NASA Technical Reports Server (NTRS)
Datta, N.; Schell, M. B.; Roux, S. J.
1987-01-01
We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684). In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [gamma-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.
Cervelli, Manuela; Bellavia, Gabriella; D'Amelio, Marcello; Cavallucci, Virve; Moreno, Sandra; Berger, Joachim; Nardacci, Roberta; Marcoli, Manuela; Maura, Guido; Piacentini, Mauro; Amendola, Roberto; Cecconi, Francesco; Mariottini, Paolo
2013-01-01
Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. PMID:23840306
Structure-function relationships in the evolutionary framework of spermine oxidase.
Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo
2013-06-01
Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.
Vujcic, Slavoljub; Diegelman, Paula; Bacchi, Cyrus J; Kramer, Debora L; Porter, Carl W
2002-01-01
During polyamine catabolism, spermine and spermidine are first acetylated by spermidine/spermine N(1)-acetyltransferase (SSAT) and subsequently oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine, respectively. In attempting to clone the PAO involved in this back-conversion pathway, we encountered an oxidase that preferentially cleaves spermine in the absence of prior acetylation by SSAT. A BLAST search using maize PAO sequences identified homologous mammalian cDNAs derived from human hepatoma and mouse mammary carcinoma: the encoded proteins differed by 20 amino acids. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by 75% while spermidine and N (1)-acetylspermidine pools increased, suggesting that spermine was selectively and directly oxidized by the enzyme. Substrate specificity using lysates of oxidase-transfected HEK-293 cells revealed that the newly identified oxidase strongly favoured spermine over N (1)-acetylspermine and that it failed to act on N (1)-acetylspermidine, spermidine or the preferred PAO substrate, N (1), N (12)-diacetylspermine. The PAO inhibitor, MDL-72,527, only partially blocked oxidation of spermine while a previously reported PAO substrate, N (1)-( n -octanesulphonyl)spermine, potently inhibited the reaction. Overall, the data indicate that the enzyme represents a novel mammalian oxidase which, on the basis of substrate specificity, we have designated spermine oxidase in order to distinguish it from the PAO involved in polyamine back-conversion. The identification of an enzyme capable of directly oxidizing spermine to spermidine has important implications for understanding polyamine homoeostasis and for interpreting metabolic and cellular responses to clinically relevant polyamine analogues and inhibitors. PMID:12141946
Antineoplastic Efficacy of Novel Polyamine Analogues in Human Breast Cancer
2006-06-01
Davidson, N.E., and Casero, R.A.. Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase (PAO) is the primary source of cytotoxic H2O2 in...human spermine oxidase SMO(PAOh1). SMO(PAOh1) uses unacetylated spermine as substrate and is inducible by specific polyamine analogs [15,16]. These...technique to find the identical clone termed spermine oxidase (SMO) [16]. The function of SMO(PAOh1) as a spermine oxidase has been confirmed [15,67,68
Spermine Condenses DNA, but Not RNA Duplexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.
Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 basemore » pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.« less
Murray-Stewart, Tracy; Wang, Yanlin; Goodwin, Andrew; Hacker, Amy; Meeker, Alan; Casero, Robert A.
2013-01-01
The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis. PMID:18422650
RAR Beta: Actions in Prostate Cancer
2005-04-01
spermine Nl-acetyltransferase Although prostate cancer can be clinically managed in its (SSAT) regulates the catabolism and export of intracellu- early...in anticancer strategies for spermidine and spermine pools were minimally de- some time (4). Various antagonists such as the ODC inhibitor creased due...Spm, spermine ; SSAT, spermidine/ spermine N’-acetyl- dressed: Dept. of Pharmacology and Therapeutics, Roswell Park Cancer transferase; Tag, SV40 large T
Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.
2014-01-01
Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264
The spontaneous and evoked release of spermine from rat brain in vitro.
Harman, R. J.; Shaw, G. G.
1981-01-01
1 The efflux of previously accumulated [3H]-spermine from brain slices was measured using a continuous perfusion system. The spontaneous efflux was biphasic, consisting of an initial rapid efflux followed by a much slower release. 2 The slices were depolarized by the addition to the medium of high potassium concentrations, ouabain or veratrine. 3 At concentrations greater than 30 mM, potassium evoked a striking increase in the release of [3H]-spermine. Following uptake in the presence of 5.7 x 10(-9)M [3H]-spermine, K+-evoked release was dependent on the presence of calcium ions. Release of spermine after uptake at 5.6 x 10(-8)M or 5.0 x 10(-7)M was not calcium-dependent. 4 The calcium-dependent, K+-stimulated release of spermine was inhibited in the presence of diphenylhydantoin (5 x 10(-5)M) or ruthenium red (10(-5)M). 5 Following uptake of 5.7 x 10(-9)M [3H]-spermine in a sodium-free medium, the calcium-dependent, K+-stimulated release was significantly inhibited. 5 Ouabain (10(-4)M) caused a large but calcium-independent increase in the efflux of [3H]-spermine. 7 Veratrine-induced release was less substantial but was increased in a calcium-free medium. Release evoked by veratrine was abolished in the absence of sodium. 8 These results are discussed with respect to a possible 'neurotransmitter' or 'neuromodulator' role for spermine. PMID:6169383
Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.
Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet
2012-12-01
The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.
Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G
1975-10-01
The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription.
Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G
1975-01-01
The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription. PMID:1212228
Setyawan, Erif Maha Nugraha; Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Jo, Young Kwang; Lee, Seok Hee; Choi, Yoo Bin; Lee, Byeong Chun
2016-10-28
The objective of this study was to determine the ability of spermine to act as an antioxidant in scavenging reactive oxygen species (ROS), maintaining sperm function and decreasing cryocapacitation after cryopreservation. Although motility did not increase with spermine treatment, values for membrane integrity were significantly increased (P < 0.05). Higher percentages of linearity and straightness with a lower amplitude of lateral head displacement (ALH) indicated that spermine inhibits hyperactivation. Concentrations of intracellular and extracellular ROS were decreased in the treatment group (P < 0.05). Higher expression of an anti-apoptotic gene (Bcl-2) and lower expression of a pro-apoptotic gene (Bax), together with decreased expression of the mitochondrial ROS modulator ROMO1, DNA repair due to oxidative damage (OGG1), spermine synthase (SMS), NADPH oxidase associated with motility (NOX5) and spermine amino oxidase (SMOX), all showed that 5.0 mM spermine treatment was beneficial to spermatozoa. Furthermore, the proportion of live spermatozoa with intact acrosomes after thawing in the treatment group was higher than in the control. After incubation in canine capacitating medium, numbers of live capacitated spermatozoa with reacted acrosomes were higher than in the control. Our results indicate that 5.0 mM spermine is an optimal concentration for maintaining sperm function, reducing ROS production, preventing apoptosis and adverse effects of cryocapacitation during canine sperm cryopreservation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hosseini-Koupaei, Mansoore; Shareghi, Behzad; Saboury, Ali Akbar; Davar, Fateme
2017-01-01
The alteration in structure, function and stability of proteinase K in the presence of spermine was investigated using spectroscopic methods and simulation techniques. The stability and enzyme activity of proteinase K-spermine complex were significantly enhanced as compared to that of the pure enzyme. The increase in the value of V max and the catalytic efficiency of Proteinase K in presence of spermine confirmed that the polyamine could bring the enzyme hyperactivation. UV-vis spectroscopy, intrinsic fluorescence and circular dichroism methods demonstrated that the binding of spermine changed the microenvironment and structure of proteinase K. The fluorescence studies, showing that spermine quenched the intensity of proteinase K with static mechanism. Thermodynamic parameters analysis suggested that hydrogen bond and van der Waals forces play a key role in complex stability which is in agreement with modeling studies. The CD spectra represented the secondary structure alteration of proteinase K with an increase in α-helicity and a decrease in β-sheet of proteinase K upon spermine conjugation. The molecular simulation results proposed that spermine could interact with proteinase K spontaneously at single binding site, which is in agreement with spectroscopic results. This agreement between experimental and theoretical results may be a worth method for protein-ligand complex studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P; Frye, Jeanetta W; Casero, Robert A; Wilson, Keith T
2014-03-01
The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.
Saito, Mikako; Abe, Natsuki; Ishida, Ayano; Nakagawa, Shota; Matsuoka, Hideaki
2014-12-01
The concentration-dependent effect of spermine was investigated on the spermine-induced generation of multilayer myotube sheets (MMTS) from mouse embryoid bodies (EBs). During spermine treatment for 24 h, a monolayer cell sheet that had already grown radially from the periphery of an EB was exfoliated. The exfoliation was inhibited by z-VAD.fmk, indicating the occurrence of apoptosis, and inhibited also by aminoguanidine, indicating the involvement of amine oxidase. Following the exfoliation, the cell growth restarted from the fresh periphery of EB in a spermine-free medium and finally formed MMTS. To analyze the contribution of apoptosis to the cell death causing exfoliation, the numbers of apoptotic, necrotic, and 2nd apoptotic cells were counted by staining with Annexin V-Cyanine-3 (AVC3) and 7-aminoactinomycin (7AAC). AVC3-positive, 7AAC-positive, and AVC3/7AAC doubly positive cells were assigned as apoptotic, necrotic, and 2nd necrotic cells, respectively. The relative number of apoptotic and 2nd necrotic cells (N A + N A/7) to the total number of dying cells (N T) was 84 ∼ 94%, which was independent of spermine concentration in the range from 0.1 to 2.0 mM. The MMTS generation rate at the final stage, however, was dependent on the spermine concentration. It was 60 ∼ 80% in the range from 0.1 to 1.5 mM, while it decreased sharply to 1% at 2 mM. This suggests another role of spermine in the MMTS generation in addition to the induction of apoptosis. This 2nd role seems to be inhibited at a spermine concentration higher than a critical limit between 1.5 and 2.0 mM.
Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S
2018-01-01
The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le
2011-01-01
Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247
Toninello, A; Via, L D; Di Noto, V; Mancon, M
1999-12-15
This study evaluated the effect of the anticancer drug methylglyoxal-bis(guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Noto et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et al., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S2 site is able to participate in residual spermine transport. MGBG also strongly inhibits deltapH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation are consistent with in vivo disruption of the regulator of energy metabolism and replication of the mitochondrial genome.
STABILIZATION OF PROTOPLASTS AND SPHEROPLASTS BY SPERMINE AND OTHER POLYAMINES
Tabor, Celia W.
1962-01-01
Tabor, Celia W. (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.). Stabilization of protoplasts and spheroplasts by spermine and other polyamines. J. Bacteriol. 83:1101–1111. 1962.—Spermine (10−3m) or spermidine prevents lysis of lysozyme-produced protoplasts of Escherichia coli W, E. coli B, and Micrococcus lysodeikticus in hypotonic media. Spheroplasts prepared by the action of penicillin are also stabilized by these concentrations of spermine and spermidine, but the protection is not as complete. Streptomycin, polylysine, and Ca++ are also effective or partially effective stabilizers, but 1,4-diaminobutane, 1,5-diaminopentane, ornithine, Mg++, and monovalent cations have no protective action at 10−3m concentration, and only a slight effect at higher concentrations. The osmotic stability conferred on protoplasts by spermine is irreversible. However, the protective effect of polyamines against lysis is not accompanied by restoration of viability to lysozyme protoplasts. There is a marked reduction in the loss of ultra-violet-absorbing material from the protoplasts to the medium when 10−3m spermine is present. PMID:16561942
Ceci, Roberta; Duranti, Guglielmo; Leonetti, Alessia; Pietropaoli, Stefano; Spinozzi, Federico; Marcocci, Lucia; Amendola, Roberto; Cecconi, Francesco; Sabatini, Stefania; Mariottini, Paolo; Cervelli, Manuela
2017-02-01
Spermine oxidase oxidizes spermine to produce H 2 O 2 , spermidine, and 3-aminopropanal. It is involved in cell drug response, apoptosis, and in the etiology of several pathologies, including cancer. Spermine oxidase is an important positive regulator of muscle gene expression and fiber size and, when repressed, leads to muscle atrophy. We have generated a transgenic mouse line overexpressing Smox gene in all organs, named Total-Smox. The spermine oxidase overexpression was revealed by β-Gal staining and reverse-transcriptase/PCR analysis, in all tissues analysed. Spermine oxidase activity resulted higher in Total-Smox than controls. Considering the important role of this enzyme in muscle physiology, we have focused our study on skeletal muscle and heart of Total-Smox mice by measuring redox status and oxidative damage. We assessed the redox homeostasis through the analysis of the reduced/oxidized glutathione ratio. Chronic H 2 O 2 production induced by spermine oxidase overexpression leads to a cellular redox state imbalance in both tissues, although they show different redox adaptation. In skeletal muscle, catalase and glutathione S-transferase activities were significantly increased in Total-Smox mice compared to controls. In the heart, no differences were found in CAT activity level, while GST activity decreased compared to controls. The skeletal muscle showed a lower oxidative damage than in the heart, evaluated by lipid peroxidation and protein carbonylation. Altogether, our findings illustrate that skeletal muscle adapts more efficiently than heart to oxidative stress H 2 O 2 -induced. The Total-Smox line is a new genetic model useful to deepen our knowledge on the role of spermine oxidase in muscle atrophy and muscular pathological conditions like dystrophy. Copyright © 2016 Elsevier Inc. All rights reserved.
Basharat, Meer; deSouza, Nandita M.; Parkes, Harold G.
2015-01-01
Purpose To estimate the exchange rates of labile 1H in citrate and spermine, metabolites present in prostatic secretions, to predict the size of the citrate and spermine CEST effects in vivo. Methods CEST z‐spectra were acquired at high‐field [11.7 Tesla (T)] from citrate and spermine solutions at physiological pH (6.5) using saturation power 6 μT. CEST was performed at different temperatures to determine exchange regimes (slow, intermediate or fast). For low pH solutions of spermine, exchange rates were estimated from resonance line width, fitting z‐spectra using the Bloch equations incorporating exchange, and using quantifying exchange using saturation time experiments (QUEST). These rates were extrapolated to physiological pH. Results Citrate showed little CEST effect at pH 6.5 and temperature (T) = 310 K (maximum 0.001% mM‐1), indicating fast exchange, whereas spermine showed greater CEST effects (maximum 0.2% mM‐1) indicating intermediate‐to‐fast exchange. Extrapolating data acquired from low pH spermine solutions predicts exchange rates at pH 6.5 and T of 310 K of at least 2 × 104s‐1. Conclusion Citrate and spermine show minimal CEST effects at 11.7T even using high saturation power. These effects would be much less than 2% at clinical field‐strengths due to relatively faster exchange and would be masked by CEST from proteins. Magn Reson Med 76:742–746, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26467055
Wang, La-Mei; Tang, Na; Zhong, Hua; Pang, Li-Juan; Zhang, Chun-Jun; He, Fang
2018-06-25
The present study was to investigate the role of the interaction between canonical transient receptor potential channel 1 (TRPC1) and calcium release-activated calcium modulator 1 (Orai1) in extracellular Ca 2+ -sensing receptor (CaR)-induced extracellular Ca 2+ influx and nitric oxide (NO) production. Human umbilical vein endothelial cells (HUVECs) were incubated with CaR agonist Spermine [activating store-operated calcium channels (SOC) and receptor-operated calcium channels (ROC)] alone or in combination with the following reagents: CaR negative allosteric modulator Calhex231 plus ROC analogue TPA (activating ROC and blocking SOC), Ro31-8220 (PKC inhibitor that activates SOC and blocks ROC) or Go6967 (PKCs and PKCµ inhibitor that activates SOC and blocks ROC). The protein expressions and co-localization of TRPC1 and Orai1 were determined using immunofluorescent staining. The interaction between TRPC1 and Orai1 was examined by co-immunoprecipitation. We silenced the expressions of their genes in the HUVECs by transfection of constructed TRPC1 and Orai1 shRNA plasmids. Intracellular Ca 2+ concentration ([Ca 2+ ] i ) was detected using Ca 2+ indicator Fura-2/AM, and NO production was determined by DAF-FM staining. The results showed that TRPC1 and Orai1 protein expressions were co-located on the cell membrane of the HUVECs. Compared with Spermine+Ca 2+ group, Calhex231+ TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2+ groups exhibited down-regulated protein expressions of TRPC1 and Orai1 in cytoplasm and decreased co-localization on the cell membrane. Co-immunoprecipitation results showed that the interaction between TRPC1 and Orai1 was reduced by Calhex231 plus TPA, Ro31-8220 or Go6976 addition in the Spermine-stimulated HUVECs. Double knockdown of Trpc1 and Orai1 genes significantly decreased [Ca 2+ ] i level and NO production in all of the Spermine+Ca 2+ , Calhex231+TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2+ groups. These results suggest that TRPC1/Orai1 may form a complex that mediates Ca 2+ influx and No production via SOC and ROC activation.
SPERMINE OXIDASE: AN AMINE OXIDASE WITH SPECIFICITY FOR SPERMINE AND SPERMIDINE
Hirsch, James G.
1953-01-01
Sheep serum and bovine serum contain an enzyme which brings about a rapid oxidative deamination of certain biological amines. This enzyme differs from previously described amine oxidases in several regards and especially in its substrate specificity. Studies thus far indicate that only spermine and the closely related compound spermidine serve as substrates for the enzyme in sheep serum. For this reason, the enzyme has been named spermine oxidase. Spermine oxidase is active in a variety of fluids of various ionic strength and buffer composition. The reaction takes place between pH 6.0 and pH 8.0 with an optimal rate in the vicinity of neutrality. Under certain conditions, the rate of oxygen consumption during the initial phase of the reaction is independent of the concentration of substrate. The diminution in rate observed during the latter phase of the enzymatic attack appears to be due to an alteration in the kinetics at low concentrations of substrate, or to competitive inhibition by a product of the reaction. Carbonyl reagents almost completely block the action of spermine oxidase, while certain amines and the cyanide ion bring about partial inhibition. Thiol reagents and sequestering compounds do not alter the course of the oxidative process. In the presence of low concentrations of mercuric chloride, the sheep serum-spermine system consumes approximately twice as much oxygen as controls containing no mercuric ion. The mechanism by which the mercuric ion stimulates additional oxygen uptake is obscure. PMID:13052805
Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.
Yuan, Q; Ray, R M; Viar, M J; Johnson, L R
2001-01-01
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.
Molecular Toxicology of Chromatin
1992-01-01
towards the DNA analogs used as coenzymes suggests that the maximal activation by spermine , that depends on coDNA, may involve DNA structures which...evidence for the participation of spermine in an ADPRT-mediated regulatory system that can modify DNA structures , it seems plausible to assume tnat ADPRT may...DNA-dependent manner. The binding properties of spermine -, polylysine- and p olyarginine-Sepharose 4B affinity matrices were also determined. The
Mechanistic Studies of Human Spermine Oxidase: Kinetic Mechanism and pH Effects†
Adachi, Maria S.; Juarez, Paul R.; Fitzpatrick, Paul F.
2009-01-01
In mammalian cells, the flavoprotein spermine oxidase (SMO) catalyzes the oxidation of spermine to spermidine and 3-aminopropanal. Mechanistic studies have been carried out with the recombinant human enzyme. The initial velocity pattern when the ratio between the concentrations of spermine and oxygen is kept constant establishes the steady-state kinetic pattern as ping-pong. Reduction of SMO by spermine in the absence of oxygen is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with a limiting value (k3) of 49 s−1 and an apparent Kd value of 48 µM at pH 8.3. The rate constant for the slow step is independent of the spermine concentration, with a value of 5.5 s−1, comparable to the kcat value of 6.6 s−1. The kinetics of the oxidative half-reaction depend on the aging time after spermine and enzyme are mixed in a double mixing experiment. At an aging time of 6 s the reaction is monophasic with a second order rate constant of 4.2 mM−1 s−1. At an aging time of 0.3 s the reaction is biphasic with two second order constants equal to 4.0 and 40 mM−1 s−1. Neither is equal to the kcat/KO2 value of 13 mM−1s−1. These results establish the existence of more than one pathway for the reaction of the reduced flavin intermediate with oxygen. The kcat/KM value for spermine exhibits a bell-shaped pH-profile, with an average pKa value of 8.3. This profile is consistent with the active form of spermine having three charged nitrogens. The pH profile for k3 shows a pKa value of 7.4 for a group that must be unprotonated. The pKi-pH profiles for the competitive inhibitors N,N’-dibenzylbutane-1,4-diamine and spermidine show that the fully protonated forms of the inhibitors and the unprotonated form of an amino acid residue with a pKa of about 7.4 in the active site are preferred for binding. PMID:20000632
Perez, Marta; Ladero, Victor; Redruello, Begoña; del Rio, Beatriz; Fernandez, Leonides; Rodriguez, Juan Miguel; Martín, Mª Cruz; Fernandez, María; Alvarez, Miguel A.
2016-01-01
Biogenic amines (BAs) are low molecular weight nitrogenous organic compounds with different biological activities. Putrescine, spermidine and spermine are essential for the development of the gut and immune system of newborns, and are all found in human milk. Little is known, however, about the role of histamine, tyramine or cadaverine in breast milk. Nor is it known whether mastitis alters the BA composition of milk. The BA profile of human milk, and the influence of mastitis on BA concentrations, were therefore investigated. Putrescine, spermidine and spermine were the main BAs detected. In mastitis-affected milk, the concentrations of putrescine, spermine and histamine were higher. PMID:27584695
Wei, Ming; Jiang, Shao-Tong; Luo, Jian-Ping
2007-03-01
The effect of outer spermine on cell growth, accumulation of polysaccharides and utilization of nutrient together with the intracellular polyamine contents were investigated in suspension cultures of protocorm-like bodies from Dendrobium huoshanense. The results indicated that spermine at 0.6 mmol/L was the most effective in increasing cell growth and polysaccharide synthesis. The specific growth rate of cell increased from 0.046d(-1) to 0.054d(-1), and the maximum dry weight and polysaccharide production reached 32.4g DW/L and 2.46g/L respectively, which were 1.32-fold and 1.31-fold that of the control on day 30. The titres of intracellular free polyamines were higher in the cultures treated with spermine than that of the control. Invertase and nitrate reductase activities were found to increase significantly in the cultured cells treated with spermine, which was beneficial to the utilization of carbon and nitrogen source.
Magnetic Resonance Spectroscopy (MRS) of Prostatic Fluids for Early Detection of Prostate Cancer
2006-10-01
nuclear magnetic resonance spectroscopy (1H-NMRS). The metabolites quantified included citrate, spermine, myo- inositol , lactate, alanine...adjusting for age. The LR models indicated that the absolute concentrations of citrate, myo- inositol , and spermine were highly predictive of PCa and...inversely related to the risk of PCa. The areas under the receiver operating characteristic curves (AUROC) for citrate, myo- inositol and spermine were
Hydroxylamine derivatives for regulation of spermine and spermidine metabolism.
Khomutov, M A; Weisell, J; Hyvönen, M; Keinänen, T A; Vepsäläinen, J; Alhonen, L; Khomutov, A R; Kochetkov, S N
2013-12-01
The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.
Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti.
Guan, Huai; Wang, Maoying; Liao, Chenghong; Liang, Jing; Mehere, Prajwalini; Tian, Meiling; Liu, Hairong; Robinson, Howard; Li, Jianyong; Han, Qian
2018-01-01
Mosquitoes transmit a number of diseases in animals and humans, including Dengue, Chikungunya and Zika viruses that affect millions of people each year. Controlling the disease-transmitting mosquitoes has proven to be a successful strategy to reduce the viruses transmission. Polyamines are required for the life cycle of the RNA viruses, Chikungunya virus and Zika virus, and a depletion of spermidine and spermine in the host via induction of spermine N-acetyltransferase restricts their replication. Spermine N-acetyltransferase is a key catabolic enzyme in the polyamine pathway, however there is no information of the enzyme identification in any insects. Aliphatic polyamines play a fundamental role in tissue growth and development in organisms. They are acetylated by spermidine/spermine N1-acetyltransferase (SAT). In this study we provided a molecular and biochemical identification of SAT from Aedes aegypti mosquitoes. Screening of purified recombinant proteins against polyamines established that aaNAT5b, named previously based on sequence similarity with identified aaNAT1 in insects, is active to spermine and spermidine. A crystal structure was determined and used in molecular docking in this study. Key residues were identified to be involved in spermine binding using molecular docking and simulation. In addition, SAT transcript was down regulated by blood feeding using a real time PCR test. Based on its substrate profile and transcriptional levels after blood feeding, together with previous reports for polyamines required in arboviruses replication, SAT might be potentially used as a target to control arboviruses with human interference.
Basharat, Meer; deSouza, Nandita M; Parkes, Harold G; Payne, Geoffrey S
2016-09-01
To estimate the exchange rates of labile (1) H in citrate and spermine, metabolites present in prostatic secretions, to predict the size of the citrate and spermine CEST effects in vivo. CEST z-spectra were acquired at high-field [11.7 Tesla (T)] from citrate and spermine solutions at physiological pH (6.5) using saturation power 6 μT. CEST was performed at different temperatures to determine exchange regimes (slow, intermediate or fast). For low pH solutions of spermine, exchange rates were estimated from resonance line width, fitting z-spectra using the Bloch equations incorporating exchange, and using quantifying exchange using saturation time experiments (QUEST). These rates were extrapolated to physiological pH. Citrate showed little CEST effect at pH 6.5 and temperature (T) = 310 K (maximum 0.001% mM(-1) ), indicating fast exchange, whereas spermine showed greater CEST effects (maximum 0.2% mM(-1) ) indicating intermediate-to-fast exchange. Extrapolating data acquired from low pH spermine solutions predicts exchange rates at pH 6.5 and T of 310 K of at least 2 × 10(4) s(-1) . Citrate and spermine show minimal CEST effects at 11.7T even using high saturation power. These effects would be much less than 2% at clinical field-strengths due to relatively faster exchange and would be masked by CEST from proteins. Magn Reson Med 76:742-746, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice
Nisenberg, Oleg; Pegg, Anthony E.; Welsh, Patricia A.; Keefer, Kerry; Shantz, Lisa M.
2005-01-01
The present study was designed to provide a better understanding of the role played by AdoMetDC (S-adenosylmethionine decarboxylase), the key rate-controlling enzyme in the synthesis of spermidine and spermine, in controlling polyamine levels and the importance of polyamines in cardiac physiology. The αMHC (α-myosin heavy chain) promoter was used to generate transgenic mice with cardiac-specific expression of AdoMetDC. A founder line (αMHC/AdoMetDC) was established with a >100-fold increase in AdoMetDC activity in the heart. Transgene expression was maximal by 1 week of age and remained constant into adulthood. However, the changes in polyamine levels were most pronounced during the first week of age, with a 2-fold decrease in putrescine and spermidine and a 2-fold increase in spermine. At later times, spermine returned to near control levels, whereas putrescine and spermidine levels remained lower, suggesting that compensatory mechanisms exist to limit spermine accumulation. The αMHC/AdoMetDC mice did not display an overt cardiac phenotype, but there was an increased cardiac hypertrophy after β-adrenergic stimulation with isoprenaline (‘isoproterenol’), as well as a small increase in spermine content. Crosses of the αMHC/AdoMetDC with αMHC/ornithine decarboxylase mice that have a >1000-fold increase in cardiac ornithine decarboxylase were lethal in utero, presumably due to increase in spermine to toxic levels. These findings suggest that cardiac spermine levels are highly regulated to avoid polyamine-induced toxicity and that homoeostatic mechanisms can maintain non-toxic levels even when one enzyme of the biosynthetic pathway is greatly elevated but are unable to do so when two biosynthetic enzymes are increased. PMID:16153183
Jain, Vaibhav; Raina, Shikha; Gheware, Atish Prabhakar; Singh, Rita; Rehman, Rakhshinda; Negi, Vinny; Murray Stewart, Tracy; Mabalirajan, Ulaganathan; Mishra, Adarsh Kumar; Casero, Robert A; Agrawal, Anurag; Ghosh, Balaram
2018-05-05
Airway epithelial injury is a crucial component of acute and severe asthma pathogenesis and a promising target for treatment of refractory asthma. However, the underlying mechanism of epithelial injury remains poorly explored. Though high levels of polyamines, mainly spermine, have been found in asthma and co-morbidity, their role in airway epithelial injury and the cause of their altered levels in asthma has not been explored. We measured key polyamine metabolic enzymes in lung samples from normal and asthmatic subjects and in mice with OVA-induced allergic airway inflammation (AAI). Polyamine metabolism was modulated using pharmacologic/genetic modulators. Epithelial stress and apoptosis were measured by TSLP levels and TUNEL assay, respectively. We found loss of the polyamine catabolic enzymes spermidine/spermine-N (1)-acetyltransferase-1 (SAT1) and spermine oxidase (SMOX) predominantly in bronchial epithelial cells (BECs) of human asthmatic lung samples and mice with AAI. In naïve mice, SAT1 or SMOX knockdown led to airway hyper-responsiveness, remodeling and BEC apoptosis. Conversely, in mice with AAI, overexpression of either SAT1 or SMOX alleviated asthmatic features and reduced TSLP levels and BEC apoptosis. Similarly, while pharmacological induction of SAT1 and SMOX using the polyamine analogue bis(ethyl)norspermine (BENSPM) alleviated asthmatic features with reduced TSLP levels and BEC apoptosis, pharmacological inhibition of these enzymes using BERENIL or MDL72527, respectively, worsened them. Spermine accumulation in lungs correlated with BEC apoptosis, and spermine treatment caused apoptosis of human BEAS-2B cells in vitro. Spermine induces BEC injury. Induction of polyamine catabolism may represent a novel therapeutic approach for asthma via reversing BEC stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Synthesis and biological characterization of novel charge-deficient spermine analogues.
Weisell, Janne; Hyvönen, Mervi T; Häkkinen, Merja R; Grigorenko, Nikolay A; Pietilä, Marko; Lampinen, Anita; Kochetkov, Sergey N; Alhonen, Leena; Vepsäläinen, Jouko; Keinänen, Tuomo A; Khomutov, Alex R
2010-08-12
Biogenic polyamines, spermidine and spermine, are positively charged at physiological pH. They are present in all cells and essential for their growth and viability. Here we synthesized three novel derivatives of the isosteric charge-deficient spermine analogue 1,12-diamino-3,6,9-triazadodecane (SpmTrien, 5a) that are N(1)-Ac-SpmTrien (5c), N(12)-Ac-SpmTrien (5b), and N(1),N(12)-diethyl-1,12-diamino-3,6,9-triazadodecane (N(1),N(12)-Et(2)-SpmTrien, 5d). 5a and 5d readily accumulated in DU145 cells at the same concentration range as natural polyamines and moderately competed for the uptake with putrescine (1) but not with spermine (4a) or spermidine (2). 5a efficiently down-regulated ornithine decarboxylase and decreased polyamine levels, while 5d proved to be inefficient, compared with N(1),N(11)-diethylnorspermine (6). None of the tested analogues were substrates for human recombinant spermine oxidase, but those having free aminoterminus, including 1,8-diamino-3,6-diazaoctane (Trien, 3a), were acetylated by mouse recombinant spermidine/spermine N(1)-acetyltransferase. 5a was acetylated to 5c and 5b, and the latter was further metabolized by acetylpolyamine oxidase to 3a, a drug used to treat Wilson's disease. Thus, 5a is a bioactive precursor of 3a with enhanced bioavailability.
Characterization of antilipolytic action of polyamines in isolated rat adipocytes.
Richelsen, B; Pedersen, S B; Hougaard, D M
1989-01-01
The interactions of polyamines with the lipolytic system were studied in isolated rat adipocytes. Spermine, spermidine and putrescine significantly inhibited adenosine deaminase-stimulated lipolysis. An antilipolytic effect of spermine was detectable at a concentration of 0.25 mM (P less than 0.05). At a concentration of 10 mM all three polyamines inhibited the stimulated lipolysis by 50-60% (P less than 0.001). In addition, spermine enhanced the antilipolytic sensitivity of insulin. Spermine (1 mM) decreased the half-maximal inhibitory concentration of insulin from 320 +/- 70 pM to 56 +/- 20 pM (P less than 0.01). The antilipolytic effects and the cyclic-AMP-lowering effects of the polyamines were almost completely prevented in the presence of different phosphodiesterase (PDE) inhibitors (3-isobutyl-1-methylxanthine and RO 20-1724) and, in addition, polyamines had no effect on lipolysis stimulated by dibutyryl cyclic AMP, indicating that polyamines may inhibit lipolysis by activating the PDE enzyme. This latter suggestion was confirmed by demonstrating that spermine (5 mM) significantly enhanced the low-Km PDE enzyme activity (P less than 0.01). Finally, the amounts of polyamines present in isolated adipocytes were measured, and the estimated cytoplasmic concentrations were 0.02 mM (putrescine), 0.86 mM (spermidine), and 1.0 mM (spermine). It is concluded that polyamines may possibly be involved in the physiological regulation of triacylglycerol mobilization in adipocytes. PMID:2476118
Antineoplastic Efficacy of Novel Polyamine Analogues in Human Breast Cancer
2005-06-01
Davidson, N.E., and Casero, R.A.. Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase (PAO) is the primary source of cytotoxic H2O2 in polyamine... spermine oxidase (PAOh1/SMO) mRNA and activity by a polyamine analogue in human breast cancer cell lines. The fourth Era of Hope meeting for the...SMO/PAOh1 Spermine Oxidase DFMO α-difluoromethylornithine BENSpm N1, N11-bis(ethyl)norspermine CHEMSpm N1-(cycloheptylmethyl)-N11-ethyl- 4,8
Sánchez, Manuel; Suárez, Lorena; Andrés, María Teresa; Flórez, Blanca Henar; Bordallo, Javier; Riestra, Sabino; Cantabrana, Begoña
2017-01-01
ABSTRACT Background: Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods: The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results: Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverine). Intestinal bacteria mainly produce putrescine and cadaverine. The amines inhibited the spontaneous motility of the ileum (0.1-3 mM) and colon rings (0.01-3 mM, with lower IC50), with: spermine~isoamylamine~spermidine. Spermine inhibition was tetrodotoxin (TTX)-insensitive, while isoamylamine was TTX-sensitive, suggesting neural control. Mainly in the ileum, isoamylamine (3 mM) elicited acute effects modified by TTX, atropine and propranolol, and suppressed by spermine (3 mM), not being localized at the smooth muscle level. The amines assayed (3 mM), except putrescine and cadaverine in the ileum and isoamylamine in the colon, antagonised acetylcholine (ACh, 0.1 mM)-elicited phasic contractions. Isoamylamine and spermine in colon relaxed KCl (100 mM)-elicited tonic contractions, suggesting an effect on smooth muscle, but did not justify the suppression of motility caused by spermine and isoamylamine. Conclusions: Polyamines and TAs of the intestinal content might act on chemosensors and modulate intestinal peristalsis. PMID:28659731
Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.
Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M
1996-02-01
It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.
Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.
Cervelli, Manuela; Polticelli, Fabio; Angelucci, Emanuela; Di Muzio, Elena; Stano, Pasquale; Mariottini, Paolo
2015-05-01
Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N(1)-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.
Erwin, B G; Pegg, A E
1986-01-01
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine. PMID:3800951
Heterologous expression and characterization of mouse spermine oxidase.
Cervelli, Manuela; Polticelli, Fabio; Federico, Rodolfo; Mariottini, Paolo
2003-02-14
Polyamine oxidases are key enzymes responsible of the polyamine interconversion metabolism in animal cells. Recently, a novel enzyme belonging to this class of enzymes has been characterized for its capability to oxidize preferentially spermine and designated as spermine oxidase. This is a flavin adenine dinucleotide-containing enzyme, and it has been expressed both in vitro and in vivo systems. The primary structure of mouse spermine oxidase (mSMO) was deduced from a cDNA clone (Image Clone 264769) recovered by a data base search utilizing the human counterpart of polyamine oxidases, PAOh1. The open reading frame predicts a 555-amino acid protein with a calculated M(r) of 61,852.30, which shows a 95.1% identity with PAOh1. To understand the biochemical properties of mSMO and its structure/function relationship, the mSMO cDNA has been subcloned and expressed in secreted and secreted-tagged forms into Escherichia coli BL21 DE3 cells. The recombinant enzyme shows an optimal pH value of 8.0 and is able to oxidize rapidly spermine to spermidine and 3-aminopropanal and fails to act upon spermidine and N(1)-acetylpolyamines. The purified recombinant-tagged form enzyme (M(r) approximately 68,000) has K(m) and k(cat) values of 90 microm and 4.5 s(-1), respectively, using spermine as substrate at pH 8.0. Molecular modeling of mSMO protein based on maize polyamine oxidase three-dimensional structure suggests that the general features of maize polyamine oxidase active site are conserved in mSMO.
Hinderer, Christian; Katz, Nathan; Louboutin, Jean-Pierre; Bell, Peter; Tolar, Jakub; Orchard, Paul J; Lund, Troy C; Nayal, Mohamad; Weng, Liwei; Mesaros, Clementina; de Souza, Carolina F M; Dalla Corte, Amauri; Giugliani, Roberto; Wilson, James M
2017-10-01
The mucopolysaccharidoses (MPS) are rare genetic disorders marked by severe somatic and neurological symptoms. Development of treatments for the neurological manifestations of MPS has been hindered by the lack of objective measures of central nervous system disease burden. Identification of biomarkers for central nervous system disease in MPS patients would facilitate the evaluation of new agents in clinical trials. High throughput metabolite screening of cerebrospinal fluid (CSF) samples from a canine model of MPS I revealed a marked elevation of the polyamine, spermine, in affected animals, and gene therapy studies demonstrated that reduction of CSF spermine reflects correction of brain lesions in these animals. In humans, CSF spermine was elevated in neuropathic subtypes of MPS (MPS I, II, IIIA, IIIB), but not in subtypes in which cognitive function is preserved (MPS IVA, VI). In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease and was reduced following hematopoietic stem cell transplantation, which is the only therapy currently capable of improving cognitive outcomes. Additional studies in cultured neurons from MPS I mice showed that elevated spermine was essential for the abnormal neurite overgrowth exhibited by MPS neurons. These findings offer new insights into the pathogenesis of CNS disease in MPS patients, and support the use of spermine as a new biomarker to facilitate the development of next generation therapeutics for MPS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon
2012-01-01
The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800
Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon
2012-01-01
The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.
Singh, Bhanu Pratap; Saha, Ishita; Nandi, Indrani; Swamy, Musti J
2017-12-02
The major bovine seminal plasma protein, PDC-109, binds to choline phospholipids of the sperm plasma membrane and induces an efflux of cholesterol and choline phospholipids (cholesterol efflux), which is crucial for sperm capacitation. PDC-109 also exhibits chaperone-like activity and protects target proteins against various kinds of stress. Here we show that the polyamines spermine and spermidine, present in high concentration in the seminal plasma of various mammals, increase the ability of PDC-109 to perturb membrane structure as well as its chaperone-like activity. Interestingly, spermine/spermidine alone did not perturb membrane structure but exhibited chaperone-like activity by protecting target proteins against thermal and oxidative stress. When spermine/spermidine was used along with PDC-109, the observed chaperone-like activity was considerably higher than that expected for a simple additive effect, suggesting that PDC-109 and the polyamines act in a synergistic fashion. These results indicate that at the high concentrations present in the seminal plasma spermine/spermidine exhibit a positive modulatory effect on the chaperone-like activity of PDC-109 and may also function as chemical chaperones and protect other seminal plasma proteins from various kinds of stress. Copyright © 2017 Elsevier Inc. All rights reserved.
The polyamines of Xanthium strumarium and their response to photoperiod.
Hamasaki, N; Galston, A W
1990-01-01
Flowering plants of Xanthium strumarium L., grown in 8 h photoperiods, were analysed for polyamines. Putrescine, spermidine and spermine were found throughout the plant in three forms: (a) as free polyamines; (b) conjugates soluble in 5% trichloracetic acid (TCA); and (c) bound to the TCA-insoluble precipitate. On a fresh weight basis, total polyamines are most abundant in young leaves and buds, especially flower buds. Spermidine predominates in the free polyamine fractions, while spermine is dominant in the conjugated fraction. Transfer of vegetative plants from 16 h photoperiods to 1, 2, 3, or 4 inductive cycles (8 h light + 16 h uninterrupted dark) caused rapid and marked changes in the polyamine titer of the leaves and ultimately, floral initiation. The titer of free putrescine per mg protein declined progressively with induction in all leaf sizes, while the titers of free spermidine and spermine rose during days 2 and 3 in small and expanding leaves. Conjugated putrescine, spermidine and spermine rose sharply after only 1 inductive cycle, especially in small and expanding leaves, and maintained the higher level for at least several cycles. In plants given 4 inductive cycles, buds harvested after 4 additional days had sharply elevated levels of conjugated polyamines, especially spermine, on a protein basis.
Ishihara, Keiko; Ehara, Tsuguhisa
2004-04-01
The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm spermine, 0.75 with 1-100 microm spermidine, and between 0.75 and 0.9 when spermine and spermidine coexisted. An interaction of spermine/spermidine with the channel at an intracellular site appeared to modify the equilibrium of the two conformational channel states that allow different modes of blockage. Our results suggest that the outward I(K1) is primarily generated by channels with lower affinities for polyamines. Polyamines may regulate the amplitude of the outward I(K1), not only by blocking the channels but also by modifying the proportion of channels that show different sensitivities to the polyamine block.
Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G
2009-05-15
The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.
Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer
2009-10-01
NOTES 14. ABSTRACT Elevated levels of all three naturally occurring polyamines, spermine, spermidine and putrescine, have been found in breast...Introduction The polyamines, spermine, spermidine and putrescine, are naturally occurring aliphatic cations that are essential for normal cell growth and
Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy
2011-04-01
medical need. 7 REFERENCES 1. Babbar N, Hacker A, Huang Y, Casero RA Jr. Tumor necrosis factor alpha induces spermidine /spermine N-acetyl...PCa development and progression. We have published that activated androgen receptor (AR)-JunD complex induces spermidine /spermine N1-acetyl transferase
Mezzetti, G; Loor, R; Liao, S
1979-01-01
The rat ventral prostate contains a cytosol protein that can non-covalently bind spermine much more tightly than spermidine or other natural diamines. The protein has been purified to homogeneity, as judged by electrophoresis in urea- and sodium dodecyl sulphate-containing polyacrylamide gels. The protein, with or without spermine bound to it, sediments at 3 S in a sucrose gradient with or without 0.4 M-KCl. The molecular weight of the protein is about 30 000. Each molecule of the binding protein can bind one molecule of spermine. In the prostate of rats injected with cycloheximide, the protein appears to have a half-life of about 3.5 h. The spermine-binding activity of an acidic fraction obtained by DEAE-cellulose chromatography of the prostate cytosol proteins is reduced by about 40--60% within 20--40 h after castration. This effect is reversed very rapidly within 15--30 min by intraperitoneal injection of 5 alpha-dihydrotestosterone. The hormonal effect is androgen-specific and is not mimicked by dexamethasone or oestradiol-17 beta. The androgen effect was reduced significantly when rats were injected with cycloheximide or actinomycin D, suggesting that the acidic protein may be one of the earliest proteins induced by androgen in the rat ventral prostate. Images Fig. 1. PMID:534539
Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V
2015-02-01
The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Ishihara, Keiko; Ehara, Tsuguhisa
2004-01-01
The strong inward rectifier K+ current, IK1, shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward IK1 is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K+ channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current–voltage (I–V) relationships of Kir2.1, obtained with 5–10μm spermine or 10–100μm spermidine, were similar to the steady-state outward I–V relationship of IK1, showing a peak at a level that is ∼20mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1μm spermine/spermidine or 0.1μm spermine, respectively. In the chord conductance–voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5–10μm spermine or 10–100μm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1–10μm spermine, 0.75 with 1–100μm spermidine, and between 0.75 and 0.9 when spermine and spermidine coexisted. An interaction of spermine/spermidine with the channel at an intracellular site appeared to modify the equilibrium of the two conformational channel states that allow different modes of blockage. Our results suggest that the outward IK1 is primarily generated by channels with lower affinities for polyamines. Polyamines may regulate the amplitude of the outward IK1, not only by blocking the channels but also by modifying the proportion of channels that show different sensitivities to the polyamine block. PMID:14724206
Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.
Avazzadeh, Reza; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Amanpour, Saeid; Sadeghi, Mohsen
2017-09-01
Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.
Krokan, H; Eriksen, A
1977-02-01
Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.
