Iskra; Bessereau, Jean-Louis

    2011-01-01

    Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.

  19. 77 FR 14963 - Special Local Regulation; Moss Point Rockin' the Riverfront Festival; O'Leary Lake; Moss Point, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-AA08 Special Local Regulation; Moss Point Rockin' the Riverfront Festival; O'Leary Lake; Moss Point, MS..., and persons on navigable waters during the Moss Point Rockin' the Riverfront Festival high speed boat... and vessels from safety hazards associated with the Moss Point Rockin' the Riverfront Festival high...

  20. 78 FR 9866 - Special Local Regulation; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... 1625-AA08 Special Local Regulation; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O... Riverfront Festival high speed boat races. Entry into, transiting or anchoring in this area is prohibited to... Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary Lake; Moss Point, MS. (a) Location. The...

  1. 78 FR 71543 - Special Local Regulation; Tavares Winter Thunder Vintage Race Boat Regatta, Lake Dora; Tavares, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... 1625-AA08 Special Local Regulation; Tavares Winter Thunder Vintage Race Boat Regatta, Lake Dora... Tavares Winter Thunder Vintage Race Regatta, a series of high-speed boat races. The event is scheduled for... navigable waters of the United States during the Tavares Winter Thunder Vintage Race Boat Regatta. C...

  2. 77 FR 24433 - Special Local Regulations; ODBA Draggin on the Waccamaw, Atlantic Intracoastal Waterway...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ..., South Carolina during the ODBA Draggin on the Waccamaw, a series of high- speed boat races. The event is... race boats are anticipated to participate in the races. These special local regulations are necessary... Waccamaw boat races. Discussion of Proposed Rule On Saturday, June 23, 2012, and Sunday, June 24, 2012 the...

  3. 77 FR 67566 - Regulated Navigation Area; Thames River Degaussing Range Replacement Operations; New London, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... establishing a regulated navigation area (RNA) on the navigable waters of the Thames River in New London Harbor, New London, CT. The RNA will establish speed and wake restrictions and allow the Coast Guard to prohibit all vessel traffic through the RNA during degaussing range replacement operations, both planned...

  4. 77 FR 54495 - Regulated Navigation Area; Thames River Degaussing Range Replacement Operations; New London, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... to establish a regulated navigation area (RNA) on the navigable waters of the Thames River in New London Harbor, New London, CT. The proposed RNA would establish speed and wake restrictions as well as allow the Coast Guard to prohibit all vessel traffic through the RNA during degaussing range replacement...

  5. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  6. Contribution of variable-speed pump hydro storage for power system dynamic performance

    NASA Astrophysics Data System (ADS)

    Silva, B.; Moreira, C.

    2017-04-01

    This paper presents the study of variable-speed Pump Storage Powerplant (PSP) in the Portuguese power system. It evaluates the progressive integration in three major locations and compares the power system performance following a severe fault event with consequent disconnection of non-Fault Ride-through (FRT) compliant Wind Farms (WF). To achieve such objective, a frequency responsive model was developed in PSS/E and was further used to substitute existing fixed-speed PSP. The results allow identifying a clear enhancement on the power system performance by the presence of frequency responsive variable-speed PSP, especially for the scenario presented, with high level of renewables integration.

  7. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  8. A new hybrid observer based rotor imbalance vibration control via passive autobalancer and active bearing actuation

    NASA Astrophysics Data System (ADS)

    Jung, DaeYi; DeSmidt, Hans

    2018-02-01

    Many researchers have explored the use of active bearings, such as non-contact Active Magnetic Bearings (AMB), to control imbalance vibration in rotor systems. Meanwhile, the advantages of a passive Auto-balancer device (ABD) eliminating the imbalance effect of rotor without using other active means have been recently studied. This paper develops a new hybrid imbalance vibration control approach for an ABD-rotor system supported by a normal passive bearing in augmented with an AMB to enhance the balancing and vibration isolation capabilities. Essentially, an ABD consists of several freely moving eccentric balancing masses mounted on the rotor, which, at supercritical operating speeds, act to cancel the rotor's imbalance at steady-state. However, due to the inherent nonlinearity of the ABD, the potential for other, non-synchronous limit-cycle behavior exists resulting in increased rotor vibration. To address this, the algorithm of proposed hybrid control is designed to guarantee globally asymptotic stability of the synchronous balanced condition. This algorithm also incorporates with a "Luenberger-like" observer that continuously estimates the states of a balancer ball circulating around within ABD. In particular, it is shown that the balanced equilibrium can be made globally attractive under the hybrid control strategy, and that the control power levels of AMB are significantly reduced via the addition of the ABD because the control is designed such that it is only switched on for the abnormal operation of ABD and will be disengaged otherwise. Moreover, unlike other imbalance vibration control applications based upon ABD such as rotor speed regulator [21,22], this approach enables the controller to achieve the desirable performance without altering rotor speed once the rotor initially reaches the target speed. These applications are relevant to limited power applications such as in satellite reaction wheels, flywheel energy storage batteries or CD-ROM application.

