Structure and effective interactions in three-component hard sphere liquids.
König, A; Ashcroft, N W
2001-04-01
Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.
Temperature and composition dependence of Mg-based amorphous-alloy structure factors
NASA Astrophysics Data System (ADS)
From, M.; Muir, W. B.
1992-01-01
Measurements of the x-ray total structure factors for amorphous Mg70Zn30, Ca70Mg30, and Mg85.5Cu14.5 at 9, 150, and 300 K have been made. The composition dependence of the room-temperature structure factors of MgxZn1-x have also been measured for values of x=0.65, 0.70, and 0.75. These compositional changes can be accounted for by the increase in average atomic size as the fraction of the larger Mg atoms increases with x. Also the Perkus-Yevick hard-sphere model is sufficient to calculate the change in structure factor with composition if an experimental structure factor is available from which the sphere diameters and packing fraction can be extracted. The temperature dependence of the structure factors is consistent with the observed thermal expansion and a Debye phonon model with Meisel and Cote's approximation for the multiphonon contribution to the structure factor.
A simple and accurate method for calculation of the structure factor of interacting charged spheres.
Wu, Chu; Chan, Derek Y C; Tabor, Rico F
2014-07-15
Calculation of the structure factor of a system of interacting charged spheres based on the Ginoza solution of the Ornstein-Zernike equation has been developed and implemented on a stand-alone spreadsheet. This facilitates direct interactive numerical and graphical comparisons between experimental structure factors with the pioneering theoretical model of Hayter-Penfold that uses the Hansen-Hayter renormalisation correction. The method is used to fit example experimental structure factors obtained from the small-angle neutron scattering of a well-characterised charged micelle system, demonstrating that this implementation, available in the supplementary information, gives identical results to the Hayter-Penfold-Hansen approach for the structure factor, S(q) and provides direct access to the pair correlation function, g(r). Additionally, the intermediate calculations and outputs can be readily accessed and modified within the familiar spreadsheet environment, along with information on the normalisation procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.
2017-05-01
The structure factor S(q) and radial distribution function g(r) play vital role to study the various structural properties like electronic, dynamic, magnetic etc. The present paper deals with the structural studies of foresaid properties using our newly constructed parameter free model potential with the Charged Hard Sphere (CHS) approximation. The local field correction due to Sarkar et al. is used to incorporate exchange and correlation among the conduction electrons in dielectric screening. Here we report the S(q) and g(r) for some liquid lanthanides viz: La, Ce, Pr, Nd and Eu. Present computed results are compared with the available experimental data. Lastly we found that our parameter free model potential successfully explains the structural propertiesof4fliquidlanthanides.
The person's conception of the structures of developing intellect: early adolescence to middle age.
Demetriou, A; Efklides, A
1989-08-01
According to experiential structuralism, thought abilities have six capacity spheres: experimental, propositional, quantitative, imaginal, qualitative, and metacognitive. The first five are applied to the environment. The metacognitive capacity is applied to the others, serving as the interface between reality and the cognitive system or between any of the other capacities. To test this postulate, 648 subjects aged 12 to 40 years, solved eight tasks that were addressed, in pairs, to the first four capacity spheres. One of the tasks in each pair tapped the first and the other the third formal level of the sphere. Having solved the tasks, the subjects were required to rate each pair of tasks in terms of similarity of operations, difficulty, and success of solution. Factor analysis of difficulty and success evaluation scores revealed the same capacity-specific factors as the analysis of performance scores. Factor analysis of similarity scores differentiated between same- and different-sphere pairs. Analysis of variance showed that difficulty and success evaluation scores preserved performance differences between the first and the third formal tasks. Cognitive level, age, socioeconomic status, and sex were related to the metacognitive measures in ways similar to their relations to performance measures. These findings were integrated into a model aimed at capturing real-time metacognitive functioning.
NASA Technical Reports Server (NTRS)
Morrison, R. H.
1972-01-01
Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.
Transmission spectra changes produced by decreasing compactness of opal-like structures
NASA Astrophysics Data System (ADS)
Andueza, A.; Echeverría, R.; Morales, P.; Sevilla, J.
2009-01-01
Artificial opal-like structures based on spheres and colloidal particles have been fabricated in a controlled way, presenting optical band-gap properties in the optical frequency range. Nonclose packed artificial opals have also been fabricated and studied recently. In order to gain a better understanding of these phenomena, we have studied macroscopic models of nonclose packed fcc lattices using glass spheres (ɛ =7) of 8 mm diameter, and measuring in the microwave region (from 10 to 30 GHz). The results have shown a Bragg resonance tunable with filling factor of the opal, and a strong rejected band similar, also present in close packed samples, much less affected by compactness. The relation of this high order band with spheres single layer behavior is also discussed.