Thu-Hang, Pham; Bassie, Ludovic; Safwat, Gehan; Trung-Nghia, Pham; Christou, Paul; Capell, Teresa
2002-01-01
We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also involved in their biosynthesis. Transgenic rice (Oryza sativa) plants engineered with the heterologous Datura stramonium S-adenosylmethionine decarboxylase (samdc) cDNA exhibited accumulation of the transgene steady-state mRNA. Transgene expression did not affect expression of the orthologous samdc gene. Significant increases in SAMDC activity translated to a direct increase in the level of spermidine, but not spermine, in leaves. Seeds recovered from a number of plants exhibited significant increases in spermidine and spermine levels. We demonstrate that overexpression of the D. stramonium samdc cDNA in transgenic rice is sufficient for accumulation of spermidine in leaves and spermidine and spermine in seeds. These findings suggest that increases in enzyme activity in one of the two components of the later parts of the pathway leading to the higher polyamines is sufficient to alter their levels mostly in seeds and, to some extent, in vegetative tissue such as leaves. Implications of our results on the design of rational approaches for the modulation of the polyamine pathway in plants are discussed in the general framework of metabolic pathway engineering. PMID:12177487
Vujcic, Slavoljub; Liang, Ping; Diegelman, Paula; Kramer, Debora L; Porter, Carl W
2003-01-01
In the polyamine back-conversion pathway, spermine and spermidine are first acetylated by spermidine/spermine N1 -acetyltransferase (SSAT) and then oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine respectively. Although PAO was first purified more than two decades ago, the protein has not yet been linked to genomic sequences. In the present study, we apply a BLAST search strategy to identify novel oxidase sequences located on human chromosome 10 and mouse chromosome 7. Homologous mammalian cDNAs derived from human brain and mouse mammary tumour were deduced to encode proteins of approx. 55 kDa having 82% sequence identity. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by approx. 30%, whereas spermidine increased 2-4-fold. Lysates of human PAO cDNA-transfected HEK-293 cells, but not vector-transfected cells, rapidly oxidized N1-acetylspermine to spermidine. Substrate specificity determinations with the lysate assay revealed a preference ranking of N1-acetylspermine= N1-acetylspermidine> N1,N12-diacetylspermine>>spermine; spermidine was not acted upon. This ranking is identical to that reported for purified PAO and distinctly different from the recently identified spermine oxidase (SMO), which prefers spermine over N1-acetylspermine. Monoethyl- and diethylspermine analogues also served as substrates for PAO, and were internally cleaved adjacent to a secondary amine. We deduce that the present oxidase sequences are those of the FAD-dependent PAO involved in the polyamine back-conversion pathway. In Northern blot analysis, PAO mRNA was much less abundant in HEK-293 cells than SMO or SSAT mRNA, and all three were differentially induced in a similar manner by selected polyamine analogues. The identification of PAO sequences, together with the recently identified SMO sequences, provides new opportunities for understanding the dynamics of polyamine homoeostasis and for interpreting metabolic and cellular responses to clinically-relevant polyamine analogues and inhibitors. PMID:12477380
Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.
2010-01-01
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138
Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F
1998-10-01
In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4)-phosphate 5-kinase.
Lin Shao; Pratiksha Bhatnagar; Rajtilak Majumdar; Rakesh Minocha; Subhash C. Minocha
2014-01-01
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra x maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse...
USDA-ARS?s Scientific Manuscript database
Distribution of biogenic amines – the diamine putrescine (Put), triamine spermidine (Spd), and tetraamine spermine (Spm) - differs between species with Put and Spd being particularly abundant and Spm the least abundant in plant cells. These amines are important for cell viability and their intracel...
Fillingame, R H; Jorstad, C M; Morris, D R
1975-01-01
There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087
Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer
2008-09-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Elevated levels of all three naturally occurring polyamines, spermine, spermidine ...11 Appendices����������������������������� N/A 4 INTRODUCTION The polyamines, spermine, spermidine and
Autar K. Mattoo; Subhash C. Minocha; Rakesh Minocha; Avtar K. Handa
2010-01-01
Distribution of biogenic amines--the diamine putrescine (Put), triamine spermidine (Spd), and tetraamine spermine (Spm)--differs between species with Put and Spd being particularly abundant and Spm the least abundant in plant cells. These amines are important for cell viability and their intracellular levels are tightly regulated, which have made it difficult to...
Wang, Huihui; Liu, Baobao; Li, Hongyan; Zhang, Shicui
2016-01-10
Polyamine oxidases (PAOs) have been identified in a wide variety of animals, as well as in fungi and plant. Generally, plant PAOs oxidize spermine (Spm), spermidine (Spd) and their acetylated derivatives, N(1)-acetylspermine (N(1)-Aspm) and N(1)-acetylspermidine (N(1)-Aspd), while yeast PAOs oxidize Spm, N(1)-Aspm and N(1)-Aspd, but not Spd. By contrast, two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of Spm and N(1)-Aspm/N(1)-Aspd, respectively. However, our knowledge on the biochemical and structural characterization of PAOs remains rather limited, and their evolutionary history is still enigmatic. In this study, two amphioxus (Branchiostoma japonicum) PAO genes, named Bjpao1 and Bjpao2, were cloned and characterized. Both Bjpao1 and Bjpao2 displayed distinct tissue-specific expression patterns. Notably, rBjPAO1 oxidized both spermine and spermidine, but not N(1)-acetylspermine, whereas rBjPAO2 oxidizes both spermidine and N(1)-acetylspermine, but not spermine. To understand structure-function relationship, the enzymatic activities of mutant BjPAOs that were generated by site-directed mutagenesis and expressed in E. coli were examined, The results indicate that the residues H64, K301 and T460 in rBjPAO1, and H69, K315 and T467 in rBjPAO2 were all involved in substrate binding and enzyme catalytic activity to some extent. Based on our results and those of others, a model depicting the divergent evolution and functional specialization of vertebrate SMO and APAO genes is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D
2004-06-15
Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.
Suppola, S; Heikkinen, S; Parkkinen, J J; Uusi-Oukari, M; Korhonen, V P; Keinänen, T; Alhonen, L; Jänne, J
2001-01-01
We have generated a hybrid transgenic mouse line overexpressing both ornithine decarboxylase (ODC) and spermidine/spermine N(1)-acetyltransferase (SSAT) under the control of the mouse metallothionein (MT) I promoter. In comparison with singly transgenic animals overexpressing SSAT, the doubly transgenic mice unexpectedly displayed much more striking signs of activated polyamine catabolism, as exemplified by a massive putrescine accumulation and an extreme reduction of hepatic spermidine and spermine pools. Interestingly, the profound depletion of the higher polyamines in the hybrid animals occurred in the presence of strikingly high ODC activity and tremendous putrescine accumulation. Polyamine catabolism in the doubly transgenic mice could be enhanced further by administration of zinc or the polyamine analogue N(1),N(11)-diethylnorspermine. In tracer experiments with [(14)C]spermidine we found that, in comparison with syngenic animals, both MT-ODC and MT-SSAT mice possessed an enhanced efflux mechanism for hepatic spermidine. In the MT-ODC animals this mechanism apparently operated in the absence of measurable SSAT activity. In the hybrid animals, spermidine efflux was stimulated further in comparison with the singly transgenic animals. In spite of a dramatic accumulation of putrescine and a profound reduction of the spermidine and spermine pools, only marginal changes were seen in the level of ODC antizyme. Even though the hybrid animals showed no liver or other organ-specific overt toxicity, except an early and permanent loss of hair, their life span was greatly reduced. These results can be understood from the perspective that catabolism is the overriding regulatory mechanism in the metabolism of the polyamines and that, even under conditions of severe depletion of spermidine and spermine, extremely high tissue pools of putrescine are not driven further to replenish the pools of the higher polyamines. PMID:11513732
Correlations between polyamine ratios and growth patterns in seedling roots
NASA Technical Reports Server (NTRS)
Shen, H. J.; Galston, A. W.
1985-01-01
The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.
[A fluoride-sensor for kink structure in DNA condensation process].
Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin
2014-01-01
Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.
Magnetic Resonance Spectroscopy (MRS) of Prostatic Fluids for Early Detection of Prostate Cancer
2007-04-01
quantitative proton nuclear magnetic resonance spectroscopy (1H-NMRS). The metabolites quantified included citrate, spermine, myo- inositol , lactate, alanine...concentrations while adjusting for age. The LR models indicated that the absolute concentrations of citrate, myo- inositol , and spermine were highly predictive...of PCa and inversely related to the risk of PCa. The areas under the receiver operating characteristic curves (AUROC) for citrate, myo- inositol and
Mitra, Sanglap; Paul, Atreyee
2015-01-01
The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings. PMID:25734186
He, Cai-Xia; Zhang, Tian-Yuan; Miao, Pei-Hong; Hu, Zhong-Jie; Han, Min; Tabata, Yasuhiko; Hu, Yu-Lan; Gao, Jian-Qing
2012-01-01
This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer
2007-09-01
Davidson NE, & Casero RA Jr. Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Elevated levels of all three naturally occurring polyamines, spermine , spermidine and...protein in multiple human breast cancer cell lines. This suppression is both time and dose dependent. A relationship between oligoamine structure , growth
Cellular content and biosynthesis of polyamines during rooster spermatogenesis.
Oliva, R; Vidal, S; Mezquita, C
1982-01-01
The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401
Tavladoraki, Paraskevi; Cervelli, Manuela; Antonangeli, Fabrizio; Minervini, Giovanni; Stano, Pasquale; Federico, Rodolfo; Mariottini, Paolo; Polticelli, Fabio
2011-04-01
Spermine oxidase (SMO) and acetylpolyamine oxidase (APAO) are FAD-dependent enzymes that are involved in the highly regulated pathways of polyamine biosynthesis and degradation. Polyamine content is strictly related to cell growth, and dysfunctions in polyamine metabolism have been linked with cancer. Specific inhibitors of SMO and APAO would allow analyzing the precise role of these enzymes in polyamine metabolism and related pathologies. However, none of the available polyamine oxidase inhibitors displays the desired characteristics of selective affinity and specificity. In addition, repeated efforts to obtain structural details at the atomic level on these two enzymes have all failed. In the present study, in an effort to better understand structure-function relationships, SMO enzyme-substrate complex has been probed through a combination of molecular modeling, site-directed mutagenesis and biochemical studies. Results obtained indicate that SMO binds spermine in a similar conformation as that observed in the yeast polyamine oxidase FMS1-spermine complex and demonstrate a major role for residues His82 and Lys367 in substrate binding and catalysis. In addition, the SMO enzyme-substrate complex highlights the presence of an active site pocket with highly polar characteristics, which may explain the different substrate specificity of SMO with respect to APAO and provide the basis for the design of specific inhibitors for SMO and APAO.
Fiori, Laura M; Turecki, Gustavo
2010-07-01
Alterations in the levels of spermine synthase (SMS) and spermine oxidase (SMOX), two enzymes involved in polyamine metabolism, have previously been observed in brains of suicide completers. To characterize the roles played by genetic and epigenetic factors in determining expression levels of these genes, as well as to identify potential mechanisms by which to explain our findings in suicide completers, we (1) assessed the role of promoter polymorphisms in determining expression in the brain and in vitro, and (2) examined CpG methylation and levels of methylated histone H3 lysine-27 in the promoter regions of these genes in the prefrontal cortex of suicide completers and healthy controls. We identified several promoter haplotypes in SMS and SMOX, but found no consistent effects of haplotype on expression levels in either the brain or in reporter gene assays performed in three different cell lines. We also found no overall effects of epigenetic factors in determining expression, with the exception of a relationship between CpG methylation at one site in the promoter of SMOX and its expression in Brodmann area 8/9. In conclusion, the genetic and epigenetic factors examined in this study show little influence on the expression levels of SMS and SMOX, and do not appear to be responsible for the dysregulated expression of these genes in suicide completers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forouhar,F.; Lee, I.; Vujcic, J.
2005-01-01
Bacillus subtilis PaiA has been implicated in the negative control of sporulation as well as production of degradative enzymes. PaiA shares recognizable sequence homology with N-acetyltransferases, including those that can acetylate spermidine/spermine substrates (SSATs). We have determined the crystal structure of PaiA in complex with CoA at 1.9 Angstrom resolution and found that PaiA is a member of the N-acetyltransferase superfamily of enzymes. Unexpectedly, we observed the binding of an oxidized CoA dimer in the active site of PaiA, and the structural information suggests the substrates of the enzyme could be linear, positively charged compounds. Our biochemical characterization is alsomore » consistent with this possibility since purified PaiA possesses N1-acetyltransferase activity towards polyamine substrates including spermidine and spermine. Further, conditional over-expression of PaiA in bacteria results in increased acetylation of endogenous spermidine pools. Thus, our structural and biochemical analyses indicate that PaiA is a novel N-acetyltransferase capable of acetylating both spermidine and spermine. In this way, the pai operon may function in regulating intracellular polyamine concentrations and/or binding capabilities. In addition to preventing toxicity due to polyamine excess, this function may also serve to regulate expression of certain bacterial gene products such as those involved in sporulation.« less
Brown, K B; Nelson, N F; Brown, D G
1975-01-01
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro. Images PLATE 1 PMID:1218090
Brown, K B; Nelson, N F; Brown, D G
1975-12-01
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro.
Polyamine catabolism is enhanced after traumatic brain injury.
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A; Strauss, Kenneth I
2010-03-01
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra; Coburn, Lori A; Sierra, Johanna C; Verriere, Thomas G; Luis, Paula B; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M; Barry, Daniel P; Cleveland, John L; Destefano Shields, Christina E; Casero, Robert A; Washington, M Kay; Piazuelo, M Blanca; Wilson, Keith T
2018-01-01
Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori . In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox -deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium -infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox -/- mice. In contrast, with DSS, Smox -/- mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium -infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox -/- mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox -/- mice. In both models, putrescine and spermidine were increased in WT mice; in Smox -/- mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium , polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.
Gobert, Alain P.; Al-Greene, Nicole T.; Singh, Kshipra; Coburn, Lori A.; Sierra, Johanna C.; Verriere, Thomas G.; Luis, Paula B.; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M.; Barry, Daniel P.; Cleveland, John L.; Destefano Shields, Christina E.; Casero, Robert A.; Washington, M. Kay; Piazuelo, M. Blanca; Wilson, Keith T.
2018-01-01
Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox−/− mice. In contrast, with DSS, Smox−/− mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox−/− mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox−/− mice. In both models, putrescine and spermidine were increased in WT mice; in Smox−/− mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.
Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey
2014-06-01
Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Arginase: A Novel Proliferative Determinant in Prostate Cancer
2007-08-01
TABLE 1. Comparison of Polyamine Levels in Human Prostate Cancer Cell Lines* Cell Line Putrescine Spermidine Spermine...as the aminopropyl donor to synthesize spermidine and spermine from putrescine (Hayashi et al 1997, Kramer et al 1988). Real-time RT-PCR analysis on...putrescine and spermidine levels in these cell lines (Fig. 4). 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 Antizyme AdoMetDC R el at iv e
Role of Polyamine Oxidase (PAOh1/SMO) in Human Breast Cancer
2007-04-01
polyamine spermidine , 3-aminopropanal, and the reactive oxygen species, H2O2. Previous work by our research group has shown that SMO can be induced by...spermine/ spermidine N1-acetyltransferase (SSAT). Treatment of MCF-10a cells with CSE resulted in a rapid 3-fold induction of SSAT mRNA at the one hour time...and spermine/ spermidine N1 acetyl- transferase (SSAT, open bars) in MCF- 10a human breast cancer cells by cigarette smoke extract (CSE) at the
Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass
NASA Astrophysics Data System (ADS)
André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang
2013-03-01
Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates. Electronic supplementary information (ESI) available: (1) QCM measurement of SnO2 deposition on spermine functionalized silica-based sensors, (2) scheme of the surface functionalization procedure, (3) FTIR-ATR analysis of polyamine (spermine) functionalized glass surfaces, (4) FITC staining of amine groups on glass surfaces, (5) AFM height analysis of bare, spermine coated and SnO2 coated glass slides, (6) SEM micrograph of a spermine functionalized SnO2 coated glass slide, (7) XPS analysis of SnO2 coated surfaces, (8) kinetic profile of rhodamine B degradation with spermine/SnO2, (9) control experiments for the photodegradation of rhodamine B, (10) comparison with commercial SnO2 catalyst, (11) incubation of non-functionalized glass surfaces with E. coli, and (12) incubation of SnO2 coated glass surfaces with E. coli. See DOI: 10.1039/c3nr00007a
Chaturvedi, Rupesh; de Sablet, Thibaut; Peek, Richard M.; Wilson, Keith T.
2012-01-01
We have recently reported that Helicobacter pylori strains expressing the virulence factor cytotoxin-associated gene A (CagA) stimulate increased levels of spermine oxidase (SMO) in gastric epithelial cells, while cagA– strains did not. SMO catabolizes the polyamine spermine and produces H2O2 that results in both apoptosis and DNA damage. Exogenous overexpression of CagA confirmed these findings, and knockdown or inhibition of SMO blocked CagA-mediated apoptosis and DNA damage. The strong association of SMO, apoptosis, and DNA damage was also demonstrated in humans infected with cagA+, but not cagA– strains. In infected gerbils and mice, DNA damage was CagA-dependent and only present in epithelial cells that expressed SMO. We also discovered SMOhigh gastric epithelial cells from infected animals with dysplasia that are resistant to apoptosis despite high levels of DNA damage. Inhibition of polyamine synthesis or SMO could abrogate the development of this cell population that may represent precursors for neoplastic transformation. PMID:22555547
Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression.
Pietropaoli, Stefano; Leonetti, Alessia; Cervetto, Chiara; Venturini, Arianna; Mastrantonio, Roberta; Baroli, Giulia; Persichini, Tiziana; Colasanti, Marco; Maura, Guido; Marcoli, Manuela; Mariottini, Paolo; Cervelli, Manuela
2018-02-03
Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system x c - transporter, a Nrf-2 target, was observed. Sulfasalazine, a system x c - transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.
Spectroscopic and calorimetric characterization of spermine oxidase and its association forms.
Leonetti, Alessia; Cervoni, Laura; Polticelli, Fabio; Kanamori, Yuta; Yurtsever, Zuleyha Nihan; Agostinelli, Enzo; Mariottini, Paolo; Stano, Pasquale; Cervelli, Manuela
2017-12-14
Spermine oxidase (SMOX) is a flavin-containing enzyme that oxidizes spermine to produce spermidine, 3-aminopropanaldehyde, and hydrogen peroxide. SMOX has been shown to play key roles in inflammation and carcinogenesis; indeed, it is differentially expressed in several human cancer types. Our previous investigation has revealed that SMOX purified after heterologous expression in Escherichia coli actually consists of monomers, covalent homodimers, and other higher-order forms. All association forms oxidize spermine and, after treatment with dithiothreitol, revert to SMOX monomer. Here, we report a detailed investigation on the thermal denaturation of SMOX and its association forms in native and reducing conditions. By combining spectroscopic methods (circular dichroism, fluorescence) and thermal methods (differential scanning calorimetry), we provide new insights into the structure, the transformation, and the stability of SMOX. While the crystal structure of this protein is not available yet, experimental results are interpreted also on the basis of a novel SMOX structural model, obtained in silico exploiting the recently solved acetylspermine oxidase crystal structure. We conclude that while at least one specific intermolecular disulfide bond links two SMOX molecules to form the homodimer, the thermal denaturation profiles can be justified by the presence of at least one intramolecular disulfide bond, which also plays a critical role in the stabilization of the overall three-dimensional SMOX structure, and in particular of its flavin adenine dinucleotide-containing active site. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Earnshaw, D J; Gait, M J
1998-01-01
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982
Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek
2017-05-01
Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.
Braadland, Peder R; Giskeødegård, Guro; Sandsmark, Elise; Bertilsson, Helena; Euceda, Leslie R; Hansen, Ailin F; Guldvik, Ingrid J; Selnæs, Kirsten M; Grytli, Helene H; Katz, Betina; Svindland, Aud; Bathen, Tone F; Eri, Lars M; Nygård, Ståle; Berge, Viktor; Taskén, Kristin A; Tessem, May-Britt
2017-11-21
Robust biomarkers that identify prostate cancer patients with high risk of recurrence will improve personalised cancer care. In this study, we investigated whether tissue metabolites detectable by high-resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) were associated with recurrence following radical prostatectomy. We performed a retrospective ex vivo study using HR-MAS MRS on tissue samples from 110 radical prostatectomy specimens obtained from three different Norwegian cohorts collected between 2002 and 2010. At the time of analysis, 50 patients had experienced prostate cancer recurrence. Associations between metabolites, clinicopathological variables, and recurrence-free survival were evaluated using Cox proportional hazards regression modelling, Kaplan-Meier survival analyses and concordance index (C-index). High intratumoural spermine and citrate concentrations were associated with longer recurrence-free survival, whereas high (total-choline+creatine)/spermine (tChoCre/Spm) and higher (total-choline+creatine)/citrate (tChoCre/Cit) ratios were associated with shorter time to recurrence. Spermine concentration and tChoCre/Spm were independently associated with recurrence in multivariate Cox proportional hazards modelling after adjusting for clinically relevant risk factors (C-index: 0.769; HR: 0.72; P=0.016 and C-index: 0.765; HR: 1.43; P=0.014, respectively). Spermine concentration and tChoCre/Spm ratio in prostatectomy specimens were independent prognostic markers of recurrence. These metabolites can be noninvasively measured in vivo and may thus offer predictive value to establish preoperative risk assessment nomograms.
[The effect of polyamines on lysosome fusion with phagosomes in mouse peritoneal macrophages].
Mozhenok, T P; Bulychev, A G; Braun, A D
1990-01-01
The influence of polyamines on the phagosome-lysosome fusion in murine peritoneal macrophages and on polymerization of G-actin from the rabbit muscle in vitro has been studied. Both natural polyamines (spermin, spermidin, putrescin) and synthetic phenyl derivates of polyamines (3,3'-diaminobensidin, 1,5-naphtalin diamine, 4,4'-diaminodiphenilmetan, dancylcadaverin) were used. Unlike the phenyl derivates of polyamines and putrescin, spermin and spermidin stimulate the phagosome-lysosome fusion to induce G-actin polymerization. Possible mechanisms of action of the above polyamines are discussed.
Polyamine Catabolism Is Enhanced after Traumatic Brain Injury
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.
2010-01-01
Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies. PMID:19968558
Expression and distribution patterns of spermine, spermidine, and putrescine in rat hair follicle.
Yamamoto, Yutaro; Makino, Takamitsu; Kudo, Hideo; Ihn, Hironobu; Murakami, Yasuko; Matsufuji, Senya; Fujiwara, Kunio; Shin, Masashi
2018-02-01
No expression and distribution patterns of polyamines (PAs), spermine, spermidine, and their precursor putrescine in mammalian hair follicle are available, although polyamines are known to correlate well with hair growth and epidermal tumor genesis. Immunohistochemistry (IHC) using our original two monoclonal antibodies (mAbs) ASPM-29 specific for spermine or spermidine, and APUT-32 specific for putrescine allowed us to detect immunoreactivity for polyamines in hair follicles from normal adult rats. A wide range of immunoreactivity for the total spermine and spermidine was observed in the compartments of hair follicle: The highest degree of immunoreactivity for polyamines was observed in the matrix, in the Huxley's layer, in the deeper Henle's layer, and in the cuticle of the inner root sheath/the hair cuticle, while moderate immunoreactivity existed in the lower-to-mid cortex and the companion layer, followed by lower immunoreactivity in the outer root sheath, including the bulge region and in the deeper medulla, in which the immunoreactivity was also evident in their nuclei. In addition, somewhat surprisingly, with IHC by APUT-32 mAb, we detected significant levels of putrescine in the compartments, in which the immunostaining pattern was the closely similar to that of the total spermine and spermidine. Thus, among these compartments, the cell types of the matrix, the Huxley's layer, the deeper Henle's layer, and the cuticle of the inner root sheath/the hair cuticle seem to have the biologically higher potential in compartments of anagen hair follicle, maybe suggesting that they are involved more critically in the biological event of hair growth. In addition, we noted sharp differences of immunostaining by IHCs between ASPM-29 mAb and APUT-32 mAb in the epidermis cells and fibroblast. ASPM-29 mAb resulted in strong staining in both the cell types, but APUT-32 mAb showed only very light staining in both types. Consequently, the use of the two IHCs could be extremely useful in further studies on hair cycle and epidermal tumor genesis experimentally or clinically.
A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism.
Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao
2012-10-20
An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N(1)-acetylspermidine (N(1)AcSpd), N(8)-acetylspermidine (N(8)AcSpd), N(1)-acetylspermine, N(1),N(8)-diacetylspermidine, and N(1),N(12)-diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N(1)AcSpd and N(8)AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with (13)C(2)-N(1)AcSpd and (13)C(2)-N(8)AcSpd which have the (13)C(2)-acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N(1)-acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N(1)-acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12-(15)N(3)]-N(1)-acetylspermine and [1,4,8-(15)N(3)]spermidine ((15)N(3)-Spd), respectively; for SMO, [1,4,8,12-(15)N(4)]spermine and (15)N(3)-Spd, respectively; and for SSAT, (15)N(3)-Spd and [1,4,8-(15)N(3)]-N(1)-acetylspermidine, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Potential application of SERS for arsenic speciation in biological matrices.
Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong
2017-08-01
Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.
Enhancing Human Spermine Synthase Activity by Engineered Mutations
Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil
2013-01-01
Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611
Induction of spermidine/spermine N1-acetyltransferase by methylglyoxal bis(guanylhydrazone).
Pegg, A E; Erwin, B G; Persson, L
1985-10-17
The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).
Spermine oxidase promotes bile canalicular lumen formation through acrolein production.
Uemura, Takeshi; Takasaka, Tomokazu; Igarashi, Kazuei; Ikegaya, Hiroshi
2017-11-01
Spermine oxidase (SMOX) catalyzes oxidation of spermine to generate spermidine, hydrogen peroxide (H 2 O 2 ) and 3-aminopropanal, which is spontaneously converted to acrolein. SMOX is induced by a variety of stimuli including bacterial infection, polyamine analogues and acetaldehyde exposure. However, the physiological functions of SMOX are not yet fully understood. We investigated the physiological role of SMOX in liver cells using human hepatocellular carcinoma cell line HepG2. SMOX localized to the bile canalicular lumen, as determined by F-actin staining. Knockdown of SMOX reduced the formation of bile canalicular lumen. We also found that phospho-Akt (phosphorylated protein kinase B) was localized to canalicular lumen. Treatment with Akt inhibitor significantly reduced the formation of bile canalicular lumen. Acrolein scavenger also inhibited the formation of bile canalicular lumen. PTEN, phosphatase and tensin homolog and an inhibitor of Akt, was alkylated in a SMOX-dependent manner. Our results suggest that SMOX plays a central role in the formation of bile canalicular lumen in liver cells by activating Akt pathway through acrolein production.
Drabik-Markiewicz, G; Dejaegher, B; De Mey, E; Kowalska, T; Paelinck, H; Vander Heyden, Y
2011-06-15
The influence of biogenic amines (i.e. putrescine, cadaverine, spermidine and spermine) on the N-nitrosamine formation in heated cured lean meat was studied in the presence or absence of sodium nitrite and at different meat processing temperatures. Experimental evidence was produced using gas chromatography with thermal energy analysis detection (GC-TEA). Concentration of N-nitrosamines was modelled as a function of the temperature and the nitrite concentration for two situations, i.e. presence or absence of added biogenic amines to the meat. The significance of the influence of the changing parameters was evaluated by ANOVA (Analysis of Variance). It was found that higher processing temperatures and higher added amounts of sodium nitrite increase the yields of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP). Spermidine and putrescine amplify the formation of NDMA, but spermine and cadeverine do not influence the formation of this N-nitrosamine. Spermidine and cadeverine cause a significant increase of NPIP. Beside N-nitrosopyrrolidine (NPYR) in some rare cases, no other volatile N-nitrosamines are detected. Copyright © 2010 Elsevier Ltd. All rights reserved.
Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco
2014-05-01
Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Nayvelt, Irina; Hyvönen, Mervi T; Alhonen, Leena; Pandya, Ipsit; Thomas, Thresia; Khomutov, Alex R; Vepsäläinen, Jouko; Patel, Rajesh; Keinänen, Tuomo A; Thomas, T J
2010-01-11
Polyamines are essential molecules supporting the structure, conformation, and function of nucleic acids and proteins. We studied stereoisomers of alpha,alpha'-dimethylated spermine [(R,R)-Me(2)Spm, (S,S)-Me(2)Spm, (R,S)-Me(2)Spm] for their ability to provoke DNA condensation and protect DNA from damage. (R,R)- and (R,S)-Me(2)Spm displayed more efficient condensing ability than spermine, with significantly lower EC(50) (concentration for 50% compaction) values (p < or = 0.01). However, spermine exerted slightly more duplex stabilization than Me(2)Spm. Condensation resulted in nanoparticles with hydrodynamic radii between 39.6 and 48.4 nm, and electron microscopy showed the presence of toroids and spheroids. Natural polyamines and stereoisomers of Me(2)Spm protected DNA against DNase digestion and oxidative stress in vitro and against etoposide and oxidative stress in DU145 cells but afforded little protection against UV-C irradiation. Our findings indicate that Me(2)Spm stereoisomers are efficient DNA packaging agents with potential applications in gene delivery. Our study also reveals stereospecificity in DNA interaction and protection against cellular stress.
Morris, D R; Jorstad, C M; Seyfried, C E
1977-09-01
The cancer chemotherapeutic drug, methylglyoxal bis(guanylhydrazone), inhibits the synthesis of spermidine and spermine, but allows continued putrescine production in small lymphocytes stimulated by concanavalin A. DNA replication in these cells is inhibited 50% while the synthesis of protein and RNA continues normally. When excess putrescine accumulation in the presence of methylglyoxal bis(guanylhydrazone) was inhibited with alpha-methylornithine, a competitive inhibitor of ornithine decarboxylase, the inhibition of DNA replication was accentuated, with still no effect on protein or RNA synthesis. No inhibition of DNA synthesis by the combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone) was observed when the inhibitors were added after accumulation of cellular polyamines. In addition, inhibition was reversed by exogenous putrescine, spermidine, or spermine. We conclude that putrescine can fulfill in part the role normally played by spermidine and spermine in DNA replication, and that blocking putrescine synthesis in the presence of methylglyoxal bis(guanylhydrazone) amplifies the polyamine requirement. The implications of this with regard to polyamine synthesis as a site of chemotherapy are discussed.
Melvin, M A; Keir, H M
1978-01-01
Methylglyoxal bis(guanylhydrazone) (1,1'-[methylethanediylidine)dinitrilo]diguanidine) inhibited the growth of BHK-21/C13 cells in monolayer cultures. Accumulation of spermidine and spermine was inhibited, whereas the accumulation of putrescine was increased. The intracellular spermidine/spermine molar ratio decreased conly slightly after exposure of the cells to 20 micrometer-methylglyoxal bis(guanylhydrazone) for 1 day. Cells incubated in the presence of the drug released less polyamine into the culture medium that did control cells, the polyamine released consisting almost exclusively of spermidine, both free and as a conjugated form. PMID:697761
On archaebacterial ATPase from Halobacterium saccharovorum
NASA Technical Reports Server (NTRS)
Kristjansson, H.; Ponnamperuma, C.; Hochstein, L.; Altekar, W.
1984-01-01
The energy transducing ATPase from Halobacterium saccharovorum was studied in order to define the origin of energy transducing systems. The ATPase required high salt concentration (4M NaCl) for activity; activity was rapidly lost when NaCl was below 1 Molar. At low salt concentration, the membrane bound ATPase activity could be stabilized in presence of spermine. However, following solubilization spermine was ineffective. Furthermore, F1 ATPase activity was stabilized by ammonium sulfate even when the NaCl concentration was less than 1 Molar. These studies suggest that stabilization by hydrophobic interactions preceded ionic ones in the evolution of the energy transducing ATPases.
Barret, Jean-Marc; Kruczynski, Anna; Vispé, Stéphane; Annereau, Jean-Philippe; Brel, Viviane; Guminski, Yves; Delcros, Jean-Guy; Lansiaux, Amélie; Guilbaud, Nicolas; Imbert, Thierry; Bailly, Christian
2008-12-01
The polyamine transport system (PTS) is an energy-dependent machinery frequently overactivated in cancer cells with a high demand for polyamines. We have exploited the PTS to selectively deliver a polyamine-containing drug to cancer cells. F14512 combines an epipodophyllotoxin core-targeting topoisomerase II with a spermine moiety introduced as a cell delivery vector. The polyamine tail supports three complementary functions: (a) facilitate formulation of a water-soluble compound, (b) increase DNA binding to reinforce topoisomerase II inhibition, and (c) facilitate selective uptake by tumor cells via the PTS. F14512 is 73-fold more cytotoxic to Chinese hamster ovary cells compared with CHO-MG cells with a reduced PTS activity. A decreased sensitivity of L1210 leukemia cells to F14512 was observed in the presence of putrescine, spermidine, and spermine. In parallel, the spermine moiety considerably enhances the drug-DNA interaction, leading to a reinforced inhibition of topoisomerase II. The spermine tail of F14512 serves as a cell delivery vehicle as well as a DNA anchor, and this property translates at the cellular level into a distinct pharmacologic profile. Twenty-nine human solid or hematologic cell lines were used to characterize the high cytotoxic potential of F14512 (median IC50 of 0.18 micromol/L). Finally, the potent antitumor activity of F14512 in vivo was evidenced with a MX1 human breast tumor xenograft model, with partial and complete tumor regressions. This work supports the clinical development of F14512 as a novel targeted cytotoxic drug and sheds light on the concept of selective delivery of drugs to tumor cells expressing the PTS.
Lomozik, Lechoslaw; Jastrzab, Renata
2003-01-15
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.
Sánchez-Rodríguez, E; Romero, L; Ruiz, J M
2016-01-15
Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.
Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo
2016-10-01
Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.
Human Endothelial Cell Response to Gram-Negative Lipopolysaccharide Assessed with cDNA Microarrays
2001-11-01
structurally and functionally similar to LO, may also possess chemotac- tic ability and other unknown functions in inflamma- tion. Spermidine/ spermine N1...2.0 1.1 0.7 0.8 H16591 Vascular cell adhesion molecule 1 VCAM-1 1.0 1.1 2.1 1.4 1.0 1.1 AA011215 Spermidine/ spermine N1-acetyltransferase SAT 0.8 1.0...1.1 N80129 Metallothionein 1L MT1L 4.8 1.0 1.0 1.7 1.2 1.1 AA430382 Nucleoside phosphorylase NP 1.1 1.4 1.8 1.3 1.0 AA676458 Lysyl oxidase -like 2 LOXL2
Moriguchi, Tomohisa; Sakai, Hideaki; Suzuki, Hideo; Shinozuka, Kazuo
2008-09-01
Novel phosphorothioate-modified oligodeoxynucleotides (S-ODNs) containing a deoxyuridine derivative bearing a spermine moiety at the C-5 position were synthesized. The study of the thermal stability and the thermodynamic stability showed that the modified S-ODNs have been able to form the stable duplexes with the complementary DNA. It was also found that the duplex composed of the modified S-ODN and its complementary RNA strand is the substrate for Escherichia coli RNase H, and the cleavage of the RNA strand by the enzyme was almost similar as in the case of the unmodified one.
The effect of methylglyoxal-bis(guanylhydrazone) on mitochondrial Ca(2+) fluxes.
Salvi, Mauro; Toninello, Antonio
2002-01-15
Methylglyoxal-bis(guanylhydrazone) (MGBG) induces a dose-dependent inhibition of the electrophoretic Ca(2+) uptake by rat liver mitochondria (RLM) without affecting the electrical membrane potential. MGBG is also able to inhibit the electroneutral Ca(2+) release from mitochondria. These effects result in a progressive increase of Ca(2+) level in suspending medium indicating that Ca(2+) uptake is inhibited at higher extent than Ca(2+) efflux. Spermine instead, induces a lowering of external Ca(2+) concentration. This action is reversed by MGBG which again raises the external Ca(2+) concentration then in the absence of spermine, though at a lower extent. The mechanism of MGBG effects and their implications on energy metabolism are discussed.
2015-01-01
Polycations are explored as carriers to deliver therapeutic nucleic acids. Polycations are conventionally pharmacological inert with the sole function of delivering therapeutic cargo. This study reports synthesis of a self-immolative polycation (DSS-BEN) based on a polyamine analogue drug N1,N11-bisethylnorspermine (BENSpm). The polycation was designed to function dually as a gene delivery carrier and a prodrug targeting dysregulated polyamine metabolism in cancer. Using a combination of NMR and HPLC, we confirm that the self-immolative polycation undergoes intracellular degradation into the parent drug BENSpm. The released BENSpm depletes cellular levels of spermidine and spermine and upregulates polyamine catabolic enzymes spermine/spermidine N1-acetyltransferase (SSAT) and spermine oxidase (SMO). The synthesized polycations form polyplexes with DNA and facilitate efficient transfection. Taking advantage of the ability of BENSpm to sensitize cancer cells to TNFα-induced apoptosis, we show that DSS-BEN enhances the cell killing activity of TNFα gene therapy. The reported findings validate DSS-BEN as a dual-function delivery system that can deliver a therapeutic gene and improve the outcome of gene therapy as a result of the intracellular degradation of DSS-BEN to BENSpm and the subsequent beneficial effect of BENSpm on dysregulated polyamine metabolism in cancer. PMID:25153488
Thomas, T J; Thomas, Thresia
2018-03-13
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N ¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Thomas, Thresia
2018-01-01
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N1-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents. PMID:29533973
Plasticizing Effects of Polyamines in Protein-Based Films
Sabbah, Mohammed; Di Pierro, Prospero; Giosafatto, C. Valeria L.; Esposito, Marilena; Mariniello, Loredana; Regalado-Gonzales, Carlos; Porta, Raffaele
2017-01-01
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components. PMID:28489025
Ghadiri, Maryam; Vasheghani-Farahani, Ebrahim; Atyabi, Fatemeh; Kobarfard, Farzad; Mohamadyar-Toupkanlou, Farzaneh; Hosseinkhani, Hossein
2017-10-01
Application of many vital hydrophilic medicines have been restricted by blood-brain barrier (BBB) for treatment of brain diseases. In this study, a targeted drug delivery system based on dextran-spermine biopolymer was developed for drug transport across BBB. Drug loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared via ionic gelation followed by transferrin (Tf) conjugation as targeting moiety. The characteristics of Tf conjugated nanoparticles (TDS-NPs) were analyzed by different methods and their cytotoxicity effects on U87MG cells were tested. The superparamagnetic characteristic of TDS-NPs was verified by vibration simple magnetometer. Capecitabine loaded TDS-NPs exhibited pH-sensitive release behavior with enhanced cytotoxicity against U87MG cells, compared to DS-NPs and free capecitabine. Prussian-blue staining and TEM-imaging showed the significant cellular uptake of TDS-NPs. Furthermore, a remarkable increase of Fe concentrations in brain was observed following their biodistribution and histological studies in vivo, after 1 and 7 days of post-injection. Enhanced drug transport across BBB and pH-triggered cellular uptake of TDS-NPs indicated that these theranostic nanocarriers are promising candidate for the brain malignance treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2851-2864, 2017. © 2017 Wiley Periodicals, Inc.
METABOLISM OF N-ALKYLATED SPERMINE ANALOGUES BY POLYAMINE AND SPERMINE OXIDASES
Häkkinen, Merja R.; Hyvönen, Mervi T.; Auriola, Seppo; Casero, Robert A.; Vepsäläinen, Jouko; Khomutov, Alex R.; Alhonen, Leena; Keinänen, Tuomo A.
2010-01-01
SUMMARY N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N′-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N'-(3-ethylaminopropyl)butane-1,4-diamine (BnEtSPM) and N,N′-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD (Km(APAO)=10μM, kcat(APAO)=1.1s−1 and Km(SMO)=28μM, kcat(SMO)=0.8s−1, respectively), metabolized BnEtSPM to EtSPD (Km(APAO)=0.9 μM, kcat(APAO)=1.1s−1 and Km(SMO)=51μM, kcat(SMO)=0.4s−1, respectively), and metabolized DBSPM to BnSPD (Km(APAO)=5.4μM, kcat(APAO)= 2.0s−1 and Km(SMO)=33μM, kcat(SMO)=0.3s−1, respectively). Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD (EtSPM Km(APAO)=16μM, kcat(APAO)=1.5s−1; Km(SMO)=25μM, kcat(SMO) =8.2s−1; BnSPM Km(APAO)=6.0μM, kcat(APAO)=2.8s−1; Km(SMO)=19μM, kcat(SMO)=0.8s−1, respectively). Surprisingly, E t S P D ( Km(APAO)=37μM, kcat(APAO)=0.1s−1; Km(SMO)=48μM, kcat(SMO)=0.05s−1) and BnSPD (Km(APAO)=2.5μM, kcat(APAO)=3.5s−1; Km(SMO)=60μM, kcat(SMO)=0.54s−1) were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 hours of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could play an important role in polyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues. PMID:20012116
Samejima, Keijiro; Otani, Masahiro; Murakami, Yasuko; Oka, Takami; Kasai, Misao; Tsumoto, Hiroki; Kohda, Kohfuku
2007-10-01
A sensitive method for the determination of polyamines in mammalian cells was described using electrospray ionization and time-of-flight mass spectrometer. This method was 50-fold more sensitive than the previous method using ionspray ionization and quadrupole mass spectrometer. The method employed the partial purification and derivatization of polyamines, but allowed a measurement of multiple samples which contained picomol amounts of polyamines. Time required for data acquisition of one sample was approximately 2 min. The method was successfully applied for the determination of reduced spermidine and spermine contents in cultured cells under the inhibition of aminopropyltransferases. In addition, a new proper internal standard was proposed for the tracer experiment using (15)N-labeled polyamines.
Compaction agent clarification of microbial lysates
NASA Technical Reports Server (NTRS)
DeWalt, Brad W.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.
2003-01-01
Recombinant proteins are often purified from microbial lysates containing high concentrations of nucleic acids. Pre-purification steps such as nuclease addition or precipitation with polyethyleneimine or ammonium sulfate are normally required to reduce viscosity and to eliminate competing polyanions before anion exchange chromatography. We report that small polycationic compaction agents such as spermine selectively precipitate nucleic acids during or after Escherichia coli lysis, allowing DNA and RNA to be pelleted with the insoluble cell debris. Analysis by spectrophotometry and protein assay confirmed a significant reduction in the concentration of nucleic acids present, with preservation of protein. Lysate viscosity is greatly reduced, facilitating subsequent processing. We have used 5mM spermine to remove nucleic acids from E. coli lysate in the purification of a hexahistidine-tagged HIV reverse transcriptase.
Cervelli, Manuela; Bellavia, Gabriella; Fratini, Emiliano; Amendola, Roberto; Polticelli, Fabio; Barba, Marco; Federico, Rodolfo; Signore, Fabrizio; Gucciardo, Giacomo; Grillo, Rosalba; Woster, Patrick M; Casero, Robert A; Mariottini, Paolo
2010-10-14
Polyamine metabolism has a critical role in cell death and proliferation representing a potential target for intervention in breast cancer (BC). This study investigates the expression of spermine oxidase (SMO) and its prognostic significance in BC. Biochemical analysis of Spm analogues BENSpm and CPENSpm, utilized in anticancer therapy, was also carried out to test their property in silico and in vitro on the recombinant SMO enzyme. BC tissue samples were analyzed for SMO transcript level and SMO activity. Student's t test was applied to evaluate the significance of the differences in value observed in T and NT samples. The structure modeling analysis of BENSpm and CPENSpm complexes formed with the SMO enzyme and their inhibitory activity, assayed by in vitro experiments, were examined. Both the expression level of SMO mRNA and SMO enzyme activity were significantly lower in BC samples compared to NT samples. The modeling of BENSpm and CPENSpm complexes formed with SMO and their inhibition properties showed that both were good inhibitors. This study shows that underexpression of SMO is a negative marker in BC. The SMO induction is a remarkable chemotherapeutical target. The BENSpm and CPENSpm are efficient SMO inhibitors. The inhibition properties shown by these analogues could explain their poor positive outcomes in Phases I and II of clinical trials.
2010-01-01
Background Polyamine metabolism has a critical role in cell death and proliferation representing a potential target for intervention in breast cancer (BC). This study investigates the expression of spermine oxidase (SMO) and its prognostic significance in BC. Biochemical analysis of Spm analogues BENSpm and CPENSpm, utilized in anticancer therapy, was also carried out to test their property in silico and in vitro on the recombinant SMO enzyme. Methods BC tissue samples were analyzed for SMO transcript level and SMO activity. Student's t test was applied to evaluate the significance of the differences in value observed in T and NT samples. The structure modeling analysis of BENSpm and CPENSpm complexes formed with the SMO enzyme and their inhibitory activity, assayed by in vitro experiments, were examined. Results Both the expression level of SMO mRNA and SMO enzyme activity were significantly lower in BC samples compared to NT samples. The modeling of BENSpm and CPENSpm complexes formed with SMO and their inhibition properties showed that both were good inhibitors. Conclusions This study shows that underexpression of SMO is a negative marker in BC. The SMO induction is a remarkable chemotherapeutical target. The BENSpm and CPENSpm are efficient SMO inhibitors. The inhibition properties shown by these analogues could explain their poor positive outcomes in Phases I and II of clinical trials. PMID:20946629
A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines.