  9. Probing the role of nonmuscle tropomyosin isoforms in intracellular granule movement by microinjection of monoclonal antibodies

    PubMed Central

    1989-01-01

    Chicken embryo fibroblast (CEF) cells were microinjected with several different monoclonal antibodies that recognize certain nonmuscle isoforms of tropomyosin. Immediately after injection, cells were recorded with a time-lapse video imaging system; later analysis of the tapes revealed that particles in cells injected with one of these antibodies (CG1, specific for CEF tropomyosin isoforms 1 and 3) showed a dramatic decrease in instantaneous speed while moving, distance moved per saltation, and proportion of time spent in motion. Injection of Fab fragments of CG1 resulted in similar changes in the pattern of granule movement. This inhibition of granule movement by CG1 antibody was reversible; at 2.5 h after injection, granules in injected cells had already reached three-fourths of normal speed. The speed of granule movement in cells injected either with antibody specific for tropomyosin isoforms not present in CEF cells, or with CG1 antibody preabsorbed with tropomyosin, was not significantly different from the speed of granules in uninjected cells. When cells were injected with CG1 or Fab fragments of CG1, fixed, and counter-stained with rabbit antibodies to reveal the microtubule, microfilament, and intermediate filament systems, no obvious differences from the patterns normally seen in uninjected cells were observed. Examination of the ultrastructure of injected cells by EM confirmed the presence of apparently intact and normal microtubule, actin, and intermediate filament networks. These experiments suggest that tropomyosin may play an important role in the movement of vesicles and organelles in the cell cytoplasm. Also, we have shown previously that the CG1 determinant can undergo a motility-dependent change in reactivity, that may be important for the regulatory function of nonmuscle tropomyosin (Hegmann, T. E., J. L.-C. Lin, and J. J.-C. Lin. 1988. J. Cell Biol. 106:385-393). Therefore, in addition to postulated microtubule-based motors, microfilaments may play a critical role in regulating granule movement in nonmuscle cells. PMID:2670955

  10. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  11. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  12. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  13. Comparison of sound speed measurements on two different ultrasound tomography devices

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy between the sound speed values could be easily handled by uniformly increasing the DICOM sound speed by approximately 0.5 m/s. These results suggest that there is no fundamental difference in sound speed measurement for the two systems and support combining data generated with these instruments in future studies.

  14. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  15. The Enhanced Speed Bag System

    DTIC Science & Technology

    2016-03-18

    vantages and few disadvantages. Th e most distinct advantage is that the aircraft can maintain a relatively safe altitude and speed , rendering it less...July–August 2015 Army Sustainment46 The enhanced speed bag sys-tem (ESBS) is a cutting-edge piece of equipment. Its pur- pose is to facilitate...reasonable speed (20 knots). The ESBS enables Sol- diers to conduct quick and accurate resupply operations while avoiding enemy small-arms fire and

  16. Safe speed limits for a safe system: The relationship between speed limit and fatal crash rate for different crash types.

    PubMed

    Doecke, Sam D; Kloeden, Craig N; Dutschke, Jeffrey K; Baldock, Matthew R J

    2018-05-19

    The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data. Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels. A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes. The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.

  17. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Resor, B.; Platt, A.

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraintmore » on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.« less

  18. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation

    NASA Astrophysics Data System (ADS)

    Tu, Yingfeng; Peng, Fei; Sui, Xiaofeng; Men, Yongjun; White, Paul B.; van Hest, Jan C. M.; Wilson, Daniela A.

    2017-05-01

    Self-propelled catalytic micro- and nanomotors have been the subject of intense study over the past few years, but it remains a continuing challenge to build in an effective speed-regulation mechanism. Movement of these motors is generally fully dependent on the concentration of accessible fuel, with propulsive movement only ceasing when the fuel consumption is complete. Here we report a demonstration of control over the movement of self-assembled stomatocyte nanomotors via a molecularly built, stimulus-responsive regulatory mechanism. A temperature-sensitive polymer brush is chemically grown onto the nanomotor, whereby the opening of the stomatocytes is enlarged or narrowed on temperature change, which thus controls the access of hydrogen peroxide fuel and, in turn, regulates movement. To the best of our knowledge, this represents the first nanosized chemically driven motor for which motion can be reversibly controlled by a thermally responsive valve/brake. We envision that such artificial responsive nanosystems could have potential applications in controllable cargo transportation.

  19. DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion.

    PubMed

    McLennan, Rebecca; Bailey, Caleb M; Schumacher, Linus J; Teddy, Jessica M; Morrison, Jason A; Kasemeier-Kulesa, Jennifer C; Wolfe, Lauren A; Gogol, Madeline M; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M

    2017-10-02

    Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling. © 2017 McLennan et al.

  20. DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion

    PubMed Central

    McLennan, Rebecca; Bailey, Caleb M.; Schumacher, Linus J.; Teddy, Jessica M.; Morrison, Jason A.; Kasemeier-Kulesa, Jennifer C.; Wolfe, Lauren A.; Gogol, Madeline M.; Baker, Ruth E.; Maini, Philip K.