Bazhanov, Nikolay; Kuhlman, Jessica; Prockop, Darwin J.
2013-01-01
Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on non-adherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes up-regulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the up-regulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6 and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models. PMID:23922312
Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions
Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; ...
2018-02-02
The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.
Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence
The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.
Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions
NASA Astrophysics Data System (ADS)
Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; Thurston, George M.; Vega, Michael; Gaillard, Elizabeth; Narayanan, Suresh; Sandy, Alec; Zhang, Qingteng; Dufresne, Eric M.; Foffi, Giuseppe; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert
2018-02-01
The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f (q ,τ ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.
Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator
NASA Astrophysics Data System (ADS)
Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad
2017-11-01
In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.
NASA Astrophysics Data System (ADS)
Jover, J.; Haslam, A. J.; Galindo, A.; Jackson, G.; Müller, E. A.
2012-10-01
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for mc = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, mc, approaches a limiting value at reasonably small values, mc < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
NASA Astrophysics Data System (ADS)
Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua
2017-03-01
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
Sesé, Luis M; Bailey, Lorna E
2007-04-28
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45
Electrical resistivity of liquid lanthanides using charge hard sphere system
NASA Astrophysics Data System (ADS)
Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.
2013-06-01
In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).
NASA Astrophysics Data System (ADS)
Pattabhiraman, Harini; Dijkstra, Marjolein
2017-09-01
Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.
Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A
2012-10-14
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
Fabrication of malachite with a hierarchical sphere-like architecture.
Xu, Jiasheng; Xue, Dongfeng
2005-09-15
Malachite (Cu2(OH)2CO3) with a hierarchical sphere-like architecture has been successfully synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. Powder X-ray diffraction, scanning electron microscopy, and Fourier transmission infrared spectrometry are used to characterize various properties of the obtained malachite samples. The hierarchical malachite particles are uniform spheres with a diameter of 10-20 microm, which are comprised of numerous two-dimensional microplatelets paralleling the sphere surface. The initial concentration of reagents, the hydrothermal reaction time, and temperature are important factors which dominantly affect the evolution of crystal morphologies. The growth of the hierarchical architecture is believed to be a layer-by-layer growth process. Further, copper oxide with the similar morphology can be easily obtained from the as-prepared malachite.
Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng
2013-02-25
In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the origin of the drag force on golf balls
NASA Astrophysics Data System (ADS)
Balaras, Elias; Beratlis, Nikolaos; Squires, Kyle
2017-11-01
It is well establised that dimples accelerate the drag-crisis on a sphere. The result of the early drag-crisis is a reduction of the drag coefficient by more than a factor of two when compared to a smooth sphere at the same Reynolds number. However, when the drag coefficients for smooth and dimpled spheres in the supercritical regime are compared, the latter is higher by a factor of two to three. To understand the origin of this behavior we conducted direct numerical simulations of the flow around a dimpled sphere, which is similar to commercially available golf balls, in the supercritical regime. By comparing the results to those for a smooth sphere it is found that dimples, although effective in accelerating the drag crisis, impose a local drag-penalty, which contributes significantly to the overall drag force. This finding challenges the broadly accepted view, that the dimples only indirectly affect the drag force on a golf ball by manipulating the structure of the turbulent boundary layer near the wall and consequently affect global separation. Within this view, typically the penalty on the drag force imposed by the dimples is assumed to be small and coming primarily from skin friction. The direct numerical simulations we will report reveal a very different picture.
Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David
2015-02-02
Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules
Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob
2016-01-01
Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651
Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek
2015-01-01
The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744
Dispersivity of Bidisperse Packings of Spheres and Evidence for Distinct Random Structures
NASA Astrophysics Data System (ADS)
Scheven, U. M.
2018-05-01
The intrinsic longitudinal and transverse dispersivity of bidisperse random packings of spheres with size ratio 5 ∶1 was determined by pulsed field gradient nuclear magnetic resonance, in the dilute regime where small spheres occupy between 0% and 5% of the packings' volume. Small spheres plugging pores systematically raise the mechanical transverse and longitudinal dispersivity above that of reference packings of monodisperse spheres. NMR-derived porosities, widths of velocity distributions, and dispersivities reveal distinct states of structural disorder above and below a relative sphere concentration n /N =1 , where n and N are the number densities of small and large spheres.