Ahou, Abdellah; Martignago, Damiano; Alabdallah, Osama; Tavazza, Raffaela; Stano, Pasquale; Macone, Alberto; Pivato, Micaela; Masi, Antonio; Rambla, Jose L; Vera-Sirera, Francisco; Angelini, Riccardo; Federico, Rodolfo; Tavladoraki, Paraskevi
2014-04-01
Polyamine oxidases (PAOs) are flavin-dependent enzymes involved in polyamine catabolism. In Arabidopsis five PAO genes (AtPAO1-AtPAO5) have been identified which present some common characteristics, but also important differences in primary structure, substrate specificity, subcellular localization, and tissue-specific expression pattern, differences which may suggest distinct physiological roles. In the present work, AtPAO5, the only so far uncharacterized AtPAO which is specifically expressed in the vascular system, was partially purified from 35S::AtPAO5-6His Arabidopsis transgenic plants and biochemically characterized. Data presented here allow AtPAO5 to be classified as a spermine dehydrogenase. It is also shown that AtPAO5 oxidizes the polyamines spermine, thermospermine, and N(1)-acetylspermine, the latter being the best in vitro substrate of the recombinant enzyme. AtPAO5 also oxidizes these polyamines in vivo, as was evidenced by analysis of polyamine levels in the 35S::AtPAO5-6His Arabidopsis transgenic plants, as well as in a loss-of-function atpao5 mutant. Furthermore, subcellular localization studies indicate that AtPAO5 is a cytosolic protein undergoing proteasomal control. Positive regulation of AtPAO5 expression by polyamines at the transcriptional and post-transcriptional level is also shown. These data provide new insights into the catalytic properties of the PAO gene family and the complex regulatory network controlling polyamine metabolism.
Kabir, Ayesha; Suresh Kumar, Gopinatha
2013-01-01
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663
Bianchi, Marzia; Amendola, Roberto; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo
2005-06-01
In mouse, at least two catalytically active splice variants (mSMOalpha and mSMOmicro) of the flavin-containing spermine oxidase enzyme are present. We have demonstrated previously that the cytosolic mSMOalpha is the major isoform, while the mSMOmicro enzyme is present in both nuclear and cytoplasmic compartments and has an extra protein domain corresponding to the additional exon VIa. By amino acid sequence comparison and molecular modeling of mSMO proteins, we identified a second domain that is necessary for nuclear localization of the mSMOmicro splice variant. A deletion mutant enzyme of this region was constructed to demonstrate its role in protein nuclear targeting by means of transient expression in the murine neuroblastoma cell line, N18TG2.
Enhancement of anion-exchange chromatography of DNA using compaction agents
NASA Technical Reports Server (NTRS)
Murphy, Jason C.; Fox, George E.; Willson, Richard C.
2003-01-01
The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.
Burns, Mark R; Jenkins, Scott A; Vermeulen, Nicolas M; Balakrishna, Rajalakshmi; Nguyen, Thuan B; Kimbrell, Matthew R; David, Sunil A
2006-12-15
Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize this complex carbohydrate. A series of aryl and aliphatic spermine-sulfonamide analogs were synthesized and tested in a series of binding and cell-based assays in order to probe the effect of lipophilicity on sequestration ability. A strong correlation was indeed found, supporting the hypothesis that endotoxin-neutralizing ability involves a lipophilic or membrane attachment event. The research discussed herein may be useful for the design of additional carbohydrate recognizing molecules and endotoxin-neutralizing drugs.
Emanuelsson, H; Heby, O
1978-01-01
Development eggs of the polychete Ophryotrocha labronica were analyzed for polyamines during the first 6 days after fertilization. The spermine content dominated initially, but gradually decreased. It was surpassed by putrescine, which rapidly increased to a maximum on the 3rd day, i.e., at the inception of grastrulation. The spermidine content was low during the entire period. Treatment of eggs with the putrescine synthesis inhibitor alpha-methylornithine from the onset of development led to developmental arrest at gastrulation and to an abnormally low content of putrescine in the treated embryos. Methylglyoxal bis(guanylhydrazone), an inhibitor of spermine and spermidine synthesis, had no visible effect of development. Our observations strongly suggest that putrescine synthesis is indispensable in early embryonic development of Ophryotrocha. Images PMID:273215
Mukhopadhyay, R; Madhubala, R
1995-01-01
Leishmania donovani S-adenosyl-L-methionine (AdoMet) decarboxylase was found to show a growth related pattern. Methylglyoxal bis (guanylhydrazone) (MGBG) and Berenil inhibited the growth of Leishmania donovani promastigotes (strain UR6) in a dose dependent manner. The concentrations of MGBG and Berenil required for 50% inhibition of rate of growth were 67 and 47 microM, respectively. The growth inhibition of MGBG was partially reversed by spermidine (100 microM) and spermine (100 microM). Berenil inhibition of promastigote growth was partially reversed by 100 microM spermidine whereas 100 microM spermine did not result in any reversal of growth. The reduction in parasitemia in vitro by these inhibitors was accompanied by inhibition of AdoMet decarboxylase activity and spermidine levels.
Huber, M; Pelletier, J G; Torossian, K; Dionne, P; Gamache, I; Charest-Gaudreault, R; Audette, M; Poulin, R
1996-11-01
We have synthesized 2,2'-dithiobis(N-ethyl-spermine-5-carboxamide) (DESC), its thiol monomer (MESC), and the mixed MESC-cysteamine disulfide (DEASC) as potential inhibitors of polyamine transport in mammalian cells. DESC was the most potent antagonist of spermine transport in ZR-75-1 human breast cancer cells, with Ki values of 5. 0 +/- 0.7, 80 +/- 31, and 16 +/- 3 microM for DESC, MESC, and DEASC, respectively. DESC also strongly blocked putrescine and spermidine uptake in ZR-75-1 cells (Ki = 1.6 +/- 0.5 and 2.7 +/- 1.1 microM, respectively). While DESC and MESC were purely competitive inhibitors of putrescine transport, DEASC was a mixed competitive/noncompetitive antagonist. Remarkably, DESC was virtually impermeant in ZR-75-1 cells despite its low Ki toward polyamine transport. The marked difference in affinity between DESC and MESC was essentially due to the tail-to-tail juxtaposition of two spermine-like structures, suggesting that dimeric ligands of the polyamine transporter might simultaneously interact with more than one binding site. While DESC strongly decreased the initial rate of [3H]spermidine transport, even a 40-fold molar excess of antagonist could not completely abolish intracellular spermidine accumulation. Moreover, as little as 0.3 microM spermidine fully restored growth in ZR-75-1 cells treated with an inhibitor of polyamine biosynthesis in the presence of 50 microM DESC, thus emphasizing the importance of uptake of trace amounts of exogenous polyamines. Thus, reducing the exogenous supply of polyamines with a potent competitive inhibitor may be kinetically inadequate to block replenishment of the polyamine pool in polyamine-depleted tumor cells that display high transport capacity. These results demonstrate that polyamine analogues cross-linked into a dimeric structure such as DESC interact with high affinity with the mammalian polyamine carrier without being used as substrates. These novel properties provide a framework for the design of specific irreversible inhibitors of the polyamine transporter, which should present advantages over competitive antagonists for an efficient blockade of polyamine transport in tumor cells.
Deyman, Kristen L.; Brikis, Carolyne J.; Bozzo, Gale G.; Shelp, Barry J.
2014-01-01
1-Methylcyclopropene (1-MCP) delays ethylene-meditated ripening of apple (Malus domestica Borkh.) fruit during controlled atmosphere (CA) storage. Here, we tested the hypothesis that 1-MCP and CA storage enhances the levels of polyamines (PAs) and 4-aminobutyrate (GABA) in apple fruit. A 46-week experiment was conducted with “Empire” apple using a split-plot design with four treatment replicates and 3°C, 2.5 kPa O2, and 0.03 or 2.5 kPa CO2 with or without 1 μL L-1 1-MCP. Total PA levels were not elevated by the 1-MCP treatment. Examination of the individual PAs revealed that: (i) total putrescine levels tended to be lower with 1-MCP regardless of the CO2 level, and while this was mostly at the expense of free putrescine, large transient increases in soluble conjugated putrescine were also evident; (ii) total spermidine levels tended to be lower with 1-MCP, particularly at 2.5 kPa CO2, and this was mostly at the expense of soluble conjugated spermidine; (iii) total spermine levels at 2.5 kPa CO2 tended to be lower with 1-MCP, and this was mostly at the expense of both soluble and insoluble conjugated spermine; and (iv) total spermidine and spermine levels at 0.03 kPa were relatively unaffected, compared to 2.5 kPa CO2, but transient increases in free spermidine and spermine were evident. These findings might be due to changes in the conversion of putrescine into higher PAs and the interconversion of free and conjugated forms in apple fruit, rather than altered S-adenosylmethionine availability. Regardless of 1-MCP and CO2 treatments, the availability of glutamate showed a transient peak initially, probably due to protein degradation, and this was followed by a steady decline over the remainder of the storage period which coincided with linear accumulation of GABA. This pattern has been attributed to the stimulation of glutamate decarboxylase activity and inhibition of GABA catabolism, rather than a contribution of PAs to GABA production. PMID:24782882
Jänne, Juhani; Hovi, Tapani; Hölttä, Erkki
1979-01-01
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-α-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [14C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [3H]uridine and [14C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression. PMID:435270
Hölttä, E; Jänne, J; Hovi, T
1979-01-15
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-alpha-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [(14)C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [(3)H]uridine and [(14)C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression.
Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek
2015-02-01
Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.
The effect of nandrolone, an anabolic steroid on putrescine metabolism in the mouse.
Henningsson, S; Rosengren, E
1976-01-01
1 The catabolism of injected 14 C-putrescine was studied in mice treated with nandrolone phenpropionate, an anabolic steroid. 2 The putrescine was rapidly metabolized; almost 50% of the injected radioactivity was recovered within 2 h as 14 CO2 in the expired air. 3 Considerable amounts of radioactive gamma-aminobutyric acid (GABA) and an unidentified compound were found in the kidney and in the urine in addition to radioactive putrescine, spermidine and spermine both in controls and nandrolone-treated mice. 4 Nandrolone elevated the concentration of endogenous putrescine in the kidney and urine, eightfold and twentyfold, respectively, and the concentrations of spermidine and spermine were also increased 5 after the injection of 14C-putrescine the incorporation of 14C into spermidine was significantly increased in the kidney of mice receiving nandrolone. PMID:990594
Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu
2016-06-01
Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.
Polyamines in foods: development of a food database
Ali, Mohamed Atiya; Poortvliet, Eric; Strömberg, Roger; Yngve, Agneta
2011-01-01
Background Knowing the levels of polyamines (putrescine, spermidine, and spermine) in different foods is of interest due to the association of these bioactive nutrients to health and diseases. There is a lack of relevant information on their contents in foods. Objective To develop a food polyamine database from published data by which polyamine intake and food contribution to this intake can be estimated, and to determine the levels of polyamines in Swedish dairy products. Design Extensive literature search and laboratory analysis of selected Swedish dairy products. Polyamine contents in foods were collected using an extensive literature search of databases. Polyamines in different types of Swedish dairy products (milk with different fat percentages, yogurt, cheeses, and sour milk) were determined using high performance liquid chromatography (HPLC) equipped with a UV detector. Results Fruits and cheese were the highest sources of putrescine, while vegetables and meat products were found to be rich in spermidine and spermine, respectively. The content of polyamines in cheese varied considerably between studies. In analyzed Swedish dairy products, matured cheese had the highest total polyamine contents with values of 52.3, 1.2, and 2.6 mg/kg for putrescine, spermidine, and spermine, respectively. Low fat milk had higher putrescine and spermidine, 1.2 and 1.0 mg/kg, respectively, than the other types of milk. Conclusions The database aids other researchers in their quest for information regarding polyamine intake from foods. Connecting the polyamine contents in food with the Swedish Food Database allows for estimation of polyamine contents per portion. PMID:21249159
Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk
2016-04-01
Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.
Kurauchi, Isao; Shigemi, Kazutaka; Kabuki, Yusuke; Hamasu, Kousuke; Yamane, Haruka; Aoki, Mami; Kawada, Yoko; Morishita, Koji; Denbow, D Michael; Furuse, Mitsuhiro
2010-02-01
To clarify whether L-ornithine and/or its metabolite involves sedative and hypnotic effects under social separation stress, the effects of intracerebroventricular (i.c.v.) injection of L-ornithine and polyamines (putrescine, spermidine and spermine) were compared in chicks. Birds were injected i.c.v. with 0.5 mumol of L-ornithine, putrescine, spermidine, spermine or saline (control). After injection, chicks were immediately separated from the flock and monitored for the number of distress vocalizations and various postures. L-Ornithine greatly attenuated the stress response and caused sedative and hypnotic effects. Among the polyamines, only putrescine attenuated distress vocalizations but did not induce sleep. In conclusion, the sedative and hypnotic effect of L-ornithine was mainly induced by L-ornithine itself, while the polyamines contributed to the sedative, but not hypnotic, effect under social separation stress.
Structure and synthesis of a potent glutamate receptor antagonist in wasp venom.
Eldefrawi, A T; Eldefrawi, M E; Konno, K; Mansour, N A; Nakanishi, K; Oltz, E; Usherwood, P N
1988-01-01
A low molecular weight toxin isolated from the venom of the digger wasp Philanthus triangulum, first noted by T. Piek, is a potent antagonist of transmission at quisqualate-sensitive glutamate synapses of locust leg muscle. This philanthotoxin 433 (PTX-433) has been purified, chemically characterized, and subsequently synthesized along with two closely related analogues. It has a butyryl/tyrosyl/spermine sequence and a molecular weight of 435. Its two analogues, PTX-343 and PTX-334 (the numerals denoting the number of methylenes between the amino groups of the spermine moiety), are also active on the glutamate synapse of the locust leg muscle; PTX-334 was more potent and PTX-343 was less potent than the natural toxin. Such chemicals are useful for studying, labeling, and purifying glutamate receptors and may become models for an additional class of therapeutic drugs and possibly insecticides. Images PMID:2838850
Polyamines are Inhibitors of Gastric Acid Secretion
NASA Astrophysics Data System (ADS)
Ray, Tushar K.; Nandi, Jyotirmoy; Pidhorodeckyj, Nykolai; Meng-Ai, Zhou
1982-03-01
The naturally occurring organic polycations such as spermine and spermidine inhibit histamine-stimulated gastric acid secretion by bullfrog gastric mucosa in vitro; spermine is much more potent than spermidine. Unlike the H2 receptor antagonists, the polyamines are completely ineffective from the nutrient side and are effective only from the secretory side of the chambered mucosa. The polyamine effects could be reversed by increasing K+ concentration in the secretory solution. Studies with isolated gastric microsomal vesicles demonstrate that the polyamines do not inhibit the gastric H+,K+-ATPase but greatly decrease the ATPase-mediated uptake of H+ under appropriate conditions. For the latter effects the presence of polyamine within the vesicle interior was found to be essential. Our data strongly suggest an uncoupling of the gastric H+,K+-ATPase system by the polyamines. The therapeutic potential of these and similar compounds in the treatment of hyperacidity and peptic ulcer is discussed.
Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases
Park, Myung Hee; Igarashi, Kazuei
2013-01-01
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852
Morada, Mary; Pendyala, Lakhsmi; Wu, Gang; Merali, Salim; Yarlett, Nigel
2013-01-01
Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N1-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N1-acetylspermine and N1-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N1-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase. PMID:23986438
Nitrating reactive nitric oxygen species transform acetaminophen to 3-nitroacetaminophen.
Lakshmi, V M; Hsu, F F; Davis, B B; Zenser, T V
2000-09-01
Nitrating reactive nitric oxygen species (RNOS) elicit many of the deleterious effects of the inflammatory response. Their high reactivity and short half-life make RNOS analysis difficult. Reaction of acetaminophen (APAP) with RNOS generated by various conditions was evaluated by HPLC. When [(14)C]APAP was incubated at pH 7.4, the same new product (3NAP) was produced by at least three separate pathways represented by the following conditions: myeloperoxidase oxidation of NO(2)(-), NO(2)Cl, and ONOO(-) or Sin-1. Diethylamine NONO and spermine NONO did not convert APAP to 3NAP. 3NAP was stable at pH 5, 7.4, or 9, and at pH 7.4 with ONOO(-), spermine NONO, Sin-1, or H(2)O(2). HOCl transformed 3NAP, which was prevented by APAP, ascorbic acid, taurine, or NO(2)(-). ONOO(-)-derived 3NAP was identified by (1)H NMR as 3-nitroacetaminophen or 3-nitro-N-acetyl-p-aminophenol, and the product mass was verified by EI/ESI mass spectrometry. Human polymorphonuclear neutrophils incubated with [(14)C]APAP and stimulated with beta-phorbol 12-myristate 13-acetate produced 3NAP in the presence of NO(2)(-). Neutrophil 3NAP formation was verified by mass spectrometry and was consistent with myeloperoxidase oxidation of NO(2)(-). Spermine NONO supported 3NAP formation by stimulated cells in the absence of NO(2)(-). Results demonstrate that 3NAP is a product of nitrating RNOS generated by at least three separate pathways and may be a biomarker for nitrating mediators of inflammation.
Thakor, Devang K.; Obata, Hideaki; Nagane, Kentaro; Saito, Shigeru
2011-01-01
Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier (“anioplex”) based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%–60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain. PMID:20698746
Amine oxidase-based biosensors for spermine and spermidine determination.
Boffi, Alberto; Favero, Gabriele; Federico, Rodolfo; Macone, Alberto; Antiochia, Riccarda; Tortolini, Cristina; Sanzó, Gabriella; Mazzei, Franco
2015-02-01
The present work describes the development and optimization of electrochemical biosensors for specific determination of the biogenic polyamine spermine (Spm) and spermidine (Spmd) whose assessment represents a novel important analytical tool in food analysis and human diagnostics. These biosensors have been prepared using novel engineered enzymes: polyamine oxidase (PAO) endowed with selectivity towards Spm and Spmd and spermine oxidase (SMO) characterized by strict specificity towards Spm. The current design entails biosensors in which the enzymes were entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photocrosslinkable gel, onto an electrode surface. Screen-printed electrodes (SPEs) were used as electrochemical transducers for enzymatically produced hydrogen peroxide, operating at different potential vs Ag/AgCl according to the material of the working electrode (WE): +700 mV for graphite (GP) or -100 mV for Prussian blue (PB)-modified SPE, respectively. Biosensor performances were evaluated by means of flow injection amperometric (FIA) measurements. The modified electrodes showed good sensitivity, long-term stability and reproducibility. Under optimal conditions, the PAO biosensor showed a linear range 0.003-0.3 mM for Spm and 0.01-0.4 mM for Spmd, while with the SMO biosensor, a linear range of 0.004-0.5 mM for Spm has been obtained. The main kinetic parameters apparent Michaelis constant (K M), turnover number (K cat) and steady-state current (I max) were determined. The proposed device was then applied to the determination of biogenic amines in blood samples. The results obtained were in good agreement with those obtained with the GC-MS reference method.
Atiya Ali, M; Strandvik, B; Sabel, K-G; Palme Kilander, C; Strömberg, R; Yngve, A
2014-10-01
Polyamine intake from milk is considered essential for post-natal maturation of the immune system and small intestine. The present study aimed to determine polyamine content in human milk after preterm delivery and the association with mothers' dietary intake. In comparison, the polyamine levels were compared with those in term breast milk and some corresponding formulas. Transitional breast milk was collected from 40 mothers delivering after 24-36 weeks of gestation, and from 12 mothers delivering after full term. Food intake was assessed in mothers delivering preterm babies using a 3-day diary. Polyamines were analysed by high-performance liquid chromatography. The dietary intake of polyamines was significantly associated with breast milk content but weaker for spermine than for spermidine and putrescine. Total polyamine level was higher in preterm than term milk and lower in the corresponding formulas. Putrescine, spermidine and spermine contents [mean (SEM)] in preterm milk were 165.6 (25), 615.5 (80) and 167.7 (16) nmol dL⁻¹, respectively, with the levels of putrescine and spermidine being 50% and 25% higher than in term milk. The content of spermine did not differ. Dietary intake of polyamines has an impact on the content in breast milk. The difference between human milk after preterm and term delivery might be considered when using donor human milk for preterm infants. The corresponding formulas had lower contents. Further studies are important for determining the relationship between tissue growth and maturation and optimal intake. © 2013 The British Dietetic Association Ltd.
Zhang, Zhe; Norris, Joy; Schwartz, Charles; Alexov, Emil
2011-01-01
Background Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable. Methodology/Principal Findings To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement. Conclusions/Significance The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases. PMID:21647366
Ishihara, Keiko; Yan, Ding-Hong
2007-01-01
The outward component of the strong inward rectifier K+ current (IKir) plays a pivotal role in polarizing the membranes of excitable and non-excitable cells and is regulated by voltage-dependent channel block by internal cations. Using the Kir2.1 channel, we previously showed that a small fraction of the conductance susceptible only to a low-affinity mode of block likely carries a large portion of the outward current. To further examine the relevance of the low-affinity block to outward IKir and to explore its molecular mechanism, we studied the block of the Kir2.1 and Kir2.2 channels by spermine, which is the principal Kir2 channel blocker. Current–voltage relations of outward Kir2.2 currents showed a peak, a plateau and two peaks in the presence of 10, 1 and 0.1 μm spermine, respectively, which was explained by the presence of two conductances that differ in their susceptibility to spermine block. When the current–voltage relations showed one peak, like those of native IKir, outward Kir2.2 currents were mediated mostly by the conductance susceptible to the low-affinity block. They also flowed in a narrower range than the corresponding Kir2.1 currents, because of 3- to 4-fold greater susceptibility to the low-affinity block than in Kir2.1. Reducing external [K+] shifted the voltage dependences of both the high- and low-affinity block of Kir2.1 in parallel with the shift in the reversal potential, confirming the importance of the low-affinity block in mediating outward IKir. When Kir2.1 mutants known to have reduced sensitivity to internal blockers were examined, the D172N mutation in the transmembrane pore region made almost all of the conductance susceptible only to low-affinity block, while the E224G mutation in the cytoplasmic pore region reduced the sensitivity to low-affinity block without markedly altering that to the high-affinity block or the high/low conductance ratio. The effects of these mutations support the hypothesis that Kir2 channels exist in two states having different susceptibilities to internal cationic blockers. PMID:17640933
Wang, L M; Zhong, H; Tang, N; Pang, L J; Zhang, C J; He, F
2017-11-24
Objective: To investigate the interaction of Ca(2+) protein TRPC1 and STIM1 in extracellular Ca(2+) -sensing receptor (CaR)-induced extracellular Ca(2+) influx and the production of nitric oxide (NO). Methods: Human umbilical vein endothelial cells (HUVECs) were cultured and incubated with CaR agonist spermine (activating store-operates cation channels (SOC) and receptor-operated channels (ROC)), CaR negative allosteric modulator Calhex231 (blocking SOC, activating ROC) and ROC analogue TPA (activating ROC, blocking SOC), protein kinase C (PKC) inhibitor Ro31-8220, PKCs and PKCμ inhibitor Go6967(activate SOC, blocking ROC), respectively. The interaction of TRPC1 and STIM1 was determined using the immunofluorescence methods. The interaction between TRPC1 and STIM1 were examined by Co-immuno precipitation. The HUVECs were divided into: TRPC1 and STIM1 short hairpin RNA group (shTRPC1+ shSTIM1 group), vehicle-TRPC1+ vehicle-STIM1 group and control group. The cells were incubated with four different treatments under the action of above mentioned interventions, intracellular Ca(2+) concentration ([Ca(2+) ](i)) was detected using the fluorescence Ca(2+) indicator Fura-2/AM, the production of NO was determined by DAF-FM. Results: (1) The expression of TRPC1 and STIM1 proteins levels in HUVECs: Under the confocal microscope, TRPC1 and STIM1 protein expression showed masculine gender, both located in cytoplasm in the normal control group. Post incubation with Calhex231+ TPA, Ro31-8220 and Go6967, TRPC1 and STIM1 positioned in cytoplasm was significantly reduced, and the combined TRPC1 and STIM1 was also significantly reduced. (2) The interaction of TRPC1 and STIM1 in HUVECs: The relative ratios of Calhex231+ TPA+ Spermine+ Ca(2+) group, Ro31-8220+ Spermine+ Ca(2+) group and Go6976+ Spermine+ Ca(2+) group STIM1/TRPC1 and TRPC1/STIM1 were as follows: (25.98±2.17)% and (44.10±4.01)%, (20.85±1.01)% and (46.31±3.47)%, (23.88±2.05)% and (39.65±2.91)%, which were significantly lower than those in the control group (100.00±4.66)% and (100.00±6.40)% and in the Spermine+ Ca(2+) group (106.04±2.45)% and (107.78±2.66)% (all P <0.05). (3) The influence of joint TRPC1 and STIM1 transfection to four different drugs treated HUVECs on [Ca(2+) ](i) and NO generation: The changes of two excitation fluorescence intensity ratio and NO net fluorescence intensity values were consistent, [Ca(2+) ](i) and NO net fluorescence intensity values were significantly lower in the experimental group than the control group and the vehicle group (all P <0.05), while which were similar between the vehicle group and control group (all P >0.05). Conclusions: Our results indicate that TRPC1 and STIM1 jointly regulate CaR-mediated Ca(2+) influx and nitric oxide generation in HUVECs in the form of binary complex.
Nitric oxide donors reduce the invasion ability of ovarian cancer cells in vitro.
Kielbik, Michal; Szulc, Izabela; Brzezinska, Marta; Bednarska, Katarzyna; Przygodzka, Patrycja; Sulowska, Zofia; Nowak, Marek; Klink, Magdalena
2014-11-01
The most important factors involved in tumor metastasis and angiogenesis are metalloproteinases (MMPs), vascular endothelial growth factor, and multifunctional transforming growth factor β1. These factors are responsible for extracellular matrix degradation, induction of vascular permeability, and enhancement of tumor cells' invasion and metastasis. Elevated expression and secretion of the above-mentioned factors are correlated with the higher aggressiveness of tumors and low patient survival for example, patients with ovarian cancer. Therefore, regulation of the expression, secretion, and activity of these factors is still considered a potent target for therapeutic intervention in cancer patients. Nitric oxide (NO) donors belong to the class of agents with multivalent targeted activities in cancer cells and are considered potential anticancer therapeutics. Our studies have shown that NO donors such as spermine/NO and diethylenetriamine/NO decrease the secretion of vascular endothelial growth factor-A from the OVCAR-3 ovarian cancer cell line, but not from the SK-OV-3 ovarian cancer cell line. The release of MMP-2 from both cell lines was reduced in a soluble guanylate cyclase-dependent manner by spermine/NO and diethylenetriamine/NO. Nevertheless, MMP-2 activity was only affected in SK-OV-3 cells. Both NO donors reduced the transmigration of the ovarian cancer cell lines. We did not observe any significant effect of spermine/NO and diethylenetriamine/NO on mRNA expression of the tested aggressiveness factors. In conclusion, our data indicated that NO donors reduced the metastatic potential of ovarian cancer cells, but its impact is rather low and requires high concentrations of donors. Moreover, both the tested cell lines differed in the susceptibility to NO donors.
Bagga, S.; Rochford, J.; Klaene, Z.; Kuehn, G. D.; Phillips, G. C.
1997-01-01
The biosynthesis of polyamines from the diamine putrescine is not fully understood in higher plants. A putrescine aminopropyltransferase (PAPT) enzyme activity was characterized in alfalfa (Medicago sativa L.). This enzyme activity was highly specific for putrescine as the initial substrate and did not recognize another common diamine, 1,3-diaminopropane, or higher-molecular-weight polyamines such as spermidine and spermine as alternative initial substrates. The enzyme activity was inhibited by a general inhibitor of aminopropyltransferases, 5[prime]-methylthioadenosine, and by a specific inhibitor of PAPTs, cyclohexylammonium sulfate. The initial substrate specificity and inhibition characteristics of the enzyme activity suggested that it is a classical example of a PAPT. However, this enzyme activity yielded multiple polyamine products, which is uncharacteristic of PAPTs. The major reaction product of PAPT activity in alfalfa was spermidine. The next most abundant products of the enzyme reaction using putrescine as the initial substrate included the tetramines spermine and thermospermine. These two tetramines were distinguished by thin-layer chromatography to be distinct reaction products exhibiting differential rates of formation. In addition, the uncommon polyamines homocaldopentamine and homocaldohexamine were tentatively identified as minor enzymatic reaction products but only in extracts prepared from osmotic stresstolerant alfalfa cultivars. PAPT activity from alfalfa was highest in meristematic shoot tip and floral bud tissues and was not detected in older, nonmeristematic tissues. Product inhibition of the enzyme activity was observed after spermidine was added into the in vitro assay for alfalfa PAPT activity. A biosynthetic pathway is proposed that accounts for the characteristics of this PAPT activity and accommodates a novel scheme by which certain uncommon polyamines are produced in plants. PMID:12223719
Amendola, Roberto; Cervelli, Manuela; Fratini, Emiliano; Sallustio, Davide E; Tempera, Giampiero; Ueshima, Taichi; Mariottini, Paolo; Agostinelli, Enzo
2013-09-01
The most frequent interventions in cancer therapy are currently the destruction of cells by irradiation or administration of drugs both able to induce radical formation and toxic metabolites by enzyme-catalyzed reactions. The aim of this study was to determine the cell viability of cells undergoing a DNA damage threshold accomplished by ROS overproduction via both ectopic expression of murine spermine oxidase (mSMOX) and bovine serum amine oxidase (BSAO) enzymes. Low dose of X-irradiation delivers a challenging dose of damage as evaluated in proficient Chinese hamster AA8 cell line and both deficient transcription-coupled nucleotide excision repair (NER) UV61 cells and deficient base excision repair (BER) EM9 cells, at 6 and 24 h after exposure. The priming dose of ROS overexposure by mSMOX provokes an adaptive response in N18TG2, AA8 and EM9 cell lines at 24 h. Interestingly, in the UV61 cells, ROS overexposure by mSMOX delivers an earlier adaptive response to radiation. The enzymatic formation of toxic metabolites has mainly been investigated on wild-type (WT) and multidrug-resistant (MDR) cancer cell lines, using and spermine as substrate of the BSAO enzyme. MDR cells are more sensitive to the toxic polyamine metabolites than WT cells, thus indicating a new therapeutic strategy to overcome MDR tumors. Since SMOX in mammals is differentially activated in a tissue-specific manner and cancer cells can differ in terms of DNA repair and MDR capabilities, it could be of interest to simultaneously treat with very low dose of X-rays and/or to alter SMOX metabolism to generate a differential response in healthy and cancer tissues.
Wanstall, Janet C; Jeffery, Trina K; Gambino, Agatha; Lovren, Fina; Triggle, Christopher R
2001-01-01
Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO·; NO gas solution) and nitroxyl ion (NO−; from Angeli's salt). The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 μM), concentration-dependently inhibited responses to all agents. 10 μM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. The NO· scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; 100 μM) and hydroxocobalamin (100 μM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. The NO− inhibitor, L-cysteine (3 mM), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO· and NO−. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO. PMID:11588100
Lower polyamine levels in breast milk of obese mothers compared to mothers with normal body weight.
Ali, M Atiya; Strandvik, B; Palme-Kilander, C; Yngve, A
2013-07-01
Obesity is associated with risks for mother and infant, and the mothers' dietary habits influence breast milk composition. Polyamines are secreted in breast milk and are essential for the regulation of intestinal and immune function in newborns and infants. The present study aimed to investigate the level of polyamines in human milk obtained from obese and normal weight mothers at different times of lactation. Breast milk from 50 mothers was obtained at day 3, and at 1 and 2 months after delivery. The mothers had normal body weight [body mass index (BMI) < 25 kg m(-2) ] or were obese (BMI > 30 kg/m(2) ). A subgroup of obese mothers participated in a weight reduction programme during pregnancy. Polyamines were analysed using high-performance liquid chromatography. The total polyamine content was significantly lower at all times in breast milk from obese mothers compared to milk from controls. Spermine levels did not differ between groups at any time in contrast to the levels of putrescine and spermidine. Putrescine concentrations were highest on day 3 and spermidine and spermine were highest at 1 month of lactation. The obese mothers, who received dietary advice during pregnancy based on the Nordic Nutrition Recommendations, had higher concentrations of putrescine and spermidine in their milk than the obese mothers without any intervention. Polyamine concentrations were lower in breast milk from obese mothers compared to mothers with a normal weight. General dietary intervention in obese mothers increased the polyamine levels, suggesting that the low levels in obesity were at least partly associated with food habits. However, the consistency of spermine suggests a special metabolic function of this polyamine. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Seppänen, P; Alhonen-Hongisto, L; Jänne, J
1980-09-01
Enzymic determinations of intracellular concentrations of methylglyoxal-bis(guanylhydrazone), an anticancer drug which inhibits the synthesis of the polyamines spermidine and spermine, in cultured tumor cells revealed that the drug was remarkably effectively concentrated inside the cell. A concentration gradient across the cell membrane as great as 500--1000-fold was formed in cells exposed to the drug for 1-2 days. An exposure of cultured Ehrlich ascites carcinoma cells to increasing concentrations of the drug indicated that the cells could tolerate intracellular concentrations up to 1 mM with only slight changes in their proliferation rate. Micromolar concentrations of spermidine or spermine, but not putrescine, effectively blocked the uptake of methylglyoxal-bis(guanylhydrazone) and reduced the intracellular concentration of the drug below the levels required for growth inhibition. Analysis of cellular polyamine contents in Ehrlich ascites cells exposed to rising concentrations of methylglyoxal-bis(guanylhydrazone) gave little support to the view that the drug-induced growth inhibition was solely produced by an intracellular polyamine deprivation. Not only was the uptake of the drug inhibited in the presence of spermidine and spermine, but it was likewise washed out by polyamines from the cells that had been previously exposed to the drug and then transferred into drug-free medium in the presence of polyamines. For the inhibition of methylglyoxal-bis(guanylhydrazone) uptake by amines, three or more amino/imino groups were apparently required, since low concentrations of aliphatic diamines were either without any effect (short-chain diamines) or only marginally prevented (long-chain diamines) the uptake of the drug. High concentrations of Mg2+ ions, however, markedly inhibited the transport of the drug into Ehrlich ascites tumor cells.
DNA ISOLATION FROM SMALL TISSUE SAMPLES USING SALT AND SPERMINE
Common DNA isolation methods rely upon protein denaturation by organic solvents such as phenol and chloroform. hese solvents pose some risk to the user and require special disposal procedures. e have previously reported a method for isolating DNA from peripheral blood lymphocytes...
Kobayashi, Kazuya; Horii, Yuichiro; Watanabe, Satoshi; Kubo, Yuji; Koguchi, Kumiko; Hoshi, Yoshihiro; Matsumoto, Ken-Ichi; Soda, Kuniyasu
2017-03-01
Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.
Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip
2016-03-22
Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives.
Stojković, Marijana Radić; Gonzalez-Garcia, Jorge; Šupljika, Filip; Galiana-Rosello, Cristina; Guijarro, Lluis; Gazze, Salvatore A; Francis, Lewis W; Piantanida, Ivo; Garcia-Espana, Enrique
2018-04-01
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra. Copyright © 2017 Elsevier B.V. All rights reserved.
Polyamine-Induced Rapid Root Abscission in Azolla pinnata
Gurung, Sushma; Cohen, Michael F.; Fukuto, Jon; Yamasaki, Hideo
2012-01-01
Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses. PMID:22997568
Polyamine-Induced Rapid Root Abscission in Azolla pinnata.
Gurung, Sushma; Cohen, Michael F; Fukuto, Jon; Yamasaki, Hideo
2012-01-01
Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses.
Polyamine metabolism and osmotic stress. I. Relation to protoplast viability
NASA Technical Reports Server (NTRS)
Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.
1986-01-01
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.
Spermidine: a novel autophagy inducer and longevity elixir.
Madeo, Frank; Eisenberg, Tobias; Büttner, Sabrina; Ruckenstuhl, Christoph; Kroemer, Guido
2010-01-01
Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.
Romero-Calderón, Rafael; Krantz, David E.
2005-01-01
Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl−- and Ca2+-independent, but pH-sensitive. Additional experiments using ionophores suggest that polyamine uptake may be H+-coupled. Pharmacological experiments show that polyamine uptake in S2 cells is selectively blocked by MGBG {methylglyoxal bis(guanylhydrazone) or 1,1′-[(methylethanediylidine)-dinitrilo]diguanidine} and paraquat (N,N-dimethyl-4,4′-bipyridylium), two known inhibitors of polyamine uptake in mammalian cells. In addition, inhibitors known to block the Slc22 (solute carrier 22) family of organic anion/cation transporters inhibit spermine uptake in S2 cells. These data and the genetic tools available in Drosophila will facilitate the molecular identification and further characterization of this activity. PMID:16248856
Romero-Calderón, Rafael; Krantz, David E
2006-01-15
Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl-- and Ca2+-independent, but pH-sensitive. Additional experiments using ionophores suggest that polyamine uptake may be H+-coupled. Pharmacological experiments show that polyamine uptake in S2 cells is selectively blocked by MGBG {methylglyoxal bis(guanylhydrazone) or 1,1'-[(methylethanediylidine)-dinitrilo]diguanidine} and paraquat (N,N-dimethyl-4,4'-bipyridylium), two known inhibitors of polyamine uptake in mammalian cells. In addition, inhibitors known to block the Slc22 (solute carrier 22) family of organic anion/cation transporters inhibit spermine uptake in S2 cells. These data and the genetic tools available in Drosophila will facilitate the molecular identification and further characterization of this activity.
NASA Astrophysics Data System (ADS)
Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip
2016-03-01
Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.
Role of polyamines in somatic embryogenesis
S.C. Minocha; R. Minocha
1995-01-01
The aliphatic amines putrescine, spermidine, and spermine are present in all living organisms. Since the demonstration of "an essential nutritional function" for putrescine in the bacterium Hemophilus parainfluenzae (Herbst and Snell 1948), polyamines have attracted a great deal of attention from workers in diverse fields of the life...
Polyamines: Biomolecules with diverse functions in plant and human health and disease
USDA-ARS?s Scientific Manuscript database
The literature abounds with solid evidence that affirms the ubiquitous presence of biogenic amines - polyamines, particularly spermidine and spermine, in all living cells together with their indispensable roles in many biochemical and physiological processes beneficial to plants as well as human hea...
Transgenic manipulation of the metabolism of polyamines in poplar cells
Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha
2001-01-01
The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...
Differential and functional interactions emphasize the multiple roles of polyamines in plants
USDA-ARS?s Scientific Manuscript database
Biogenic amines putrescine, spermidine and spermine are ubiquitous in nature and have interested researchers because they are essential for cell division and viability, and due to a large body of their pharmacological effects on growth and development in most living cells. The genes and enzymes invo...
Polyamine-iron chelator conjugate.
Bergeron, Raymond J; McManis, James S; Franklin, April M; Yao, Hua; Weimar, William R
2003-12-04
The current study demonstrates unequivocally that polyamines can serve as vectors for the intracellular delivery of the bidentate chelator 1,2-dimethyl-3-hydroxypyridin-4-one (L1). The polyamine-hydroxypyridinone conjugate 1-(12-amino-4,9-diazadodecyl)-2-methyl-3-hydroxy-4(1H)-pyridinone is assembled from spermine and 3-O-benzylmaltol. The conjugate is shown to form a 3:1 complex with Fe(III) and to be taken up by the polyamine transporter 1900-fold against a concentration gradient. The K(i) of the conjugate is 3.7 microM vs spermidine for the polyamine transporter. The conjugate is also at least 230 times more active in suppressing the growth of L1210 murine leukemia cells than is the parent ligand, decreases the activities of the polyamine biosynthetic enzymes ornithine decarboxylase and S-adenosylmethionine decarboxylase, and upregulates spermidine-spermine N (1)-acetyltransferase. However, the effect on native polyamine pools is a moderate one. These findings are in keeping with the idea that polyamines can also serve as efficient vectors for the intracellular delivery of other iron chelators.
Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives.
Pavlov, V; Kong Thoo Lin, P; Rodilla, V
2001-07-31
Bis-naphthalimidopropyl spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-spermine (BNIPOSpm) showed high in vitro cytotoxicity against human breast cancer MCF-7 cells with IC(50) values of 1.38, 2.91 and 8.45 microM, respectively. These compounds were found to effectively displace the intercalating agent ethidium bromide bound to the calf thymus DNA using fluorimetric methods (C(50) 0.08-0.12 microM) and their apparent equilibrium binding constants (K(app)) were calculated to be in the range of 10.5-18 x 10(7) M(-1). Furthermore, strong stabilisation of calf thymus DNA duplex in the presence of bis-naphthalimidopropyl polyamine derivatives (BNIPSpd, BNIPSpm and BNIPOSpm) was observed by UV spectrophotometric analysis (T(m)=93.3-97 degrees C compared with 75 degrees C for calf thymus DNA without drug). Because of their inherent fluorescence, these compounds were localised preferentially inside the nucleus as evidenced by their direct observation under the fluorescence microscope. The results obtained suggest that the cytotoxic activity of the bis-naphthalimidopropyl polyamines may be in part, caused by their effects on DNA.
NASA Technical Reports Server (NTRS)
Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.
1986-01-01
We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.
Polyamine analogue antidiarrheals: a structure-activity study.
Bergeron, R J; Wiegand, J; McManis, J S; Weimar, W R; Smith, R E; Algee, S E; Fannin, T L; Slusher, M A; Snyder, P S
2001-01-18
The syntheses of a group of spermine polyamine analogues and their evaluation as antidiarrheals are described. Each compound was assessed in a rodent castor oil-induced diarrhea model for its ability to reduce stool output and weight loss in a dose-dependent manner. The spermine pharmacophore is shown to be an excellent platform from which to construct antidiarrheals. The activity of the compounds is very dependent on both the nature of the terminal alkyl groups and the geometry of the methylene spacers separating the nitrogens. The toxicity profile is also quite dependent on these same structural features. On the basis of subcutaneous dose-response data and toxicity profiles, two compounds, N(1),N(12)-diisopropylspermine and N(1),N(12)-diethylspermine, were taken forward into more complete evaluation. These measurements included formal acute and chronic toxicity trials, drug and metabolic tissue distribution studies, and assessment of the impact of these analogues on tissue polyamine pools. Finally, the remarkable activity of N,N'-bis[3-(ethylamino)propyl]-trans-1,4-cyclohexanediamine underscores the need to further explore this framework as a pharmacophore for the construction of other antidiarrheal agents.
Yaakoubi, Hnia; Hamdani, Saber; Bekalé, Laurent; Carpentier, Robert
2014-01-01
The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2 −) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2 − generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2 − generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer. PMID:25420109
Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.
2012-01-01
The flavoprotein Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine in the biosynthetic pathway for pantothenic acid. The same reaction is catalyzed by the mammalian polyamine and spermine oxidases. The active site of Fms1 contains three amino acid residues positioned to interact with the polyamine substrate, His67, Asn195, and Asp94. These three residues form a hydrogen-bonding triad with Asn195 the central residue. Previous studies of the effects of mutating His67 are consistent with that residue being important both for interacting with the substrate and for maintaining the hydrogen bonds in the triad (Adachi, M. S., Taylor, A. B., Hart, P. J., and Fitzpatrick, P. F. (2012) Biochemistry 51, 4888-4897). The N195A and D94N enzymes have now been characterized to evaluate their roles in catalysis. Both mutations primarily affect the reductive half-reaction. With N1-acetylspermine as substrate, the rate constant for flavin reduction decreases ~450-fold for both mutations; the effects with spermine as substrate are smaller, 20- to 40-fold. The kcat/Kamine and kcat pH profiles with N1acetylspermine are only slightly changed from the profiles for the wild-type enzyme, consistent with the pKa values arising from the amine substrate or product and not from active site residues. The structure of the N195A enzyme was determined at a resolution of 2.0 Å. The structure shows a molecule of tetraethylene glycol in the active site and establishes that the mutation has no effect on the protein structure. Overall, the results are consistent with the role of Asn195 and Asp94 being to properly position the polyamine substrate for oxidation. PMID:23034052
Association of Polyaminergic Loci With Anxiety, Mood Disorders, and Attempted Suicide
Fiori, Laura M.; Wanner, Brigitte; Jomphe, Valérie; Croteau, Jordie; Vitaro, Frank
2010-01-01
Background The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression. Methodology/Principal Findings We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes. Conclusions/Significance These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders. PMID:21152090
Association of polyaminergic loci with anxiety, mood disorders, and attempted suicide.
Fiori, Laura M; Wanner, Brigitte; Jomphe, Valérie; Croteau, Jordie; Vitaro, Frank; Tremblay, Richard E; Bureau, Alexandre; Turecki, Gustavo
2010-11-30
The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression. We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes. These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders.