    2017-01-01

    Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling. PMID:28811280

  1. Quantifying the underlying landscape and paths of cancer

    PubMed Central

    Li, Chunhe; Wang, Jin

    2014-01-01

    Cancer is a disease regulated by the underlying gene networks. The emergence of normal and cancer states as well as the transformation between them can be thought of as a result of the gene network interactions and associated changes. We developed a global potential landscape and path framework to quantify cancer and associated processes. We constructed a cancer gene regulatory network based on the experimental evidences and uncovered the underlying landscape. The resulting tristable landscape characterizes important biological states: normal, cancer and apoptosis. The landscape topography in terms of barrier heights between stable state attractors quantifies the global stability of the cancer network system. We propose two mechanisms of cancerization: one is by the changes of landscape topography through the changes in regulation strengths of the gene networks. The other is by the fluctuations that help the system to go over the critical barrier at fixed landscape topography. The kinetic paths from least action principle quantify the transition processes among normal state, cancer state and apoptosis state. The kinetic rates provide the quantification of transition speeds among normal, cancer and apoptosis attractors. By the global sensitivity analysis of the gene network parameters on the landscape topography, we uncovered some key gene regulations determining the transitions between cancer and normal states. This can be used to guide the design of new anti-cancer tactics, through cocktail strategy of targeting multiple key regulation links simultaneously, for preventing cancer occurrence or transforming the early cancer state back to normal state. PMID:25232051

  2. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  3. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  4. Speed control for a mobile robot

    NASA Astrophysics Data System (ADS)

    Kolli, Kaylan C.; Mallikarjun, Sreeram; Kola, Krishnamohan; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a speed control for a modular autonomous mobile robot controller. The speed control of the traction motor is essential for safe operation of a mobile robot. The challenges of autonomous operation of a vehicle require safe, runaway and collision free operation. A mobile robot test-bed has been constructed using a golf cart base. The computer controlled speed control has been implemented and works with guidance provided by vision system and obstacle avoidance using ultrasonic sensors systems. A 486 computer through a 3- axis motion controller supervises the speed control. The traction motor is controlled via the computer by an EV-1 speed control. Testing of the system was done both in the lab and on an outside course with positive results. This design is a prototype and suggestions for improvements are also given. The autonomous speed controller is applicable for any computer controlled electric drive mobile vehicle.

  5. Safety of High-Speed Guided Ground Transportation Systems : Shared Right-of-Way Safety Issues

    DOT National Transportation Integrated Search

    1992-09-01

    One of the most important issues in the debate over the viability in the United States of high-speed guided ground : transportation (HSGGT) systems, which include magnetic levitation (maglev) and high-speed rail (HSR), is the : feasibility of using e...

  6. Improved Speed Control System for the 87,000 HP Wind Tunnel Drive

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  7. Improved speed control system for the 87,000 HP wind tunnel drive

    NASA Astrophysics Data System (ADS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  8. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  9. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  10. Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob

    2013-01-01

    In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.

  11. An insulin resistance associated neural correlate of impulsivity in type 2 diabetes mellitus

    PubMed Central

    Eckstrand, Kristen L.; Mummareddy, Nishit; Kang, Hakmook; Cowan, Ronald; Zhou, Minchun; Zald, David; Silver, Heidi J.; Niswender, Kevin D.; Avison, Malcolm J.

    2017-01-01

    Central insulin resistance (IR) influences striatal dopamine (DA) tone, an important determinant of behavioral self-regulation. We hypothesized that an association exists between the degree of peripheral IR and impulse control, mediated by the impact of IR on brain circuits controlling the speed of executing “go” and/or “stop” responses. We measured brain activation and associated performance on a stop signal task (SST) in obese adults with type 2 diabetes (age, 48.1 ± 6.9 yrs (mean ± SD); BMI, 36.5 ± 4.0 kg/m2; HOMA-IR, 7.2 ± 4.1; 12 male, 18 female). Increasing IR, but not BMI, was a predictor of shorter critical stop signal delay (cSSD), a measure of the time window during which a go response can be successfully countermanded (R2 = 0.12). This decline was explained by an IR-associated increase in go speed (R2 = 0.13) with little impact of IR or BMI on stop speed. Greater striatal fMRI activation contrast in stop error (SE) compared with stop success (SS) trials (CONSE>SS) was a significant predictor of faster go speeds (R2 = 0.33, p = 0.002), and was itself predicted by greater IR (CONSE>SS vs HOMA-IR: R2 = 0.10, p = 0.04). Furthermore, this impact of IR on striatal activation was a significant mediator of the faster go speeds and greater impulsivity observed with greater IR. These findings suggest a neural mechanism by which IR may increase impulsivity and degrade behavioral self-regulation. PMID:29228027

  12. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  13. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans

    PubMed Central

    Song, Pengfei; Dong, Xianke; Liu, Xinyu

    2016-01-01

    The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research. PMID:26958099

  14. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    NASA Astrophysics Data System (ADS)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  15. Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning

    DTIC Science & Technology

    2001-08-30

    Body with Thermo-Chemical destribution of Heat-Protected System . In: Physical and Gasdynamic Phenomena in Supersonic Flows Over Bodies. Edit. By...Final Report on ISTC Contract # 1809p Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental...of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT

  16. Tribological evaluation of high-speed steels with a regulated carbide phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Janusz

    2003-06-15

    Wear resistance of a commercial steel and titanium-niobium high-speed steels with a regulated carbide phase was evaluated by employing a micro-scale abrasive wear test with alumina particles. The worn volumes and corresponding wear coefficients were the lowest for the new non-ledeburitic grades containing titanium, then the two niobium grades, the conventional (both wrought and by powder metallurgy) steels exhibited the worse wear resistance. Fractography SEM observations together with energy-dispersive X-ray (EDX) chemical analysis revealed the decisive role of the steels' MC particles in the wear process. These carbides influenced the abrasion by stoppage of the wear scars and/or changing theirmore » trajectories. Directional and nondirectional abrasion modes in the steels tested using alumina and carborundum abrasives were found and are discussed.« less

  17. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  18. High-speed railway signal trackside equipment patrol inspection system

    NASA Astrophysics Data System (ADS)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  19. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  20. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya

    2015-02-01

    We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.