NASA Astrophysics Data System (ADS)
Biswas, A.
2016-12-01
A Very Fast Simulated Annealing (VFSA) global optimization code is produced for elucidation of magnetic data over various idealized bodies for mineral investigation. The way of uncertainty in the interpretation is additionally analyzed in the present study. This strategy fits the watched information exceptionally well by some straightforward geometrically body in the confined class of Sphere, horizontal cylinder, thin dyke and sheet type models. The consequences of VFSA improvement uncover that different parameters demonstrate various identical arrangements when state of the objective body is not known and shape factor "q" is additionally advanced together with other model parameters. The study uncovers that amplitude coefficient k is firmly subject to shape factor. This demonstrates there is multi-model sort vulnerability between these two model parameters. Be that as it may, the assessed estimations of shape factor from different VFSA runs without a doubt show whether the subsurface structure is sphere, horizontal cylinder, and dyke or sheet type structure. Thus, the precise shape element (2.5 for sphere, 2.0 for horizontal cylinder and 1.0 for dyke and sheet) is settled and improvement procedure is rehashed. Next, altering the shape factor and investigation of uncertainty as well as scatter-plots demonstrates a very much characterized uni-model characteristics. The mean model figured in the wake of settling the shape factor gives the highest dependable results. Inversion of noise-free and noisy synthetic data information and additionally field information shows the adequacy of the methodology. The procedure has been carefully and practically connected to five genuine field cases with the nearness of mineralized bodies covered at various profundities in the subsurface and complex geological settings. The method can be to a great degree appropriate for mineral investigation, where the attractive information is seen because of mineral body established in the shallow/deeper subsurface and the calculation time for the entire procedure are short. Keywords: Magnetic anomaly, idealized body, uncertainty, VFSA, multiple structure, ore exploration.
Catalytic dimer nanomotors: continuum theory and microscopic dynamics.
Reigh, Shang Yik; Kapral, Raymond
2015-04-28
Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-01
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-26
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Complex patchy colloids shaped from deformable seed particles through capillary interactions.
Meester, V; Kraft, D J
2018-02-14
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Sadakane, Masahiro; Sasaki, Keisuke; Nakamura, Hiroki; Yamamoto, Takashi; Ninomiya, Wataru; Ueda, Wataru
2012-12-21
We demonstrate that the glass-transition temperature (T(g)) of a polymer sphere template is a crucial factor in the production of three-dimensionally ordered macroporous (3DOM) materials. Metal nitrate dissolved in ethylene glycol-methanol was infiltrated into the void of a face-centered, close-packed colloidal crystal of poly(methyl methacrylate) (PMMA)-based spheres. The metal nitrate reacts with EG to form a metal oxalate (or metal glycoxylate) solid (nitrate oxidation) in the void of the template when the metal nitrate-EG-PMMA composite is heated. Further heating converts metal oxalate to metal oxide and removes PMMA to form 3DOM materials. We investigated the effect of T(g) of PMMA templates and obtained clear evidence that the solidification temperature of the metal precursor solution (i.e., nitration oxidation temperature) should be lower than the T(g) of the polymer spheres to obtain a well-ordered 3DOM structure.
Li, James C. M.; Chu, Sungnee G.
1980-01-01
A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.
Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gapinski, Jacek, E-mail: gapinski@amu.edu.pl; Patkowski, Adam; NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań
Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shownmore » to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.« less
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, Raymond D.; Migliori, Albert; Visscher, William M.
1994-01-01
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, R.D.; Migliori, A.; Visscher, W.M.
1994-10-18
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.
Self-assembled clusters of spheres related to spherical codes.
Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C
2012-10-01
We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.
Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai
2016-01-22
Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Colombi, P.; Alessandri, I.; Bergese, P.; Federici, S.; Depero, L. E.
2009-08-01
In this paper, self-assembled polystyrene nanospheres are proposed as a shape characterizer sample for SPM tips. Ordered arrays or 2D islands of polystyrene spheres may be prepared either by sedimentation or by crystallization of the colloidal spheres' suspension. The self-assembling mechanism guarantees high reproducibility; thus the characterizer sample can be 'freshly' prepared at each use, avoiding the problem of time and use deterioration and reducing the problem of sample structure fidelity that occurs when lithographic structures are employed. The spheres could also be deposited on the sample itself in order to speed up the characterization process in applications requiring frequent tip characterizations. We present numerical calculations of geometrical convoluted profiles on the proposed structures showing that, for a variety of different tip shapes, at the border between a couple of touching spheres the tip flanks do not come into contact with the spheres. Due to this behaviour, touching spheres are an optimum characterizer sample for SPM tip curvature radius characterization, enabling a straightforward procedure for calculating the curvature radius from the amplitude of tip oscillation along profiles connecting spheres' centres. The new procedure for the characterization of SPM probes was assessed exploiting different kinds of self-assembled structures and comparing results to those obtained by spiked structures and SEM observations.