Chaturvedi, R; de Sablet, T; Asim, M; Piazuelo, M B; Barry, D P; Verriere, T G; Sierra, J C; Hardbower, D M; Delgado, A G; Schneider, B G; Israel, D A; Romero-Gallo, J; Nagy, T A; Morgan, D R; Murray-Stewart, T; Bravo, L E; Peek, R M; Fox, J G; Woster, P M; Casero, R A; Correa, P; Wilson, K T
2015-06-01
Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world's population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate-limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared with the low-risk region on the Pacific coast. When cocultured with gastric epithelial cells, clinical strains of H. pylori from the high-risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low-risk strains. These findings were not attributable to differences in the cytotoxin-associated gene A oncoprotein. Gastric tissues from subjects from the high-risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG and IM. In Mongolian gerbils, a prototype colonizing strain from the high-risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low-risk region. Treatment of gerbils with either α-difluoromethylornithine, an inhibitor of ODC, or MDL 72527 (N(1),N(4)-Di(buta-2,3-dien-1-yl)butane-1,4-diamine dihydrochloride), an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention.
Chaturvedi, Rupesh; de Sablet, Thibaut; Asim, Mohammad; Piazuelo, M. Blanca; Barry, Daniel P.; Verriere, Thomas G.; Sierra, J. Carolina; Hardbower, Dana M.; Delgado, Alberto G.; Schneider, Barbara G.; Israel, Dawn A.; Romero-Gallo, Judith; Nagy, Toni A.; Morgan, Douglas R.; Murray-Stewart, Tracy; Bravo, Luis E.; Peek, Richard M.; Fox, James G.; Woster, Patrick M.; Casero, Robert A.; Correa, Pelayo; Wilson, Keith T.
2014-01-01
Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world’s population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared to the low risk region on the Pacific coast. When co-cultured with gastric epithelial cells, clinical strains of H. pylori from the high risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low risk strains. These findings were not attributable to differences in the CagA oncoprotein. Gastric tissues from subjects from the high risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG, and IM. In Mongolian gerbils, a prototype colonizing strain from the high risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low risk region. Treatment of gerbils with either α-difluoromethylornithine (DFMO), an inhibitor of ODC, or MDL 72527, an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention. PMID:25174398
Hardbower, Dana M.; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A.; Verriere, Thomas; Lewis, Nuruddeen D.; Chaturvedi, Rupesh; Piazuelo, M. Blanca; Wilson, Keith T.
2016-01-01
We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2−/− mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2−/− to Nos2−/− mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2−/− and Arg2−/−;Nos2−/− mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2−/− mice demonstrated enhanced M1 macrophage activation, Nos2−/− and Arg2−/−;Nos2−/− mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/ Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2−/−, but not Nos2−/− or Arg2−/−;Nos2−/− mice. Gastric tissues from infected Arg2−/− mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N1-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism. PMID:27074721
2004-01-01
The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700
Adachi, Mariya S; Taylor, Alexander B; Hart, P John; Fitzpatrick, Paul F
2012-10-30
Flavoprotein Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine in the biosynthetic pathway for pantothenic acid. The same reaction is catalyzed by the mammalian polyamine and spermine oxidases. The active site of Fms1 contains three amino acid residues positioned to interact with the polyamine substrate, His67, Asn195, and Asp94. These three residues form a hydrogen-bonding triad with Asn195 being the central residue. Previous studies of the effects of mutating His67 are consistent with that residue being important both for interacting with the substrate and for maintaining the hydrogen bonds in the triad [Adachi, M. S., Taylor, A. B., Hart, P. J., and Fitzpatrick, P. F. (2012) Biochemistry 51, 4888-4897]. The N195A and D94N enzymes have now been characterized to evaluate their roles in catalysis. Both mutations primarily affect the reductive half-reaction. With N(1)-acetylspermine as the substrate, the rate constant for flavin reduction decreases ~450-fold for both mutations; the effects with spermine as the substrate are smaller, 20-40-fold. The k(cat)/K(amine)- and k(cat)-pH profiles with N(1)-acetylspermine are only slightly changed from the profiles for the wild-type enzyme, consistent with the pK(a) values arising from the amine substrate or product and not from active site residues. The structure of the N195A enzyme was determined at a resolution of 2.0 Å. The structure shows a molecule of tetraethylene glycol in the active site and establishes that the mutation has no effect on the protein structure. Overall, the results are consistent with the role of Asn195 and Asp94 being to properly position the polyamine substrate for oxidation.
Genomic organization of plant aminopropyl transferases.
Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco
2010-07-01
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin. 2010 Elsevier Masson SAS. All rights reserved.
Antimicrobial, Antiparasitic and Cytotoxic Spermine Alkaloids from Albizia schimperiana
USDA-ARS?s Scientific Manuscript database
Albizia schimperiana Oliv. (Leguminosae) is a tree distributed in the highland of Kenya, where it is used as a traditional medicine for the treatment of bacterial and parasitic infections, notably pneumonia and malaria, respectively. Bioassay guided isolation of the CH2Cl2–MeOH 1:1/ MeOH-H2O 9:1 (m...
Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata
Rakesh Minocha; Dale R. Smith; Cathie Reeves; Kevin D. Steele; Subhash C. Minocha
1999-01-01
Changes in the cellular content of three polyamines (putrescine, spermidine and spermine) were compared at different stages of development in zygotic and somatic embryos of Pinus radiata D. Don. During embryo development, both the zygotic and the somatic embryos showed a steady increase in spermidine content, with either a small decrease or no...
Hydroxypyridonate chelating agents and synthesis thereof
Raymond, K.N.; Scarrow, R.C.; White, D.L.
1985-11-12
Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.
Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine.
Cervelli, Manuela; Leonetti, Alessia; Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo
2018-02-14
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Buňková, Leona; Adamcová, Gabriela; Hudcová, Kateřina; Velichová, Helena; Pachlová, Vendula; Lorencová, Eva; Buňka, František
2013-11-01
The aim of the study was the monitoring of six biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, putrescine, and cadaverine) and two polyamines (spermidine and spermine) in 112 samples of dairy products purchased in the Czech Republic, namely in 55 cheeses made in small-scale farms and in 57 fermented dairy products. The products were tested at the end of their shelf-life period. Neither tryptamine nor phenylethylamine was detected in the monitored samples; histamine was found only in four cheese samples containing up to 25mg/kg. The contents of spermine and spermidine were low and did not exceed the values of 35 mg/kg. Significant amounts of tyramine, putrescine, and cadaverine occurred especially in cheeses produced from ewe's milk or in long-term ripened cheeses. In about 10% of the tested cheeses, the total concentration of all the monitored biogenic amines and polyamines exceeded the level of 200mg/kg, which can be considered toxicologically significant. In fermented dairy products, the tested biogenic amines occurred in relatively low amounts (generally up to 30 mg/kg) that are regarded safe for the consumer's health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biogenic amine profile in unripe Arabica coffee beans processed according to dry and wet methods.
Dias, Eduardo C; Pereira, Rosemary G F A; Borém, Flávio M; Mendes, Eulália; de Lima, Renato R; Fernandes, José O; Casal, Susana
2012-04-25
Immature coffee fruit processing contributes to a high amount of defective beans, which determines a significant amount of low-quality coffee sold in the Brazilian internal market. Unripe bean processing was tested, taking the levels of bioactive amines as criteria for evaluating the extent of fermentation and establishing the differences between processing methods. The beans were processed by the dry method after being mechanically depulped immediately after harvest or after a 12 h resting period in a dry pile or immersed in water. Seven bioactive amines were quantified: putrescine, spermine, spermidine, serotonin, cadaverine, histamine, and tyramine, with global amounts ranging from 71.8 to 80.3 mg/kg. The levels of spermine and spermidine were lower in the unripe depulped coffee than in the natural coffee. The specific conditions of dry and wet processing also influenced cadaverine levels, and histamine was reduced in unripe depulped coffee. A resting period of 12 h does not induce significant alteration on the beans and can be improved if performed in water. These results confirm that peeling immature coffee can decrease fermentation processes while providing more uniform drying, thus reducing the number of defects and potentially increasing beverage quality.
Pavlov, V; Lin, P Kong Thoo; Rodilla, V
2002-04-01
The novel polyamine derivatives sulphonamido oxa-spermine (oxa-Spm) and sulphonamido oxa-spermidine (oxa-Spd) exhibited rapid cytotoxic action towards MCF-7 human breast cancer cells with IC50 values of 4.35 and 6.47 pM, respectively, after 24-h drug exposure. Neither compound is a substrate of serum amine oxidase. Both oxa-Spm and oxa-Spd caused cell shrinkage, as determined by phase-contrast microscopy. After incubation with 10 microM of either compound for 8 h, the cells underwent chromatin condensation and nuclear fragmentation. However, no clear DNA ladder was obtained by electrophoresis. The sulphonamido oxa-polyamine derivatives and especially oxa-Spd enhanced the activity of polyamine oxidase (PAO), an enzyme capable of oxidising N1-acetylated spermine and spermidine to spermidine and putrescine, respectively, generating cytotoxic H2O2 and 3-acetamidopropanal as by-products. The intracellular polyamine content was only marginally reduced in response to drug treatment. In conclusion, our data show that these novel sulphonamido oxa-polyamine derivatives possess high cytotoxic activity against MCF-7 cells and indicate that induction of PAO may mediate their cytotoxicity via apoptosis.
Yu, N; Xun, Y; Jin, D; Yang, H; Hang, T; Cui, H
2010-01-01
The aim of this study was to investigate the effect of two sperminated pullulans (SP) with a different number of amino groups (SP-L, amino group content 0.124 mmol/g polymer; and SP-H, amino group content 0.578 mmol/g polymer) on the permeation of drugs through isolated rabbit corneas. Determination of corneal hydration levels and Draize eye tests were performed to assess the safety of SP both in vitro and in vivo. For 0.2% (w/v) SP-L and 0.2% (w/v) SP-H, the enhancement ratios (ERs) with dexamethasone of 1.34 and 1.42, respectively, were not statistically significant. For ofloxacin, tobramycin and sodium fluorescein, the ERs with 0.2% SP-L were 1.37, 2.02 and 2.12, respectively, and with 0.2% SP-H the ERs were 1.84, 4.69 and 6.87, respectively; these ERs were all statistically significant. Enhancement increased with increasing amino group content of the SP. The improved transcorneal drug absorption via the paracellular route indicated opening of the tight junctions in the corneal epithelium. Irritation tests indicated that 0.2% SP-L and 0.2% SP-H did not damage the corneal tissues.
Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor
2014-11-17
The trinuclear platinum complexes (TriplatinNC-A [{Pt(NH3 )3 }2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](6+) , and TriplatinNC [{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH3 (+) )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](8+) ) are biologically active agents that bind to DNA through noncovalent (hydrogen bonding, electrostatic) interactions. Herein, we show that TriplatinNC condenses DNA with a much higher potency than conventional DNA condensing agents. Both complexes induce aggregation of small transfer RNA molecules, and TriplatinNC in particular completely inhibits DNA transcription at lower concentrations than naturally occurring spermine. Topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at concentrations which were 60 times and 250 times lower than that of spermine. The mechanisms for the biological activity of TriplatinNC-A and TriplatinNC may be associated with their ability to condense/aggregate nucleic acids with consequent inhibitory effects on crucial enzymatic activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biosynthesis of putrescine in the prostate gland of the rat
Pegg, A. E.; Williams-Ashman, H. G.
1968-01-01
In the rat ventral prostate gland the biosynthesis of putrescine, a precursor of spermidine and spermine, is shown to occur by the direct decarboxylation of l-ornithine. Some properties of a soluble pyridoxal phosphate-dependent l-ornithine decarboxylase are described. The findings are discussed in relation to other enzymic reactions involved in the biosynthesis of polyamines by the prostate gland. PMID:5667265
Macrophage Responses to B. Anthracis
2006-08-14
contaminating DNA present in the RNA samples. key step in the synthesis of spermine and spermidine , key Ornithine decarboxylase expression has long been known...D. Relman. 2000. The transcriptional responses of spermidine protection of plasmid DNA against single-strand breaks induced respiratory epithelial...Nicotera, and S. Orrenius. 1991. Spermidine D. A. Rasko, J. Ravel, T. D. Read, S. N. Peterson, J. Yates 3rd, and P. C. prevents endoclease activation
Biological activity of antitumoural MGBG: the structural variable.
Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A
2008-05-01
The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.
Marine-Derived Metabolites of S-Adenosylmethionine as Templates for New Anti-Infectives
Sufrin, Janice R.; Finckbeiner, Steven; Oliver, Colin M.
2009-01-01
S-Adenosylmethionine (AdoMet) is a key biochemical co-factor whose proximate metabolites include methylated macromolecules (e.g., nucleic acids, proteins, phospholipids), methylated small molecules (e.g., sterols, biogenic amines), polyamines (e.g., spermidine, spermine), ethylene, and N-acyl-homoserine lactones. Marine organisms produce numerous AdoMet metabolites whose novel structures can be regarded as lead compounds for anti-infective drug design. PMID:19841722
An Advanced Approach to Simultaneous Monitoring of Multiple Bacteria in Space
NASA Technical Reports Server (NTRS)
Eggers, Mitch
1998-01-01
This interim report describes progress on the development of spacecraft-compatible methods of nucleic acid preparation and cleanup. Grantee found that performance of a widely-known protocol could be greatly enhanced by the addition of a sizing step to eliminate acids. Testing of alternative adsorptive methods is underway. Grantee also confirmed and extended observation of precipitation of DNA by condensing agents such a spermine at low ionic strength.
Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin
2005-06-01
Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.
Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei
Jones-Carson, Jessica; Laughlin, James R.; Stewart, Amanda L.; Voskuil, Martin I.; Vázquez-Torres, Andrés
2012-01-01
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis. PMID:22521523
Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei.
Jones-Carson, Jessica; Laughlin, James R; Stewart, Amanda L; Voskuil, Martin I; Vázquez-Torres, Andrés
2012-06-30
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Satriano, Joseph; Ientile, Riccardo
2011-01-01
Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. The present study was undertaken to investigate the effects of agmatine on cell injury induced by rotenone, commonly used in establishing in vivo and in vitro models of Parkinson's disease, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report that agmatine dose-dependently suppressed rotenone-induced cellular injury through a reduction of oxidative stress. Similar effects were obtained by spermine, suggesting a scavenging effect for these compounds. However, unlike spermine, agmatine also prevented rotenone-induced nuclear factor-κB nuclear translocation and mitochondrial membrane potential dissipation. Furthermore, rotenone-induced increase in apoptotic markers, such as caspase 3 activity, Bax expression and cytochrome c release, was significantly attenuated with agmatine treatment. These findings demonstrate mitochondrial preservation with agmatine in a rotenone model of apoptotic cell death, and that the neuroprotective action of agmatine appears because of suppressing apoptotic signalling mechanisms. Thus, agmatine may have therapeutic potential in the treatment of Parkinson's disease by protecting dopaminergic neurons.
Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine
Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo
2018-01-01
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy. PMID:29443878
Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita
2010-02-01
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.
Electrostatic Origin of Salt-Induced Nucleosome Array Compaction
Korolev, Nikolay; Allahverdi, Abdollah; Yang, Ye; Fan, Yanping; Lyubartsev, Alexander P.; Nordenskiöld, Lars
2010-01-01
The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na+, K+, Mg2+, Ca2+, spermidine3+, Co(NH3)63+, and spermine4+. We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine4+ to 100 mM for Na+). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects. PMID:20858435
Aloisi, Iris; Cai, Giampiero; Faleri, Claudia; Navazio, Lorella; Serafini-Fracassini, Donatella; Del Duca, Stefano
2017-01-01
Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30–40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth. PMID:29033970
Ethylglyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in L1210 leukemia cells.
Seppänen, P; Ruohola, H; Jänne, J
1984-04-16
Ethylglyoxal bis(guanylhydrazone), a close derivative of the known anti-cancer drug methylglyoxal bis(guanylhydrazone), is also a powerful inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the enzyme needed for the synthesis of spermidine and spermine. There were, however, marked differences between the ethyl and methyl derivatives of glyoxal bis(guanylhydrazone) when tested in cultured L1210 cells. The cellular accumulation of ethylglyoxal bis(guanylhydrazone) represented only a fraction (20-25%) of that of the methyl derivative. Moreover, polyamine depletion, which is known to strikingly stimulate the uptake of methylglyoxal bis(guanylhydrazone), decreased, if anything, the uptake of ethylglyoxal bis(guanylhydrazone) by L1210 cells. The compound produced spermidine and spermine depletion fully comparable to that achieved with methylglyoxal bis(guanylhydrazone) at micromolar concentrations. Ethylglyoxal bis(guanylhydrazone) was growth-inhibitory to L1210 cells and produced an additive antiproliferative action when used together with 2-difluoromethylornithine. Ethylglyoxal bis(guanylhydrazone) was distinctly less effective than methylglyoxal bis(guanylhydrazone) in releasing bound polyamines from isolated cell organelles in vitro. Ethylglyoxal bis(guanylhydrazone) was also devoid of the early and profound mitochondrial toxicity typical to methylglyoxal bis(guanylhydrazone). These findings may indicate that this compound is a more specific inhibitor of polyamine biosynthesis with less intracellular polyamine 'receptor-site' activity than methylglyoxal bis(guanylhydrazone).
2014-10-01
Imaging (EP-JRESI); Citrate, Choline, Creatine , Spermine, 3Tesla MRI scanner, Endo-rectal MR coil, WET Water Suppression, prostate cancer (PCa...spectroscopic imaging are due to the overlap of metabolite resonances, quantifying few metabolites only (citrate (Cit), choline (Ch), creatine (Cr...concentrations of citrate (Cit), creatine (Cr), choline (Ch) and polyamines that are used to detect and diagnose PCa (2). The challenging task in 1D MRS
Rakesh Minocha; Stephanie Long; Alison H. Magill; John Aber; William H. McDowell
2000-01-01
Polyamines (putrescine, spermidine, and spermine) are low molecular weight, open-chained, organic polycations which are found in all organisms and have been linked with stress responses in plants. The objectives of our study were to investigate the effects of chronic N additions to pine and hardwood stands at Harvard Forest, Petersham, MA on foliar polyamine and...
Mechanistic and Structural Analyses of the Role of His67 in the Yeast Polyamine Oxidase Fms1†
Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.
2012-01-01
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N1-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2–3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The kcat/KO2 value changes very little upon mutation with N1-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The kcat/KM-pH profiles with N1-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pKa values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pKa as wild-type Fms1, about ~7.4; this pKa is assigned to the substrate N4. The kcat/KO2-pH profiles for wild-type Fms1 and the H67A enzyme both show a pKa of about ~6.9; this suggests His67 is not responsible for this pH behaviour. With the H67Q, H67N, and H67A enzymes the kcat value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 Å. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure. PMID:22642831
Anti-Invasive and Anti-Proliferative Synergism between Docetaxel and a Polynuclear Pd-Spermine Agent
Batista de Carvalho, Ana L. M.; Medeiros, Paula S. C.; Costa, Francisco M.; Ribeiro, Vanessa P.; Sousa, Joana B.; Marques, Maria P. M.
2016-01-01
The present work is aimed at evaluating the antitumour properties of a Pd(II) dinuclear complex with the biogenic polyamine spermine, by investigating: i) the anti-angiogenic and anti-migration properties of a Pd(II) dinuclear complex with spermine (Pd2Spm); ii) the anti-proliferative activity of Pd2Spm against a triple negative human breast carcinoma (MDA-MB-231); and finally iii) the putative interaction mediated by combination of Pd2Spm with Docetaxel. Anti-invasive (anti-angiogenic and anti-migratory) as well as anti-proliferative capacities were assessed, for different combination schemes and drug exposure times, using the CAM assay and VEGFR2 activity measurement, the MatrigelTM method and the SRB proliferation test. The results thus obtained evidence the ability of Pd2Spm to restrict angiogenesis and cell migration: Pd2Spm induced a marked inhibition of migration (43.8±12.2%), and a higher inhibition of angiogenesis (81.8±4.4% for total length values, at 4 μM) as compared to DTX at the clinical dosage 4x10-2 μM (26.4±14.4%; n = 4 to 11). Combination of Pd2Spm/DTX was more effective as anti-invasive and anti-proliferative than DTX or Pd2Spm in sole administration, which is compatible with the occurrence of synergism: for the anti-angiogenic effect, IC50(Pd2Spm/DTX) = 0.5/0.5x10-2 μM vs IC50(DTX) = 1.7x10-2 μM and IC50(Pd2Spm) = 1.6 μM. In conclusion, the reported effects of Pd2Spm on angiogenesis, migration and proliferation showed that this compound is a promising therapeutic agent against this type of breast cancer. Moreover, combined administration of Pd2Spm and DTX was found to trigger a substantial synergetic effect regarding angiogenesis inhibition as well as anti-migratory and anti-proliferative activities reinforcing the putative use of Pd(II) complexes in chemotherapeutic regimens. This is a significant outcome, aiming at the application of these combined strategies towards metastatic breast cancer (or other type of resistant cancers), justifying further studies that include pre-clinical trials. PMID:27880824
Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1.
Adachi, Mariya S; Taylor, Alexander B; Hart, P John; Fitzpatrick, Paul F
2012-06-19
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N(1)-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k(cat)/K(O2) value changes very little upon mutation with N(1)-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k(cat)/K(M)-pH profiles with N(1)-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK(a) values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK(a) as wild-type Fms1, about ∼7.4; this pK(a) is assigned to the substrate N4. The k(cat)/K(O2)-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK(a) of about ∼6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k(cat) value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 Å. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.
Clay, Nicole K; Nelson, Timothy
2005-06-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.
Clay, Nicole K.; Nelson, Timothy
2005-01-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745
NASA Technical Reports Server (NTRS)
Warters, Raymond L.; Newton, Gerald L.; Olive, Peggy L.; Fahey, Robert C.
1999-01-01
The polyamines putrescine (PUT) and spermine (SPM) were examined for their ability to protect human cell Deoxyribonucleic Acid (DNA) against the formation of radiation-induced double-strand breaks (DSBs). As observed previously, under conditions where polyamines were shown to be almost completely absent, association with nuclear matrix protein into a nucleoid, and organization into chromatin structure, protected DNA from induction of DSBs by factors of 4.5 and 95, respectively. At concentrations below 1 mM, PUT or SPM provided equivalent levels of protection to deproteinized nuclear DNA, consistent with their capacity to scavenge radiation-induced radicals. At constant ionic strength, 5 mM SPM protected deproteinized DNA and nucleoid DNA and DNA in nuclear chromatin by factors of 100 and 26, respectively. At 5 mM, SPM provided 15 times greater protection of deproteinized DNA than did PUT. Under physiologically relevant conditions, 5 mM SPM protected DNA in the intact nucleus from the induction of DSBs by a factor of 2 relative to DNA in the absence of SPM. Studies of SPM binding during cellular fractionation revealed that a significant fraction of the cellular SPM is tightly bound in the nucleus but can be removed by extended washing. Thus the association of SPM with nuclear chromatin appears to be a significant contributor to the resistance of the cell's DNA to the induction of DSBs.
Löser, C; Fölsch, U R; Mustroph, D; Cantor, P; Wunderlich, U; Creutzfeldt, W
1988-01-01
We investigated the trophic effect on the pancreas of male Wistar rats fed up to 20 days with either raw soybean flour (RSF) containing an active trypsin inhibitor or heat-inactivated soybean flour (HSF). The concentrations of the polyamines putrescine, spermidine, and spermine in the pancreas as well as cholecystokinin (CCK) concentrations in arterial and portal vein plasma were measured. Plasma CCK concentrations were measured by a sensitive radioimmunoassay specific for the sulfated region of CCK, whereas polyamine concentrations are determined by reversed phase high-performance liquid chromatography. The levels of CCK in both arterial and portal vein plasma were significantly higher in RSF- compared with HSF-fed rats, the concentration in the portal vein being twice as high compared with the aorta. A significant increase in pancreatic weight and protein content was positively correlated to an increase in putrescine and spermidine in the pancreas of RSF-fed rats compared with HSF-fed controls, whereas the spermine content did not differ between the two groups. The pancreatic DNA content in RSF-fed rats was significantly above control values of day 20 only. These data support the hypothesis that the trophic effect of soybean trypsin inhibitor on the pancreas is mediated by CCK and that polyamines might play an important role in CCK-induced pancreatic growth.
Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2014-01-01
Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.
Wang, Wei; Liu, Ji-Hong
2016-08-18
Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance.
Thibault, Benoît; Clement, Emily; Zorza, Grégoire; Meignan, Samuel; Delord, Jean-Pierre; Couderc, Bettina; Bailly, Christian; Narducci, Fabrice; Vandenberghe, Isabelle; Kruczynski, Anna; Guilbaud, Nicolas; Ferré, Pierre; Annereau, Jean-Philippe
2016-01-01
Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer. We compared the effects of etoposide and F14512 on a panel of five carboplatin-sensitive or resistant ovarian cancer models. We assessed the incorporation of F17073, a spermine-linked fluorescent probe, in these cells and in 18 clinical samples. We then showed that F14512 exhibits a high anti-proliferative and pro-apoptotic activity, particularly in cells with high levels of F17073 incorporation. Consistently, F14512 significantly inhibited tumor growth compared to etoposide, in a cisplatin-resistant A2780R subcutaneous model, at a dose of 1.25 mg/kg. In addition, ex vivo analysis indicated that 15 out of 18 patients presented a higher F17073 incorporation into tumor cells compared to normal cells. Overall, our data suggest that F14512, a targeted drug with a potent anti-tumor efficacy, constitutes a potential new therapy for highly PTS-positive and platinum-resistant ovarian cancer-bearing patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The effects of sperminated pullulans on cornea permeability to puerarin and the toxicity.
Yu, Nannan; Dong, Guo; Ge, Hongyan; Jin, Di; Cui, Hao; Liu, Ping
2012-10-01
To investigate the varied effects of sperminated pullulans (SP) with different amino residues on cornea permeability and its local toxicity. Three groups of rabbits were used: control, low-amino residue content SP (SP-L), and high-amino residue content SP (SP-H). The in vitro and in vivo spreading assays were combined with high performance liquid chromatography (HPLC) to measure the concentration of puerarin in the external medium or aqueous humor when 0% SP, 0.2% SP-L, and 0.2% SP-H were included. The toxicity of SP was determined by corneal hydration values, Draize score, aqueous humor protein concentration, corneal endothelial evaluation, as well as light microscopy and electron microscopy. The application of 0.2% SP-L and 0.2% SP-H to the cornea in vitro increased puerarin apparent permeability coefficient by 1.96-fold (P<0.05) and 2.95-fold (P<0.01), respectively. SP-H showed stronger effect than SP-L (P<0.05). For the in vivo assay, those were 1.81-fold (P<0.05) and 3.71-fold (P<0.01), respectively. With the SP application, the corneal hydration values were <83% and Draize scores were <4, with no apparent changes in histological observations. SP is one potential adjuvant promoting puerarin permeability to the cornea, and the high-content amino residue SP showed stronger effect, without ocular toxicity.
Leruez, Stéphanie; Bresson, Thomas; Chao de la Barca, Juan M; Marill, Alexandre; de Saint Martin, Grégoire; Buisset, Adrien; Muller, Jeanne; Tessier, Lydie; Gadras, Cédric; Verny, Christophe; Amati-Bonneau, Patrizia; Lenaers, Guy; Gohier, Philippe; Bonneau, Dominique; Simard, Gilles; Milea, Dan; Procaccio, Vincent; Reynier, Pascal
2018-02-01
To determine the plasma metabolomic signature of the exfoliative syndrome (XFS), the most common cause worldwide of secondary open-angle glaucoma. We performed a targeted metabolomic study, using the standardized p180 Biocrates Absolute IDQ p180 kit with a QTRAP 5500 mass spectrometer, to compare the metabolomic profiles of plasma from individuals with XFS (n = 16), and an age- and sex-matched control group with cataract (n = 18). A total of 151 metabolites were detected correctly, 16 of which allowed for construction of an OPLS-DA model with a good predictive capability (Q2cum = 0.51) associated with a low risk of over-fitting (permQ2 = -0.48, CV-ANOVA P-value <0.001). The metabolites contributing the most to the signature were octanoyl-carnitine (C8) and decanoyl-carnitine (C10), the branched-chain amino acids (i.e., isoleucine, leucine, and valine), and tyrosine, all of which were at higher concentrations in the XFS group, whereas spermine and spermidine, together with their precursor acetyl-ornithine, were at lower concentrations than in the control group. We identified a significant metabolomic signature in the plasma of individuals with XFS. Paradoxically, this signature, characterized by lower concentrations of the neuroprotective spermine and spermidine polyamines than in controls, partially overlaps the plasma metabolomic profile associated with insulin resistance, despite the absence of evidence of insulin resistance in XFS.
NASA Astrophysics Data System (ADS)
Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao
2018-02-01
A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.
The influence of nerve section on the metabolism of polyamines in rat diaphragm muscle.
Hopkins, D; Manchester, K L
1981-01-01
Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed. PMID:7316998
[Polyamines and their role in tumor growth].
Godlewska, Joanna; Peczyńska-Czoch, Wanda
2002-01-01
The polyamines-putrescine, spermidine and spermine--are normal constituents of prokariotic and eukariotic cells. These small polycationic, aliphatic compounds are essential for normal cell proliferation. Cells cease to proliferate, when they are depleted of their polyamines, but resume a normal growth rate after supplementation with these compounds. Because of the sustained increase in polyamine biosynthesis in preneoplastic and neoplastic tissues, a great deal of interest has been given to the polyamine biosynthesis, network, and uptake systems as a target in antineoplastic strategies.
Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A
2008-03-01
The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.
Polyamine catabolism and disease
CASERO, Robert A.; PEGG, Anthony E.
2009-01-01
In addition to polyamine homeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis, response to stressful stimuli, and contribute to the etiology of several pathological states, including cancer. The highly inducible enzymes spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMO), and, the generally constitutively expressed N1-acetylpolyamine oxidase (APAO), appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique drugable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathologies. The activity of SSAT has the potential to provide substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl CoA and ATP. The goal of this review is to cover those aspects of polyamine catabolism that have potential to impact disease etiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology. PMID:19589128
Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047.
Murray-Stewart, Tracy; Ferrari, Elena; Xie, Ying; Yu, Fei; Marton, Laurence J; Oupicky, David; Casero, Robert A
2017-01-01
Synthesizing polycationic polymers directly from existing drugs overcomes the drug-loading limitations often associated with pharmacologically inert nanocarriers. We recently described nanocarriers formed from a first-generation polyamine analogue, bis(ethyl)norspermine (BENSpm), that could simultaneously target polyamine metabolism while delivering therapeutic nucleic acids. In the current study, we describe the synthesis and evaluation of self-immolative nanocarriers derived from the second-generation polyamine analogue PG-11047. Polyamines are absolutely essential for proliferation and their metabolism is frequently dysregulated in cancer. Through its effects on polyamine metabolism, PG-11047 effectively inhibits tumor growth in cancer cell lines of multiple origins as well as in human tumor mouse xenografts. Promising clinical trials have been completed verifying the safety and tolerance of this rotationally restricted polyamine analogue. We therefore used PG-11047 as the basis for Nano11047, a biodegradable, prodrug nanocarrier capable of targeting polyamine metabolism. Following exposure of lung cancer cell lines to Nano11047, uptake and intracellular degradation into the parent compound PG-11047 was observed. The release of PG-11047 highly induced the polyamine catabolic enzyme activities of spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX). By contrast, the activity of ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis and a putative oncogene, was decreased. Consequently, intracellular levels of the natural polyamines were depleted concurrent with tumor cell growth inhibition. This availability of Nano11047 as a novel drug form and potential nucleic acid delivery vector will potentially benefit and encourage future clinical studies.
dos Santos, Luiz Felipe Lopes; Mársico, Eliane Teixeira; Lázaro, César Aquiles; Teixeira, Rose; Doro, Laís
2015-01-01
The objective of the present study was to evaluate the levels of biogenic amines (cadaverine, putrescine, tyramine, histamine, spermidine and spermine) by high performance liquid chromatography (HPLC) and the physicochemical (moisture, lipids, proteins, pH, water activity and fixed mineral residue) and microbiological (lactic acid bacteria and aerobic heterotrophic mesophilic bacteria count) characteristics of six Italian-type salami brands sold in the city of Niteroi (Rio de Janeiro, Brazil). The salami showed lactic acid bacteria count from 5.7 to 8.6 CFU•mL-1, and heterotrophic mesophilic bacteria count from 5.8 to 8.7 CFU•mL-1. Three brands showed moisture contents above 35% and one brand had protein content below 25%. The mean values obtained for the amines were: 197.43, 143.29, 73.02, 4.52, 90.66 and 36.17 mg•kg-1 for tyramine, putrescine, cadaverine, spermidine, histamine, and spermine respectively. Two brands presented histamine contents above the legal limit established in 100 mg•kg-1. We concluded that the evaluated salami presented a wide variation in the count of the bacterial groups with a predominance of lactic acid bacteria. The moisture contents indicate insufficient drying before commercialization and protein content had values below the minimum limit determined by the Brazilian legislation. Finally, the levels of biogenic amines found could cause adverse reactions in susceptible consumers, depending of the amount and frequency of intake of these products. PMID:27800400
Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher
2012-01-01
Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264
Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher
2012-09-01
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives.
Bergeron, R J; Müller, R; Huang, G; McManis, J S; Algee, S E; Yao, H; Weimar, W R; Wiegand, J
2001-07-19
A new means of accessing N(1)-cyclopropylmethyl-N(11)-ethylnorspermine (CPMENSPM) and the first synthesis of (2R,10S)-N(1)-cyclopropylmethyl-2,10-dihydroxy-N(11)-ethylnorspermine [(2R,10S)-(HO)(2)CPMENSPM] are described. Both of these polyamine analogues are shown to be more active against L1210 murine leukemia cell growth than either N(1),N(11)-diethylnorspermine (DENSPM) or (2R,10R)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2R,10R)-(HO)(2)DENSPM] after 96 h of treatment; the activity was comparable to that of (2S,10S)-N(1),N(11)-diethyl-2,10-dihydroxynorspermine [(2S,10S)-(HO)(2)DENSPM] at 96 h. Both cyclopropyl compounds reduced putrescine and spermidine pools, but less effectively than did DENSPM and its derivatives. Only CPMENSPM, and not (2R,10S)-(HO)(2)CPMENSPM, lowered spermine pools. As with DENSPM and (2R,10R)-(HO)(2)DENSPM, both cyclopropyl analogues diminished ornithine decarboxylase and S-adenosylmethionine decarboxylase activity. Unlike the hydroxylated DENSPM compounds, both cyclopropyl norspermines substantially upregulated spermidine/spermine N(1)-acetyltransferase. The most interesting effect of hydroxylating CPMENSPM is the profound reduction in toxicity compared with that of the parent drug. The same phenomenon had been observed for the DENSPM/(2R,10R)-(HO)(2)DENSPM pair. Thus, hydroxylation of norspermine analogues appears to be a way to maintain the compounds' antiproliferative activity while reducing their toxicity.
Hajirezaei, Mohammad R.
2016-01-01
The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5′-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development. PMID:26662272
Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2014-01-01
Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues. PMID:25019617
Nitric oxide reversibly impairs axonal conduction in Guinea pig spinal cord.
Ashki, Negin; Hayes, Keith C; Shi, Riyi
2006-12-01
Increased expression of the inducible and neuronal isoforms of nitric oxide synthase (NOS), and elevated concentrations of nitric oxide (NO) metabolites, are present within the central nervous system (CNS) following neurotrauma and are implicated in the pathogenesis of the accompanying neurologic deficits. We tested the hypothesis that elevated extracellular concentrations of NO introduced by the donor Spermine NONOate, induce reversible axonal conduction deficits in neurons of the guinea pig spinal cord. The compound action potential (CAP) and compound membrane potential (CMP) of excised ventral cord white matter were recorded before, during, and after bathing the tissue (30 min) in varying concentrations (0.25-3.0 mM) of Spermine NONOate. The principal results were a rapid onset, dose-dependent, reduction in amplitude of the CAP (p < 0.05) accompanied by depolarization of the CMP during NO exposure. These effects were largely reversible on washout, at low concentration of the donor (0.5 mM), but were only partially reversed at higher concentrations. Changes in the electrophysiological properties were not evident when the donor had been a priori depleted of NO. The results extend previous reports that NO induces reversible axonal conduction deficits. They provide new evidence of dissociation of the effects of NO on CAP and CMP during washout, and after prolonged exposure to the donor. They add support to the emerging concept that immune-mediated axonal conduction failure contributes to reversible neurologic deficits following neurotrauma and aid in understanding clinical phenomena such as spinal shock and neurologic recovery.
Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong
2015-01-01
The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.
Mechanistic and Structural Analyses of the Role of His67 in the Yeast Polyamine Oxidase Fms1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John
2012-07-25
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N1-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect andmore » H67N the largest. The k{sub cat}/K{sub O2} value changes very little upon mutation with N{sup 1}-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k{sub cat}/K{sub M}-pH profiles with N{sup 1}-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK{sub a} values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK{sub a} as wild-type Fms1, about {approx}7.4; this pK{sub a} is assigned to the substrate N4. The k{sub cat}/K{sub O2}-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK{sub a} of about {approx}6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k{sub cat} value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 {angstrom}. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.« less
Amylose-Based Cationic Star Polymers for siRNA Delivery.
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.
Inhibition of polyamine and spermine oxidases by polyamine analogues.
Bianchi, Marzia; Polticelli, Fabio; Ascenzi, Paolo; Botta, Maurizio; Federico, Rodolfo; Mariottini, Paolo; Cona, Alessandra
2006-03-01
Polyamine oxidase (PAO) and spermine oxidase (SMO) are involved in the catabolism of polyamines--basic regulators of cell growth and proliferation. The discovery of selective inhibitors of PAO and SMO represents an important tool in studying the involvement of these enzymes in polyamine homeostasis and a starting point for the development of novel antineoplastic drugs. Here, a comparative study on murine PAO (mPAO) and SMO (mSMO) inhibition by the polyamine analogues 1,8-diaminooctane, 1,12-diaminododecane, N-prenylagmatine (G3), guazatine and N,N1-bis(2,3-butadienyl)-1,4-butanediamine (MDL72527) is reported. Interestingly, 1,12-Diaminododecane and G3 behave as specific inhibitors of mPAO, values of K(i) for mPAO inhibition being lower than those for mSMO inactivation by several orders of magnitude. The analysis of molecular models of mPAO and mSMO indicates a significant reduction of the hydrophobic pocket located in maize PAO (MPAO) at the wider catalytic tunnel opening. This observation provides a rationale to explain the lower affinity displayed by G3, guazatine and MDL72527 for mPAO and mSMO as compared to MPAO. The different behaviour displayed by 1,12-diaminododecane towards mPAO and mSMO reveals the occurrence of basic differences in the ligand binding mode of the two enzymes, the first enzyme interacting mainly with substrate secondary amino groups and the second one with substrate primary amino groups. Thus, the data reported here provide the basis for the development of novel and selective inhibitors able to discriminate between mammalian SMO and PAO activities.
Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047
Ferrari, Elena; Xie, Ying; Yu, Fei; Marton, Laurence J.; Oupicky, David; Casero, Robert A.
2017-01-01
Synthesizing polycationic polymers directly from existing drugs overcomes the drug-loading limitations often associated with pharmacologically inert nanocarriers. We recently described nanocarriers formed from a first-generation polyamine analogue, bis(ethyl)norspermine (BENSpm), that could simultaneously target polyamine metabolism while delivering therapeutic nucleic acids. In the current study, we describe the synthesis and evaluation of self-immolative nanocarriers derived from the second-generation polyamine analogue PG-11047. Polyamines are absolutely essential for proliferation and their metabolism is frequently dysregulated in cancer. Through its effects on polyamine metabolism, PG-11047 effectively inhibits tumor growth in cancer cell lines of multiple origins as well as in human tumor mouse xenografts. Promising clinical trials have been completed verifying the safety and tolerance of this rotationally restricted polyamine analogue. We therefore used PG-11047 as the basis for Nano11047, a biodegradable, prodrug nanocarrier capable of targeting polyamine metabolism. Following exposure of lung cancer cell lines to Nano11047, uptake and intracellular degradation into the parent compound PG-11047 was observed. The release of PG-11047 highly induced the polyamine catabolic enzyme activities of spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX). By contrast, the activity of ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis and a putative oncogene, was decreased. Consequently, intracellular levels of the natural polyamines were depleted concurrent with tumor cell growth inhibition. This availability of Nano11047 as a novel drug form and potential nucleic acid delivery vector will potentially benefit and encourage future clinical studies. PMID:28423064
Spermine oxidase is up-regulated and promotes tumor growth in hepatocellular carcinoma.
Hu, Tingting; Sun, Dalong; Zhang, Jie; Xue, Ruyi; Janssen, Harry L A; Tang, Wenqing; Dong, Ling
2018-06-20
The polyamine catabolic enzyme, spermine oxidase (SMOX) is up-regulated in chronic inflammatory conditions and linked to increased reactive oxygen species (ROS) and DNA damage in various forms of cancers. The present study aims to explore the expression pattern and biological function of SMOX in hepatocellular carcinoma (HCC). We used qRT-PCR, Western blotting and immunohistochemistry to examine SMOX expression in four HCC cell lines and 120 cases of HCC clinical samples, and the clinical significance of SMOX was analyzed. The biological function of SMOX on HCC cells were detected both in vitro and in vivo. It showed that SMOX was overexpressed in HCC cell lines and clinical HCC tissues. Moreover, SMOX expression levels were gradually increased in normal liver, chronic hepatitis and HCC tissues. Increased SMOX expression was correlated with poor clinical features of HCC. Patients with positive SMOX expression in tumor tissues indicated worse overall survival (P = 0.008) and shorter relapse-free survival (P = 0.002). Knockdown of SMOX inhibited HCC cell proliferation, arrested cell cycle at S phase and resulted in an increase of apoptosis. The in vivo study showed that inhibition of SMOX in HCC cells significantly repressed tumor growth in nude mice. Furthermore, we demonstrated that SMOX may exert its function by regulating PI3K/Akt signaling pathway. Our data indicated that SMOX upregulation may be a critical oncogene in HCC and might serve as a valuable prognostic marker and potential therapeutic target for HCC. This article is protected by copyright. All rights reserved.
Kim, Nam Hoon; Hwang, Wooseup; Baek, Kangkyun; Rohman, Md Rumum; Kim, Jeehong; Kim, Hyun Woo; Mun, Jungho; Lee, So Young; Yun, Gyeongwon; Murray, James; Ha, Ji Won; Rho, Junsuk; Moskovits, Martin; Kim, Kimoon
2018-04-04
Single-molecule surface-enhanced Raman spectroscopy (SERS) offers new opportunities for exploring the complex chemical and biological processes that cannot be easily probed using ensemble techniques. However, the ability to place the single molecule of interest reliably within a hot spot, to enable its analysis at the single-molecule level, remains challenging. Here we describe a novel strategy for locating and securing a single target analyte in a SERS hot spot at a plasmonic nanojunction. The "smart" hot spot was generated by employing a thiol-functionalized cucurbit[6]uril (CB[6]) as a molecular spacer linking a silver nanoparticle to a metal substrate. This approach also permits one to study molecules chemically reluctant to enter the hot spot, by conjugating them to a moiety, such as spermine, that has a high affinity for CB[6]. The hot spot can accommodate at most a few, and often only a single, analyte molecule. Bianalyte experiments revealed that one can reproducibly treat the SERS substrate such that 96% of the hot spots contain a single analyte molecule. Furthermore, by utilizing a series of molecules each consisting of spermine bound to perylene bisimide, a bright SERS molecule, with polymethylene linkers of varying lengths, the SERS intensity as a function of distance from the center of the hot spot could be measured. The SERS enhancement was found to decrease as 1 over the square of the distance from the center of the hot spot, and the single-molecule SERS cross sections were found to increase with AgNP diameter.
Connexin40 and connexin43 determine gating properties of atrial gap junction channels.
Lin, Xianming; Gemel, Joanna; Glass, Aaron; Zemlin, Christian W; Beyer, Eric C; Veenstra, Richard D
2010-01-01
While ventricular gap junctions contain only Cx43, atrial gap junctions contain both Cx40 and Cx43; yet the functional consequences of this co-expression remain poorly understood. We quantitated the expression of Cx40 and Cx43 and their contributions to atrial gap junctional conductance (g(j)). Neonatal murine atrial myocytes showed similar abundances of Cx40 and Cx43 proteins, while ventricular myocytes contained at least 20 times more Cx43 than Cx40. Since Cx40 gap junction channels are blocked by 2 mM spermine while Cx43 channels are unaffected, we used spermine block as a functional dual whole cell patch clamp assay to determine Cx40 contributions to cardiac g(j). Slightly more than half of atrial g(j) and
Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna
2009-01-01
Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.