  1. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  2. Computational modeling of driver speed control with its applications in developing intelligent transportation system to prevent speeding-related accidents.

    DOT National Transportation Integrated Search

    2013-08-01

    Speeding is the leading contributing factor in fatal accidents in NY state, according to NY State Department of Motor : Vehicle Accidents Statistical Summary (2009). Understanding and modeling speeding and speed control is one of major : challenges i...

  3. 78 FR 36823 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal AGENCY: Surface...-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line... statewide California High-Speed Train System. This exemption is subject to environmental mitigation...

  4. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow speed...

  5. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow speed...

  6. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  7. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Rolling scheduling of electric power system with wind power based on improved NNIA algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.

    2017-11-01

    This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.

  9. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  10. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator

    NASA Astrophysics Data System (ADS)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan

    2018-05-01

    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  11. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  12. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  13. 77 FR 67568 - Regulated Navigation Area; East River, Flushing and Gowanus Bays, and Red Hook and Buttermilk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... necessitate that all mariners navigate at a safe speed within the RNA, as the barge and gantry crane and.... SUMMARY: The Coast Guard is temporarily establishing a regulated navigation area (RNA) comprising all... prohibit vessel traffic within the RNA to accommodate the load-out and transit of four gantry cranes that...

  14. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  15. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology

    PubMed Central

    Espinoza, Karlos; Valera, Diego L.; Torres, José A.; López, Alejandro; Molina-Aiz, Francisco D.

    2015-01-01

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s−1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points. PMID:26274962

  16. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  17. Kinematic and Dynamic Analysis of High-Speed Intermittent-Motion Mechanisms.

    DTIC Science & Technology

    1984-01-16

    intermittent-motion mechanisms which -"have potential application to the high-speed automatic weapon system , and an investigation on the workspace of a robotic...manipulator system . The problems of this investigation belong to a selected group of unsolved or partially solved problems which are relevant and...design of high-speed machinery and automated manufacturing systems . Accession For IiTIS GRA&I DTIC TAB Unamounced 0 Justificatio By_, Distribut ion

  18. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2008-09-30

    A method and system for performing AC self-test on an integrated circuit that includes a system clock for use during normal operation are provided. The method includes applying a long data capture pulse to a first test register in response to the system clock, applying an at speed data launch pulse to the first test register in response to the system clock, inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register, applying an at speed data capture pulse to a second test register in response to the system clock, inputting the logic path output to the second test register in response to applying the at speed data capture pulse to the second test register, and applying a long data launch pulse to the second test register in response to the system clock.

  19. Architecture Of High Speed Image Processing System

    NASA Astrophysics Data System (ADS)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  20. High resolution imaging of a subsonic projectile using automated mirrors with large aperture

    NASA Astrophysics Data System (ADS)

    Tateno, Y.; Ishii, M.; Oku, H.

    2017-02-01

    Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.

  1. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  2. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  3. Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms

    NASA Astrophysics Data System (ADS)

    David Froning, H.; Meholic, Gregory V.

    2010-01-01

    This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.

  4. Eigenvalue assignment strategies in rotor systems

    NASA Technical Reports Server (NTRS)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  5. Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop

    NASA Astrophysics Data System (ADS)

    Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud

    2013-09-01

    The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.

  6. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner

    NASA Astrophysics Data System (ADS)

    Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun

    2018-06-01

    A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.

  7. Automated section speed control on motorways: an evaluation of the effect on driving speed.

    PubMed

    De Pauw, Ellen; Daniels, Stijn; Brijs, Tom; Hermans, Elke; Wets, Geert

    2014-12-01

    Automated section speed control is a fairly new traffic safety measure that is increasingly applied to enforce speed limits. The advantage of this enforcement system is the registration of the average speed at an entire section, which would lead to high speed limit compliances and subsequently to a reduction in the vehicle speed variability, increased headway, more homogenised traffic flow and increased traffic capacity. However, the number of studies that analysed these effects are limited. The present study evaluates the speed effect of two section speed control systems in Flanders, Belgium. Both sections are located in the opposite direction of a three-lane motorway with a posted speed limit of 120 km/h. Speed data were collected at different points: from 6 km before the entrance of the section to 6 km downstream from the section. The effect was analysed through a before- and after comparison of travel speeds. General time trends and fluctuations were controlled through the analysis of speeds at comparison locations. On the enforced sections considerable decreases were found of about 5.84 km/h in the average speed, 74% in the odds of drivers exceeding the speed limit and 86% in the odds of drivers exceeding the speed limit by more than 10%. At the locations up- and downstream from the section also favourable effects were found for the three outcomes. Furthermore a decrease in the speed variability could be observed at all these data points. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A portable high-speed camera system for vocal fold examinations.