Song, Jing; Qiu, Tian; Chen, Yun; Zhang, Wei; Fan, Li-Juan
2015-08-15
The layer-by-layer (LBL) technique was employed for preparing fluorescent microspheres with a core-shell structure by the alternating adsorption of positively charged poly(p-phenylenevinylene) precursor (pre-PPV) and the polyanions onto polymer substrate spheres, followed by the thermal elimination to convert pre-PPV into fluorescent poly(p-phenylenevinylene) (PPV). Weak polyelectrolytes poly(acrylic acid) (PAA) (usually in a partly ionized form) and strong polyelectrolytes poly(sodium-p-styrenesulfonate) (PSS) were used as the anions to space the PPV layers and reduce the fluorescence self-quenching. Flow cytometry, combined with spectroscopy and microscopy, were used to study the structure and photophysical properties of the resulting microspheres. Optimization of the processing factors was carried out. PAA and PSS as weak and strong polyelectrolytes, respectively, displayed very different influence on the final emission of the spheres. Such difference was attributed to different inherent characteristics of PAA and PSS after detailed investigation in many aspects. In addition, the fluorescent spheres were found to have excellent photostability and thermal stability. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Brullot, Ward; Bloemen, Maarten; Volodin, Alexander; Song, Kai; Van Dorpe, Pol; Verellen, Niels; Clays, Koen
2016-04-27
We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.
Specific surface area of overlapping spheres in the presence of obstructions
NASA Astrophysics Data System (ADS)
Jenkins, D. R.
2013-02-01
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Specific surface area of overlapping spheres in the presence of obstructions.
Jenkins, D R
2013-02-21
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Porous Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, Fred
2005-01-01
This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)
Electromagnetic Energy Localization and Characterization of Composites
2013-01-01
polyhedrons ), and [39] (spheres and a complex yet symmetric structure). With time-domain EM analysis, regular shapes, such as cubes, spheres, and regular...spheres), [40] (spheres, crosses, cylinders, and polyhedrons ), and [41] (spheres and cylinders); and 3-D random mixtures using a frequency-domain finite...element method [42] ( polyhedrons ), and [43], [44] (spheres). Such steady-state analyses are limited as they, for example, do not capture temporal
Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation.
Santos, Andrés; de Haro, Mariano López
2016-06-01
Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1≤d≤3) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.097801], a good agreement being observed.
Thermal and Compositional Variation of Glassy Metal Structure Factors.
NASA Astrophysics Data System (ADS)
From, Milton
The x-ray total structure factor of the glassy -metal alloys Mg_{70}Zn_ {30}, Ca_{70}Mg_{30 } and Mg_{85.5}Cu _{14.5} has been measured at three temperatures: 9K, 150K, and 300K. The data have a statistical precision of about.8% and an absolute accuracy of roughly 3%. Percus-Yevick hard sphere structure factors may be fitted quite accurately to the data in the region of the first peak. In addition, the variation of the experimental structure factor with composition is found to be consistent with the Percus-Yevick theory. At low k values, Percus -Yevick and other theoretical model structure factors are in poor agreement with the data. Within experimental error, the temperature dependence of the structure factors is in agreement with the Debye plane wave phonon model of atomic vibrations. The measured structure factors are used to calculate the electrical resistivity from the Faber-Ziman equation. In most cases, the calculations yield both the correct magnitude of resistivity and sign of the temperature coefficient of resistivity.
Oshima, Hiraku; Kinoshita, Masahiro
2015-04-14
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, Hiraku; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent modelsmore » and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.« less
Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun
2015-08-26
N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.