Independent roles of eIF5A and polyamines in cell proliferation
2004-01-01
To examine the roles of active hypusinated eIF5A (eukaryotic translation initiation factor 5A) and polyamines in cell proliferation, mouse mammary carcinoma FM3A cells were treated with an inhibitor of deoxyhypusine synthase, GC7 (N1-guanyl-1, 7-diaminoheptane), or with an inhibitor of ornithine decarboxylase, DFMO (α-difluoromethylornithine), or with DFMO plus an inhibitor of spermine synthase, APCHA [N1-(3-aminopropyl)-cyclohexylamine]. Treatment with GC7 decreased the level of active eIF5A on day 1 without affecting cellular polyamine content, and inhibition of cell growth occurred from day 2. This delay reflects the fact that eIF5A was present in excess and was very stable in these cells. Treatment with DFMO or with DFMO plus APCHA inhibited cell growth on day 1. DFMO considerably decreased the levels of putrescine and spermidine, and the formation of active eIF5A began to decrease when the level of spermidine fell below 8 nmol/mg of protein after 12 h of incubation with DFMO. The combination of DFMO and APCHA markedly decreased the levels of putrescine and spermine and significantly decreased the level of spermidine, but did not affect the level of active eIF5A until day 3 when spermidine level decreased to 7 nmol/mg of protein. The results show that a decrease in either active eIF5A or polyamines inhibits cell growth, indicating that eIF5A and polyamines are independently involved in cell growth. PMID:15377278
Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-hong
2015-01-01
The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression. PMID:25835290
Huang, Xingxue; Bie, Zhilong
2010-01-01
This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.
Malina, Jaroslav; Farrell, Nicholas P.; Brabec, Viktor
2015-01-01
The trinuclear platinum complexes ([{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]6+, TriplatinNC‐A; [{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]8+, TriplatinNC) belong to a class of biologically active agents that bind to DNA via nonbonding noncovalent (hydrogen bonding, electrostatic) interactions. Charge delocalization (6+ to 8+) in these linear trinuclear platinum complexes results in a high cellular uptake and promising cytotoxic activity in several carcinoma cell lines. We show in the present work with the aid of the methods of biophysical chemistry that in particular TriplatinNC condenses DNA with unprecedented potency which is much higher than that of conventional DNA condensing agents. In addition, in contrast to other DNA condensing agents, both platinum complexes induce aggregation of small transfer RNA molecules. We also demonstrate for the first time that TriplatinNC-A and TriplatinNC in particular completely inhibit DNA transcriptional activity at markedly lower concentration than naturally occurring spermine. Notably, the topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at ~60-fold and ~250-fold lower concentration than that of spermine, respectively. We suggest that the general mechanisms of biological activity of TriplatinNC-A and TriplatinNC may be associated with their unique ability to condense/aggregate nucleic acids with consequent inhibitory effect on crucial enzymatic activities. PMID:25256921
Amylose-Based Cationic Star Polymers for siRNA Delivery
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548
Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate.
Baker, G B; Wong, J T; Coutts, R T; Pasutto, F M
1987-04-17
A method is described for simultaneous extraction and quantitation of the amines 2-phenylethylamine, tele-methylhistamine, histamine, tryptamine, m- and p-tyramine, 3-methoxytyramine, 5-hydroxytryptamine, cadaverine, putrescine, spermidine and spermine. This method is based on extractive derivatization of the amines with a perfluoroacylating agent, pentafluorobenzoyl chloride, under basic aqueous conditions. Analysis was done on a gas chromatograph equipped with an electron-capture detector and a capillary column system. The procedure is relatively rapid and provides derivatives with good chromatographic properties. Its application to analysis of the above amines in cheese and chocolate products is described.
[Polyamines and cell growth: specific aspects in Amoeba proteus and in certain cancer cell lines].
Dubois, J; Schenkel, E; Hanocq, M
1995-01-01
The differences between the metabolic schemes of polyamines can be the starting point to investigate the discovery of new antiparasitic or anticancer drugs which would be cell type specific. The studies, which were undertaken with the P388 cancer cells and Amoeba proteus, have shown that the pool of polyamine was very different in both cell types. Moreover, the cytotoxicity of putrescine, spermidine, spermine and 1-3 diaminopropane was found to be dependent of the activity of cell enzymes which could play a role to control cell proliferation by producing toxic metabolites.
2004-01-01
The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30–90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA. PMID:15496143
Zhang, Zhe; Martiny, Virginie; Lagorce, David; Ikeguchi, Yoshihiko; Alexov, Emil; Miteva, Maria A
2014-01-01
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
Alhonen-Hongisto, Leena
1980-01-01
1. The mechanism of stimulation of S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity by inhibitors of ornithine decarboxylase (EC 4.1.1.17), namely dl-α-difluoromethylornithine, 1,3-diaminopropane and 1,3-diaminopropan-2-ol, was studied in Ehrlich ascites-tumour cells grown in suspension cultures. 2. Difluoromethylornithine and diaminopropane, although decreasing the content of putrescine and spermidine, markedly stimulated adenosylmethionine decarboxylase activity after exposure of the cells to the drugs for 8h, whereas the effect of diaminopropanol only became apparent many hours later. In tumour cells exposed to any of the inhibitors, a close negative correlation existed between the activity of adenosylmethionine decarboxylase and the intracellular concentration of spermidine and/or spermidine plus spermine, suggesting that a depletion of higher polyamines triggered enhancement of adenosylmethionine decarboxylase activity. 3. The mechanism of difluoromethylornithine- and diaminopropane-induced stimulation of adenosylmethionine decarboxylase involved (a) a marked increase in the apparent half-life of the enzyme and (b) an induction of enhanced enzyme synthesis. Diaminopropanol seemed to act solely via an induction mechanism. 4. The increased adenosylmethionine decarboxylase activity elicited by difluoromethylornithine could be restored to control values by micromolar concentrations of exogenous spermidine and spermine in 4h and by putrescine in 22h. In addition to the natural polyamines, elevated adenosylmethionine decarboxylase activity could be repressed by 3,3′-iminodipropylamine, a close analogue of spermidine, but not by non-physiological diamines. 5. Addition of spermidine and actinomycin D to cultures treated with difluoromethylornithine produced a comparable decay of enhanced adenosylmethionine decarboxylase activity (with an apparent half-life of about 2.5h), whereas the effect of cycloheximide was much more rapid. The present results suggest that polyamines may regulate adenosylmethionine decarboxylase at the transcriptional level of gene expression. PMID:6781485
Murray-Stewart, T; Sierra, J C; Piazuelo, M B; Mera, R M; Chaturvedi, R; Bravo, L E; Correa, P; Schneider, B G; Wilson, K T; Casero, R A
2016-10-20
Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H 2 O 2 production by >50% within 24 h. Reporter assays indicated that direct interaction of miR-124 with the 3'-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 before infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer.
Barone, Sharon; Destefano-Shields, Christina; Brooks, Marybeth; Murray-Stewart, Tracy; Dunworth, Matthew; Li, Weimin; Doherty, Joanne R.; Hall, Mark A.; Smith, Roger D.; Cleveland, John L.; Casero, Robert A.; Soleimani, Manoocher
2017-01-01
Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI. PMID:28886181
Murray-Stewart, Tracy; Sierra, Johanna C.; Piazuelo, M. Blanca; Mera, Robertino M.; Chaturvedi, Rupesh; Bravo, Luis E.; Correa, Pelayo; Schneider, Barbara G.; Wilson, Keith T.; Casero, Robert A.
2016-01-01
Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H2O2 production by >50% within 24 hours. Reporter assays indicated that direct interaction of miR-124 with the 3′-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 prior to infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer. PMID:27041578
Zahedi, Kamyar; Barone, Sharon; Destefano-Shields, Christina; Brooks, Marybeth; Murray-Stewart, Tracy; Dunworth, Matthew; Li, Weimin; Doherty, Joanne R; Hall, Mark A; Smith, Roger D; Cleveland, John L; Casero, Robert A; Soleimani, Manoocher
2017-01-01
Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.
Controlling of N-alkylpolyamine analogue metabolism by selective deuteration.
Ucal, Sebahat; Häkkinen, Merja R; Alanne, Aino-Liisa; Alhonen, Leena; Vepsäläinen, Jouko; Keinänen, Tuomo A; Hyvönen, Mervi T
2018-02-14
Replacing protium with deuterium is an efficient method to modulate drug metabolism. N -alkylated polyamine analogues are polyamine antimetabolites with proven anticancer efficacy. We have characterized earlier the preferred metabolic routes of N 1 , N 12 -diethylspermine (DESpm), N 1 -benzyl- N 12 -ethylspermine (BnEtSpm) and N 1 , N 12 -dibenzylspermine (DBSpm) by human recombinant spermine oxidase (SMOX) and acetylpolyamine oxidase (APAO). Here, we studied the above analogues, their variably deuterated counterparts and their metabolites as substrates and inhibitors of APAO, SMOX, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO) and monoamine oxidases. We found that targeted deuteration efficiently redirected the preferable cleavage site and suppressed reaction rate by APAO and SMOX in vitro We found a three- to six-fold decline in V max with moderate variable effect on K m when deuterium was located at the preferred hydrogen abstraction site of the analogue. We also found some of the metabolites to be potent inhibitors of DAO and SSAO. Surprisingly, analogue deuteration did not markedly alter the anti-proliferative efficacy of the drugs in DU145 prostate cancer cells, while in mouse embryonic fibroblasts, which had higher basal APAO and SMOX activities, moderate effect was observed. Interestingly, the anti-proliferative efficacy of the analogues did not correlate with their ability to suppress polyamine biosynthetic enzymes, induce spermidine/spermine- N 1 -acetyltransferase or deplete intracellular polyamine levels, but correlated with their ability to induce SMOX. Our data show that selective deuteration of N -alkyl polyamine analogues enables metabolic switching, offering the means for selective generation of bioactive metabolites inhibiting, e.g. SSAO and DAO, thus setting a novel basis for in vivo studies of this class of analogues. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Even-Or, Orli; Joseph, Aviva; Itskovitz-Cooper, Noga; Samira, Sarit; Rochlin, Eli; Eliyahu, Hagit; Goldwaser, Itzik; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Kedar, Eli; Barenholz, Yechezkel
2011-03-16
We recently showed that lipid assemblies comprised of a novel polycationic sphingolipid (ceramide carbamoyl-spermine, CCS) are an effective adjuvant/carrier when complexed with cholesterol (CCS/C) for influenza and other vaccines administered parenterally and intranasally (i.n.) in mice. Here we expand these studies to ferrets, an established model of influenza infection. We also address the question of why the CCS/C-based liposomal vaccine (also known as VaxiSome™) in mice is superior to vaccines based on liposomes of other lipid compositions (neutral, anionic or cationic). Ferrets immunized i.n. with CCS/C-influenza vaccine produced significantly higher hemagglutination inhibition (HI) antibody titers compared to ferrets immunized intramuscularly with the unadjuvanted influenza vaccine, indicating that the CCS/C-based vaccine is very immunogenic. Furthermore, the i.n. adjuvanted vaccine was shown to significantly reduce the severity of influenza virus infection in ferrets following homologous viral challenge as determined by weight loss, temperature rise and viral titer. No adverse reactions were observed. Pharmacokinetic and biodistribution studies following i.n. administration in mice of CCS/C-based vaccine showed that both the lipids and antigens are retained in the nose and lung for at least 24h, and it appears that this retention correlates with the superior immunogenicity elicited by the adjuvanted vaccine formulation. The CCS lipid also increases production of cytokines (mainly IFN gamma, IL-2 and IL-12) and co-stimulatory molecules' expression, which might further explain the robust adjuvantation of this liposome-based vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Murray-Stewart, Tracy; Applegren, Nancy B; Devereux, Wendy; Hacker, Amy; Smith, Renee; Wang, Yanlin; Casero, Robert A
2003-07-15
Spermidine/spermine N (1)-acetyltransferase (SSAT) activity is typically highly inducible in non-small-cell lung carcinomas in response to treatment with anti-tumour polyamine analogues, and this induction is associated with subsequent cell death. In contrast, cells of the small-cell lung carcinoma (SCLC) phenotype generally do not respond to these compounds with an increase in SSAT activity, and usually are only moderately affected with respect to growth. The goal of the present study was to produce an SSAT-overexpressing SCLC cell line to further investigate the role of SSAT in response to these anti-tumour analogues. To accomplish this, NCI-H82 SCLC cells were stably transfected with plasmids containing either the SSAT genomic sequence or the corresponding cDNA sequence. Individual clones were selected based on their ability to show induced SSAT activity in response to exposure to a polyamine analogue, and an increase in the steady-state SSAT mRNA level. Cells transfected with the genomic sequence exhibited a significant increase in basal SSAT mRNA expression, as well as enhanced SSAT activity, intracellular polyamine pool depletion and growth inhibition following treatment with the analogue N (1), N (11)-bis(ethyl)norspermine. Cells containing the transfected cDNA also exhibited an increase in the basal SSAT mRNA level, but remained phenotypically similar to vector control cells with respect to their response to analogue exposure. These studies indicate that both the genomic SSAT sequence and polyamine analogue exposure play a role in the transcriptional and post-transcriptional regulation and subsequent induction of SSAT activity in these cells. Furthermore, this is the first production of a cell line capable of SSAT protein induction from a generally unresponsive parent line.
Balamatsia, C C; Paleologos, E K; Kontominas, M G; Savvaidis, I N
2006-01-01
This study evaluated the formation of biogenic amines (BAs) in breast chicken meat during storage under aerobic and modified atmospheric packaging (MAP) conditions at 4 degrees C, the correlation of microbial and sensory changes in chicken meat with formation of BAs and the possible role of BAs as indicators of poultry meat spoilage. Poultry breast fillets were stored aerobically or under MAP (30%, CO(2), 70% N(2)) at 4 degrees C for up to 17 days. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Total viable counts, Pseudomonads and Enterobacteriaceae, were in general higher for chicken samples packaged in air whereas lactic acid bacteria (LAB) and Enterobacteriaceae were among the dominant species for samples under MAP. Levels of putrescine and cadaverine increased linearly with storage time and were higher in aerobically stored chicken samples. Spermine and spermidine levels were also detected in both aerobically and MAP stored chicken meat. Levels of tyramine in both chicken samples stored aerobically and or under MAP were low (< 10 mg kg(-1)) whereas the formation of histamine was only observed after day 11 of storage when Enterobacteriaceae had reached a population of ca. 10(7) CFU g(-1). Based on sensory and microbiological analyses and also taking into account a biogenic amines index (BAI, sum of putrescine, cadaverine and tyramine), BAI values between 96 and 101 mg kg(-1) may be proposed as a quality index of MAP and aerobically-packaged fresh chicken meat. Spermine and spermidine decreased steadily throughout the entire storage period of chicken meat under aerobic and MAP packaging, and thus these two amines cannot be used as indicators of fresh chicken meat quality.
Inhibition of lytic infection of pseudorabies virus by arginine depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.-C.; Kao, Y.-C.; Chang, T-J.
2005-08-26
Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzingmore » the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.« less
Polyamine Metabolism Is Altered in Unpollinated Parthenocarpic pat-2 Tomato Ovaries1
Fos, Mariano; Proaño, Karina; Alabadí, David; Nuez, Fernando; Carbonell, Juan; García-Martínez, José L.
2003-01-01
Facultative parthenocarpy induced by the recessive mutation pat-2 in tomato (Lycopersicon esculentum Mill.) depends on gibberellins (GAs) and is associated with changes in GA content in unpollinated ovaries. Polyamines (PAs) have also been proposed to play a role in early tomato fruit development. We therefore investigated whether PAs are able to induce parthenocarpy and whether the pat-2 mutation alters the content and metabolism of PAs in unpollinated ovaries. Application of putrescine, spermidine, and spermine to wild-type unpollinated tomato ovaries (cv Madrigal [MA/wt]) induced partial parthenocarpy. Parthenocarpic growth of MA/pat-2 (a parthenocarpic near-isogenic line to MA/wt) ovaries was negated by paclobutrazol (GA biosynthesis inhibitor), and this inhibition was counteracted by spermidine. Application of α-difluoromethyl-ornithine (-Orn) and/or α-difluoromethyl-arginine (-Arg), irreversible inhibitors of the putrescine biosynthesis enzymes Orn decarboxylase (ODC) and Arg decarboxylase, respectively, prevented growth of unpollinated MA/pat-2 ovaries. α-Difluoromethyl-Arg inhibition was counteracted by putrescine and GA3, whereas that of α-difluoromethyl-Orn was counteracted by GA3 but not by putrescine or spermidine. In unpollinated MA/pat-2 ovaries, the content of free spermine was significantly higher than in MA/wt ovaries. ODC activity was higher in pat-2 ovaries than in MA/wt. Transcript levels of genes encoding ODC and spermidine synthase were also higher in MA/pat-2. All together, these results strongly suggest that the parthenocarpic ability of pat-2 mutants depends on elevated PAs levels in unpollinated mutant ovaries, which correlate with an activation of the ODC pathway, probably as a consequence of elevated GA content in unpollinated pat-2 tomato ovaries. PMID:12529543
Eliyahu, H; Makovitzki, A; Azzam, T; Zlotkin, A; Joseph, A; Gazit, D; Barenholz, Y; Domb, A J
2005-03-01
Recently, a novel cationic polymer, dextran-spermine (D-SPM) was developed for gene delivery. An efficient transfection was obtained using this polycation for a variety of genes and cell lines in serum-free or serum-poor medium. However, transfection using the water-soluble D-SPM-based polyplexes decreased with increasing serum concentration in cell culture in a concentration-dependent manner, reaching 95% inhibition at 50% serum in the cell growth medium. In order to overcome this obstacle, oleyl derivatives of D-SPM (which form micelles in aqueous phase) were synthesized at 1, 10, and 20 mol% of oleyl moiety to polymer epsilon-NH2 to form N-oleyl-D-SPM (ODS). Polyplexes based on ODS transfected well in medium containing 50% serum. Comparison with polyplexes based on well-established polymers (branched and linear polyethyleneimine) and with DOTAP/Cholesterol lipoplexes showed that regarding beta-galactosidase transgene expression level and cytotoxicity in tissue culture, the D-SPM and ODS compare well with the above polyplexes and lipoplexes. Intracellular trafficking using FITC-labeled ODS and Rhodamine-labeled pGeneGrip plasmid cloned with hBMP2 monitored by confocal microscopy revealed that during the transfection process the fluorescent-labeled polymer concentrates in the Golgi apparatus and around the nucleus, while the cell cytoplasm was free of fluorescent particles, suggesting that the polyplexes move in the cell toward the nucleus by vesicular transport through the cytoplasm and not by a random diffusion. We found that the plasmids penetrate the cell nucleus without the polymer. Preliminary results in zebra fish and mice demonstrate the potential of ODS to serve as an efficient nonviral vector for in vivo transfection.
Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.
2011-01-01
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172
Corella, D; Guillén, M; Hernández, J M; Hernández-Yago, J
1998-01-01
Biogenic polyamines have important regulatory functions in various biological processes and it has also been suggested that they could modulate intracellular protein degradation. For an overall assessment of the role of polyamines in this process, we have investigated the effect that the decrease in intracellular polyamine levels caused by inhibitors of polyamine biosynthesis brings about on the degradation of the pools of short- and long-lived proteins in cultured L-132 human lung cells. Treatment of cells with 100 microM (2R,5R)-delta-methyl acetylenic putrescine (MAP), a potent enzyme-activated irreversible inhibitor of ornithine decarboxylase, or with 100 microM MAP plus 50 microM N-butyl 1,3-diaminopropane, a specific inhibitor of spermine synthase, caused a similar decrease (65-70% of control) in the total intracellular levels of polyamines, although they affected the concentrations of spermidine and spermine differently. The effect of the two treatments on protein degradation was essentially the same. In polyamine-depleted cells we observed an inhibition of degradation in long-lived proteins of 16% (P<0.05), with a significant increase in the half-life (t12) of this pool from 100.5 to 120.1 h. This was concomitant with an increase of 26% (P<0. 05) in degradation in short-lived proteins, with a significant decrease in the t12 of this pool from 0.85 to 0.67 h. Recovery of polyamine levels by the addition of 50 microM spermidine to polyamine-depleted cells resulted in a restoration of the degradation rates in both pools of proteins. The way(s) by which polyamines could modulate proteolysis are discussed. PMID:9716494
Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G
2004-05-01
From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite.
Leppik, Liisa; Kriisa, Kärt; Koido, Kati; Koch, Kadri; Kajalaid, Kärolin; Haring, Liina; Vasar, Eero; Zilmer, Mihkel
2018-01-01
Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N -methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.
Baciak, Michał; Sikorski, Łukasz; Piotrowicz-Cieślak, Agnieszka I; Adomas, Barbara
2016-11-01
Aquatic plants are continuously exposed to a variety of stress factors. No data on the impact of antibiotics on the biogenic amines in duckweed (Lemna minor) have been available so far, and such data could be significant, considering the ecological role of this plant in animal food chains. In the tissues of control (non-stressed) nine-day-old duckweed, the following biogenic amines were identified: tyramine, putrescine, cadaverine, spermidine and spermine. Based on the tetracycline contents and the computed EC values, the predicted toxicity units have been calculated. The obtained results demonstrated phytoxicity caused by tetracycline in relation to duckweed growth rate, yield and the contents of chlorophylls a and b. The carotenoid content was not modified by tetracycline. It was found that tetracycline as a water pollutant was a stress factor triggering an increase in the synthesis of amines. Tetracycline at 19, 39 and 78μM concentrations increased biogenic amine synthesis by 3.5 times. Although the content of tyramine increased fourteen times with the highest concentration of the drug (and of spermidine - only three-fold) the increase of spermidine was numerically the highest. Among the biogenic amines the most responsive to tetracycline were spermine and tyramine, while the least affected were putrescine and spermidine. Despite putrescine and spermidine being the least sensitive, their sum of contents increased five-fold compared to the control. These studies suggest that tetracycline in water reservoirs is taken up by L. minor as the antibiotic clearly modifies the metabolism of this plant and it may likely pose a risk. Copyright © 2016 Elsevier B.V. All rights reserved.
Gasowska, A
2005-08-01
The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Baird, E. E.; Smith, P. J.
1995-01-01
Guanosine 5'-phosphate 2-methylimidazolide (2-MeImpG), a labile phosphoimidazolide analog of guanosine triphosphate, was used to test the reactivity of the natural polyamines (PAs), spermine (spm) and spermidine (spd). The products are the guanosine 5'-phosphate-polyamine derivatives (PA-pG: spd-pG and spm-pG) which are quite stable in the range 4 < pH < 11. Our study is the first of which we are aware that reports on the nucleophilicity of these amines. The main findings are as follows. (i) HPLC analysis of the products indicates the formation of only two of the three possible spd products and only one of the two possible spm products. These results can be explained if only the primary amino groups of the two polyamines are reactive, while the secondary amino groups are rendered unreactive by a steric effect. The reactions of 2-MeImpG and other phosphoimidazolide derivatives of nucleosides (ImpNs) with primary and secondary monoamines support this interpretation (Kanavarioti et al. J. Org. Chem. 1995, 60, 632). (ii) The product ratio of the two spd-pG adducts derived from the primary amino groups varies between 2.40 and 0.71 in the range 6.1 < or equal to pH < or equal to 11.9. Such small variation in the product ratio can only be rationalized by the similar, but not identical, basicity of the two primary amino groups and provides strong support for a previously reported model for polyamine ionization (Onasch et. al. Biophys. Chem. 1984, 19, 245). (iii) On the basis of our kinetic determinations conditions at which the nucleophilicity of these amines is at a minimum and at which other interactions with ImpNs could be tested can be chosen.
2015-01-01
Heparin is a widely used anticoagulant due to its ability to inhibit key components in the coagulation cascade such as Factor Xa and thrombin (Factor IIa). Its potential to preferentially bind to antithrombin (ATIII) results in a conformational change and activation that leads to the prevention of fibrin formation from fibrinogen and ultimately obstructs a hemostatic plug from forming. Nitric oxide (NO) exhibits potent antiplatelet activity attributed to its capacity to increase the amount of cyclic guanosine monophosphate (cGMP) within platelets, which decreases the Ca2+ concentration required for platelet activation. Currently there is no single agent that combines the functions of both antiplatelet and anticoagulant (anti-Xa and anti-IIa) activities to effectively block both the extrinsic and the intrinsic coagulation pathways. The research reported herein demonstrates the ability to combine the physiological capabilities of both heparin and NO into one functional compound via use of a spermine derivative of heparin, thus enabling formation of a novel diazeniumdiolate (NONOate). The heparin–spermine NONOate has a half-life of 85 min at 25 °C (pH 7.4). The heparin backbone of the conjugate maintains its anticoagulant activity as demonstrated via an anti-Xa assay, providing an anticoagulant conversion of 3.6 μg/mL of the heparin–spermine–NONO conjugate being equivalent to 2.5 μg/mL (0.50 IU/mL) of underivatized heparin in terms of anti-Xa activity. Using standard platelet aggregometry, it is shown that the functionality of the NO release portion of the heparin conjugate prevents (nearly 100%) platelet aggregation in the presence of adenosine diphosphate (ADP, platelet agonist). PMID:24423090
Huang, Wei; Eickhoff, Jens C; Mehraein-Ghomi, Farideh; Church, Dawn R; Wilding, George; Basu, Hirak S
2015-08-01
Prostate cancer (PCa) in many patients remains indolent for the rest of their lives, but in some patients, it progresses to lethal metastatic disease. Gleason score is the current clinical method for PCa prognosis. It cannot reliably identify aggressive PCa, when GS is ≤ 7. It is shown that oxidative stress plays a key role in PCa progression. We have shown that in cultured human PCa cells, an activation of spermidine/spermine N(1) -acetyl transferase (SSAT; EC 2.3.1.57) enzyme initiates a polyamine oxidation pathway and generates copious amounts of reactive oxygen species in polyamine-rich PCa cells. We used RNA in situ hybridization and immunohistochemistry methods to detect SSAT mRNA and protein expression in two tissue microarrays (TMA) created from patient's prostate tissues. We analyzed 423 patient's prostate tissues in the two TMAs. Our data show that there is a significant increase in both SSAT mRNA and the enzyme protein in the PCa cells as compared to their benign counterpart. This increase is even more pronounced in metastatic PCa tissues as compared to the PCa localized in the prostate. In the prostatectomy tissues from early-stage patients, the SSAT protein level is also high in the tissues obtained from the patients who ultimately progress to advanced metastatic disease. Based on these results combined with published data from our and other laboratories, we propose an activation of an autocrine feed-forward loop of PCa cell proliferation in the absence of androgen as a possible mechanism of castrate-resistant prostate cancer growth. © 2015 Wiley Periodicals, Inc.
Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.
Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei
2017-11-01
Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p < 0.05). These effects were enhanced by spermine and completely negated by ruthenium red, which are known to activate and inhibit mitochondrial calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.
Molecular evolution of the polyamine oxidase gene family in Metazoa
2012-01-01
Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies. PMID:22716069
Molecular evolution of the polyamine oxidase gene family in Metazoa.
Polticelli, Fabio; Salvi, Daniele; Mariottini, Paolo; Amendola, Roberto; Cervelli, Manuela
2012-06-20
Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.
Pozzi, Michelle Henderson; Gawandi, Vijay; Fitzpatrick, Paul F.
2009-01-01
Mammalian polyamine oxidases (PAO) catalyze the oxidation of N1-acetylspermine and N1-acetylspermidine to produce N-acetyl-3-aminopropanaldehyde and spermidine or putrescine. Structurally, PAO is a member of the monoamine oxidase family of flavoproteins. The effects of pH on kinetic parameters of mouse PAO have been determined to provide insight into the protonation state of the polyamine required for catalysis and the roles of ionizable residues in the active site in amine oxidation. For N1-acetylspermine, N1-acetylspermidine, and spermine, the kcat/Kamine-pH profiles are bell-shaped. In each case the profile agrees with that expected if the productive form of the substrate has a single positively charged nitrogen. The pKi-pH profiles for a series of polyamine analogs are most consistent with the nitrogen at the site of oxidation being neutral and one other nitrogen being positively charged in the reactive form of the substrate. With N1-acetylspermine as substrate, the value of kred, the limiting rate constant for flavin reduction, is pH dependent, decreasing below a pKa value of 7.3, again consistent with the requirement for an uncharged nitrogen for substrate oxidation. Lys315 in PAO corresponds to a conserved active site residue found throughout the monoamine oxidase family. Mutation of Lys315 to methionine has no effect on the kcat/Kamine profile for spermine, the kred value with N1-acetylspermine is only 1.8-fold lower in the mutant protein, and the pKa in the kred-pH profile with N1-acetylspermine shifts to 7.8. These results rule out Lys315 as a source of a pKa in the kcat/Kamine or kcat/kred profiles. They also establish that this residue does not play a critical role in amine oxidation by PAO. PMID:19199575
Zhu, Qingsong; Jin, Lihua; Casero, Robert A.
2013-01-01
Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807
Grancara, Silvia; Ohkubo, Shinji; Artico, Marco; Ciccariello, Mauro; Manente, Sabrina; Bragadin, Marcantonio; Toninello, Antonio; Agostinelli, Enzo
2016-10-01
Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.
Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease
Handa, Avtar K.; Fatima, Tahira; Mattoo, Autar K.
2018-01-01
Biogenic amines—polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants—exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources—vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions. PMID:29468148
Polyamines: Bio-Molecules with diverse functions in plant and human health and disease
NASA Astrophysics Data System (ADS)
Handa, Avtar K.; Fatima, Tahira; Mattoo, Autar K.
2018-02-01
Biogenic amines – polyamines (PAs), particularly putrescine, spermidine and spermine (and thermospermine) are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants – exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources - vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.
AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving.
Scheyer, Andrew F; Loweth, Jessica A; Christian, Daniel T; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T; Murray, Conor H; Sakas, Courtney; Wolf, Marina E
2016-11-01
The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca 2+ -permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (CP-AMPARs). Through metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic depression, mGluR1 positive allosteric modulators remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-naphthyl acetyl spermine followed by a seeking test, or 3) systemic administration of a mGluR1 positive allosteric modulator followed by a seeking test. Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc core 1-naphthyl acetyl spermine injection or systemic mGluR1 positive allosteric modulator administration. These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine compared with cocaine. However, a common mGluR1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine addicts. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.
Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz
2013-06-01
X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.
Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao; Chai, Toby C
2013-08-15
Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca(2+)]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca(2+)]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca(2+)]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca(2+)]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca(2+)]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC.
Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao
2013-01-01
Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca2+]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca2+]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca2+]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca2+]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca2+]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC. PMID:23698115
Warshakoon, Hemamali J.; Burns, Mark R.; David, Sunil A.
2009-01-01
We have recently confirmed that lipoteichoic acid (LTA), a major constituent of the gram-positive bacterial surface, is the endotoxin of gram-positive bacteria that induces proinflammatory molecules in a Toll-like receptor 2 (TLR2)-dependent manner. LTA is an anionic amphipath whose physicochemical properties are similar to those of lipopolysaccharide (LPS), which is found on the outer leaflet of the outer membranes of gram-negative organisms. Hypothesizing that compounds that sequester LPS could also bind to and inhibit LTA-induced cellular activation, we screened congeneric series of polyamine sulfonamides which we had previously shown effectively neutralized LPS both in vitro and in animal models of endotoxemia. We observed that these compounds do bind to and neutralize LTA, as reflected by the inhibition of TLR2-mediated NF-κB induction in reporter gene assays. Structure-activity studies showed a clear dependence of the acyl chain length on activity against LTA in compounds with spermine and homospermine scaffolds. We then sought to examine possible correlations between the neutralizing potency toward LTA and antimicrobial activity in Staphylococcus aureus. A linear relationship between LTA sequestration activity and antimicrobial activity for compounds with a spermine backbone was observed, while all compounds with a homospermine backbone were equally active against S. aureus, regardless of their neutralizing potency toward LTA. These results suggest that the number of protonatable charges is a key determinant of the activity toward the membranes of gram-positive bacteria. The development of resistance to membrane-active antibiotics has been relatively slower than that to conventional antibiotics, and it is possible that compounds such as the acylpolyamines may be useful clinically, provided that they have an acceptable safety profile and margin of safety. A more detailed understanding of the mechanisms of interactions of these compounds with LPS and LTA, as well as the gram-negative and -positive bacterial cell surfaces, will be instructive and should allow the rational design of analogues which combine antisepsis and antibacterial properties. PMID:18955537
Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O
1998-01-01
All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309
Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor
2014-02-03
The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.
Targeting polyamine metabolism for cancer therapy and prevention
Murray-Stewart, Tracy R.; Woster, Patrick M.; Casero, Robert A.
2017-01-01
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention. PMID:27679855
Potential Applications of Polyamines in Agriculture and Plant Biotechnology.
Tiburcio, Antonio F; Alcázar, Rubén
2018-01-01
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents.
Stoica, Sonia; Magoulas, George E; Antoniou, Antonia I; Suleiman, Sherif; Cassar, Analisse; Gatt, Lucienne; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Schembri-Wismayer, Pierre
2016-02-15
Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Further studies on the quaternary structure of yeast casein kinase II.
Szyszka, R; Lopaczyński, W; Gałasiński, W; Grankowski, N; Gasior, E
1986-01-01
Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.
The Role of Glia in Stress: Polyamines and Brain Disorders
Skatchkov, Serguei; Woodbury, Michel; Eaton, Misty
2014-01-01
Synopsis This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons as they are surprisingly stored, but not synthesized, almost exclusively in glial cells from which they can be released to regulate neuronal synaptic activity. The review includes the novel role of PAs, such as putrescine (PUT), spermidine (SPD) and spermine (SPM) and their precursors and derivatives. However: (i) PAs have not yet been a focus of much glial research; (ii) PAs affect many neuronal and glial receptors, channels and transporters; (iii) PAs are therefore key elements in the development of many diseases and syndromes (iv) thus forming the rationale for PA and glia focused therapy for these conditions. PMID:25455070
Gonzalez-Esquerra, R; Leeson, S
2006-08-01
An experiment was designed to investigate the effect of Arg, Lys, Met, and environmental temperature on broiler performance and associated changes in duodenal and pancreatic polyamines. Two groups of 26-d-old Ross male broilers raised under thermoneutral (TN) conditions were reallocated to 4 rooms kept at heat stress (HS) or TN. Birds were fed equimolar amounts of 2-hydroxy-4-(methylthio) butanoic acid (HMB) or DL-Met (DLM) at requirement levels with Arg:Lys at 0.95 or 1.40. Twelve replicates of 4 birds were offered each diet ad libitum. Body weight gain, efficiency of dietary CP accretion (CPE), feed intake, and feed conversion ratio were ascertained from 26 to 33 d and from 34 to 47 d of age. One bird per cage was killed at 33 and 47 d, and samples of duodenum and pancreas were assayed for putrescine, spermidine, and spermine (Spm), together with estimates of duodenal villus height. From 26 to 33 d, birds fed HMB performed better than those fed DLM, but only at TN conditions. From 34 to 47 d, feeding HMB tended to optimize CPE when added to diets high in Arg. However, lower CPE was obtained when HMB was added to low-Arg diets, whereas birds fed DLM were unaffected by these treatments (P < 0.10). Methionine source, Arg:Lys, or both affected the concentrations of duodenal and pancreatic polyamines, with some changes correlating with performance variables during HS (P > 0.05). It was found that HS caused lower tissue spermidine (P < 0.001) and higher pancreatic Spm (P = 0.08) from 34 to 47 d. Putrescine concentrations were affected by diet and HS, depending on tissue and experimental period. Pancreatic Spm correlated negatively with changes in CPE influenced by Arg:Lys by Met source interaction in chronically heat-stressed birds. The possible association between polyamine metabolism and some of the effects of the Arg:Lys by Met source interaction observed in chronically stressed birds deserves further investigation.
Meana, Clara; Rubín, José Manuel; Bordallo, Carmen; Suárez, Lorena; Bordallo, Javier; Sánchez, Manuel
2016-02-01
Polyamines contribute to several physiological and pathological processes, including cardiac hypertrophy in experimental animals. This involves an increase in ornithine decarboxylase (ODC) activity and intracellular polyamines associated with cyclic adenosine monophosphate (cAMP) increases. The aim of the study was to establish the role of these in the human heart in living patients. For this, polyamines (by high performance liquid chromatography) and the activity of ODC and N(1)-acetylpolyamine oxidases (APAO) were determined in the right atrial appendage of 17 patients undergoing extracorporeal circulation to correlate with clinical parameters. There existed enzymatic activity associated with the homeostasis of polyamines. Left atria size was positively associated with ODC (r = 0.661, P = 0.027) and negatively with APAO-N(1) -acetylspermine (r = -0.769, P = 0.026), suggesting that increased levels of polyamines are associated with left atrial hemodynamic overload. Left ventricular ejection fraction (LVEF) and heart rate were positively associated with spermidine (r = 0.690, P = 0.003; r = 0.590, P = 0.021) and negatively with N(1)-acetylspermidine (r = -0.554, P = 0.032; r = -0.644, P = 0.018). LVEF was negatively correlated with cAMP levels (r = -0.835, P = 0.001) and with cAMP/ODC (r = -0.794, P = 0.011), cAMP/spermidine (r = -0.813, P = 0.001) and cAMP/spermine (r = -0.747, P = 0.003) ratios. Abnormal LVEF patients showed decreased ODC activity and spermidine, and increased N(1) -acetylspermidine, and cAMP. Spermine decreased in congestive heart failure patients. The trace amine isoamylamine negatively correlated with septal wall thickness (r = -0.634, P = 0.008) and was increased in cardiac heart failure. The results indicated that modifications in polyamine homeostasis might be associated with cardiac function and remodelling. Increased cAMP might have a deleterious effect on function. Further studies should confirm these findings and the involvement of polyamines in different stages of heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Kubo, Yoshihiro; Murata, Yoshimichi
2001-01-01
The rectification property of the inward rectifier K+ channel is chiefly due to the block of outward current by cytoplasmic Mg2+ and polyamines. In the cloned inward rectifier K+ channel Kir2.1 (IRK1), Asp172 in the second transmembrane region (M2) and Glu224 in the putative cytoplasmic region after M2 are reported to be critical for the sensitivity to these blockers. However, the difference in the inward rectification properties between Kir2.1 and a very weak inward rectifier sWIRK could not be explained by differences at these two sites. Following sequence comparison of Kir2.1 and sWIRK, we focused this study on Glu299 located in the centre of the putative cytoplasmic region after M2. Single-point mutants of Kir2.1 (Glu224Gly and Glu299Ser) and a double-point mutant (Glu224Gly-Glu299Ser) were made and expressed in Xenopus oocytes or in HEK293T cells. Their electrophysiological properties were compared with those of wild-type (WT) Kir2.1 and the following observations were made. (a) Glu299Ser showed a weaker inward rectification, a slower activation upon hyperpolarization, a slower decay of the outward current upon depolarization, a lower sensitivity to block by cytoplasmic spermine and a smaller single-channel conductance than WT. (b) The features of Glu224Gly were similar to those of Glu299Ser. (c) In the double mutant (Glu224Gly-Glu299Ser), the differences from WT described above were more prominent. These results demonstrate that Glu299 as well as Glu224 control rectification and permeation, and suggest the possibility that the two sites contribute to the inner vestibule of the channel pore. The slowing down of the on- and off-blocking processes by mutation of these sites implies that Glu224 and Glu299 function to facilitate the entry (and exit) of spermine to (and from) the blocking site. PMID:11251047
Ishihara, K; Hiraoka, M; Ochi, R
1996-01-01
1. The activation kinetics of the IRK1 channel stably expressed in L cells (a murine fibroblast cell line) were studied under the whole-cell voltage clamp. Without polyamines or Mg2+ in the pipettes, inward currents showed an exponential activation on hyperpolarization. The steep inward rectification of the currents around the reversal potential (Erev) could be described by the open-close transition of the channel with first-order kinetics. 2. When the tetravalent organic cation spermine (Spm) was added in the pipettes, the activation kinetics changed; this was explicable by the increase in the closing rate constant. The activation of the currents observed without Spm or Mg2+ in the pipettes was ascribed to the unblocking of the 'endogenous-Spm block'. 3. In the presence of the divalent cation putrescine (Put) or of Mg2+ in the pipettes, a different non-conductive state suppressed the outward currents on depolarization; the channels instantaneously changed to the open state on repolarization. As the depolarization was prolonged, this non-conductive state was replaced by the non-conductive state that shows an exponential activation on repolarization. This phenomenon was attributed to the redistribution of the channels from the Put- or Mg(2+)-blocked state to the 'endogenous Spm-blocked state' during depolarization. 4. In the presence of the trivalent cation spermidine (Spd) in the pipettes, two different non-conductive states occurred, showing a faster and a slower activation on repolarization. The rectification around Erev was mainly due to the non-conductive state showing a faster activation, which appeared to be the Spd-blocked state. During depolarization, redistribution of the channels to the 'endogenous Spm-blocked state' also occurred. 5. In the presence of Spd, Put or Mg2+ in the pipettes, the voltage dependence of the activation time constant reflecting the unblocking of the 'endogenous Spm' was shifted in the hyperpolarizing direction. 6. Our results suggest that the 'intrinsic gating' that shows the time-dependent activation on repolarization, and that is responsible for the inward rectification around Erev, reflects the blocking kinetics of the tetravalent Spm. PMID:8866861
Sripadi, Prabhakar; Shrestha, Bindesh; Easley, Rebecca L; Carpio, Lawrence; Kehn-Hall, Kylene; Chevalier, Sebastien; Mahieux, Renaud; Kashanchi, Fatah; Vertes, Akos
2010-09-07
Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3) transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC) lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1) and PC(O-34:1) plasmalogens were displaced by PC(30:0) and PC(32:0) species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3), expression-specific (Tax1 vs. Tax3) and cell-type-specific (T lymphocytes vs. kidney epithelial cells) changes in the metabolite profiles. The new insight on the affected metabolic pathways can be used to better understand the molecular mechanisms of HTLV induced transformation, which in turn can result in new treatment strategies.
Herrero, A; Sanllorente, S; Reguera, C; Ortiz, M C; Sarabia, L A
2016-11-16
A new strategy to approach multiresponse optimization in conjunction to a D-optimal design for simultaneously optimizing a large number of experimental factors is proposed. The procedure is applied to the determination of biogenic amines (histamine, putrescine, cadaverine, tyramine, tryptamine, 2-phenylethylamine, spermine and spermidine) in swordfish by HPLC-FLD after extraction with an acid and subsequent derivatization with dansyl chloride. Firstly, the extraction from a solid matrix and the derivatization of the extract are optimized. Ten experimental factors involved in both stages are studied, seven of them at two levels and the remaining at three levels; the use of a D-optimal design leads to optimize the ten experimental variables, significantly reducing by a factor of 67 the experimental effort needed but guaranteeing the quality of the estimates. A model with 19 coefficients, which includes those corresponding to the main effects and two possible interactions, is fitted to the peak area of each amine. Then, the validated models are used to predict the response (peak area) of the 3456 experiments of the complete factorial design. The variability among peak areas ranges from 13.5 for 2-phenylethylamine to 122.5 for spermine, which shows, to a certain extent, the high and different effect of the pretreatment on the responses. Then the percentiles are calculated from the peak areas of each amine. As the experimental conditions are in conflict, the optimal solution for the multiresponse optimization is chosen from among those which have all the responses greater than a certain percentile for all the amines. The developed procedure reaches decision limits down to 2.5 μg L -1 for cadaverine or 497 μg L -1 for histamine in solvent and 0.07 mg kg -1 and 14.81 mg kg -1 in fish (probability of false positive equal to 0.05), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Buntinas, L; Gunter, K K; Sparagna, G C; Gunter, T E
2001-04-02
A mechanism of Ca(2+) uptake, capable of sequestering significant amounts of Ca(2+) from cytosolic Ca(2+) pulses, has previously been identified in liver mitochondria. This mechanism, the Rapid Mode of Ca(2+) uptake (RaM), was shown to sequester Ca(2+) very rapidly at the beginning of each pulse in a sequence [Sparagna et al. (1995) J. Biol. Chem. 270, 27510-27515]. The existence and properties of RaM in heart mitochondria, however, are unknown and are the basis for this study. We show that RaM functions in heart mitochondria with some of the characteristics of RaM in liver, but its activation and inhibition are quite different. It is feasible that these differences represent different physiological adaptations in these two tissues. In both tissues, RaM is highly conductive at the beginning of a Ca(2+) pulse, but is inhibited by the rising [Ca(2+)] of the pulse itself. In heart mitochondria, the time required at low [Ca(2+)] to reestablish high Ca(2+) conductivity via RaM i.e. the 'resetting time' of RaM is much longer than in liver. RaM in liver mitochondria is strongly activated by spermine, activated by ATP or GTP and unaffected by ADP and AMP. In heart, RaM is activated much less strongly by spermine and unaffected by ATP or GTP. RaM in heart is strongly inhibited by AMP and has a biphasic response to ADP; it is activated at low concentrations and inhibited at high concentrations. Finally, an hypothesis consistent with the data and characteristics of liver and heart is presented to explain how RaM may function to control the rate of oxidative phosphorylation in each tissue. Under this hypothesis, RaM functions to create a brief, high free Ca(2+) concentration inside mitochondria which may activate intramitochondrial metabolic reactions with relatively small amounts of Ca(2+) uptake. This hypothesis is consistent with the view that intramitochondrial [Ca(2+)] may be used to control the rate of ADP phosphorylation in such a way as to minimize the probability of activating the Ca(2+)-induced mitochondrial membrane permeability transition (MPT).