    PubMed

    Hertegård, Stellan; Larsson, Hans

    2014-11-01

    In this article, we present a new portable low-cost system for high-speed examinations of the vocal folds. Analysis of glottal vibratory parameters from the high-speed recordings is compared with videostroboscopic recordings. The high-speed system is built around a Fastec 1 monochrome camera, which is used with newly developed software, High-Speed Studio (HSS). The HSS has options for video/image recording, contains a database, and has a set of analysis options. The Fastec/HSS system has been used clinically since 2011 in more than 2000 patient examinations and recordings. The Fastec 1 camera has sufficient time resolution (≥4000 frames/s) and light sensitivity (ISO 3200) to produce images for detailed analyses of parameters pertinent to vocal fold function. The camera can be used with both rigid and flexible endoscopes. The HSS software includes options for analyses of glottal vibrations, such as kymogram, phase asymmetry, glottal area variation, open and closed phase, and angle of vocal fold abduction. It can also be used for separate analysis of the left and vocal fold movements, including maximum speed during opening and closing, a parameter possibly related to vocal fold elasticity. A blinded analysis of 32 patients with various voice disorders examined with both the Fastec/HSS system and videostroboscopy showed that the high-speed recordings were significantly better for the analysis of glottal parameters (eg, mucosal wave and vibration asymmetry). The monochrome high-speed system can be used in daily clinical work within normal clinical time limits for patient examinations. A detailed analysis can be made of voice disorders and laryngeal pathology at a relatively low cost. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. All Electric Combat Vehicles (AECV) for Future Applications

    DTIC Science & Technology

    2004-07-01

    includes the very high-speed travels. The Super Speed Maglev System (GE Trans-rapid RTO-TR-AVT-047 8 - 3 STANDARDIZATION AND DUAL USE International GmbH...Germany). [25] Super Speed Maglev System: Dipl Ing Gerhard Wahl (WEC, 19-21 June 2000). [26] Development of Dual Use Technologies and a Strategy for

  10. Safety of High Speed Ground Transportation Systems - Human Factors Phase II: Design and Evaluation of Decision Aids for Control of High-Speed Trains: Experiments and Model

    DOT National Transportation Integrated Search

    1996-12-01

    Although the speed of some guided ground transportation systems continues to : increase, the reaction time and the sensory and information processing : capacities of railroad personnel remain constant. This second report in a : series examining criti...

  11. 77 FR 23802 - Notice of Availability of a Final Environmental Impact Report/Environmental Impact Statement, a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... General Conformity Determination for the California High-Speed Train System Merced to Fresno Section... Environmental Impact Statement (EIS) and Final 4(f) Evaluation for the California High-Speed Train (HST) System...-Speed Rail Authority (Authority) is the lead state agency for the environmental review process. The...

  12. Embedded system of image storage based on fiber channel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  13. Modeling and analysis of a flywheel microvibration isolation system for spacecrafts

    NASA Astrophysics Data System (ADS)

    Wei, Zhanji; Li, Dongxu; Luo, Qing; Jiang, Jianping

    2015-01-01

    The microvibrations generated by flywheels running at full speed onboard high precision spacecrafts will affect stability of the spacecraft bus and further degrade pointing accuracy of the payload. A passive vibration isolation platform comprised of multi-segment zig-zag beams is proposed to isolate disturbances of the flywheel. By considering the flywheel and the platform as an integral system with gyroscopic effects, an equivalent dynamic model is developed and verified through eigenvalue and frequency response analysis. The critical speeds of the system are deduced and expressed as functions of system parameters. The vibration isolation performance of the platform under synchronal and high-order harmonic disturbances caused by the flywheel is investigated. It is found that the speed range within which the passive platform is effective and the disturbance decay rate of the system are greatly influenced by the locations of the critical speeds. Structure optimization of the platform is carried out to enhance its performance. Simulation results show that a properly designed vibration isolation platform can effectively reduce disturbances emitted by the flywheel operating above the critical speeds of the system.

  14. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  15. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  16. System analysis of automated speed enforcement implementation.

    DOT National Transportation Integrated Search

    2016-04-01

    Speeding is a major factor in a large proportion of traffic crashes, injuries, and fatalities in the United States. Automated Speed Enforcement (ASE) is one of many approaches shown to be effective in reducing speeding violations and crashes. However...

  17. System analysis of automated speed enforcement implementation : traffic tech.

    DOT National Transportation Integrated Search

    2016-04-01

    Speeding is a major factor in a large proportion of traffic crashes, injuries, and fatalities in the United States. Automated speed enforcement (ASE) is one effective countermeasure for reducing speeding and crashes. National Highway Traffic Safety A...

  18. Correlation between cortical beta power and gait speed is suppressed in a parkinsonian model, but restored by therapeutic deep brain stimulation.

    PubMed

    Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D

    2018-05-30

    The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.

  19. High Speed Videometric Monitoring of Rock Breakage

    NASA Astrophysics Data System (ADS)

    Allemand, J.; Shortis, M. R.; Elmouttie, M. K.

    2018-05-01

    Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.

  20. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  1. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  2. An investigation of the performance of an electronic in-line pump system for diesel engines

    NASA Astrophysics Data System (ADS)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  3. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    PubMed

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  5. An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Page, V. R.; Eckert, W. T.; Mort, K. W.

    1977-01-01

    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.

  6. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  7. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.