The Multidimensional Structure of University Absenteeism: An Exploratory Study
ERIC Educational Resources Information Center
López-Bonilla, Jesús Manuel; López-Bonilla, Luis Miguel
2015-01-01
Absenteeism has been a common and very extended problem in university spheres for several years. This problem has become a permanent feature in academic studies in general, yet it has received scarce empirical research attention. This work is focused on the analysis of the factors that determine university absenteeism. It evaluates a series of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huš, Matej; Urbic, Tomaz, E-mail: tomaz.urbic@fkkt.uni-lj.si; Munaò, Gianmarco
Thermodynamic and structural properties of a coarse-grained model of methanol are examined by Monte Carlo simulations and reference interaction site model (RISM) integral equation theory. Methanol particles are described as dimers formed from an apolar Lennard-Jones sphere, mimicking the methyl group, and a sphere with a core-softened potential as the hydroxyl group. Different closure approximations of the RISM theory are compared and discussed. The liquid structure of methanol is investigated by calculating site-site radial distribution functions and static structure factors for a wide range of temperatures and densities. Results obtained show a good agreement between RISM and Monte Carlo simulations.more » The phase behavior of methanol is investigated by employing different thermodynamic routes for the calculation of the RISM free energy, drawing gas-liquid coexistence curves that match the simulation data. Preliminary indications for a putative second critical point between two different liquid phases of methanol are also discussed.« less
NASA Astrophysics Data System (ADS)
Liang, Xuecheng
Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were also explained in terms of Pd change caused by sphere size change.
Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L
2013-01-01
This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th
2010-07-01
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.
Li, Fa-Liang; Zhang, Hai-Jun
2017-08-25
The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.
Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process
Li, Fa-Liang; Zhang, Hai-Jun
2017-01-01
The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188
Partial Wave Analysis of Coupled Photonic Structures
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa
2012-05-29
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
NASA Astrophysics Data System (ADS)
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa
2012-05-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Superelastic carbon spheres under high pressure
NASA Astrophysics Data System (ADS)
Li, Meifen; Guo, Junjie; Xu, Bingshe
2013-03-01
We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.
He, Fupo; Qian, Guowen; Ren, Weiwei; Li, Jiyan; Fan, Peirong; Shi, Haishan; Shi, Xuetao; Deng, Xin; Wu, Shanghua; Ye, Jiandong
2017-04-24
Polymer sphere-based scaffolds, which are prepared by bonding the adjacent spheres via sintering the randomly packed spheres, feature uniform pore structure, full three-dimensional (3D) interconnection, and considerable mechanical strength. However, bioceramic sphere-based scaffolds fabricated by this method have never been reported. Due to high melting temperature of bioceramic, only limited diffusion rate can be achieved when sintering the bioceramic spheres, which is far from enough to form robust bonding between spheres. In the present study, for the first time we fabricated 3D interconnected β-tricalcium phosphate ceramic sphere-based (PG/TCP) scaffolds by introducing phosphate-based glass (PG) as sintering additive and placing uniaxial pressure during the sintering process. The sintering mechanism of PG/TCP scaffolds was unveiled. The PG/TCP scaffolds had hierarchical pore structure, which was composed by interconnected macropores (>200 μm) among spheres, pores (20–120 μm) in the interior of spheres, and micropores (1–3 μm) among the grains. During the sintering process, partial PG reacted with β-TCP, forming β-Ca2P2O7; metal ions from PG substituted to Ca2+ sites of β-TCP. The mechanical properties (compressive strength 2.8–10.6 MPa; compressive modulus 190–620 MPa) and porosity (30%–50%) of scaffolds could be tailored by manipulating the sintering temperatures. The introduction of PG accelerated in vitro degradation of scaffolds, and the PG/TCP scaffolds showed good cytocompatibility. This work may offer a new strategy to prepare bioceramic scaffolds with satisfactory physicochemical properties for application in bone regeneration.
A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.
Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan
2014-02-17
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consolidation of metallic hollow spheres by electric sintering
NASA Astrophysics Data System (ADS)
Mironov, V.; Tatarinov, A.; Lapkovsky, V.
2017-07-01
This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.
Direct numerical simulation of the sea flows around blunt bodies
NASA Astrophysics Data System (ADS)
Matyushin, Pavel V.; Gushchin, Valentin A.
2015-11-01
The aim of the present paper is the demonstration of the opportunities of the mathematical modeling of the separated flows of the sea water around blunt bodies on the basis of the Navier-Stokes equations (NSE) in the Boussinesq approximation. The 3D density stratified incompressible viscous fluid flows around a sphere have been investigated by means of the direct numerical simulation (DNS) on supercomputers and the visualization of the 3D vortex structures in the wake. For solving of NSE the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, capable for work in wide range of the Reynolds (Re) and the internal Froude (Fr) numbers and monotonous) has been developed and successfully applied. The different transitions in sphere wakes with increasing of Re (10 < Re < 500) and decreasing of Fr (0.005 < Fr < 100) have been investigated in details. Thus the classifications of the viscous fluid flow regimes around a sphere have been refined.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
2012-01-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
3-Dimensional Colloidal Crystals From Hollow Spheres
NASA Astrophysics Data System (ADS)
Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.