Jastrzębska, Aneta; Piasta, Anna; Szłyk, Edward
2014-01-01
A simple and useful method for the determination of biogenic amines in beverage samples based on isotachophoretic separation is described. The proposed procedure permitted simultaneous analysis of histamine, tyramine, cadaverine, putrescine, tryptamine, 2-phenylethylamine, spermine and spermidine. The data presented demonstrate the utility, simplicity, flexibility, sensitivity and environmentally friendly character of the proposed method. The precision of the method expressed as coefficient of variations varied from 0.1% to 5.9% for beverage samples, whereas recoveries varied from 91% to 101%. The results for the determination of biogenic amines were compared with an HPLC procedure based on a pre-column derivatisation reaction of biogenic amines with dansyl chloride. Furthermore, the derivatisation procedure was optimised by verification of concentration and pH of the buffer, the addition of organic solvents, reaction time and temperature.
Thiry, Marc; Ploton, Dominique
2008-01-01
Here we describe a new, rapid method for isolating nucleoli from Ehrlich tumor cells that preserves their morphological integrity and high transcriptional activity. Until now, methods for isolation of nucleoli were generally assumed to empty one of their three main compartments, the fibrillar center, of its contents. This new method consists of sonicating cells in an isotonic medium containing MgSO(4), spermidine, and spermine, followed by separation of nucleoli through a Percoll density gradient. Using the nonisotopic approach of labelling with BrUTP, we have further investigated the dynamics of nascent ribosomal RNAs (rRNAs) within morphologically intact isolated nucleoli at the electron microscope level. We show that ribosomal transcripts are elongated in the cortex of the fibrillar center and then enter the surrounding dense fibrillar component.
Orlovskiĭ, A A
2007-01-01
Effect of the inhibitors of polyamines biosynthesis on completely or partially hormone-dependant breast tumors (mouse Ca755 carcinoma and Walker W-256 carcinosarcoma) is essentially special: in contrary to hormone-dependant tumors, this effect may be not only breaking but stimulating as well. Change-over from one to another mode of reaction is conditioned, most probable, by hormonal status, which is determined by one or another estral cycle phase. Biochemical mechanisms of this change-over are closely connected with polyamines metabolism, namely the degree of polyamines (especially spermine) interconvertion and physiological reactivity level of the system controlling expression of ornithin-decarboxilase. At that, the first of these pathways is predominant for completely hormone-dependant Ca755 and the second one -for partially hormone-dependant W-256.
Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.
Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M
1999-09-01
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.
Sugiyama, Yuta; Nara, Misaki; Sakanaka, Mikiyasu; Gotoh, Aina; Kitakata, Aya; Okuda, Shujiro; Kurihara, Shin
2017-12-01
Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit.
Cao, Shifeng; Cai, Yuting; Yang, Zhenfeng; Joyce, Daryl C; Zheng, Yonghua
2014-02-15
The effect of methyl jasmonate (MeJA) on changes in polyamines content and energy status and their relation to disease resistance was investigated. Freshly harvested loquat fruit were treated with 10 μmol l(-1) MeJA and wound inoculated with Colletotrichum acutatum spore suspension (1.0 × 10(5) spores ml(-1)) after 24h, and then stored at 20 °C for 6 days. MeJA treatment significantly reduced decay incidence. MeJA treated fruit manifested higher contents of polyamines (putrescine, spermidine and spermine) compared with the control fruit, during storage. MeJA treatment also maintained higher levels of adenosine triphosphate, and suppressed an increase in adenosine monophosphate content in loquat fruit. These results suggest that MeJA treatment may inhibit anthracnose rot by increasing polyamine content and maintaining the energy status. Copyright © 2013. Published by Elsevier Ltd.
Abergel, Rebecca J.; D'Aléo, Anthony; Leung, Clara Ng Pak; Shuh, David K.; Raymond, Kenneth N.
2009-01-01
While widely used in bioassays, the spectrofluorimetric method described here uses the antenna effect as a tool to probe the thermodynamic parameters of ligands that sensitize lanthanide luminescence. The Eu3+ coordination chemistry, solution thermodynamic stability and photophysical properties of the spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) are reported. The complex [EuIII(3,4,3-LI(1,2-HOPO))]- luminesces with a long lifetime (805 μs) and a quantum yield of 7.0% in aqueous solution, at pH 7.4. These remarkable optical properties were exploited to determine the high (and proton-independent) stability of the complex (log β110 = 20.2(2)) and to define the influence of the ligand scaffold on the stability and photophysical properties. PMID:19902920
Wei, Fashan; Xu, Xinglian; Zhou, Guanghong; Zhao, Gaiming; Li, Chunbao; Zhang, Yingjun; Chen, Lingzhen; Qi, Jun
2009-03-01
N-nitrosamines, biogenic amines and residual nitrite are harmful substances and often present in cured meat. The effects of gamma-irradiation (γ-irradiation) on these chemicals in dry-cured Chinese Rugao ham during ripening and post-ripening were investigated. Rugao hams were irradiated at a dose of 5kGy before ripening and were then ripened in an aging loft. Although γ-irradiation degraded tyramine, putrescine and spermine, on the other hand, it promoted the formation of spermidine, phenylethylamine, cadaverine and tryptamine. Residual nitrite was significantly reduced by γ-irradiation. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosopyrrolidine (NPYR) were found in Chinese Rugao ham during ripening and post-ripening but could be degraded with γ-irradiation. The results suggest that γ-irradiation may be a potential decontamination measure for certain chemical compounds found in dry-cured meat.
Roussos, Peter A; Pontikis, Constantine A
2007-07-01
Jojoba (Simmondsia chinensis L.) single node explants were cultured in a basal medium supplemented with 17.8 microM 6-benzyladenine and four levels of sodium chloride concentration (0, 56.41, 112.82 and 169.23 mM). The free, the soluble conjugated and the insoluble bound forms of polyamines (PAs) (putrescine (Put), spermidine (Spd) and spermine (Spm)) were determined monthly during a 3-month proliferation stage. Free Put and Spd were found in higher levels in the control treatment, while Spm content was higher in the salt treatments. All soluble conjugated PAs were found to be in lower concentrations in explants growing on medium supplemented with salt, while the opposite was true for the insoluble bound PAs. It appeared that certain PAs and PAs forms could play a significant role in the adaptation mechanism of jojoba under saline conditions.
A supramolecular approach to fabricate highly emissive smart materials
Liu, Kai; Yao, Yuxing; Kang, Yuetong; Liu, Yu; Han, Yuchun; Wang, Yilin; Li, Zhibo; Zhang, Xi
2013-01-01
The aromatic chromophores, for example, perylene diimides (PDIs) are well known for their desirable absorption and emission properties. However, their stacking nature hinders the exploitation of these properties and further applications. To fabricate emissive aggregates or solid-state materials, it has been common practice to decrease the degree of stacking of PDIs by incorporating substituents into the parent aromatic ring. However, such practice often involves difficultorganic synthesis with multiple steps. A supramolecular approach is established here to fabricate highly fluorescent and responsive soft materials, which has greatly decreases the number of required synthetic steps and also allows for a system with switchable photophysical properties. The highly fluorescent smart material exhibits great adaptivity and can be used as a supramolecular sensor for the rapid detection of spermine with high sensitivity and selectivity, which is crucial for the early diagnosis of malignant tumors. PMID:23917964
Metabolic profiling of Alzheimer's disease brains
NASA Astrophysics Data System (ADS)
Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa
2013-08-01
Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.
Histone deacetylase 10 structure and molecular function as a polyamine deacetylase
NASA Astrophysics Data System (ADS)
Hai, Yang; Shinsky, Stephen A.; Porter, Nicholas J.; Christianson, David W.
2017-05-01
Cationic polyamines such as spermidine and spermine are critical in all forms of life, as they regulate the function of biological macromolecules. Intracellular polyamine metabolism is regulated by reversible acetylation and dysregulated polyamine metabolism is associated with neoplastic diseases such as colon cancer, prostate cancer and neuroblastoma. Here we report that histone deacetylase 10 (HDAC10) is a robust polyamine deacetylase, using recombinant enzymes from Homo sapiens (human) and Danio rerio (zebrafish). The 2.85 Å-resolution crystal structure of zebrafish HDAC10 complexed with a transition-state analogue inhibitor reveals that a glutamate gatekeeper and a sterically constricted active site confer specificity for N8-acetylspermidine hydrolysis and disfavour acetyllysine hydrolysis. Both HDAC10 and spermidine are known to promote cellular survival through autophagy. Accordingly, this work sets a foundation for studying the chemical biology of autophagy through the structure-based design of inhibitors that may also serve as new leads for cancer chemotherapy.
Purification, characterization, and crystallization of monoamine oxidase from Escherichia coli K-12.
Roh, J H; Suzuki, H; Azakami, H; Yamashita, M; Murooka, Y; Kumagai, H
1994-09-01
The gene for monoamine oxidase (MAO) was cloned from an Escherichia coli genomic library and MAO was overproduced in the periplasmic space. The enzyme was purified to homogeneity by preparation of a periplasmic fraction, followed by ammonium sulfate fractionation and DEAE-cellulose column chromatography. Crystals were obtained by the hanging drop method using sodium citrate as a precipitant. The enzyme was found to be a dimer of identical subunits with a molecular weight of 80,000, and showed the highest activity at pH 7.5 and 45 degrees C. The enzyme was inhibited by a MAO specific inhibitor, hydroxylamine, hydrazine, phenelzine, isoniazid, and tranycpromine. The enzyme oxidized tyramine, phenethylamine, and tryptamine at higher rates, but not oxidized diamine and polyamines such as putrescine and spermine. The antibody against E. coli MAO cross-reacted with purified MAO A from Klebsiella aerogenes.
[Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].
Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y
1996-03-01
Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.
Influence of breast milk polyamines on suckling rat immune system maturation.
Pérez-Cano, Francisco J; González-Castro, Ana; Castellote, Cristina; Franch, Angels; Castell, Margarida
2010-02-01
The aim of this study was to ascertain whether the supplementation of polyamines present in breast milk, i.e. spermine (SPM) and spermidine (SPD), influenced the post-natal maturation of the systemic and intestinal immune system in rats. From birth, pups daily received SPM or SPD. At 5, 11 and 18 days old, small intestine intraepithelial lymphocytes (IEL), lamina propria lymphocytes (LPL) and splenocytes were phenotypically characterized. SPM and, less evidently, SPD accelerated the maturation of CD8+ IEL, and enhanced the presence of intraepithelial NK cells and IEL related with specific immune responses on the proximal and distal small intestine, respectively. Polyamines increased the percentage of more mature CD4+ LPL and enhanced the early presence of splenic B cells and, later, that of NK cells. However, no effect on Ig-secretory function was detected. These results suggest that breast milk polyamines improve the maturation of the rat intestinal and systemic immune system.
Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents.
Rioux, Benjamin; Pouget, Christelle; Fidanzi-Dugas, Chloë; Gamond, Aurélie; Laurent, Aurélie; Semaan, Josiane; Pinon, Aline; Champavier, Yves; Léger, David Y; Liagre, Bertrand; Duroux, Jean-Luc; Fagnère, Catherine; Sol, Vincent
2017-09-15
The aim of this study is to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. 3-hydroxy-3',4,4',5'-tetramethoxychalcone (1) and 3',4,4',5'-tetramethoxychalcone (2) were selected as parent chalcones since they were found to be efficient anti-proliferative agents on various cancer cells. A series of ten chalcone-polyamine conjugates was obtained by reacting carboxychalcones with different polyamine tails. Chalcones 1 and 2 showed a strong cytotoxic activity against two prostatic cancer (PC-3 and DU-145) and two colorectal cancer (HT-29 and HCT-116) cell lines. Then, chalcone-spermine conjugates 7d and 8d were shown to be the most active of the series and could be considered as promising compounds for colon and prostatic cancer adjuvant therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perche, Phanélie; Nothisen, Marc; Bagilet, Jérémy; Behr, Jean-Paul; Kotera, Mitsuharu; Remy, Jean-Serge
2013-08-28
Despite its considerable interest in human therapy, in vivo siRNA delivery is still suffering from hurdles of vectorization. We have shown recently efficient gene silencing by non-vectorized cationic siRNA. Here, we describe the synthesis and in vitro evaluation of new amphiphilic cationic siRNA. C₁₂-, (C₁₂)₂- and cholesteryl-spermine(x)-siRNA were capable of luciferase knockdown at nanomolar concentrations without vectorization (i.e. one to two orders of magnitude more potent than commercially available cholesteryl siRNA). Moreover, incubation in the presence of serum did not impair their efficiency. Finally, amphiphilic cationic siRNA was pre-loaded on albumin. In A549Luc cells in the presence of serum, these siRNA conjugates were highly effective and had low toxicity. Copyright © 2013. Published by Elsevier B.V.
Xia, Xiaole; Zhang, Qingwen; Zhang, Bin; Zhang, Wuji; Wang, Wu
2016-10-05
Inspired by concerns about food safety, the metabolic landscape of biogenic amines (BAs) was elucidated during industrial semidry Chinese rice wine fermentation. The main fermentation process represented the largest contribution to BA formation, which corresponded to 69.1% (54.3 mg/L). Principal component analysis revealed that total acid and ethanol were strongly correlated with BAs, indicating that BA formation favored acidic and stressful conditions. Other than putrescine (PUT), spermidine (SPD), and spermine (SPM), 5 BAs exhibited strong relationships with the precursor amino acids (R 2 > 0.85). PUT was mainly decarboxylated from arginine (89.6%) whereas SPD (100%) and SPM (83.1%) were obtained from ornithine. Interestingly, some SPD could convert back to PUT (24.3%). All 8 BAs showed good relationships with lactic acid bacteria (LAB) (R 2 around 0.75). Moreover, among the five main LAB genera, Lactobacillus had a positive correlation with BA formation.
Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako
2008-03-01
Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.
Oyanagui, Y
1984-02-01
Serotonin paw edema of mice and carrageenan paw edema of rats were inhibited by subcutaneously or orally administered certain polyamines. They must be given at least 2 h before serotonin challenge to get inhibitions which were blocked by the concomitant injections of cycloheximide. Thirty percent inhibitory dose (ID30) of polyamines (s.c.) 3 h before serotonin (s.c.) were: spermidine (8 mg/kg), spermine 28 mg/kg) and putrescine (55 mg/kg). Agmatine, cadaverine, ornithine, citrulline, lysine and arginine were not inhibitory even at 200 mg/kg. Three inhibitory polyamines were effective by oral administration but were not inhibitory by local administration into the paws. Intravenous injections of spermidine also required 2 h of lag period for inhibitions. Serotonin edema was inhibited by dexamethasone (1 mg/kg), prednisolone (1 mg/kg) or by superoxide dismutase (SOD, 5 mg/kg) in lag period requiring manner (s.c. and i.v.). High dose of cyclo-oxygenase inhibitors indomethacin and diclofenac sodium, lipo-oxygenase inhibitor BW755C (30 mg/kg s.c., respectively) and phospholipase A2 inhibitor quinacrine (100 mg/kg s.c.) failed to inhibit serotonin edema, suggesting that arachidonate metabolites are not participating in this model. ID30 of polyamines which were administered (s.c. and oral) to rats 3 h before carrageenan and determined at 3 h by paw weight were: spermidine (28 and 100 mg/kg), spermine (18 and 90 mg/kg) and putrescine (both greater than 200 mg/kg). Adrenalectomized rats responded to polyamines just as normal rats. Local vascular permeability, irritancy and acute toxicity were also tested in mice. Polyamines were proved to be glucocorticoid-type anti-inflammatory drugs. Polyamines may be mediators of glucocorticoids for the synthesis of the postulated vascular permeability inhibitory protein (called as 'vasoregulin' for convenience). Anti-inflammatory effect of glucocorticoid is recently explained by its capacity to induce phospholipase A2 inhibitory protein(s) (macrocortin or lipomodulin). However, this hypothesis has not yet been proved by in vivo experiment and our data suggest that there is induction by glucocorticoid of another kind of protein which does not inhibit phospholipase A2 activity.
Yarlett, Nigel; Waters, W. Ray; Harp, James A.; Wannemuehler, Michael J.; Morada, Mary; Bellcastro, Josephine; Upton, Steve J.; Marton, Laurence J.; Frydman, Benjamin J.
2007-01-01
The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with dl-α-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model. When tested in combination with dl-α-difluoromethylarginine, the cis-restricted analogues were found to be more effective in preventing oocyst shedding. This study demonstrates the potential of polyamine analogues as anticryptosporidial agents and highlights the presence of multiple points in polyamine synthesis by this parasite that are susceptible to inhibition resulting in growth inhibition. PMID:17242149
Bioelectrochemical control of neural cell development on conducting polymers.
Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción
2010-12-01
Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.
Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases
Gobert, Alain P.; Wilson, Keith T.
2017-01-01
The innate immune response is a critical hallmark of Helicobacter pylori infection. Epithelial and myeloid cells produce effectors, including the chemokine CXCL8, reactive oxygen species (ROS), and nitric oxide (NO), in response to bacterial components. Mechanistic and epidemiologic studies have emphasized that dysregulated and persistent release of these products leads to the development of chronic inflammation and to the molecular and cellular events related to carcinogenesis. Moreover, investigations in H. pylori-infected patients about polymorphisms of the genes encoding CXCL8 and inducible NO synthase, and epigenetic control of the ROS-producing enzyme spermine oxidase, have further proven that overproduction of these molecules impacts the severity of gastric diseases. Lastly, the critical effect of the crosstalk between the human host and the infecting bacterium in determining the severity of H. pylori-related diseases has been supported by phylogenetic analysis of the human population and their H. pylori isolates in geographic areas with varying clinical and pathologic outcomes of the infection. PMID:28124148
Biogenic amines in Zamorano cheese: factors involved in their accumulation.
Combarros-Fuertes, Patricia; Fernández, Domingo; Arenas, Ricardo; Diezhandino, Isabel; Tornadijo, Maria Eugenia; Fresno, José María
2016-01-15
Ripened cheese is among fermented food the most often associated with food poisoning from biogenic amines. The influence of ripening time, heat treatment of milk and the effect of using milk from a different ewe breed on the biogenic amine (BA) content of Zamorano cheese was studied by high-performance liquid chromatography. Physicochemical, proteolytic and microbiological parameters were also studied. BA content increased significantly during ripening and their final values were around 400 mg kg(-1). Cheeses elaborated with raw milk duplicated the concentration of BA relative to those elaborated with pasteurized milk (72 °C for 20 s). The average levels of putrescine, spermine and tyramine were higher in cheeses made with a greater proportion of milk from Churra breed. Significant differences in microbial counts and nitrogen soluble in 5% phosphotungstic acid were observed between the different batches. Ripening time and heat treatment applied to milk were the factors that exercised the greatest influence upon the concentration of BA in Zamorano cheese. © 2015 Society of Chemical Industry.
DNA bending-induced phase transition of encapsidated genome in phage λ
Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex
2013-01-01
The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Martiny, Virginie; Lagorce, David; Alexov, Emil; Miteva, Maria; Clemson University Team; Université Paris Diderot Team
2013-03-01
Snyder-Robinson Syndrome (SRS) is an X-linked mental retardation disorder, which is caused by defects in a particular gene coding for the spermine synthase (SMS) protein. Among the missense mutations known to be disease-causing is the G56S, which is positioned at the interface of the SMS homo-dimer. Previous computational and experimental investigations have shown that G56S mutation destabilizes the homo-dimer and thus greatly reduces the SMS enzymatic activity. In this study, we explore the possibility of mitigating the effect of G56S mutation by binding small molecules to suitable pockets around the mutation site. It is done by combined efforts of molecular dynamics simulations and in silico screening. The binding of selected molecules was calculated to fully compensate the effect of the mutation and rescue the wild type dimer affinity. This work was supported by NIH, NLM grant. No. 1R03LM009748
Bioactive amines in sorghum: method optimisation and influence of line, tannin and hydric stress.
Paiva, Caroline Liboreiro; Evangelista, Warlley Pinheiro; Queiroz, Valéria Aparecida Vieira; Glória, Maria Beatriz Abreu
2015-04-15
The profile and levels of bioactive amines in different sorghum lines were reported for the first time. The amines were quantified by ion-pair HPLC, post-column derivatisation with o-phthalaldehyde and fluorimetric detection. The extraction procedure was optimised: 420 μm particle size, extraction with 5% trichloroacetic acid and three extractions. The screening of 22 sorghum lines showed that four of the ten amines investigated were detected. Spermine and spermidine were the prevalent amines (100%), followed by putrescine (77%) and cadaverine (14%). Total amines ranged from 5.8 to 41.4 mg/100 g, and the polyamines represented 60-100% of the total. Sorghum without tannin had higher amines levels compared to sorghum with tannin and cadaverine was specific to samples without tannin. Hydric stress caused accumulation of spermidine in the grains and affected the levels of other amines at rates depending on the presence or not of tannin. Sorghum is a significant source of polyamines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biogenic amine concentrations and evolution in "chilled" Canadian pork for the Japanese market.
Ngapo, Tania M; Vachon, Lise
2017-10-15
The aim of this study was to evaluate concentrations and evolution of biogenic amines in Canadian pork destined for the Japanese market. At 48h post-mortem, export quality loins were aged at -1.7°C for 13, 28, 43 or 58d (chilled) or 4.0°C for 5d (fresh). Increasing concentrations of putrescine, spermine and spermidine were observed with chilled ageing period and were greater in chilled export (43d at -1.7°C) than domestic market (5d at 4.0°C) pork equivalents. Cadaverine was detected, but was not influenced by ageing conditions, and tyramine was only detected in some samples after 43days at -1.7°C. Individual biogenic amines were not correlated with their precursor amino acids. Biogenic amines in Canadian pork for the chilled export Japanese market were not in sufficiently high concentrations to pose a risk of intoxication. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Mattsson, Leena; Xu, Jingjing; Preininger, Claudia; Tse Sum Bui, Bernadette; Haupt, Karsten
2018-05-01
We developed a competitive fluorescent molecularly imprinted polymer (MIP) assay to detect biogenic amines in fish samples. MIPs synthesized by precipitation polymerization using histamine as template were used in a batch binding assay analogous to competitive fluoroimmunoassays. Introducing a complex sample matrix, such as fish extract, into the assay changes the environment and the binding conditions, therefore the importance of the sample preparation is extensively discussed. Several extraction and purification methods for fish were comprehensively studied, and an optimal clean-up procedure for fish samples using liquid-liquid extraction was developed. The feasibility of the competitive MIP assay was shown in the purified fish extract over a broad histamine range (1 - 430µM). The MIP had the highest affinity towards histamine, but recognized also the structurally similar biogenic amines tyramine and tryptamine, as well as spermine and spermidine, providing simultaneous analysis and assessment of the total amount of biogenic amines. Copyright © 2018 Elsevier B.V. All rights reserved.
Dubarry, Nelly; Du, Wenli; Lane, David; Pasta, Franck
2010-02-01
The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.
Dadáková, Eva; Pelikánová, Tamara; Kalač, Pavel
2011-02-01
Putrescine (PUT), spermidine (SPD) and spermine (SPM) concentrations using a UPLC method, in chilled mutton, lamb and livers 24 h after slaughter were determined. PUT concentrations were quantifiable only in some samples. Mean SPD concentrations were 4-6, 13.5 and 16.8 mg kg-1 in the meats, sheep and lamb livers, respectively. The respective SPM concentrations were 17-25, 128 and 79 mg kg-1. SPD and SPM losses of about one fifth and half of the initial level, respectively, were apparent in mutton loins stored at -18°C for 6 months. Significant losses of SPD and SPM were found in mutton loins stored aerobically, vacuum-packaged or in a modified atmosphere at +2°C. Boiling and stewing of mutton legs caused SPD and SPM losses of about 40% and roasting of about 60% of the initial content. Copyright © 2010 Elsevier Ltd. All rights reserved.
Alhonen-Hongisto, L; Seppänen, P; Jänne, J
1980-01-01
Inhibition of polyamine synthesis by alpha-difluoromethylornithine in cultured Ehrlich ascites-carcinoma cells rapidly enhanced the uptake of exogenous putrescine, spermidine and spermine from the culture medium. In tumour cells exposed to the drug for 2 days, the intracellular concentration of spermidine was decreased to less than 10% of that found in untreated cells. However, the strikingly stimulated transport system brought the concentration of spermidine to the control values in less than 2h after supplementation of the cells with micromolar concentrations of the polyamine. In the absence of polyamine deprivation, tumour cells did not accumulate extracellular polyamines to any appreciable extent. Ascites-tumour cells deprived of putrescine and spermidine likewise concentrated methylglyoxal bis(guanylhydrazone) [1,1'-[methylethanedylidine)dinitrilo]diguanidine] at a greatly enhanced rate. A previous "priming of tumour cells with difluoromethylornithine followed by an exposure of the cells to methylglyoxal bis(guanylhydrazone) resulted in a marked and rapid anti-proliferative effect. PMID:6786285
Activation of ADP-ribosyltransferase in polyamine-depleted mammalian cells.
Wallace, H M; Gordon, A M; Keir, H M; Pearson, C K
1984-01-01
Mammalian fibroblasts were cultured in the presence of alpha-methylornithine and/or methylglyoxal bis(guanylhydrazone), which inhibit the synthesis of polyamines. This led to a decrease in the cellular content of the polyamines spermine and spermidine by up to 60% when the cells were grown in the presence of both drugs together. The activity of the chromatin-associated enzyme ADP-ribosyltransferase was enhanced 2-3-fold in the drug-treated cells when measured in cells subsequently rendered permeable to exogenous NAD+, the substrate for the transferase. This is a novel and surprising observation, since the transferase is invariably activated by the addition of polyamines to a suitable incubation system such as permeabilized cells, isolated nuclei or the purified enzyme. We found no evidence that the activation was due to the appearance of DNA strand breaks, by using a variety of procedures including both neutral [the 'nucleoid' technique of Cook & Brazell [(1975) J. Cell Sci. 19, 261-279; (1976) J. Cell Sci. 22, 287-302
The role of polyamine catabolism in anti-tumour drug response.
Casero, R A; Wang, Y; Stewart, T M; Devereux, W; Hacker, A; Wang, Y; Smith, R; Woster, P M
2003-04-01
Interest in polyamine catabolism has increased since it has been directly associated with the cytotoxic response of multiple tumour types to exposure to specific anti-tumour polyamine analogues. Human polyamine catabolism was considered to be a two-step pathway regulated by the rate-limiting enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) that provides substrate for an acetylpolyamine oxidase (APAO). Further, the super-induction of SSAT by several anti-tumour polyamine analogues has been implicated in the cytotoxic response of specific solid-tumour phenotypes to these agents. This high induction of SSAT has been correlated with cellular response to the anti-tumour polyamine analogues in several systems and considerable progress has been made in understanding the molecular mechanisms that regulate the analogue-induced expression of SSAT. A polyamine response element has been identified and the transacting transcription factors that bind and stimulate transcription of SSAT have been cloned and characterized. The link between SSAT activity and cellular toxicity is thought to be based on the production of H(2)O(2) by the activity of the constitutive APAO that uses the SSAT-produced acetylated polyamines. The high induction of SSAT and the subsequent activity of APAO are linked to the cytotoxic response of some tumour cell types to specific polyamine analogues. However, we have recently cloned a variably spliced human polyamine oxidase (PAOh1) that is inducible by specific polyamine analogues, efficiently uses unacetylated spermine as a substrate, and also produces toxic H(2)O(2) as a product. The results of studies with PAOh1 suggest that it is an additional enzyme in polyamine catabolism that has the potential to significantly contribute to polyamine homoeostasis and drug response. Most importantly, PAOh1 is induced by specific polyamine analogues in a tumour-phenotype-specific manner in cell lines representative of the major forms of solid tumours, including lung, breast, colon and prostate. The sensitivity to these anti-tumour polyamine analogues can be significantly reduced if the tumour cells are co-treated with 250 microM of the polyamine oxidase inhibitor N (1), N (4)-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72,527), suggesting that the H(2)O(2) produced by PAOh1 does in fact play a direct role in the observed cytotoxicity. These results strongly implicate PAOh1 as a new target that, in combination with SSAT, may be exploited for therapeutic advantage. The current understanding of the role and regulation of these two important polyamine catabolic enzymes are discussed.
Functional Insights from Structural Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forouhar,F.; Kuzin, A.; Seetharaman, J.
2007-01-01
Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNAmore » methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).« less
Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George
2009-01-01
High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450
Gravity sensing and signal transduction in vascular plant primary roots.
Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H
2013-01-01
During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.
Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination.
Hooda, Vinita; Archita
2018-01-15
Most often, the immobilized enzyme based quantification is an attractive alternative to other chromatographic, electrochemical and mass spectrometry based methods due to its specificity and simplicity. In the present study, polyamine oxidase specific for spermine and spermidine and diamine oxidase specific for putrescine, were co-immobilized onto a novel chitosan/coconut fibre/zinc oxide nanoparticles (CS/CF/nZnO) hybrid support to yield a polyamine sensing strip. The strip worked optimally at pH 7.0, temperature 25°C and 6min of incubation time. Pretty good values for kinetic constants Km app (6.60mM), Vmax (17.69μmol/min mg protein) and kcat app (1987.64s -1 ) as well as for thermal (<50 % activity retained at 40°C), storage (half life-40days) and operational stabilities (<90 % activity retained after 20 reuses) were obtained. The strip was employed for polyamine determination in some of the locally grown fruit and vegetables and the results were found to be comparable, reliable and reproducible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruiz-Capillas, C; Aller-Guiote, P; Carballo, J; Colmenero, F Jiménez
2006-12-27
Changes in biogenic amine formation and nitrite depletion in meat batters as affected by pressure-temperature combinations (300 MPa/30 min/7, 20, and 40 degrees C), cooking process (70 degrees C/30 min), and storage (54 days/2 degrees C) were studied. Changes in residual nitrite concentration in raw meat batters were conditioned by the temperature and not by the pressure applied. Cooking process decreased (P < 0.05) the residual nitrite concentration in all samples. High-pressure processing and cooking treatment increased (P < 0.05) the nitrate content. Whereas protein-bound nitrite concentration decreased with pressure processing, no effect was observed with the heating process of meat batters. High-pressure processing conditions had no effect on the rate of residual nitrite loss throughout the storage. The application of high pressure decreased (P < 0.05) the concentration of some biogenic amines (tyramine, agmatine, and spermine). Irrespective of the high processing conditions, generally, throughout storage biogenic amine levels did not change or increased, although quantitatively this effect was not very important.
Polyamines in plant physiology
NASA Technical Reports Server (NTRS)
Galston, A. W.; Sawhney, R. K.
1990-01-01
The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.
Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing
2016-10-04
Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.
Membrane perturbations of erythrocyte ghosts by spectrin release.
Yamaguchi, Takeo; Ozaki, Shinnosuke; Shimomura, Taiji; Terada, Shigeyuki
2007-05-01
The cytoskeleton plays an important role in the stability and function of the membrane. Spectrin release from erythrocyte ghosts makes the membrane more fragile. However, the detail of membrane fragility has remained unclear. In the present study, the effects of incubation temperatures and polyamines on the membrane structure of ghosts under hypotonic conditions have been examined. Upon exposure of ghosts to a hypotonic buffer at 0-37 degrees C, reduction of ghost volume, spectrin release and decrease of band 3-cytoskeleton interactions were clearly observed above 30 degrees C. However, such changes were completely inhibited by spermine and spermidine. Interestingly, conformational changes of spectrin induced at 37 degrees C or 49 degrees C were not suppressed by both polyamines. Flow cytometry of fluorescein isothiocyanate-labelled ghosts exposed to 37 degrees C demonstrated the two peaks corresponding to ghosts with normal spectrin content and decreased one. Taken together, these results indicate that the degree of spectrin release from the membrane under hypotonic conditions is not same in all ghosts, and that polyamines inhibit the spectrin release followed by changes in the membrane structure, but not conformational changes of spectrin.
Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA.
Nuhn, Lutz; Braun, Lydia; Overhoff, Iris; Kelsch, Annette; Schaeffel, David; Koynov, Kaloian; Zentel, Rudolf
2014-12-01
Well-defined nanogels have become quite attractive as safe and stable carriers for siRNA delivery. However, to avoid nanoparticle accumulation, they need to provide a stimuli-responsive degradation mechanism that can be activated at the payload's site of action. In this work, the synthetic concept for generating well-defined nanohydrogel particles is extended to incorporate disulfide cross-linkers into a cationic nanonetwork for redox-triggered release of oligonucleotide payload as well as nanoparticle degradation under reductive conditions of the cytoplasm. Therefore, a novel disulfide-modified spermine cross-linker is designed that both allows disassembly of the nanogel as well as removal of cationic charge from residual polymer fragments. The degradation process is monitored by scanning electron microscopy (SEM) and fluorescence correlation spectroscopy (FCS). Moreover, siRNA release is analyzed by agarose gel electrophoresis and a fluorescent RNA detection assay. The results exemplify the versatility of the applied nanogel manufacturing process, which allows alternative stimuli-responsive core cross-linkers to be integrated for triggered oligonucleotide release as well as effective biodegradation for reduced nanotoxicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of biogenic amines using corona discharge ion mobility spectrometry.
Hashemian, Z; Mardihallaj, A; Khayamian, T
2010-05-15
A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.
Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.
2002-09-01
We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.
Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco
2011-09-01
Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P < 0.05) by formulation and storage. Only 51-61% of the added nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cadmium-induced accumulation of putrescine in oat and bean leaves
NASA Technical Reports Server (NTRS)
Weinstein, L. H.; Kaur-Sawhney, R.; Rajam, M. V.; Wettlaufer, S. H.; Galston, A. W.
1986-01-01
The effects of Cd2+ on putrescine (Put), spermidine (Spd), and spermine (Spm) titers were studied in oat and bean leaves. Treatment with Cd2+ for up to 16 hours in the light or dark resulted in a large increase in Put titer, but had little or no effect on Spd or Spm. The activity of arginine decarboxylase (ADC) followed the pattern of Put accumulation, and experiments with alpha-difluoromethylarginine established that ADC was the enzyme responsible for Put increase. Concentrations of Cd2+ as low as 10 micromolar increased Put titer in oat segments. In bean leaves, there was a Cd(2+)-induced accumulation of Put in the free and soluble conjugated fractions, but not in the insoluble fraction. This suggests a rapid exchange between Put that exists in the free form and Put found in acid soluble conjugate forms. It is concluded that Cd2+ can act like certain other stresses (K+ and Mg2+ deficiency, excess NH4+, low pH, salinity, osmotic stress, wilting) to induce substantial increases in Put in plant cells.
Dadáková, Eva; Pelikánová, Tamara; Kalač, Pavel
2012-03-01
The concentration of putrescine (PUT), spermidine (SPD) and spermine (SPM) was determined in chilled meat and kidneys of 18 rabbits and in liver of 12 animals 24h after slaughter. Very low PUT concentrations were detected only in kidneys. Mean SPD levels were 2.2, 2.2, 61.7 and 32.7mgkg(-1) in saddle, leg, liver and kidneys, respectively. The respective SPM concentrations were 14.7, 8.0, 115 and 88.4mgkg(-1). SPD and SPM losses of about one third of the initial levels were apparent in saddles stored at -18°C for 8months. Losses of both polyamines of about 15-20% of the initial concentrations were found in saddles stored aerobically at +2°C for up to 9days. Stewing of saddles caused significant SPD and SPM losses of about 20-25%, while upon roasting and pan-roasting without oil a decrease of about 50% of the initial concentration was observed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dubarry, Nelly; Du, Wenli; Lane, David; Pasta, Franck
2010-01-01
The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection. PMID:20023084
The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil.
Koca, Nülüfer; Karaman, Şengül
2015-01-01
The effects of methyl jasmonate (MeJA), spermine (Spm), epibrassinolide (EBL) and l-phenylalanine on sweet basil (Ocimum basilicum L.) were studied to determine the amount of phenolic compounds and enzymatic activity of phenylalanine ammonia-lyase (PAL). Total phenolic and total flavonoid contents of sweet basils were determined by a spectrophotometer, and individual phenolic compounds and activity of PAL were analysed by HPLC/UV. The highest total phenolic (6.72 mg GAE/g) and total flavonoid contents (0.92 mg QE/g) obtained from 1.0 mM Spm+MeJA application. Rosmarinic acid (RA) and caffeic acid contents significantly enhanced after the applications but no such differences observed in chicoric acid content or PAL activity. RA was the main phenolic acid in all samples and its concentration varied from 1.04 to 2.70 mg/gFW. As a result the combinations of Spm+MeJA and EBL+MeJA can induce secondary metabolites effectively and those interactions play important role in the production of phytochemicals in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modulation of the NMDA receptor by polyamines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K.; Romano, C.; Dichter, M.A.
1991-01-01
Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been foundmore » to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.« less
Masuko, Takashi; Yoshida, Shuhei; Metori, Koichi; Kizawa, Yasuo; Kusama, Tadashi; Miyake, Muneharu
2010-06-01
The novel water-soluble N-methyl-D-aspartate (NMDA) receptor antagonists, N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}-p-toluenesulfonamide trihydrochloride (1a, TsHSPMG), N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}butane-1-sulfonamide trihydrochloride (1b, BsHSPMG), N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}-p-toluenesulfonamide trihydrochroride (2a, TsSPMG) and N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}butane-1-sulfonamide trihydrochroride (2b, BsSPMG), were synthesized, and the effects of these polyamine derivatives on NMDA receptors were studied using voltage-clamp recordings of recombinant NMDA receptors expressed in Xenopus oocytes. Although spermine potentiates 153% and 310% of NMDA (NR1A/NR2B) receptors in the presence of saturated and unsaturated glycine, respectively, all the novel polyamine derivatives, TsHSPMG (1a), BsHSPMG (1b), TsSPMG (2a) and BsSPMG (2b), significantly inhibited NR1A/NR2B receptors in both conditions. The degree of NMDA receptor inhibition by TsHSPMG (1a) and BsHSPMG (1b) was stronger than that by TsSPMG (2a) and BsSPMG (2b).
Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice.
Liu, Qing; Liu, Hong-Can; Zhang, Jian-Li; Zhou, Yu-Guang; Xin, Yu-Hua
2015-09-01
A Gram-stain-negative, rod-shaped, orange bacterium (strain MDB1-A(T)) was isolated from ice samples collected from Midui glacier in Tibet, south-west China. Cells were aerobic and psychrotolerant (growth occurred at 0-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that it was a member of the genus Sphingomonas, with its closest relative being Sphingomonas glacialis C16y(T) (98.9% similarity). Q-10 was the predominant ubiquinone. C17 : 1ω6c and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) were the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The polyamines detected were sym-homospermidine, spermidine and spermine. The G+C content of the genomic DNA was 63.6%. Based on data from this polyphasic analysis, strain MDB1-A(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas psychrolutea sp. nov. is proposed. The type strain is MDB1-A(T) ( = CGMCC 1.10106(T) = NBRC 109639(T)).
Changes in polyamine levels in various organs of Bombyx mori during its life cycle.
Hamana, K; Matsuzaki, S; Inoue, K
1984-06-01
Polyamines in various organs of larval, pupal, and moth stages of Bombyx mori, were assayed by high-performance ion-exchange chromatography and paper and thin-layer chromatography. Putrescine and spermidine were especially abundant in the silk gland, gonads, mucous gland, and sucking stomach; spermine was also present in them, but at much lower concentrations. Both norspermidine and norspermine were detected in almost all organs examined, while their precursor 1,3-diaminopropane was found only in a limited number of organs. Low concentrations of sym-homospermidine were observed in the silk gland and ovary. Cadaverine content was particularly high in the mucous gland which contained diapause eggs and the sucking stomach. Diapause eggs contained much higher levels of cadaverine than non-diapause eggs. The concentrations of most polyamines in the silk glands remained rather constant during the larval stage, and decreased markedly at the pupal stage. Polyamines in gonads, in contrast, did not decrease at the pupal stage, but putrescine, diaminopropane, and norspermidine rather increased during the pupal and moth stages.
Igarashi, K; Porter, C W; Morris, D R
1984-11-01
Ethylglyoxal bis(guanylhydrazone) (EGBG) was compared as an inhibitor of polyamine biosynthesis with methylglyoxal bis(guanylhydrazone) (MGBG) in bovine small lymphocytes stimulated by concanavalin A. EGBG brought about a decrease in spermidine and spermine levels equal to that found with MGBG, but at a 5-fold lower intracellular drug concentration. Despite identical polyamine levels, the degree of inhibition of DNA and protein synthesis by EGBG was smaller than that observed with MGBG, in either the presence or absence of the ornithine decarboxylase inhibitor, alpha-difluoromethylornithine. It was found that in vitro protein synthesis and in vivo mitochondrial function were inhibited by concentrations of MGBG necessary to inhibit polyamine synthesis in cells (1 to 3 mM), but not by efficacious levels of EGBG (0.2 to 0.6 mM). These results suggest that EGBG is more suitable as a specific inhibitor of polyamine biosynthesis and that use of this drug, rather than MGBG, in combination with alpha-difluoromethylornithine may be useful for studying the physiological functions of polyamines in animal cells.
Effect of mitoguazone on polyamine oxidase activity in rat liver.
Ferioli, Maria Elena; Berselli, Debora; Caimi, Samuela
2004-12-01
Mitoguazone is a known inhibitor of polyamine biosynthesis through competitive inhibition of S-adenosylmethionine decarboxylase. A recent renewed interest in mitoguazone as an antineoplastic agent prompted us to investigate the effect of the drug on polyamine catabolism in rat liver, since the organ plays an important role in detoxification mechanisms. Thus, the purpose of this work was to evaluate the effect of in vivo mitoguazone administration on polyamine catabolic enzymes. In particular, our interest was directed to the changes in polyamine oxidase activity, since this enzyme has been recently confirmed to exert important functions that until now were underestimated. Mitoguazone administration induced hepatic polyamine oxidase activity starting at 4 h after administration, and the enzyme returned to basal levels 96 h after treatment. The changes in enzyme activity were accompanied by changes in putrescine concentrations, which increased starting at 4 h until 72 h after treatment. We also evaluated the activity of the newly identified spermine oxidase, which was not significantly changed by mitoguazone treatment. Therefore, we hypothesized that the enzyme involved in mitoguazone response of the liver is the polyamine oxidase, which acts on acetylated polyamines as substrate.
Bitonti, A J; Dumont, J A; McCann, P P
1986-01-01
Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910
Henningsson, S; Persson, L; Rosengren, E
1979-02-01
The effects of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) activity were studied in the mouse kidney stimulated to growth by testosterone administration. The drug was found a potent inhibitor of the enzyme in vitrol Administration of methylglyoxal bis(guanylhydrazone) in vivo resulted in a transient inhibition followed by a strong enhancement of the enzyme activity. Dialysis of the kidney extract, to remove remaining methylglyoxal bis(guanylhydrazone), revealed a great and rapid increase in the activity of S-adenosyl-L-methionine decarboxylase. Injections of testosterone to castrated mice resulted in a marked increase in kidney weight and an accumulation of renal putrescine, spermidine and spermine. These effects of testosterone could not be blocked by simultaneous injections of methylglyoxal bis(guanylhydrazone). It appears that due to secondary effects by which the inhibition of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase activity is circumvented the inhibitor seems to be of uncertain value in attempts to decrease selectively the in vivo levels of polyamines.
Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O
2014-05-14
A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive.
Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor
2015-07-27
The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bae, Hanhong; Kim, Soo-Hyung; Kim, Moon S; Sicher, Richard C; Lary, David; Strem, Mary D; Natarajan, Savithiry; Bailey, Bryan A
2008-02-01
Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.
Maria, A P J; Ayane, L; Putarov, T C; Loureiro, B A; Neto, B P; Casagrande, M F; Gomes, M O S; Glória, M B A; Carciofi, A C
2017-06-01
The present study compared the effects of diets formulated with fibers of different fermentability and protein sources of animal or vegetable origins on old and adult dogs. The experiment was organized in a 3 (diets) × 2 (ages) factorial arrangement, totaling 6 treatments. Thirty-six Beagle dogs were used (18 old dogs [10.2 ± 1.0 yr] and 18 young adult dogs [2.6 ± 0.9 yr]), with 6 dogs per treatment. Three diets with similar compositions were used: a nonfermentable insoluble fiber source (sugarcane fiber) and chicken byproduct meal (nonfermentable fiber [NFF] diet), a fermentable fiber source (beet pulp) and chicken byproduct meal (fermentable fiber [FF] diet), and soybean meal as a protein and fiber source (soybean meal [SM] diet). Data were evaluated using the MIXED procedure and considering the effects and interactions of block, animal, diets, and age. Means were compared using Tukey's test ( < 0.05). Age × diet interactions were evaluated when < 0.1. Old dogs had a reduced coefficient of total tract apparent digestibility of DM, which was explained by the age and diet interaction of CP and fat digestibility that was lower for old than for adult dogs fed the FF diet ( < 0.05). The SM diet obtained higher DM, OM, CP, and fiber digestibility compared with the NFF diet ( < 0.05). The feces of dogs fed the NFF diet had increased DM content ( < 0.05). The short-chain fatty acids (SCFA) did not change by age group and were higher for dogs fed the FF and SM diets compared with dogs fed the NFF diet ( < 0.05). An age and diet interaction was observed for lactate and was increased in the feces of old dogs compared with adult dogs fed the FF diet ( < 0.05). Fecal putrescine, cadaverine, and spermine were increased for old dogs compared with adult dogs ( < 0.05), and the spermidine fecal concentration was increased for dogs fed the SM diet regardless of age ( < 0.05). Old dogs had reduced peripheral T and B lymphocytes ( < 0.05). An age and diet interaction was observed for fecal IgA ( < 0.001). Adult dogs fed the SM diet had increased IgA in feces compared with animals fed the NFF and FF diets ( < 0.05). However, for old dogs, both the FF and SM diets induced increased IgA compared with the NFF diet ( < 0.05). In conclusion, beet pulp may reduce digestibility and induce increased lactate in the feces of old dogs. The protein and oligosaccharides of soybean meal are digestible by dogs, induce the production of SCFA and spermidine, and increase fecal IgA. Old dogs had increased putrecine, cadaverine, and spermine fecal concentrations.
WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU
2015-01-01
The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975
Gubartallah, Elbaleeq A; Makahleh, Ahmad; Quirino, Joselito P; Saad, Bahruddin
2018-05-08
A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL −1 ( R ² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL −1 . The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
Lv, Mengying; Chen, Jiaqing; Gao, Yiqiao; Sun, Jianbo; Zhang, Qianqian; Zhang, Mohan; Xu, Fengguo; Zhang, Zunjian
2015-10-01
To better understand different traditional uses of the stems (known as Mahuang) and roots (known as Mahuanggen) of Ephedra sinica, their chemical difference should be investigated. In this study, an ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry untargeted metabolomics approach was established to reveal global chemical difference between Mahuang and Mahuanggen. Clear separation was observed in scores plots of principal component analysis and orthogonal partial least squares-discriminant analysis. Twenty two chemical markers responsible for such separation were screened out and unambiguously/tentatively characterized. Then chemical markers of pharmacologically important ephedrine and pseudoephedrine were absolutely quantified using liquid chromatography coupled with tandem mass spectrometry under multiple reaction monitoring mode. The results showed that Mahuang was rich in ephedrine-type alkaloids, while Mahuanggen was rich in macrocyclic spermine alkaloids. Additionally, different types of flavan-3-ols and flavones exist in Mahuang and Mahuanggen extracts. This research facilitates a better understanding of different traditional uses of Mahuang and Mahuanggen and provides references for chemical analysis of other medicinal plants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Basu, Hirak S; Thompson, Todd A; Church, Dawn R; Clower, Cynthia C; Mehraein-Ghomi, Farideh; Amlong, Corey A; Martin, Christopher T; Woster, Patrick M; Lindstrom, Mary J; Wilding, George
2009-10-01
High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase, the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells, as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data show that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays CaP progression.
The effects of food components on the digestion of DNA by pepsin.
Zhang, Yanfang; Wang, Xingyu; Pan, Xiaoming; Liu, Yu; Wang, Hanqing; Dong, Ping; Liang, Xingguo
2016-11-01
Recently, our study found that naked nucleic acids (NAs) can be digested by pepsin. To better understand the fate of dietary DNA in the digestive tract, in this study we investigated the effects of several food compositions on its digestion. The results showed that protein inhibited the digestion of DNA when the protein:DNA ratio was higher than 80:1 (m/m). DNA found in nucleoprotein (NA), which more closely resembles the state of DNA in food, was as efficiently digested as naked DNA. When the carbohydrate:DNA ratio was 50:1-140:1 (m/m), mono-, di- and polysaccharides did not inhibit DNA digestion. NaCl exhibited an inhibitory effect at 300 mM, whereas divalent cations (Ca(2+ )and Mg(2+)) exerted a much stronger inhibitory effect even at 50 mM. The polycation compounds (e.g. chitosan and spermine) showed a significant inhibitory effect at N/P (NH3(+)/PO4(-)) = 10:1. The close relationship between food composition and DNA digestion suggests that dietary habits and food complexes are important for understanding the in vivo fate of the ingested DNA in the digestive tract.
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
Asthir, Bavita; Duffus, Carol M; Smith, Rachel C; Spoor, William
2002-04-01
The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.
Control of Biogenic Amines in Food—Existing and Emerging Approaches
Naila, Aishath; Flint, Steve; Fletcher, Graham; Bremer, Phil; Meerdink, Gerrit
2010-01-01
Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations. PMID:21535566
Mucosal polyamine metabolism in the columnar lined oesophagus.
Gray, M R; Wallace, H M; Goulding, H; Hoffman, J; Kenyon, W E; Kingsnorth, A N
1993-01-01
Mucosal ornithine decarboxylase activity and polyamine content has been proposed as a possible marker for malignant potential in gastrointestinal mucosa. Polyamine content and histological findings were examined in 107 pairs of endoscopic biopsy specimens taken from gastric fundus, fundic and specialised Barrett's oesophagus and Barrett's adenocarcinoma. The content of putrescine (median nmol/mg protein, range) the primary product of ornithine decarboxylase showed a progressive increase from gastric fundus (0.41, 0.15-1.5); fundic (0.45, 0.01-4.08); specialised Barrett's oesophagus (0.54, 0.01-2.0); dysplastic columnar lined oesophagus (0.56, 0.31-3.1) to adenocarcinoma (1.23, 0.29-8.98). Adenocarcinoma putrescine content was significantly greater than gastric fundus (p < 0.018) and fundic (p < 0.03). Mucosal spermine, spermidine, and total polyamine values were greater in gastric fundus than fundic, specialised Barrett's oesophagus, and dysplastic columnar lined oesophagus (all p < 0.001) suggesting failure to further metabolise putrescine to its higher polyamines in the metaplastic epithelium. Although metaplastic columnar lined oesophagus shows significant differences in polyamine metabolic activity from the stomach the important distinction between specialised and dysplastic columnar lined oesophagus cannot be made by measuring the polyamine content. PMID:8504955
Min, A; Hasuma, T; Yano, Y; Matsui-Yuasa, I; Otani, S
1995-12-01
We examined the effect of inhibitors of tyrosine kinase and tyrosine phosphatase on DNA fragmentation, protein tyrosine phosphorylation, and polyamine metabolism in the murine T-cell line CTLL-2. When cells were exposed to herbimycin A, a specific inhibitor of tyrosine kinase (Uehara et al., 1989, Biochem. Biophys. Res. Commun., 163:803-809), in the presence of interleukin 2 (IL-2), DNA was degraded into oligonucleosomal fragments in a dose-dependent fashion. Genistein, another inhibitor of tyrosine kinase (Akiyama et al., 1987, J. Biol. Chem., 262:5592-5596), had similar effects. Exposure of CTLL-2 cells to vanadate, a tyrosine phosphatase inhibitor, blocked with the DNA fragmentation induced by herbimycin A. Tyrosine phosphorylation of 55 Kd protein was inhibited by herbimycin A, and the inhibition was reduced by vanadate. Ornithine decarboxylase (ODC) activity decreased rapidly after herbimycin A was added to CTLL-2 cell cultures, while vanadate increased ODC activity. The exogenous addition of putrescine or spermine, but not that of spermidine, attenuated herbimycin A-induced DNA fragmentation. These findings suggest that phosphorylation of tyrosine residues of 55 Kd protein prevents DNA fragmentation and that polyamines are involved in regulation of apoptosis.
Computational Modeling of Molecular Effects of Mutations Causing Snyder-Robinson Syndrome
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Teng, Shaolei; Alexov, Emil
2009-11-01
Snyder-Robinson syndrome is an X-linked mental retardation disorder disease. The disease is associated with defects in a particular biomolecule, the spermine synthase (SMS) protein. Specifically, three missense mutations, G56S, I150T and V132G in SMS were identified to cause the disease, but molecular mechanism of their effect is unknown. We apply single-point energy calculations, molecular dynamics simulations and pKa calculations to reveal the effects of these mutations on SMS's stability, flexibility and interactions. It is demonstrated that even saddle changes as very conservative mutations can significantly affect wild type properties of SMS protein. While the mutations do not involve ionizable groups, still slight changes in the protonation of neighboring amino acids are suggested by the computational protocol. The dynamics of SMS was also affected by the mutations resulting in larger structural fluctuations in the mutant protein compared to the wild type. At the same time, the effect on SMS's stability was found to depend on the location of the mutation site with respect to the surface of the protein. Our investigation suggests that the disease is caused by diverse molecular mechanisms depending on the site of mutation and amino acid type substitution.
Development of 3D in vitro platform technology to engineer mesenchymal stem cells.
Hosseinkhani, Hossein; Hong, Po-Da; Yu, Dah-Shyong; Chen, Yi-Ru; Ickowicz, Diana; Farber, Ira-Yudovin; Domb, Abraham J
2012-01-01
This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC) to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.
Altered Polyamine Profiles in Colorectal Cancer.
Venäläinen, Markus K; Roine, Antti N; Häkkinen, Merja R; Vepsäläinen, Jouko J; Kumpulainen, Pekka S; Kiviniemi, Mikko S; Lehtimäki, Terho; Oksala, Niku K; Rantanen, Tuomo K
2018-06-01
The declining mortality rate of patients with colorectal cancer (CRC) can be explained, at least partially, with early diagnosis. Simple diagnostic methods are needed to achieve a maximal patient participation rate in screening. Liquid chromatography electrospray tandem mass spectrometry (LC-MS/MS) was used to determine urinary polyamine (PA) profiles. In a prospective setting, 116 patients were included in the study: 57 with CRC, 13 with inflammatory bowel disease (IBD), 12 with adenoma, and 34 controls. N1,N12-diacetylspermine (DiAcSPM) level was significantly higher in patients with CRC than controls (sensitivity=78.0%, specificity=70.6%; p=0.00049). The level of diacetylated cadaverine (p=0.0068) was lower and that of diacetylated putrescine (p=0.0078) was higher in patients with CRC than in those with IBD. Cadaverine (p=0.00010) and spermine (p=0.042) levels were lower and that of DiAcSPM (p=0.018) higher in patients with CRC than in those with adenoma. The simultaneous determination of urinary PAs by means of LC-MS/MS can be used to discriminate CRC from controls and patients with benign colorectal diseases. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Uemura, Takeshi; Watanabe, Kenta; Ishibashi, Misaki; Saiki, Ryotaro; Kuni, Kyoshiro; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2016-04-29
We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12 month-old female C57BL/6 mice. The size of brain infarction in the mouse PIT model increased with aging. The volume of brain infarction in 12 month-old mice was approximately 2-fold larger than that in 2 month-old mice. The larger brain infarction in 12 month-old mice was due to an increase in acrolein based on an increase in the activity of spermine oxidase, together with a decrease in glutathione (GSH), a major acrolein-detoxifying compound in cells, based on the decrease in one of the subunits of glutathione biosynthesizing enzymes, γ-glutamylcysteine ligase modifier subunit, with aging. The results indicate that aggravation of brain infarction with aging was mainly due to the increase in acrolein production and the decrease in GSH in brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao
2015-03-01
Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®
Nuclear aggregates of polyamines in a radiation-induced DNA damage model.
Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano
2014-02-01
Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell.
Miller-Fleming, Leonor; Olin-Sandoval, Viridiana; Campbell, Kate; Ralser, Markus
2015-10-23
The polyamines (PAs) spermidine, spermine, putrescine and cadaverine are an essential class of metabolites found throughout all kingdoms of life. In this comprehensive review, we discuss their metabolism, their various intracellular functions and their unusual and conserved regulatory features. These include the regulation of translation via upstream open reading frames, the over-reading of stop codons via ribosomal frameshifting, the existence of an antizyme and an antizyme inhibitor, ubiquitin-independent proteasomal degradation, a complex bi-directional membrane transport system and a unique posttranslational modification-hypusination-that is believed to occur on a single protein only (eIF-5A). Many of these features are broadly conserved indicating that PA metabolism is both concentration critical and evolutionary ancient. When PA metabolism is disrupted, a plethora of cellular processes are affected, including transcription, translation, gene expression regulation, autophagy and stress resistance. As a result, the role of PAs has been associated with cell growth, aging, memory performance, neurodegenerative diseases, metabolic disorders and cancer. Despite comprehensive studies addressing PAs, a unifying concept to interpret their molecular role is missing. The precise biochemical function of polyamines is thus one of the remaining mysteries of molecular cell biology. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, J.A.; Forrow, S.M.; Souhami, R.L.
Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less
Sziderics, Astrid Heide; Oufir, Mouhssin; Trognitz, Friederike; Kopecky, Dieter; Matusíková, Ildikó; Hausman, Jean-Francois; Wilhelm, Eva
2010-03-01
Drought is one of the major factors that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants (Capsicum annuum L.) were grown in a greenhouse and stressed by withholding water for 1 week. Plants adapted to the decreasing water content of the soil by adjustment of their osmotic potential in root tissue. As a consequence of drought, strong accumulation of raffinose, glucose, galactinol and proline was detected in the roots. In contrast, in leaves the levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves, whereas the concentration of polyamines was reduced in roots. To study the molecular basis of these responses, a combined approach of suppression subtractive hybridisation and microarray technique was performed on the same material. A total of 109 unique ESTs were detected as responsive to drought, while additional 286 ESTs were selected from the bulk of rare transcripts on the array. The metabolic profiles of stressed pepper plants are discussed with respect to the transcriptomic changes detected, while attention is given to the differences between defence strategies of roots and leaves.
Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki
2016-01-01
The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763
Application of a molecularly imprinted polymer for the extraction of kukoamine a from potato peels.
Piletska, Elena V; Burns, Rosemary; Terry, Leon A; Piletsky, Sergey A
2012-01-11
A molecularly imprinted polymer (MIP) for the purification of N(1),N(12)-bis(dihydrocaffeoyl)spermine (kukoamine A) was computationally designed and tested. The properties of the polymer were characterized. The protocol of the solid phase extraction (SPE) of kukoamine A from potato peels was optimized. A HPLC-MS method for the quantification of kukoamine A was developed and used for all optimization studies. The capacity of the MIP in relation to kukoamine A from the potato peels extract was estimated at 54 mg/g of the polymer. The kukoamine A purified from potato extract using MIP was exceptionally pure (≈ 90%). Although the corresponding blank polymer was less selective than the MIP for the extraction of kukoamine A from the potato extract, it was shown that the blank polymer could be effectively used for the purification of the crude synthetic kukoamine (polymer capacity = 80 mg of kukoamine A/g of the adsorbent, kukoamine A purity ≈ 86%). Therefore, selective adsorbents could be computationally designed for other plant products, allowing their purification in quantities that would be sufficient for more detailed studies and potential practical applications.
Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P
2009-06-09
Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.
Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.
Nikula, P; Alhonen-Hongisto, L; Jänne, J
1985-01-01
Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886
Igarashi, K; Morris, D R
1984-11-01
Previous results have suggested that ethylglyoxal bis(guanylhydrazone) is a more specific inhibitor of polyamine biosynthesis than the widely used methylglyoxal bis(guanylhydrazone). The physiological effects on mitogenically activated lymphocytes of polyamine depletion with ethylglyoxal bis(guanylhydrazone) were examined. In the presence of ethylglyoxal bis(guanylhydrazone) and the ornithine decarboxylase inhibitor alpha-difluoromethylornithine, the cellular contents of putrescine, spermidine, and spermine were decreased by 75 to 90, 65 to 80, and 40 to 60%, respectively, compared with control cultures. Inhibition of DNA synthesis in these polyamine-deficient cells was always greater than that of protein synthesis. Upon addition of spermidine to the deficient cells, the cellular spermidine content was restored within 4 hr, but the complete recovery of macromolecular synthesis took 10 to 20 hr. Thymidine kinase and DNA polymerase alpha activities in polyamine-deficient cells were lower than those in normal cells, whereas RNA polymerase II and leucyl transfer RNA synthase activities were nearly equal to those in normal cells. These results and studies with 2-dimensional gel electrophoresis raise the possibility that polyamines may regulate the synthesis of specific proteins. Decreased synthesis of replication proteins in polyamine-deficient cells may be one reason for the reduced synthesis of DNA.
Maddox, A M; Freireich, E J; Keating, M J; Haddox, M K
1988-03-01
Nine patients with hematological malignancies were treated with difluoromethylornithine and methylglyoxal bis(guanylhydrazone). The number of circulating blast cells decreased in all of the patients treated with DFMO and MGBG for longer than 1 wk. Morphological evidence of myeloid maturation was evident in four patients with leukemia and the circulating M Protein decreased in one patient with multiple myeloma. The polyamine content of the mononuclear cells in both the peripheral blood and bone marrow was transiently increased after the initial MGBG dose. During administration of DFMO decreases were achieved in the peripheral blood mononuclear cell putrescine levels in 7 patients, spermidine levels in 5 patients, and spermine levels in 4 patients. Alterations in bone marrow mononuclear cell polyamine levels were similar to those which occurred in the peripheral cells. An average of 9 days of DFMO treatment was required to lower mononuclear cell polyamine levels. Three of the 4 evaluable patients receiving multiple MGBG doses had an increased mononuclear cell content of MGBG after DFMO pretreatment. Enhancement of cellular MGBG levels was not directly correlated to the degree of cellular polyamine depletion.
Studies of levels of biogenic amines in meat samples in relation to the content of additives.
Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward
2016-01-01
The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality.
Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers.
Cheng, Y-S L; Jordan, L; Chen, H-S; Kang, D; Oxford, L; Plemons, J; Parks, H; Rees, T
2017-06-01
More than 100 salivary constituents have been found to show levels significantly different in patients with oral squamous cell carcinoma (OSCC) from those found in healthy controls, and therefore have been suggested to be potential salivary biomarkers for OSCC detection. However, many of these potential OSCC salivary biomarkers are also involved in chronic inflammation, and whether the levels of these biomarkers could be affected by the presence of chronic periodontitis was not known. The objective of this pilot study was therefore to measure the levels of seven previously reported potential OSCC salivary mRNA biomarkers in patients with chronic periodontitis and compare them to levels found in patients with OSCC and healthy controls. The seven salivary mRNAs were interleukin (IL)-8, IL-1β, dual specificity phosphatase 1, H3 histone family 3A, ornithine decarboxylase antizyme 1, S100 calcium-binding protein P (S100P) and spermidine/spermine N1-acetyltransferase 1. Unstimulated whole saliva samples were collected from a total of 105 human subjects from the following four study groups: OSCC; CPNS (chronic periodontitis, moderate to severe degree, non-smokers); CPS (chronic periodontitis, moderate to severe degree, smokers); and healthy controls. Levels of each mRNA in patient groups (OSCC or chronic periodontitis) relative to the healthy controls were determined by a pre-amplification reverse transcription-quantitative polymerase chain reaction approach with nested gene-specific primers. Results were recorded and analyzed by the Bio-Rad CFX96 Real-Time System. Mean fold changes between each pair of patient vs. control groups were analyzed by the Mann-Whitney U-test with Bonferroni corrections. Only S100P showed significantly higher levels in patients with OSCC compared to both patients with CPNS (p = 0.003) and CPS (p = 0.007). The difference in S100P levels between patients with OSCC and healthy controls was also marginally significant (p = 0.009). There was no significant difference in the levels of salivary IL-8, IL-1β and dual specificity phosphatase 1 mRNAs between patients with OSCC and patients with CPNS (p = 0.510, 0.058 and 0.078, respectively); no significant difference in levels of salivary ornithine decarboxylase antizyme 1 and spermine N1-acetyltransferase mRNAs between patients with OSCC and patients with CPS (p = 0.318 and 0.764, respectively); and no significant difference in levels of the H3 histone family 3A mRNA between patients with OSCC and either CPS (p = 0.449) or healthy controls (p = 0.107). Salivary S100P mRNA could be a reliable biomarker for OSCC detection, regardless of the presence of chronic periodontitis. The presence of chronic periodontitis could significantly affect the levels of the other six mRNAs, and negatively influence reliability for using them as biomarkers for oral cancer detection. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Hongbo; Liu, Dongfei; Wang, Liang; Liu, Zehua; Wu, Runrun; Janoniene, Agne; Ma, Ming; Pan, Guoqing; Baranauskiene, Lina; Zhang, Linlin; Cui, Wenguo; Petrikaite, Vilma; Matulis, Daumantas; Zhao, Hongxia; Pan, Jianming; Santos, Hélder A
2017-06-01
Structural features of nanoparticles have recently been explored for different types of applications. To explore specific particles as nanomedicine and physically destroy cancer is interesting, which might avoid many obstacles in cancer treatment, for example, drug resistance. However, one key element and technical challenge of those systems is to selectively target them to cancer cells. As a proof-of-concept, Prickly zinc-doped copper oxide (Zn-CuO) nanoparticles (Prickly NPs) have been synthesized, and subsequently encapsulated in a pH-responsive polymer; and the surface has been modified with a novel synthesized ligand, 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl] benzenesulfonamide (VD1142). The Prickly NPs exhibit very effective cancer cell antiproliferative capability. Moreover, the polymer encapsulation shields the Prickly NPs from unspecific nanopiercing and, most importantly, VD1142 endows the engineered NPs to specifically target to the carbonic anhydrase IX, a transmembrane protein overexpressed in a wide variety of cancer tumors. Intracellularly, the Prickly NPs disintegrate into small pieces that upon endosomal escape cause severe damage to the endoplasmic reticulum and mitochondria of the cells. The engineered Prickly NP is promising in efficient and targeted cancer treatment and it opens new avenue in nanomedication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Dong Seon; Hahn, Yoonsoo
2012-11-13
Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.
Effect of polyamines on mechanical and structural properties of Bombyx mori silk.
Yerra, Aparna; Mysarla, Danti Kumari; Siripurapu, Prasanthi; Jha, Anjali; Valluri, Satyavathi V; Mamillapalli, Anitha
2017-01-01
Silkworm, Bombyx mori (B. mori) belongs to the Lepidoptera family. The silk produced from this insect, mulberry silk, gained lot of importance as a fabric. Silk is being exploited as a biomaterial due to its surprising strength and biocompatibility. Polyamines (PA) are important cell growth regulators. In the present work the effect of treatment of polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm) on the quantity and quality of silk produced was assessed. Results showed that exogenous feeding of Spd at a concentration of 50 µM increased fiber length significantly. Analysis by Fourier transform infrared (FTIR) on the properties of silk obtained from Spd treated silkworms revealed an increase in percentage of absorption with no difference in peak positions of amide I and amide III groups. Scanning electron microscopy (SEM) revealed an increase in diameter of silk. Further, analysis at molecular level showed an increase in fibroin expression in Spd treated silk glands. However, the Spd treatment showed no significant difference with respect to fibroin to sericin ratio per unit weight of cocoon, silk tenacity, and percent elongation. Thus, the present results show that polyamine treatment would influence silk quality at structural, mechanical, and molecular level in the Bombyx mori, which can be exploited in silk biomaterial production. © 2016 Wiley Periodicals, Inc.
Enzyme markers of maternal malnutrition in fetal rat brain.
Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R
1987-01-01
The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.
Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA
Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.
2017-01-01
Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines
NASA Astrophysics Data System (ADS)
Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.
1980-03-01
The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.
Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.
Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco
2009-01-01
The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.
The early history of polyamine research.
Bachrach, Uriel
2010-07-01
In 1678 Antonie van Leeuwenhoek identified crystalline substances in human semen. The structure of these crystals, named "spermine", was not elucidated by Rosenheim until 250 years later. Subsequently a triamine (spermidine) and a diamine (putrescine; 1,4-diaminobutane) were isolated from prokaryotic and eukaryotic systems. Soon it became apparent that polyamines can promote the growth of fastidious bacteria. Subsequently a group in Helsinki studied the accumulation of polyamines in regenerating rat liver, while Caldarera and his group studied polyamine synthesis in the developing chick embryo. These investigations led to metabolic studies. Ornithine decarboxylase was identified as a key enzyme in polyamine biosynthesis, while polyamine and diamine oxidations were studied by Mondovì. alpha-Diflouromethylornithine (DFMO) was synthesized by Merrell-Dow and became a potent inhibitor of ornithine decarboxylase. The findings of Russell that polyamines are excreted in the urine of cancer patients drew the attention of oncologists, who attempted the use new technologies for the detection of cancer and improving therapy. With the advance of molecular biology the structure of polyamine-biosynthetic enzymes was elaborated. Plants served as another important tool to study the physiological functions of polyamines. Bagni and his group at Bologna were pioneers in that field and for more than forty-six years set the foundation of a most interesting discipline. 2010 Elsevier Masson SAS. All rights reserved.
Hazar, Fatma Yağmur; Kaban, Güzin; Kaya, Mükerrem
2017-11-01
Pastırma, a Turkish dry-cured meat product, was cured at two different temperatures (4 or 10 °C) with two different curing agents (150 mg/kg NaNO 2 or 300 mg/kg KNO 3 ). The aim of this research was to determine the effects of these factors on biogenic amine content and other qualitative properties (pH, a w , color, residual nitrite, TBARS, NPN-M, microbiological properties). Residual nitrite was below 10 mg/kg in all samples. Both the curing agent and temperature were found to have a very significant effect on the TBARS value, and the curing agent had a significant effect on the NPN-M content. Curing at 10 °C increased the L* value; the use of nitrate increased the a* value. The use of nitrite had a negative effect on the growth of lactic acid bacteria. Micrococcus/Staphylococcus showed good growth in the presence of nitrate. In all samples, Enterobacteriaceae counts were below detectable levels. Neither temperature nor curing agent had significant effects on the amounts of tryptamine, cadaverine, histamine, tyramine, or spermine. There were very significant effects of temperature on the amount of putrescine and of the curing agent on the amount of spermidine.
Smit, Inga; Pfliehinger, Marco; Binner, Antonie; Großmann, Manfred; Horst, Walter J; Löhnertz, Otmar
2014-08-01
Wines rich in biogenic amines can cause adverse health effects to the consumer. Being nitrogen-containing substances, the amount of amines in wines might be strongly influenced by the rate of nitrogen fertiliser application during grape production. The aim of this work was to evaluate the effect of nitrogen fertilisation in the vineyard on the formation of biogenic amines in musts and wines. In a field experiment which compared unfertilised and fertilised (60 and 150 kg N ha(-1)) vines over two separate years, the total amine concentrations in must and wine increased. The latter was due to an increase of individual amines such as ethylamine, histamine, isopentylamine, phenylethylamine and spermidine in the musts and wines with the nitrogen application. Furthermore, the fermentation process increased the concentration of histamine and ethylamine in most of the treatments, while spermidine, spermine and isopentylamine concentrations generally decreased. Throughout both vintages, the concentrations of tyramine and histamine of the investigated musts and wines never reached detrimental levels to the health of non-allergenic people. Nitrogen fertilisation has a significant effect on amines formation in musts and wines. Furthermore, during fermentation, ethylamine and histamine increased while other amines were presumably serving as N sources during fermentation. © 2013 Society of Chemical Industry.
Weiss, Agnes; Jérôme, Valérie; Freitag, Ruth
2007-06-15
The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.
Arashida, Naoko; Nishimoto, Rumi; Harada, Masashi; Shimbo, Kazutaka; Yamada, Naoyuki
2017-02-15
Amino acids and their related metabolites play important roles in various physiological processes and have consequently become biomarkers for diseases. However, accurate quantification methods have only been established for major compounds, such as amino acids and a limited number of target metabolites. We previously reported a highly sensitive high-throughput method for the simultaneous quantification of amines using 3-aminopyridyl-N-succinimidyl carbamate as a derivatization reagent combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Herein, we report the successful development of a practical and accurate LC-MS/MS method to analyze low concentrations of 40 physiological amines in 19 min. Thirty-five of these amines showed good linearity, limits of quantification, accuracy, precision, and recovery characteristics in plasma, with scheduled selected reaction monitoring acquisitions. Plasma samples from 10 healthy volunteers were evaluated using our newly developed method. The results revealed that 27 amines were detected in one of the samples, and that 24 of these compounds could be quantified. Notably, this new method successfully quantified metabolites with high accuracy across three orders of magnitude, with lowest and highest averaged concentrations of 31.7 nM (for spermine) and 18.3 μM (for α-aminobutyric acid), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter.
Pochini, Lorena; Scalise, Mariafrancesca; Di Silvestre, Sara; Belviso, Stefania; Pandolfi, Assunta; Arduini, Arduino; Bonomini, Mario; Indiveri, Cesare
2016-04-01
A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Rastogi, Rajeev; Sawhney, Vipen K.
1990-01-01
The floral organs of the male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.) contain significantly higher level of polyamines than those of the normal (R Rastogi, VK Sawhney [1990] Plant Physiol 93: 439-445). The effects of putrescine, spermidine and spermine, and three different inhibitors of polyamine biosynthesis on the in vitro development of floral buds of the normal and sl-2/sl-2 mutant were studied. The polyamines were inhibitory to the in vitro growth and development of both the normal and mutant floral buds and they induced abnormal stamen development in normal flowers. The inhibitors of polyamine biosynthesis also inhibited the growth and development of floral organs of the two genotypes, but the normal flowers showed greater sensitivity than the mutant. The inhibitors also promoted the formation of normal-looking pollen in stamens of some mutant flowers. The effect of the inhibitors on polyamine levels was not determined. The polyamine-induced abnormal stamen development in the normal, and the inhibitor-induced production of normal-looking pollen in mutant flowers support the suggestion that the elevated polyamine levels contribute to abnormal stamen development in the sl-2/sl-2 mutant of tomato. Images Figure 3 Figure 5 PMID:16667486
CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization.
Shabtay, Ortal; Breitbart, Haim
2016-07-01
In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin-severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLD-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR. Copyright © 2016 Elsevier Inc. All rights reserved.
Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.
Weber, U; Beier, H; Gross, H J
1996-06-15
The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.
Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.
Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar
2003-08-01
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.
1,4-Diaminobutane (putrescine), spermidine, and spermine.
Tabor, C W; Tabor, H
1976-01-01
As is evident from the above summary of the recent literature, plus many other papers not cited here, there is an extensive literature indicating the physiological significance of these amines. The most important studies can be summarized as follows. (a) Polyamines and their biosynthetic enzymes are ubiquitous. (b) Microbiological mutants have been described in which there is a definite requirement of polyamines for growth. (c) The concentration of polyamines and their biosynthesis enzymes increase when the growth rate increases. These increases usually precede or are simultaneous with increases in RNA, DNA, and protein levels. (d) Ornithine decarboxylase has a remarkably fast turnover rate in animal cells, and the level of this enzyme rapidly changes after a variety of growth stimuli. (e) Polyamines have a high affinity for nucleic acids and stabilize their secondary structure. They are found associated with DNA in bacteriophages and have a variety of stimulatory effects on DNA and RNA biosynthesis in vitro. (f) Polyamines stimulate protein synthesis in vivo and in vitro. (g) Polyamines protect spheroplasts and halophilic organisms for lysis, indicating their ability to stabilize membranes. Despite these observations, no specific mechanism has been firmly established for the action of the polyamines in vivo. It is clear that these compounds are physiologically important, however, and further work is necessary to establish the mechanism of their action.
Technological Factors Affecting Biogenic Amine Content in Foods: A Review
Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih
2016-01-01
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed. PMID:27570519
Wang, Wei; Liu, Ji-Hong
2015-01-25
Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah
2015-09-01
A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.
DNA-HMGB1 interaction: The nuclear aggregates of polyamine mediation.
Iacomino, Giuseppe; Picariello, Gianluca; Sbrana, Francesca; Raiteri, Roberto; D'Agostino, Luciano
2016-10-01
Nuclear aggregates of polyamines (NAPs) are supramolecular compounds generated by the self-assembly of protonated nuclear polyamines (spermine, spermidine and putrescine) and phosphate ions. In the presence of genomic DNA, the hierarchical process of self-structuring ultimately produces nanotube-like polymers that envelop the double helix. Because of their modular nature and their aggregation-disaggregation dynamics, NAPs confer plasticity and flexibility to DNA. Through the disposition of charges, NAPs also enable a bidirectional stream of information between the genome and interacting moieties. High mobility group (HMG) B1 is a non-histone chromosomal protein that binds to DNA and that influences multiple nuclear processes. Because genomic DNA binds to either NAPs or HMGB1 protein, we explored the ability of in vitro self-assembled NAPs (ivNAPs) to mediate the DNA-HMGB1 interaction. To this end, we structured DNA-NAPs-HMGB1 and DNA-HMGB1-NAPs ternary complexes in vitro through opportune sequential incubations. Mobility shift electrophoresis and atomic force microscopy showed that the DNA-ivNAPs-HGMB1 complex had conformational assets supposedly more suitable those of the DNA-HGMB1-ivNAPs to comply with the physiological and functional requirements of DNA. Our findings indicated that ivNAPs act as mediators of the DNA-HMGB1 interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Cerebral polyamine metabolism: inhibition of spermidine biosynthesis by dicyclohexylamine.
Porta, R; Camardella, M; Gentile, V; De Santis, A
1984-02-01
Since a specific inhibition of cerebral spermidine (Spd) synthase activity by alicyclic amines was preliminarily observed in vitro, we examined the in vivo inhibitory effectiveness of dicyclohexylamine (DCHA) on Spd biosynthesis in 21-day-old rat brain. For this purpose a previously reported HPLC procedure (Porta et al., 1981a) was modified to analyze the cerebral levels of DCHA at the time of polyamine determinations. The intraperitoneally injected DCHA was shown to cross the blood-brain barrier easily, reaching high levels in the cerebral tissue (approximately 750 nmol/g brain) within 1 h of its administration. The effect of the drug on the polyamine metabolism resulted in a significant depletion of Spd biosynthesis from the sixth hour after the treatment and in an earlier and prolonged increase of the putrescine (Pt) steady-state levels. Conversely, the spermine (Spm) endogenous pools remained unchanged throughout the 24-h post-DCHA period. Moreover, following the intracerebral administration of [1,4-14C]Pt, significantly lower specific radioactivity (s.r.a.) values for labeled Pt and Spd were recorded in the brains of DCHA-treated animals. Conversely, after intracerebral [14C]Spd injection, the s.r.a. of newly formed [14C]Spm remained unchanged, confirming the specificity of the DCHA effect on the Spd biosynthesis.
Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke
2017-11-29
Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com
The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less
Biogenic amines in table olives. Analysis by high-performance liquid chromatography.
Hornero-Méndez, D; Garrido-Fernández, A
1994-09-01
Biogenic amines in fermented vegetables have scarcely been studied. Available data show that in table olives and fermented cucumbers their presence is rare and any determinations made have been restricted mainly to histamine. However, some microorganisms, especially those related to spoilage, found in the fermentation brines of such products may have amino acid decarboxylase activity and give rise to biogenic amines by unusual processes. A method for the simultaneous determination of eight biogenic amines (tryptamine, beta-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine) has been developed to study their occurrence in fermented vegetables in more detail. The method consists of extraction of the amines from olive paste with 5% m/v trichloracetic acid and successive transfers into water-saturated n-BuOH and 0.1 mol l-1 HCl. An aliquot of this mixture is dried and derivatized with dansyl chloride. The dansyl derivatives are then analysed by high-performance liquid chromatography. Special emphasis has been given to optimization of the n-BuOH and 0.1 mol l-1 HCl extractions and to the derivatization conditions. By applying this method to the analysis of spoilt olives, the presence of some biogenic amines has been demonstrated. Thus a new method for monitoring the presence of biogenic amines during the fermentation of olives and for detecting anomalous fermentations is envisaged.
Role of ATF4 in skeletal muscle atrophy.
Adams, Christopher M; Ebert, Scott M; Dyle, Michael C
2017-05-01
Here, we discuss recent work focused on the role of activating transcription factor 4 (ATF4) in skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression; however, the transcriptional regulatory proteins responsible for those changes are not yet well defined. Recent work indicates that some forms of muscle atrophy require ATF4, a stress-inducible bZIP transcription factor subunit that helps to mediate a broad range of stress responses in mammalian cells. ATF4 expression in skeletal muscle fibers is sufficient to induce muscle fiber atrophy and required for muscle atrophy during several stress conditions, including aging, fasting, and limb immobilization. By helping to activate specific genes in muscle fibers, ATF4 contributes to the expression of numerous mRNAs, including at least two mRNAs (Gadd45a and p21) that encode mediators of muscle fiber atrophy. Gadd45a promotes muscle fiber atrophy by activating the protein kinase MEKK4. p21 promotes atrophy by reducing expression of spermine oxidase, a metabolic enzyme that helps to maintain muscle fiber size under nonstressed conditions. In skeletal muscle fibers, ATF4 is critical component of a complex and incompletely understood molecular signaling network that causes muscle atrophy during aging, fasting, and immobilization.
Studies on vaginal malodor. I. Study in humans.
Chvapil, M; Eskelson, C; Jacobs, S; Chvapil, T; Russell, D H
1978-07-01
Forty-two percent of collagen sponges tested as an intravaginal barrier contraceptive method developed malodor when retained for 5 days. Only 4% developed odor when the sponge was removed within 24 hours after intercourse, rinsed, and reinserted. While sexually active volunteers found odor in 37% of the sponges, odor formed only in 4% of the sponges worn by sexually inactive users. No difference in the rate of odor formation was found when neutral pH (7.0) and acid pH (3.4) collagen sponges were tested, although we believe that a pH 3.4 is too acid and promotes odor formation. The optimal pH of the sponge should be 4.5 to 5.5. Malodor was efficiently extracted from sponges by washing in acid milieu of tap water and vinegar or 0.1 M acetate buffer, pH 4.0. Alkali extraction procedures were ineffective, and lukewarm water was slightly less effective than acid extraction of odor. At the time of malodor development, the high content of polyamines (putrescine, spermine, spermidine) in the ejaculate decreased to undetectable values. We conclude that the ejaculate is the major source of malodor formation in intravaginally worn collagen sponges. Removal, rinsing optimally in vinegar solution, and reinsertion within 24 hours after intercourse reduces the chance of malodor formation.
Alterations in nitrogen metabolites after putrescine treatment in alfalfa under drought stress.
Zeid, I M; Shedeed, Z A
2007-05-01
Alfalfa (Medicago sativa, Siwa 1) seeds were subjected to drought stress during germination by using polyethylene glycol (PEG 4000) for studying the changes in some enzyme activities involved in nitrogen metabolism and the content of nitrogenous compounds during the first four days of growth after putrescine (Put) treatment. Decreasing the external water potential reduced activities of glutamate-pyruvate transferase (GPT), glutamate-oxaloacetate transferase (GOT) and RNase. Some free amino acids such as proline and glycine increased, while alanine and aspartic acid decreased. Nucleic acids content also decreased. Polyamines e.g., spermidine (Spd) and spermine (Spm) increased at the water potential -0.4 MPa. Put treatment increased activities of GOT, GPT and RNase. Furthermore, Put treatment increased nucleic acids content and the endogenous polyamines under drought stress. Drought stress was imposed during seedling stage by decreasing soil moisture content. GOT, GPT and RNase activities increased in leaves of alfalfa seedlings under drought stress. Soluble nitrogenous compounds accumulated under drought stress, while nucleic acids content decreased. Except glutamic acid, all free amino acids detected increased under drought stress. Put treatment decreased activities of GOT, GPT and RNase, as well as reduced the accumulation of the total soluble nitrogenous compounds, but increased DNA, RNA and protein contents.
Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars
Shen, Wenyun; Nada, Kazuyoshi; Tachibana, Shoji
2000-01-01
The possible involvement of polyamines (PAs) in the chilling tolerance of cucumber (Cucumis sativus L. cv Jinchun No. 3 and cv Suyo) was investigated. Plants with the first expanded leaves were exposed to 3°C or 15°C in the dark for 24 h (chilling), and then transferred to 28°C/22°C under a 12-h photoperiod for another 24 h (rewarming). Chilling-tolerant cv Jinchun No. 3 showed a marked increase of free spermidine (Spd) in leaves, once during chilling and again during rewarming. Putrescine increased significantly during rewarming, but the increase of spermine was slight. Any of these PAs did not increase in chilling-sensitive cv Suyo during either period. PA-biosynthetic enzyme activities appear to mediate these differences between cultivars. Pretreatment of Spd to cv Suyo prevented chill-induced increases in the contents of hydrogen peroxide in leaves and activities of NADPH oxidases and NADPH-dependent superoxide generation in microsomes and alleviated chilling injury. Pretreatment of methylglyoxal-bis-(guanylhydrazone), a PA biosynthesis inhibitor, to chilled cv Jinchun No. 3 prevented Spd increase and enhanced microsomal NADPH oxidase activity and chilling injury. The results suggest that Spd plays important roles in chilling tolerance of cucumber, probably through prevention of chill-induced activation of NADPH oxidases in microsomes. PMID:10982456
Amri, E Z; Dani, C; Doglio, A; Etienne, J; Grimaldi, P; Ailhaud, G
1986-01-01
A subclone of preadipocyte Ob17 cells has been isolated (Ob1754 clonal line). Confluent Ob1754 cells treated with an inhibitor of spermidine and spermine synthesis, methylglyoxal bis(guanylhydrazone), were totally dependent upon putrescine addition for the expression of glycerol-3-phosphate dehydrogenase which behaved as a late marker of adipose conversion. Under these conditions, the early expression of lipoprotein lipase during growth arrest remained unchanged. Studies at the mRNA level showed that the expression of unidentified pOb24 and pGH3 mRNAs, which was parallel to that of lipoprotein lipase, is independent of polyamine addition whereas the late emergence of glycerol-3-phosphate dehydrogenase mRNA was putrescine-dependent and co-ordinated with the expression of pAL422 mRNA encoding for a myelin-P2 homologue [Bernlohr, Angus, Lane, Bolanowski & Kelly (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5468-5472]. The appearance of lipoprotein lipase preceded DNA synthesis and post-confluent mitoses which were both putrescine-dependent and which took place before the appearance of glycerol-3-phosphate dehydrogenase. Thus the adipose conversion of Ob1754 cells involves the expression of at least two separate sets of markers which are differently regulated. Images Fig. 3. Fig. 6. PMID:3800927
Technological Factors Affecting Biogenic Amine Content in Foods: A Review.
Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih
2016-01-01
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed.
Isolation and characterization of a fraction rich in ambiquitous enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamdar, S.; Wells, G.; Cohen, G.
Mg/sup 2 +/-dependent phosphatidate phosphohydrolase (PPH) and CTP: phosphocholine cytidylyltransferase (PCT) have been recognized as ambiquitous enzymes. A fraction rich in the activities of these enzymes was isolated from rat adipose cytosol (1) by hydrophobic chromatography on butyl agarose and elution with buffer containing 1M NaCl; (2) by incubating cytosol with 1mM spermine at 23/sup 0/C for 30 min and centrifugation at 15,000 RPM for 15 min. This cytosolic fraction represented 5-10% of total protein and 60-90% total PPH and PCT. Such treatment of cytosol resulted in increase in the specific activity of PPH and PCT 8-20 fold. These fractionsmore » lacked lactate dehydrogenase, a cytosol marker and were also devoid of other enzymes involved in lipid synthesis, including glycerophosphate acyltransferase and diacylglycerol acyltransferase. SDS gel electrophoresis of these fractions indicated the presence of 8-10 protein bands. Electron microscopic examination showed the presence of lipid droplets surrounded by proteinaceous material and some vesicular structures. The presence of lipid in these fractions was also confirmed by /sup 32/P incorporation and autoradiography of /sup 32/P labeled lipids. These studies suggest that ambiquitous enzymes may reside in a separate membrane compartment present in the cytosol.« less
Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.
Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S
2017-06-20
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Couillerot, Jean-Paul; Windels, David; Vazquez, Franck; Michalski, Jean-Claude; Hilbert, Jean-Louis; Blervacq, Anne-Sophie
2012-01-01
Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE (ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine, putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE, we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of secreted AGPs, were both added to the medium. PMID:22301978
Davies, Sarah L; Gibbons, Claire E; Steward, Martin C; Ward, Donald T
2008-10-01
The calcium-sensing receptor (CaR) is expressed on intestinal epithelial serosal membrane and in Caco-2 cells. In renal epithelium, CaR expressed on the basolateral membrane acts to limit excess tubular Ca2+ reabsorption. Therefore, here we investigated whether extracellular calcium (Ca(o)2+) can regulate active or passive 45Ca2+ transport across differentiated Caco-2 monolayers via CaR-dependent or CaR-independent mechanisms. Raising the Ca(o)2+ concentration from 0.8 to 1.6 mM increased transepithelial electrical resistance (TER) and decreased passive Ca2+ permeability but failed to alter active Ca2+ transport. The Ca(o)2+ effect on TER was rapid, sustained and concentration-dependent. Increasing basolateral Mg2+ concentration increased TER and inhibited both passive and active Ca2+ transport, whereas spermine and the CaR-selective calcimimetic NPS R-467 were without effect. We conclude that small increases in divalent cation concentration elicit CaR-independent increases in TER and inhibit passive Ca2+ transport across Caco-2 monolayers, most probably through a direct effect on tight junction permeability. Whilst it is known that the complete removal of Ca(o)2+ lowers TER, here we show that Ca(o)2+ addition actually increases TER in a concentration-dependent manner. Therefore, such Ca(o)2+-sensitivity could modulate intestinal solute transport including the limiting of excess Ca2+ absorption.