  8. The design of liquid drip speed monitoring device system based on MCU

    NASA Astrophysics Data System (ADS)

    Zheng, Shiyong; Li, Zhao; Li, Biqing

    2017-08-01

    This page proposed an intelligent transfusion control and monitoring system which designed by using AT89S52 micro controller as the core, using the keyboard and photoelectric sensor as the input module, digital tube and motor as the output module. The keyboard is independent and photoelectric sensor can offer reliable detection for liquid drop speed and the transfusion bottle page. When the liquid amount is less than the warning value, the system sounded the alarm, you can remove the alert by hand movement. With the advantages of speed controllable and input pulse power can be maintained of the motor, the system can control the bottle through the upper and lower slow-moving liquid drip to control the speed of intelligent purpose.

  9. Idle speed and fuel vapor recovery control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orzel, D.V.

    1993-06-01

    A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.

  10. Investigation of Blade Impulsive Noise on a Scaled Fully Articulated Rotor System

    NASA Technical Reports Server (NTRS)

    Scheiman, James; Hoad, Danny R.

    1977-01-01

    Helicopter impulsive noise tests were conducted in the Langley V/STOL tunnel with an articulated rotor system. The tests demonstrated that impulsive noise could be simulated for low-speed forward flight with low descent rates and also in the high-speed level flight. For the low forward speed condition, the noise level was highly sensitive to small changes in descent rate. For the high-speed condition, the noise level was increased with an increase in rotor thrust.

  11. Stereomotion speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Brooks, K.

    2001-01-01

    The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.

  12. Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior

    NASA Astrophysics Data System (ADS)

    Girardin, Léo

    2018-01-01

    This paper is concerned with non-cooperative parabolic reaction-diffusion systems which share structural similarities with the scalar Fisher-KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.

  13. [Quality assurance from the viewpoint of the x-ray film industry].

    PubMed

    von Volkmann, T

    1992-08-01

    The parameters of a film-screen-combination are listed in the directive to section 16 of the german X-ray Regulation. These parameters are determined by methods described in DIN standards and published by the manufacturer. Comparable but less precise parameters are determined in the Acceptance Test. For physical reasons it is not possible to determine the speed of an X-ray film or the intensification factor of a screen separately. The films, screens and processing chemicals delivered by the members of the manufacturer association ZVEI are kept below a deviation (expressed as relative contribution to the system speed S) of +/- 10% for the majority of products, the upper limit is +/- 15%. Poor storage and transport conditions may adversely affect the quality of X-ray films. A special labeling of the film box shall serve to guarantee safe distribution channels. The processing conditions are adjusted at the Acceptance Test according to the manufacturers recommendations. The Constancy Test of film processing serves to maintain these correct conditions. Methods deviating from the DIN-method are of limited (Bayerische method) or no value (Stuttgart method).

  14. Development of a software and hardware system for monitoring the air cleaning process using a cyclone-separator

    NASA Astrophysics Data System (ADS)

    Nicolaeva, B. K.; Borisov, A. P.; Zlochevskiy, V. L.

    2017-08-01

    The article is devoted to the development of a hardware-software complex for monitoring and controlling the process of air purification by means of a cyclone-separator. The hardware of this complex is the Arduino platform, to which are connected pressure sensors, air velocities, dustmeters, which allow monitoring of the main parameters of the cyclone-separator. Also, a frequency converter was developed to regulate the rotation speed of an asynchronous motor necessary to correct the flow rate, the control signals of which come with Arduino. The program part of the complex is written in the form of a web application in the programming language JavaScript and inserts into CSS and HTML for the user interface. This program allows you to receive data from sensors, build dependencies in real time and control the speed of rotation of an asynchronous electric drive. The conducted experiment shows that the cleaning efficiency is 95-99.9%, while the airflow at the cyclone inlet is 16-18 m/s, and at the exit 50-70 m/s.

  15. Influence of the Enteric Nervous System on Gut Motility Patterns in Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Ganz, Julia; Melancon, Ellie; Eisen, Judith; Parthasarathy, Raghuveer

    The enteric nervous system (ENS), composed of diverse neuronal subtypes and glia, regulates essential gut functions including motility, secretion, and homeostasis. In humans and animals, decreased numbers of enteric neurons lead to a variety of types of gut dysfunction. However, surprisingly little is known about how the number, position, or subtype of enteric neurons affect the regulation of gut peristalsis, due to the lack of good model systems and the lack of tools for the quantitative characterization of gut motion. We have therefore developed a method of quantitative spatiotemporal mapping using differential interference contrast microscopy and particle image velocimetry, and have applied this to investigate intestinal dynamics in normal and mutant larval zebrafish. From movies of gut motility, we obtain a velocity vector field representative of gut motion, from which we can quantify parameters relating to gut peristalsis such as frequency, wave speed, deformation amplitudes, wave duration, and non-linearity of waves. We show that mutants with reduced neuron number have contractions that are more regular in time and reduced in amplitude compared to wild-type (normal) fish. We also show that feeding fish before their yolk is consumed leads to stronger motility patterns. We acknowledge support from NIH awards P50 GM098911 and P01 HD022486.

  16. Assessment of Virginia's hybrid South Dakota road profiling system.

    DOT National Transportation Integrated Search

    1996-01-01

    South Dakota Road Profiling (SDRP) systems have been widely sanctioned for use in assessing road roughness and rutting at highway speeds. Traditionally, these high-speed profiling systems have been built around ultrasonic height sensors. More recentl...