Snezhkina, Anastasiya V; Krasnov, George S; Lipatova, Anastasiya V; Sadritdinova, Asiya F; Kardymon, Olga L; Fedorova, Maria S; Melnikova, Nataliya V; Stepanov, Oleg A; Zaretsky, Andrew R; Kaprin, Andrey D; Alekseev, Boris Y; Dmitriev, Alexey A; Kudryavtseva, Anna V
2016-01-01
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.
Snezhkina, Anastasiya V.; Lipatova, Anastasiya V.; Sadritdinova, Asiya F.; Kardymon, Olga L.; Fedorova, Maria S.; Kaprin, Andrey D.
2016-01-01
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection. PMID:27433286
2012-01-01
Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution. PMID:23148531
Filippova, Ekaterina V; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F
2015-11-06
The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. Copyright © 2015. Published by Elsevier Ltd.
Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)
NASA Astrophysics Data System (ADS)
Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer
2009-02-01
Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.
Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George
2010-06-01
Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.
Nag; Saha; Choudhuri
2000-08-22
Hydrogenperoxide (H(2)O(2)) is an end product of diamine and polyamine oxidation by their respective oxidase enzymes. A new sensitive assay method is based on a H(2)O(2)-titanium (Ti) complex formation as an indicator of H(2)O(2) production due to polyamine oxidation. The orange-yellow coloured H(2)O(2)-Ti complex was measured at 410 nm in a Shimadzu spectrophotometer. The assay conditions for maximum diamine oxidase (DAO) and polyamine oxidase (PAO) as standardized here using the hypocotyl tissues of Vigna catjang Endl. cv Pusa Barsati consisted of pH 7.4 (40 mM potassium phosphate buffer), 3 mM substrate (putrescine or spermine), 37 degrees C incubation temperature and 30 min incubation time in the presence of catechol (10(-2) M) used as an inhibitor of both peroxidase and catalase activity. The method described here was significantly more sensitive than the starch-iodide method [T.A. Smith, Biochem. Biophys. Res. Commun. 41 (1970) 1452-1456], which could be improved further if measured under the same assay conditions as described for the H(2)O(2)-Ti method. Sensitivity of the present method was tested by assaying DAO/PAO activity in auxin treated hypocotyls of Vigna and comparing it with the starch-iodide method in two other plant samples.
Penfold, Jeffrey; Thomas, Robert K; Li, Peixun
2016-02-01
The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.
Suzuki, T; Suzuki, N; Hosoya, T
1993-01-01
Nucleolin is a major nucleolar phosphoprotein and is presumably involved in rDNA transcription and ribosome biosynthesis. This protein is known to be very labile and to be cleaved by endogenous proteases into many small peptides. We found that, when rat liver nucleolar suspension (Nu-1) or nucleolin-rich extract (Nu-2) was incubated under conventional conditions, polyamines and histones interacted with the nucleolin to lead to its preferential degradation to 60 kDa phosphopeptide (p60). The peptide p60 was identified as a peptide containing the N-terminal half of the nucleolin molecule, as judged from peptide-map analysis. Whereas spermine binding to the purified nucleolin was decreased by KCl concentrations above 50 mM, histones (H1, H2B and H3) were able to bind to the nucleolin in the presence of up to 300 mM KCl. A distinct difference between H1 and other histones was found in that H1 could produce p60 from nucleolin in both Nu-1 and Nu-2, whereas H2B and H3 stimulated the degradation of nucleolin to p60 only when Nu-2 was used for the source of nucleolin. A possible relationship between p60 formation and rRNA synthesis is discussed, but its exact role remains to be studied. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8424749
Michail, Karim; Aljuhani, Naif; Siraki, Arno G
2013-03-01
Synthetic and biological amines such as ethylenediamine (EDA), spermine, and spermidine have not been previously investigated in free-radical biochemical systems involving aniline-based drugs or xenobiotics. We aimed to study the influence of polyamines in the modulation of aromatic amine radical metabolites in peroxidase-mediated free radical reactions. The aniline compounds tested caused a relatively low oxidation rate of glutathione in the presence of horseradish peroxidase (HRP), and H2O2; however, they demonstrated marked oxygen consumption when a polyamine molecule was present. Next, we characterized the free-radical products generated by these reactions using spin-trapping and electron paramagnetic resonance (EPR) spectrometry. Primary and secondary but not tertiary polyamines dose-dependently enhanced the N-centered radicals of different aniline compounds catalyzed by either HRP or myeloperoxidase, which we believe occurred via charge transfer intermediates and subsequent stabilization of aniline-derived radical species as suggested by isotopically labeled aniline. Aniline/peroxidase reaction product(s) were monitored at 435 nm by kinetic spectrophotometry in the presence and absence of a polyamine additive. Using gas chromatography-mass spectrometry, the dimerziation product of aniline, azobenzene, was significantly amplified when EDA was present. In conclusion, di- and poly-amines are capable of enhancing the formation of aromatic-amine-derived free radicals, a fact that is expected to have toxicological consequences.
Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C
Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar
2003-01-01
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165
Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene.
Guo, Jiaxuan; Wang, Shufang; Yu, Xiaoyang; Dong, Rui; Li, Yuzhong; Mei, Xurong; Shen, Yuanyue
2018-05-01
Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry ( Fragaria ananassa ), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S -adenosyl-l-Met decarboxylase gene ( FaSAMDC ), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K d of 1.7 × 10 -3 m In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening. © 2018 American Society of Plant Biologists. All Rights Reserved.
Bartkiene, Elena; Krungleviciute, Vita; Juodeikiene, Grazina; Vidmantiene, Daiva; Maknickiene, Zita
2015-04-01
The ability of bacteriocin-like inhibitory substance (BLIS)-producing lactic acid bacteria (LAB) to degrade biogenic amines as well as to produce L(+) and D(-)-lactic acid during solid state fermentation (SSF) of lupin and soya bean was investigated. In addition, the protein digestibility and formation of organic acids during SSF of legume were investigated. Protein digestibility of fermented lupin and soya bean was found higher on average by 18.3% and 15.9%, respectively, compared to untreated samples. Tested LAB produced mainly L-lactic acid in soya bean and lupin (D/L ratio 0.38-0.42 and 0.35-0.54, respectively), while spontaneous fermentation gave almost equal amounts of both lactic acid isomers (D/L ratio 0.82-0.98 and 0.92, respectively). Tested LAB strains were able to degrade phenylethylamine, spermine and spermidine, whereas they were able to produce putrescine, histamine and tyramine. SSF improved lupin and soya bean protein digestibility. BLIS-producing LAB in lupin and soya bean medium produced a mixture of D- and L-lactic acid with a major excess of the latter isomer. Most toxic histamine and tyramine in fermented lupin and soya bean were found at levels lower those causing adverse health effects. Selection of biogenic amines non-producing bacteria is essential in the food industry to avoid the risk of amine formation. © 2014 Society of Chemical Industry.
The impact of BMI on sperm parameters and the metabolite changes of seminal plasma concomitantly.
Guo, Dan; Wu, Wei; Tang, Qiuqin; Qiao, Shanlei; Chen, Yiqiu; Chen, Minjian; Teng, Mengying; Lu, Chuncheng; Ding, Hongjuan; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Sha, Jiahao; Wang, Xinru
2017-07-25
The development of male infertility increased rapidly worldwide, which coinciding with the epidemic of obesity. However, the impact of weight abnormalities on sperm quality is still contestable. To assess the correlation between BMI and sperm parameters, we searched relevant articles in PubMed, Embase, Web of science, and Wanfang database published until June 2015 without language restriction. Otherwise, we also recruited some participants who attended fertility clinic as well as some general populations in this report. We performed a systematic review and meta-analysis about BMI and sperm parameters containing total sperm count, concentration, semen volume and sperm motility (overall and progressive). Metabolomic analysis of seminal plasma was performed to explore the mechanism from a new perspective. This study found standardized weighted mean differences (SMD) in sperm parameters (total sperm count, sperm concentration, and semen volume) of abnormal weight groups decreased to different degree compared to normal weight. Dose-response analysis found SMD of sperm count, sperm concentration and semen volume respectively fell 2.4%, 1.3% and 2.0% compared with normal weight for every 5-unit increase in BMI. Metabolomic analysis of seminal plasma showed that spermidine and spermine were likely to play a vital role in the spermatogenesis progress. This systematic review with meta-analysis has confirmed there was a relationship between BMI and sperm quality, suggesting obesity may be a detrimental factor of male infertility.
Knox, Logan T; Jing, Yu; Collie, Nicola D; Zhang, Hu; Liu, Ping
2014-06-01
Phencyclidine (PCP), a non-competitive N-methyl-d-aspartate glutamate receptor antagonist, induces schizophrenic symptoms in healthy individuals, and altered arginine metabolism has been implicated in schizophrenia. The present study investigated the effects of a single subcutaneous injection of PCP (2, 5 or 10 mg/kg) on arginine metabolism in the sub-regions of the hippocampus and prefrontal cortex in male young adult Sprague-Dawley rats. Animals' general behaviour was assessed in the open field apparatus 30 min after the treatment, and the brain tissues were collected at the time point of 60 min post-treatment. Behaviourally, PCP resulted in reduced exploratory activity in a dose-dependent manner, and severe stereotype behaviour and ataxia at the highest dose. Neurochemically, PCP significantly altered the nitric oxide synthase and arginase activities, the l-arginine, agmatine, spermine, glutamate and GABA levels, and the glutamine/glutamate and glutamate/GABA ratios in a dose-dependent and/or region-specific manner. Cluster analyses showed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which changed as a function of PCP mainly in the hippocampus. Multiple regression analysis revealed significant neurochemical-behavioural correlations. These results demonstrate, for the first time, that a single acute administration of PCP affects animals' behaviour and arginine metabolism in the brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling
Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng
2013-01-01
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154
Filippova, Ekaterina V.; Weigand, Steven J.; Osipiuk, Jerzy; ...
2015-09-26
The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Twomore » hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. As a result, our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites.« less
Rodamilans, Bernardo; Montoya, Guillermo
2007-01-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P21, with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 Å, α = γ = 90, β = 101.02°, and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 Å using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). PMID:17401195
Rodamilans, Bernardo; Montoya, Guillermo
2007-04-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P2(1), with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 A, alpha = gamma = 90, beta = 101.02 degrees , and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 A using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS).
Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J.; Casero, Robert A.
2011-01-01
Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer. PMID:22132744
Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria
Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.
1988-01-01
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870
Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1
Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.
1985-01-01
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442
Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.
Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P
1988-01-01
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.
Activities of arginine and ornithine decarboxylases in various plant species.
Birecka, H; Bitonti, A J; McCann, P P
1985-10-01
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.
Liu, Mingxi; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun
2017-01-01
Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements. However, our knowledge on physiological adaptation of centipedegrass to drought stress is limited. Physiological responses to drought in a gamma-ray-induced mutant 22-1 as compared with two wild type (WT) lines were analyzed for understanding of drought tolerance mechanism of centipedegrass. The mutant showed an elevated drought tolerance with higher levels of relative water content, net photosynthetic rate (A) and stomatal conductance (gs) and lower levels of ion leakage and malondialdehyde (MDA) under drought stress as compared with WT plants. A showed significant correlation with gs and MDA. Higher levels of antioxidant enzymes activities, non-enzyme antioxidants, and polyamines including putrescine (Put), spermidine (Spd), and spermine (Spm) were maintained in 22-1 than in WT plants. Superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX), and glutathione reductase (GR) activities and ascorbic acid (AsA) content were significantly correlated with both Put and Spd levels, and reduced glutathione level was correlated with Put during drought stress. Exogenous application of Put, Spd, and Spm increased drought tolerance and activities of SOD, CAT, APX, and GR in WT plants. The results suggest that higher levels of polyamines and antioxidant defense system are associated with the elevated drought tolerance in 22-1, which may improve protection on photosynthesis against drought induced oxidative damage. PMID:28559909
Burns, Mark R.; Graminski, Gerard F.; Weeks, Reitha S.; Chen, Yan; O’Brien, Thomas G.
2009-01-01
Cancer cells can overcome the ability of polyamine biosynthesis inhibitors from completely depleting their internal polyamines by the importation polyamines from external sources. We have developed a group of lipophilic polyamine analogs that potently inhibit the cellular polyamine uptake system and greatly increase the effectiveness of polyamine depletion when used in combination with DFMO, a well-studied polyamine biosynthesis inhibitor. By the attachment of an length-optimized C16 lipophilic substituent to the epsilon-nitrogen atom of our earlier lead compound, d-Lys-Spm (5), we have produced an analog, d-Lys(C16acyl)-Spm (11) with several orders of magnitude more potent cell growth inhibition on a variety of cultured cancer cell types including breast (MDA-MB-231), prostate (PC-3), melanoma (A375) and ovarian (SK-OV-3), among others. We discuss these results in the context of a possible membrane-catalyzed interaction with the extracellular polyamine transport apparatus. The resulting novel two-drug combination therapy targeting cellular polyamine metabolism has shown exceptional efficacy against cutaneous squamous cell carcinomas (SCC) in a transgenic ornithine decarboxylase (ODC) mouse model of skin cancer. A majority (88%) of large, aggressive SCCs exhibited complete or near-complete remission to this combination therapy, while responses to each agent alone were poor. The availability of a potent polyamine transport inhibitor allows, for the first time, for a real test of the hypothesis that starving cells of polyamines will lead to objective clinical response. PMID:19281226
Noonberg, S B; François, J C; Garestier, T; Hélène, C
1995-01-01
Competition between triplex formation with double-stranded DNA and oligonucleotide self-association was investigated in 23mer GA and GT oligonucleotides containing d(GA)5 or d(GT)5 repeats. Whereas triplex formation with GT oligonucleotides was diminished when temperature increased from 4 to 37 degrees C, triplex formation with GA oligonucleotides was enhanced when temperature increased within the same range due to the presence of competing intermolecular GA oligonucleotide self-structure. This self-structure was determined to be a homoduplex stabilized by the internal GA repeats. UV spectroscopy of these homoduplexes demonstrated a single sharp transition with rapid kinetics (Tm = 38.5-43.5 degrees C over strand concentrations of 0.5-4 microM, respectively, with transition enthalpy, delta H = -89 +/- 7 kcal/mol) in 10 mM MgCl2, 100 mM NaCl, pH 7.0. Homoduplex formation was strongly stabilized by multivalent cations (spermine > Mg2+ = Ca2+) and destabilized by low concentrations of monovalent cations (K+ = Li+ = Na+) in the presence of divalent cations. However, unlike GA or GT oligonucleotide-containing triplexes, the homoduplex formed even in the absence of multivalent cations, stabilized by only moderate concentrations of monovalent cations (Li+ > Na+ > K+). Through the development of multiple equilibrium states and the resulting depletion of free oligonucleotide, it was found that the presence of competing self-structure could decrease triplex formation under a variety of experimental conditions. Images PMID:7596824
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739
Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang
2018-08-30
Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.
Sprenger, Janina; Carey, Jannette; Svensson, Bo; Wengel, Verena
2016-01-01
The aminopropyltransferase spermidine synthase (SpdS) is a promising drug target in cancer and in protozoan diseases including malaria. Plasmodium falciparum SpdS (PfSpdS) transfers the aminopropyl group of decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine or to spermidine to form spermidine or spermine, respectively. In an effort to understand why efficient inhibitors of PfSpdS have been elusive, the present study uses enzyme activity assays and isothermal titration calorimetry with verified or predicted inhibitors of PfSpdS to analyze the relationship between binding affinity as assessed by KD and inhibitory activity as assessed by IC50. The results show that some predicted inhibitors bind to the enzyme with high affinity but are poor inhibitors. Binding studies with PfSpdS substrates and products strongly support an ordered sequential mechanism in which the aminopropyl donor (dcAdoMet) site must be occupied before the aminopropyl acceptor (putrescine) site can be occupied. Analysis of the results also shows that the ordered sequential mechanism adequately accounts for the complex relationship between IC50 and KD and may explain the limited success of previous efforts at structure-based inhibitor design for PfSpdS. Based on PfSpdS active-site occupancy, we suggest a classification of ligands that can help to predict the KD−IC50 relations in future design of new inhibitors. The present findings may be relevant for other drug targets that follow an ordered sequential mechanism. PMID:27661085
Gershberg, Jana; Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Rehm, Thomas H; Rehm, Stefanie; Saha-Möller, Chantu R; Piantanida, Ivo; Würthner, Frank
2015-05-18
A broad series of homochiral perylene bisimide (PBI) dyes were synthesized that are appended with amino acids and cationic side chains at the imide positions. Self-assembly behavior of these ionic PBIs has been studied in aqueous media by UV/Vis spectroscopy, revealing formation of excitonically coupled H-type aggregates. The interactions of these ionic PBIs with different ds-DNA and ds-RNA have been explored by thermal denaturation, fluorimetric titration and circular dichroism (CD) experiments. These PBIs strongly stabilized ds-DNA/RNA against thermal denaturation as revealed by high melting temperatures of the formed PBI/polynucleotide complexes. Fluorimetric titrations showed that these PBIs bind to ds-DNA/RNA with high binding constants depending on the number of the positive charges in the side chains. Thus, spermine-containing PBIs with six positive charges each showed higher binding constants (logKs =9.2-9.8) than their dioxa analogues (logKs =6.5-7.9) having two positive charges each. Induced circular dichroism (ICD) of PBI assemblies created within DNA/RNA grooves was observed. These ICD profiles are strongly dependent on the steric demand of the chiral substituents of the amino acid units and the secondary structure of the DNA or RNA. The observed ICD effects can be explained by non-covalent binding of excitonically coupled PBI dimer aggregates into the minor groove of DNA and major groove of RNA which is further supported by molecular modeling studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Duong, Hien T T; Jung, Kenward; Kutty, Samuel K; Agustina, Sri; Adnan, Nik Nik M; Basuki, Johan S; Kumar, Naresh; Davis, Thomas P; Barraud, Nicolas; Boyer, Cyrille
2014-07-14
Biofilms are increasingly recognized as playing a major role in human infectious diseases, as they can form on both living tissues and abiotic surfaces, with serious implications for applications that rely on prolonged exposure to the body such as implantable biomedical devices or catheters. Therefore, there is an urgent need to develop improved therapeutics to effectively eradicate unwanted biofilms. Recently, the biological signaling molecule nitric oxide (NO) was identified as a key regulator of dispersal events in biofilms. In this paper, we report a new class of core cross-linked star polymers designed to store and release nitric oxide, in a controlled way, for the dispersion of biofilms. First, core cross-linked star polymers were prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) via an arm first approach. Poly(oligoethylene methoxy acrylate) chains were synthesized by RAFT polymerization, and then chain extended in the presence of 2-vinyl-4,4-dimethyl-5-oxazolone monomer (VDM) with N,N-methylenebis(acrylamide) employed as a cross-linker to yield functional core cross-linked star polymers. Spermine was successfully attached to the star core by reaction with VDM. Finally, the secondary amine groups were reacted with NO gas to yield NO-core cross-linked star polymers. The core cross-linked star polymers were found to release NO in a controlled, slow delivery in bacterial cultures showing great efficacy in preventing both cell attachment and biofilm formation in Pseudomonas aeruginosa over time via a nontoxic mechanism, confining bacterial growth to the suspended liquid.
Characterization of arginine decarboxylase from Dianthus caryophyllus.
Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun
2004-04-01
Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.
Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael
2015-05-01
Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.
Li, Yong-Fu; Hess, Sonja; Pannell, Lewis K.; Tabor, Celia White; Tabor, Herbert
2001-01-01
S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme in the biosynthesis of spermidine and spermine, is first synthesized as a proenzyme, which is cleaved posttranslationally to form α and β subunits. The α subunit contains a covalently bound pyruvoyl group derived from serine that is essential for activity. With the use of an Escherichia coli overexpression system, we have purified AdoMetDCs encoded by the E. coli, Saccharomyces cerevisiae, and Salmonella typhimurium genes. Unexpectedly we found by mass spectrometry that these enzymes had been modified posttranslationally in vivo by a mechanism-based “suicide” inactivation. A large percentage of the α subunit of each enzyme had been modified in vivo to give peaks with masses m/z = 57 ± 1 and m/z = 75 ± 1 daltons higher than the parent peak. AdoMetDC activity decreased markedly during overexpression concurrently with the increase of the additional peaks for the α subunit. Sequencing of a tryptic fragment by tandem mass spectrometry showed that Cys-140 was modified with a +75 ± 1 adduct, which is probably derived from the reaction product. Comparable modification of the α subunit was also observed in in vitro experiments after incubation with the substrate or with the reaction product, which is consistent with the in vitro alkylation of E. coli AdoMetDC reported by Diaz and Anton [Diaz, E. & Anton, D. L. (1991) Biochemistry 30, 4078–4081]. PMID:11526206
Li, Y F; Hess, S; Pannell, L K; White Tabor, C; Tabor, H
2001-09-11
S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme in the biosynthesis of spermidine and spermine, is first synthesized as a proenzyme, which is cleaved posttranslationally to form alpha and beta subunits. The alpha subunit contains a covalently bound pyruvoyl group derived from serine that is essential for activity. With the use of an Escherichia coli overexpression system, we have purified AdoMetDCs encoded by the E. coli, Saccharomyces cerevisiae, and Salmonella typhimurium genes. Unexpectedly we found by mass spectrometry that these enzymes had been modified posttranslationally in vivo by a mechanism-based "suicide" inactivation. A large percentage of the alpha subunit of each enzyme had been modified in vivo to give peaks with masses m/z = 57 +/- 1 and m/z = 75 +/- 1 daltons higher than the parent peak. AdoMetDC activity decreased markedly during overexpression concurrently with the increase of the additional peaks for the alpha subunit. Sequencing of a tryptic fragment by tandem mass spectrometry showed that Cys-140 was modified with a +75 +/- 1 adduct, which is probably derived from the reaction product. Comparable modification of the alpha subunit was also observed in in vitro experiments after incubation with the substrate or with the reaction product, which is consistent with the in vitro alkylation of E. coli AdoMetDC reported by Diaz and Anton [Diaz, E. & Anton, D. L. (1991) Biochemistry 30, 4078-4081].
Antimalarial natural products drug discovery in Panama.
Calderón, Angela I; Simithy-Williams, Johayra; Gupta, Mahabir P
2012-01-01
Malaria is still a major public health problem. The biodiversity of the tropics is extremely rich and represents an invaluable source of novel bioactive molecules. For screening of this diversity more sensitive and economical in vitro methods are needed, Flora of Panama has been studied based on ethnomedical uses for discovering antimalarial compounds. This review aims to provide an overview of in vitro screening methodologies for antimalarial drug discovery and to present results of this effort in Panama during the last quarter century. A literature search in SciFinder and PubMed and original publications of Panamanian scientists was performed to gather all the information on antimalarial drug discovery from the Panamanian flora and in vitro screening methods. A variety of colorimetric, staining, fluorometric, and mass spectrometry and radioactivity-based methods have been provided. The advantages and limitations of these methods are also discussed. Plants used in ethnomedicine for symptoms of malaria by three native Panamanian groups of Amerindians, Kuna, Ngöbe Buglé and Teribes are provided. Seven most active plants with IC(50) values < 10 μg/mL were identified Talisia nervosa Radlk. (Sapindaceae), Topobea parasitica Aubl.(Melastomataceae), Monochaetum myrtoideum Naudin (Melastomataceae), Bourreria spathulata (Miers) Hemsl.(Boraginaceae), Polygonum acuminatum Kunth (Polygonaceae), Clematis campestris A. St.-Hil. (Ranunculaceae) and Terminalia triflora (Griseb.) Lillo (Combretaceae). Thirty bioactive compounds belonging to a variety of chemical classes such as spermine and isoquinoline alkaloids, glycosylflavones, phenylethanoid glycosides, ecdysteroids, quercetin arabinofuranosides, clerodane-type diterpenoids, sipandinolid, galloylquercetin derivatives, gallates, oleamide and mangiferin derivatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less
Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf
2017-08-01
Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
Liu, Taibo; Huang, Binbin; Chen, Lin; Xian, Zhiqiang; Song, Shiwei; Chen, Riyuan; Hao, Yanwei
2018-06-30
Polyamines (PAs), including putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine (T-Spm), play key roles in plant development, including fruit setting and ripening, morphogenesis, and abiotic/biotic stress. Their functions appear to be intimately related to their synthesis, which occurs via arginine/ornithine decarboxylase (ADC/ODC), Spd synthase (SPDS), Spm synthase (SPMS), and Acaulis5 (ACL5), respectively. Unfortunately, the expression and function of these PA synthesis-relate genes during specific developmental process or under stress have not been fully elucidated. Here, we present the results of a genome-wide analysis of the PA synthesis genes (ADC, ODC, SPDS, SPMS, ACL5) in the tomato (Solanum lycopersicum). In total, 14 PA synthesis-related genes were identified. Further analysis of their structures, conserved domains, phylogenetic trees, predicted subcellular localization, and promoter cis-regulatory elements were analyzed. Furthermore, we also performed experiments to evaluate their tissue expression patterns and under hormone and various stress treatments. To our knowledge, this is the first study to elucidate the mechanisms underlying PA function in this variety of tomato. Taken together, these data provide valuable information for future functional characterization of specific genes in the PA synthesis pathway in this and other plant species. Although additional research is required, the insight gained by this and similar studies can be used to improve our understanding of PA metabolism ultimately leading to more effective and consistent plant cultivation. Copyright © 2018 Elsevier B.V. All rights reserved.
New perspectives in glutamate and anxiety.
Riaza Bermudo-Soriano, Carlos; Perez-Rodriguez, M Mercedes; Vaquero-Lorenzo, Concepcion; Baca-Garcia, Enrique
2012-02-01
Anxiety and stress-related disorders, namely posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), obsessive-compulsive disorder (ODC), social and specific phobias, and panic disorder, are a major public health issue. A growing body of evidence suggests that glutamatergic neurotransmission may be involved in the biological mechanisms underlying stress response and anxiety-related disorders. The glutamatergic system mediates the acquisition and extinction of fear-conditioning. Thus, new drugs targeting glutamatergic neurotransmission may be promising candidates for new pharmacological treatments. In particular, N-methyl-d-aspartate receptors (NMDAR) antagonists (AP5, AP7, CGP37849, CGP39551, LY235959, NPC17742, and MK-801), NMDAR partial agonists (DCS, ACPC), α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) antagonists (topiramate), and several allosteric modulators targeting metabotropic glutamate receptors (mGluRs) mGluR1, mGluR2/3, and mGluR5, have shown anxiolytic-like effects in several animal and human studies. Several studies have suggested that polyamines (agmatine, putrescine, spermidine, and spermine) may be involved in the neurobiological mechanisms underlying stress-response and anxiety-related disorders. This could mainly be attributed to their ability to modulate ionotropic glutamate receptors, especially NR2B subunits. The aim of this review is to establish that glutamate neurotransmission and polyaminergic system play a fundamental role in the onset of anxiety-related disorders. This may open the way for new drugs that may help to treat these conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Spizzirri, U. Gianfranco; Picci, Nevio
2016-01-01
Biogenic amines (BAs), that is, spermine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine, and serotonin, have been determined in several samples of tea leaves, tea infusions, and tea drinks by LC-UV method after derivatization with dansyl chloride. Different extraction solvents have been tested and TCA 5% showed better analytical performances in terms of linearity, recovery percentages, LOD, LOQ, and repeatability than HCl 0.1 M and HClO4 0.1 M and was finally exploited for the quantitative determination of BAs in all samples. In tea leaves total BAs concentration ranged from 2.23 μg g−1 to 11.24 μg g−1 and PUT (1.05–2.25 μg g−1) and SPD (1.01–1.95 μg g−1) were always present, while SER (nd–1.56 μg g−1), HIS (nd–2.44 μg g−1), and SPM (nd–1.64 μg g−1) were detected more rarely. CAD and PHE were determined in few samples at much lower concentrations while none of the samples contained TYR. Tea infusions showed the same trend with total BAs concentrations never exceeding 80.7 μg L−1. Black teas showed higher amounts of BAs than green teas and organic and decaffeinated samples always contained much lower BAs levels than their conventional counterparts. PMID:27555979
Chao de la Barca, Juan Manuel; Bakhta, Oussama; Kalakech, Hussein; Simard, Gilles; Tamareille, Sophie; Catros, Véronique; Callebert, Jacques; Gadras, Cédric; Tessier, Lydie; Reynier, Pascal; Prunier, Fabrice; Mirebeau-Prunier, Delphine
2016-09-24
Remote ischemic preconditioning (RIPC) is an attractive therapeutic procedure for protecting the heart against ischemia/reperfusion injury. Despite evidence of humoral mediators transported through the circulation playing a critical role, their actual identities so far remain unknown. We sought to identify plasmatic RIPC-induced metabolites that may play a role. Rat plasma samples from RIPC and control groups were analyzed using a targeted metabolomic approach aimed at measuring 188 metabolites. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to identify the metabolites that discriminated between groups. Plasma samples from 50 patients subjected to RIPC were secondarily explored to confirm the results obtained in rats. Finally, a combination of the metabolites that were significantly increased in both rat and human plasma was injected prior to myocardial ischemia/reperfusion in rats. In the rat samples, 124 molecules were accurately quantified. Six metabolites (ornithine, glycine, kynurenine, spermine, carnosine, and serotonin) were the most significant variables for marked differentiation between the RIPC and control groups. In human plasma, analysis confirmed ornithine decrease and kynurenine and glycine increase following RIPC. Injection of the glycine and kynurenine alone or in combination replicated the protective effects of RIPC seen in rats. We have hereby reported significant variations in a cocktail of amino acids and biogenic amines after remote ischemic preconditioning in both rat and human plasma. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01390129. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Eloranta, Terho O.; Raina, Aarne M.
1977-01-01
S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7–14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine. PMID:597268
Inhibitors of polyamine metabolism: review article.
Wallace, H M; Fraser, A V
2004-07-01
The identification of increased polyamine concentrations in a variety of diseases from cancer and psoriasis to parasitic infections has led to the hypothesis that manipulation of polyamine metabolism is a realistic target for therapeutic or preventative intervention in the treatment of certain diseases. The early development of polyamine biosynthetic single enzyme inhibitors such as alpha-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) showed some interesting early promise as anticancer drugs, but ultimately failed in vivo. Despite this, DFMO is currently in use as an effective anti-parasitic agent and has recently also been shown to have further potential as a chemopreventative agent in colorectal cancer. The initial promise in vitro led to the development and testing of other potential inhibitors of the pathway namely the polyamine analogues. The analogues have met with greater success than the single enzyme inhibitors possibly due to their multiple targets. These include down regulation of polyamine biosynthesis through inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase and decreased polyamine uptake. This coupled with increased activity of the catabolic enzymes, polyamine oxidase and spermidine/spermine N1-acetyltransferase, and increased polyamine export has made the analogues more effective in depleting polyamine pools. Recently, the identification of a new oxidase (PAO-h1/SMO) in polyamine catabolism and evidence of induction of both PAO and PAO-h1/SMO in response to polyamine analogue treatment, suggests the analogues may become an important part of future chemotherapeutic and/or chemopreventative regimens.
Svensson, F; Kockum, I; Persson, L
1993-07-21
The polyamines are cell constituents essential for growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the polyamine biosynthetic pathway. Methylglyoxal bis(guanylhydrazone) (MGBG) is an anti-leukemic agent with a strong inhibitory effect against AdoMetDC. However, the lack of specificity limits the usefulness of MGBG. In the present report we have used an analog of MGBG, diethylglyoxal bis(guanylhydrazone) (DEGBG), with a much greater specificity and potency against AdoMetDC, to investigate the effects of AdoMetDC inhibition on cell proliferation and polyamine metabolism in mouse L1210 leukemia cells. DEGBG was shown to effectively inhibit AdoMetDC activity in exponentially growing L1210 cells. The inhibition of AdoMetDC was reflected in a marked decrease in the cellular concentrations of spermidine and spermine. The concentration of putrescine, on the other hand, was greatly increased. Treatment with DEGBG resulted in a compensatory increase in the synthesis of AdoMetDC demonstrating an efficient feedback control. Cells seeded in the presence of DEGBG ceased to grow after a lag period of 1-2 days, indicating that the cells contained an excess of polyamines which were sufficient for one or two cell cycles in the absence of polyamine synthesis. The present results indicate that analogs of MGBG, having a greater specificity against AdoMetDC, might be valuable for studies concerning polyamines and cell proliferation.
Jing, Y; Fleete, M S; Collie, N D; Zhang, H; Liu, P
2013-11-12
Accumulating evidence suggests that the metabolism of l-arginine, a metabolically versatile amino acid, is critically involved in the aging process. The present study compared the activity and protein expression of nitric oxide synthase (NOS) and arginase, and the levels of l-arginine and its eight down-stream metabolites in the brain stem (pons and medulla) and the cervical spinal cord in 3- (young) and 22- (aged) month-old male Sprague-Dawley rats. Total NOS activity was significantly reduced with age in the spinal cord (but not brain stem), and there were no age-related changes in arginase activity in both regions. Western blot revealed decreased protein expression of endothelial NOS, but not neuronal NOS, with age in both regions. Furthermore, there were significantly decreased l-arginine, glutamate, GABA and spermine levels and increased putrescine and spermidine levels with age in both regions. Although the absolute concentrations of l-arginine and six metabolites were significantly different between the brain stem and spinal cord in both age groups, there were similar clusters between l-arginine and its three main metabolites (l-citrulline, l-ornithine and agmatine) in both regions, which changed as a function of age. These findings, for the first time, demonstrate the regional variations and age-related changes in arginine metabolism in the rat brain stem and spinal cord. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
S-Adenosylmethionine decarboxylase from human prostate. Activation by putrescine
Zappia, Vincenzo; Cartenì-Farina, Maria; Pietra, Gennaro Della
1972-01-01
1. The presence of S-adenosylmethionine decarboxylase in human prostate gland is reported. A satisfactory radiochemical enzymic assay was developed and the enzyme was partially characterized. 2. Putrescine stimulates the reaction rate by up to 6-fold at pH7.5: the apparent activation constant was estimated to be 0.13mm. The stimulation is pH-dependent and a maximal effect is observed at acid pH values. 3. Putrescine activation is rather specific: other polyamines, such as spermidine and spermine, did not show any appreciable effect. 4. The apparent Km for the substrate is 4×10−5m. The calculated S-adenosylmethionine content of human prostate (0.18μmol/g wet wt. of tissue) demonstrates that the cellular amounts of sulphonium compound are saturating with respect to the enzyme. 5. The enzyme is moderately stable at 0°C and is rapidly inactivated at 40°C. The optimum pH is about 7.5, with one-half of the maximal activity occurring at pH6.6. 6. Several carboxy-14C-labelled analogues and derivatives of S-adenosylmethionine were tested as substrates. The enzyme appears to be highly specific: the replacement of the 6′-amino group of the sulphonium compound alone results in a complete loss of activity. 7. Inhibition of the enzyme activity by several carbonyl reagents suggests an involvement of either pyridoxal phosphate or pyruvate in the catalytic process. 8. The inhibitory effect of thiol reagents indicates the presence of `essential' thiol groups. PMID:4658995
Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas.
Lee, Gui Se Ra; Joe, Yoon Seong; Kim, Sa Jin; Shin, Jong Chul
2010-10-01
To investigate cytokine- and oxidation-related genes for preeclampsia using DNA microarray analysis. Placentas were collected from 13 normal pregnancies and 13 patients with preeclampsia. Gene expression was studied using DNA microarray. Among significantly expressed genes, we focused on genes associated with cytokines and oxidation, and the results were confirmed using quantitative real time-polymerase chain reaction (QRT-PCR). 415 genes out of 30,940 genes were altered by > or =2-fold in the microarray analysis. 121 up-regulated genes and 294 down-regulated genes were found to be in preeclamptic placenta. Six cytokine-related genes and 5 oxidation-related genes were found from among the 121 up-regulated genes. The cytokine-related genes studied included oncostatin M (OSM), fms-related tyrosine kinase (FLT1) and vascular endothelial growth factor A (VEGFA), and the oxidation-related genes studied included spermine oxidase (SMOX), l cytochrome P450, family 26, subfamily A, polypeptide 1 (CYP26A1), acetate dehydrogenase A (LDHA). These six genes were also significantly higher in placentas from patients with preeclampsia than in those from women with normal pregnancies. The placental tissue of patients with preeclampsia showed significantly higher mRNA expression of these six genes than the normal group, using QRT-PCR. DNA microarray analysis is one of the great methods for simultaneously detecting the functionally associated genes of preeclampsia. The cytokine-related genes such as OSM, FLT1 and VEGFA, and the oxidation-related genes such as LDHA, CYP26A1 and SMOX might prove to be the starting point in the elucidation of the pathogenesis of preeclampsia.
Ozawa, Rika; Bertea, Cinzia M; Foti, Maria; Narayana, Ravishankar; Arimura, Gen-Ichiro; Muroi, Atsushi; Horiuchi, Jun-Ichiro; Nishioka, Takaaki; Maffei, Massimo E; Takabayashi, Junji
2009-12-01
We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.
Whole-cell bioluminescent bioreporter sensing of foodborne toxicants
NASA Astrophysics Data System (ADS)
Ripp, Steve A.; Applegate, Bruce M.; Simpson, Michael L.; Sayler, Gary S.
2001-03-01
The presence of biologically derived toxins in foods is of utmost significance to food safety and human health concerns. Biologically active amines, referred to as biogenic amines, serve as a noteworthy example, having been implicated as the causative agent in numerous food poisoning episodes. Of the various biogenic amines encountered, histamine, putrescine, cadaverine, tyramine, tryptamine, beta-phenylethylamine, spermine, and spermidine are considered to be the most significant, and can be used as hygienic-quality indicators of food. Biogenic amines can be monitored using whole-cell bioluminescent bioreporters, which represent a family of genetically engineered microorganisms that generate visible light in response to specific chemical or physical agents in their environment. The light response occurs due to transcriptional activation of a genetically incorporated lux cassette, and can be measured using standard photomultiplier devices. We have successfully engineered a lux-based bioreporter capable of detecting and monitoring the biogenic amine beta-phenylethylamine. This research represents a biologically-based sensor technology that can be readily integrated into Hazard Analysis Critical Control Point programs to provide a rugged monitoring regime that can be uniformly applied for field-based and in-house laboratory quality control analyses. Since the bioreporter and biosensing elements are completely self-contained within the sensor design, this system provides ease of use, with operational capabilities realized by simply combining the food sample with the bioreporter and allowing the sensor to process the ensuing bioluminescent signal and communicate the results. The application of this technology to the critically important issue of food safety and hygienic quality represents a novel method for detecting, monitoring, and preventing biologically active toxins in food commodities.
Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora.
Moreno-Chacón, Andrés Leonardo; Camperos-Reyes, Jhonatan Eduardo; Ávila Diazgranados, Rodrigo Andrés; Romero, Hernán Mauricio
2013-09-01
In recent years, global consumption of palm oil has increased significantly, reaching almost 43 million tons in 2010. The sustainability of oil palm (Elaeis guineensis) cultivation has been compromised because of the bud rot disease whose initial symptoms are caused by Phytophthora palmivora. There was a significant incidence of the disease, from an initial stage 1 of the disease to the highest stage 5, that affected photosynthetic parameters, content of pigments, sugars, polyamines, enzymatic antioxidant activities, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and β-(1,3) glucanase (β-Gluc, EC 3.2.1.39). In healthy palms photosynthesis was 13.29 μmol CO2 m(-2) s(-1) in average, while in stage 5 the average photosynthesis was around 3.66 μmol CO2 m(-2) s(-1). Additionally, total chlorophyll was reduced by half at the last stage of the disease. On the contrary, the contents of putrescine, spermine and spermidine increased three, nine and twelve times with respect to stage 5, respectively. Antioxidant enzyme activities, as well as the phenylalanine ammonia-lyase and β-(1,3) glucanase showed an increase as the severity of the disease increased, with the latter increasing from 0.71 EAU in healthy palms to 2.60 EAU in plants at stage 5 of the disease. The peroxidase (POD, EC 1.11.1.7) enzymatic activity and the content of spermidine were the most sensitive indicators of disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Russo, Francesco; Linsalata, Michele; Orlando, Antonella
2014-10-07
Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism.
Sharma, Sunil; Pareek, Sunil; Sagar, Narashans Alok; Valero, Daniel; Serrano, Maria
2017-08-17
Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall.
Cationic liposome-mediated gene transfer to tumor cells in vitro and in vivo.
Son, K; Sorgi, F; Gao, X; Huang, L
1997-01-01
Development of safe and effective technology for delivering functional DNA into cells in an intact organism is crucial to broad applications of gene therapy to human disease. Both viral and nonviral vectors have been developed. Of the technologies currently being studied, liposomal delivery system is particularly attractive. Cationic liposome-mediated gene transfection (lipofection), a relatively new technique pioneered by Felgner and coworkers (1), was highly efficient for transfecting cells in culture. The liposomes were composed of an equimolar mixture of a synthetic cationic lipid N-[1-(2,3,-dioleyloxy)propyl]-N,N,N,-trimethylammonium chloride (DOTMA) and a helper lipid dioleoyl-phosphatidylethanolamine (DOPE) Fig. 1). The DOTMA/DOPE mixture (Lipofectin) forms complexes with DNA by charge interaction upon mixing at room temperature. Other catronic lipids are DOTAP, LipofectAMINE, Lipofectam, and DC-chol. The DOTAP is a diester analog of DOTMA and commercially available. LipofectAMINE and Lipofectam are polycationic lipids with a spermine head group that show increased frequency and activity of eukaryotic cell transfection (2,3). 3β-[N-(N',N'-dimethyaminoaminoethane) carbamoyl] cholesterol (DC-chol) (Fig. 1), a cationic cholesterol derivative, was introduced by Gao and Huang (4) and is routinely used in our laboratory. The DC-chol is now commercially available but can be easily synthesized with a single-step reaction from N,N-dimethylethylenediamine and cholesterol chloroformate (4), and improves the efficiency of transfection with minimal toxicity.Liposomes prepared with DC-chol and DOPE (3∶2 molar ratio) are stable at 4°C for at least 1 yr (unpublished data).
Actinomyces weissii sp. nov., isolated from dogs.
Hijazin, Muaz; Alber, Jörg; Lämmler, Christoph; Kämpfer, Peter; Glaeser, Stefanie P; Busse, Hans-Jürgen; Kassmannhuber, Johannes; Prenger-Berninghoff, Ellen; Förnges, Thorsten; Hassan, Abdulwahed Ahmed; Abdulmawjood, Amir; Zschöck, Michael
2012-08-01
Two Gram-positive, rod-shaped, non-spore-forming bacteria were isolated from the oral cavities of two dogs. On the basis of 16S rRNA gene sequence similarities both strains were shown to belong to the genus Actinomyces and were most closely related to Actinomyces bovis (97.3% and 97.5%, respectively). The polyamine profile of the two isolates and Actinomyces bovis DSM 43014(T) was composed of spermidine and spermine as the major components. Menaquinone MK-9 was the major compound in the quinone system of the two strains and Actinomyces bovis. The polar lipid profiles of strains 2298(T) and 4321 were almost identical, containing diphosphatidylglycerol as the major compound, and moderate to trace amounts of phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside, phosphatidylglycerol and several unidentified lipids. A highly similar polar lipid profile was detected in Actinomyces bovis DSM 43014(T) supporting the affiliation of strains 2298(T) and 4321 to the genus Actinomyces. The typical major fatty acids were C(16:0), C(18:0) and C(18:1)ω9c. Fatty acids C(14:0) and C(18:2)ω6,9c were found in minor amounts. The results of physiological and biochemical analyses revealed clear differences between both strains and the most closely related species of the genus Actinomyces. Thus, strains 2298(T) and 4321 represent a novel species, for which the name Actinomyces weissii sp. nov., is proposed, with strain 2298(T) ( = CIP 110333(T) = LMG 26472(T) = CCM 7951(T) = CCUG 61299(T)) as the type strain.
Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N
2017-08-23
This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.
Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.
2016-01-01
Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID:27126795
Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M
2016-06-23
Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.
Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons
Wang, Wei-Ping; Iyo, Abiye H.; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang
2010-01-01
Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-d-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, β-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 µM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property. PMID:16546145
Marcora, M Silvina; Cejas, Silvina; González, Nélida S; Carrillo, Carolina; Algranati, Israel D
2010-10-01
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5'-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Polycation induced actin bundles.
Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil
2011-04-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Russo, Francesco; Linsalata, Michele; Orlando, Antonella
2014-01-01
Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism. PMID:25309063
Role of DNA-DNA Interactions on the Structure and Thermodynamics of Bacteriophages Lambda and P4
Petrov, Anton S.; Harvey, Stephen C.
2010-01-01
Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands. PMID:21074621
Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; ...
2015-07-09
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A.
2015-01-01
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key towards understanding the regulation of polyamine levels in bacteria during pathogenesis. PMID:25623305
Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.
Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua
2013-05-01
This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.
Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo
2015-01-01
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.