  17. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  18. Early in vivo experience with the pediatric continuous-flow total artificial heart.

    PubMed

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka

    2018-03-30

    Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  20. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2006-06-06

    A method for performing AC self-test on an integrated circuit, including a system clock for use during normal operation. The method includes applying a long data capture pulse to a first test register in response to the system clock, and further applying at an speed data launch pulse to the first test register in response to the system clock. Inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register. Applying at speed data capture pulse to a second test register in response to the system clock. Inputting the output from the logic path to the second test register in response to applying the at speed data capture pulse to the second register. Applying a long data launch pulse to the second test register in response to the system clock.

  1. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  2. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  3. Pixel-wise deblurring imaging system based on active vision for structural health monitoring at a speed of 100 km/h

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi

    2018-04-01

    In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.

  4. 78 FR 33969 - Special Local Regulations; Daytona Beach Grand Prix of the Sea, Atlantic Ocean; Daytona Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... 1625-AA08 Special Local Regulations; Daytona Beach Grand Prix of the Sea, Atlantic Ocean; Daytona Beach... Daytona Beach Grand Prix of the Sea, a series of high-speed boat races. The event is scheduled to take... United States during the Daytona Beach Grand Prix of the Sea. C. Discussion of the Final Rule On Friday...

  5. 75 FR 47215 - Special Local Regulation; Marine Events Within the Captain of the Port Sector Boston Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... special local regulations within the Captain of the Port Sector Boston Zone for several swim events and... vessels during annual swim and high speed races that may pose a hazard to the public in the Captain of the..., and after the events. The Captain of the Port will inform the public about the details of each swim...

  6. Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific Drills, in Indoor Conditions

    PubMed Central

    Luteberget, Live S.; Spencer, Matt; Gilgien, Matthias

    2018-01-01

    Aim: The aim of the present study was to determine the validity of position, distance traveled and instantaneous speed of team sport players as measured by a commercially available local positioning system (LPS) during indoor use. In addition, the study investigated how the placement of the field of play relative to the anchor nodes and walls of the building affected the validity of the system. Method: The LPS (Catapult ClearSky T6, Catapult Sports, Australia) and the reference system [Qualisys Oqus, Qualisys AB, Sweden, (infra-red camera system)] were installed around the field of play to capture the athletes' motion. Athletes completed five tasks, all designed to imitate team-sports movements. The same protocol was completed in two sessions, one with an assumed optimal geometrical setup of the LPS (optimal condition), and once with a sub-optimal geometrical setup of the LPS (sub-optimal condition). Raw two-dimensional position data were extracted from both the LPS and the reference system for accuracy assessment. Position, distance and speed were compared. Results: The mean difference between the LPS and reference system for all position estimations was 0.21 ± 0.13 m (n = 30,166) in the optimal setup, and 1.79 ± 7.61 m (n = 22,799) in the sub-optimal setup. The average difference in distance was below 2% for all tasks in the optimal condition, while it was below 30% in the sub-optimal condition. Instantaneous speed showed the largest differences between the LPS and reference system of all variables, both in the optimal (≥35%) and sub-optimal condition (≥74%). The differences between the LPS and reference system in instantaneous speed were speed dependent, showing increased differences with increasing speed. Discussion: Measures of position, distance, and average speed from the LPS show low errors, and can be used confidently in time-motion analyses for indoor team sports. The calculation of instantaneous speed from LPS raw data is not valid. To enhance instantaneous speed calculation the application of appropriate filtering techniques to enhance the validity of such data should be investigated. For all measures, the placement of anchor nodes and the field of play relative to the walls of the building influence LPS output to a large degree. PMID:29670530

  7. 40 CFR 600.005-81 - Maintenance of records and rights of entry.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Carbon-Related Exhaust Emission Regulations for 1977 and Later Model Year Automobiles-General... headings including such extraordinary events as vehicle accidents or driver speeding citations or warnings...

  8. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development.

  9. 17. VIEW SOUTHEAST OF 450 HP TURBINE IN BASEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW SOUTHEAST OF 450 HP TURBINE IN BASEMENT OF GRANITEVILLE MILL. THE MAIN BEARING OF THE TURBINE IS AT LEFT CENTER OF THE PHOTOGRAPH. A LOMBARD REGULATOR CAN BE SEEN AT THE LEFT CENTER REAR. THE LARGE HANDWHEEL AT THE LEFT CENTER IS GEARED TO A SECTIONAL GEAR AT THE CENTER OF THE PHOTOGRAPH AND IS USED TO MANUALLY OPEN THE GATES AND ALLOW WATER INTO THE TURBINE. THE SMALL PULLEY ON THE END OF THE MAIN SHAFT NORMALLY WOULD HAVE A BELT CONNECTING IT TO A PULLEY ON THE LOMBARD REGULATOR. THIS BELT TRANSMITTED TURBINE SPEED (RPM) TO THE LOMBARD WHICH WOULD OPEN OR CLOSE THE GATES TO KEEP TURBINE SPEED CONSTANT UNDER VARYING LOADS. THIS TURBINE WAS INSTALLED IN THE REFIT OF 1912. - Graniteville Mill, Marshall Street, Graniteville, Aiken County, SC

  10. Collective synchronization of divisions in Drosophila development

    NASA Astrophysics Data System (ADS)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  11. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  12. Real-time analysis system for gas turbine ground test acoustic measurements.

    PubMed

    Johnston, Robert T

    2003-10-01

    This paper provides an overview of a data system upgrade to the Pratt and Whitney facility designed for making acoustic measurements on aircraft gas turbine engines. A data system upgrade was undertaken because the return-on-investment was determined to be extremely high. That is, the savings on the first test series recovered the cost of the hardware. The commercial system selected for this application utilizes 48 input channels, which allows either 1/3 octave and/or narrow-band analyses to be preformed real-time. A high-speed disk drive allows raw data from all 48 channels to be stored simultaneously while the analyses are being preformed. Results of tests to ensure compliance of the new system with regulations and with existing systems are presented. Test times were reduced from 5 h to 1 h of engine run time per engine configuration by the introduction of this new system. Conservative cost reduction estimates for future acoustic testing are 75% on items related to engine run time and 50% on items related to the overall length of the test.

  13. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    PubMed

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  14. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults

    PubMed Central

    Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.

    2010-01-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715

  15. Traffic speed data imputation method based on tensor completion.

    PubMed

    Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  16. Traffic Speed Data Imputation Method Based on Tensor Completion

    PubMed Central

    Ran, Bin; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches. PMID:25866501

  17. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  18. An IPSO-SVM algorithm for security state prediction of mine production logistics system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanliang; Lei, Junhui; Ma, Qiuli; Chen, Xin; Bi, Runfang

    2017-06-01

    A theoretical basis for the regulation of corporate security warning and resources was provided in order to reveal the laws behind the security state in mine production logistics. Considering complex mine production logistics system and the variable is difficult to acquire, a superior security status predicting model of mine production logistics system based on the improved particle swarm optimization and support vector machine (IPSO-SVM) is proposed in this paper. Firstly, through the linear adjustments of inertia weight and learning weights, the convergence speed and search accuracy are enhanced with the aim to deal with situations associated with the changeable complexity and the data acquisition difficulty. The improved particle swarm optimization (IPSO) is then introduced to resolve the problem of parameter settings in traditional support vector machines (SVM). At the same time, security status index system is built to determine the classification standards of safety status. The feasibility and effectiveness of this method is finally verified using the experimental results.

  19. A Study on the Effects of Alternatives to Speed Humps Using a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Min; Noh, Kwan-Sub

    A road alignment which has a long straight section followed by sharp curve is dangerous, because drivers have the habit to accelerate on the long straight section and then accidents occur on the short curve as the result of speeding. This study evaluated the alternatives to speed humps in order to reduce speed safely and comfortably on roads with this incorrect road alignment. There are several speed control facilities to reduce speed on roads with wrong road alignment. The speed hump is dangerous at high speeds because drivers must reduce speed rapidly and because of the physical impact. The image hump provides less effect for drivers who already know of its presence. So, to resolve these matters, we propose a new type of speed control facility. An image hump with transverse grooving will be effective in reducing speed because the transverse grooving gives vibration and noise to drivers who are already aware of the presence of the image hump, but it does not give the hard physical impact to vehicles. The study on the effect of the alternatives to speed humps was carried out using the K-ROADS (KICT-Road Analysis Driving Simulator) which has been developed to analyze and evaluate road safety at the project HuRoSAS (Human & Road Safety Analysis System) since 2003. K-ROADS has two distinct functions. One is the visual system which has a 360 degree F. O. V. to reduce dead angles on black spots such as at-grade intersections. The other is the motion system which has high frequency vibration to reproduce vibrations made in irregular road surfaces. This study found out that the image hump with transverse grooving is a safe speed control facility in order to reduce driving speed safely and comfortably on a straight section followed by a sharp curve, even if drivers are known the existence of image hump.

  20. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    PubMed Central

    Hernandez, Wilmar

    2006-01-01

    Among the complete family of sensors for automotive safety, consumer and industrial application, speed sensors stand out as one of the most important. Actually, speed sensors have the diversity to be used in a broad range of applications. In today's automotive industry, such sensors are used in the antilock braking system, the traction control system and the electronic stability program. Also, typical applications are cam and crank shaft position/speed and wheel and turbo shaft speed measurement. In addition, they are used to control a variety of functions, including fuel injection, ignition timing in engines, and so on. However, some types of speed sensors cannot respond to very low speeds for different reasons. What is more, the main reason why such sensors are not good at detecting very low speeds is that they are more susceptible to noise when the speed of the target is low. In short, they suffer from noise and generally only work at medium to high speeds. This is one of the drawbacks of the inductive (magnetic reluctance) speed sensors and is the case under study. Furthermore, there are other speed sensors like the differential Hall Effect sensors that are relatively immune to interference and noise, but they cannot detect static fields. This limits their operations to speeds which give a switching frequency greater than a minimum operating frequency. In short, this research is focused on improving the performance of a variable reluctance speed sensor placed in a car under performance tests by using a recursive least-squares (RLS) lattice algorithm. Such an algorithm is situated in an adaptive noise canceller and carries out an optimal estimation of the relevant signal coming from the sensor, which is buried in a broad-band noise background where we have little knowledge of the noise characteristics. The experimental results are satisfactory and show a significant improvement in the signal-to-noise ratio at the system output.

Top