2000-03-01
We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai
2011-04-01
Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.
Temperature dependent structural and vibrational properties of liquid indium
NASA Astrophysics Data System (ADS)
Patel, A. B.; Bhatt, N. K.
2018-05-01
The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.
Pressing Problems of Professional Education in Russia
ERIC Educational Resources Information Center
Neshchadin, A.; Neshchadina, O.; Tsareva, I.
2007-01-01
In the near future, the factor that may become the greatest hindrance to both industrial growth and to economic growth as a whole is the shortage of labor resources, a shortage that even now is keenly felt in the sphere of production. For this reason, the structure and quality of the labor capital that is being turned out by the system of…
Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere
NASA Astrophysics Data System (ADS)
Liu, Ming; Yang, Fuqian
2012-02-01
Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic-perfectly plastic with Young's modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.
Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peak, Derek
2008-06-09
Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO{sub 4}{sup 2-}) and selenite (SeO{sub 3}{sup 2-}) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum ({alpha}-Al{sub 2}O{sub 3}) was studied to determine if adsorption mechanisms change as the aluminum oxide surfacemore » structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and {alpha}-Me{sub 2}O{sub 3}.« less
NASA Astrophysics Data System (ADS)
Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki
2017-08-01
This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Robins, V.; Kingston, A.; Vaez Allaei, S. M.; Saadatfar, M.
2015-06-01
Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕBernal≈0.64 . We study packings of monosized hard spheres whose density spans over a wide range (0.59 <ϕ <0.72 ) . These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕBernal≈0.64 and ϕc≈0.68 . These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.
A novel approach for fabricating NiO hollow spheres for gas sensors
NASA Astrophysics Data System (ADS)
Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-03-01
Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.
Uniform electron gases. III. Low-density gases on three-dimensional spheres.
Agboola, Davids; Knol, Anneke L; Gill, Peter M W; Loos, Pierre-François
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids - the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) - and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
Training of Industrial Sphere Managers in a Specially Organized Education Environment
ERIC Educational Resources Information Center
Gorshenina, Margarita; Firsova, Elena
2016-01-01
The professional activity of industrial sphere managers has an integrated character and includes managerial, economic and production activity. Due to this the structure of readiness of industrial sphere managers for professional activity is composed of three components: subject, reflexive and technological ones. The objective of this paper…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Dongli; Zhang, Zhen; Li, Jieyao
Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less
Simulation and observation of line-slip structures in columnar structures of soft spheres
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Simulation and observation of line-slip structures in columnar structures of soft spheres.
Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Radar Transponder Antenna Systems Evaluation Handbook
2006-07-01
Poincare Sphere Usage. The plane geometry... Poincare Sphere any coupling factor is numerically equal to the cosine of half the distance between states on the spherical surface. 5-52 Then in...Erhcp, Elhcp) on the Poincare sphere (Paragraph 5.14.1). As such, any antenna whose polarization lies on this plane receives the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trinh, Thi-Kim-Hoang; Laboratoire de Science des Procédés et des Matériaux; Passarello, Jean-Philippe, E-mail: Jean-Philippe.Passarello@lspm.cnrs.fr
This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745–756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and thosemore » from molecular simulations.« less
The Nature of Knowledge and the Structure of the University.
ERIC Educational Resources Information Center
Thompson, Patricia J.
This paper argues that women experience two realities, a "private sphere" and a "public sphere," and the implication of this dual perspective needs to be addressed by women scholars in all disciplines. The idea behind these two spheres of reality is traced back to the ancient Greeks where household management (oikos) was the…
Gröger, Henriette; Kind, Christian; Leidinger, Peter; Roming, Marcus; Feldmann, Claus
2010-01-01
A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples. PMID:28883333
Montes-Perez, J; Cruz-Vera, A; Herrera, J N
2011-12-01
This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.
Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles
NASA Astrophysics Data System (ADS)
Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard
2018-04-01
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.
Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun
2014-10-18
N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.
Swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2014-11-01
A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.
Lee, K W; Sheu, R J
2015-04-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki
2017-10-30
We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.
Design and development of the second generation Mars Habitat
NASA Technical Reports Server (NTRS)
Sabouni, Ikhlas; Smith, Roy; Taylor, Steven; Harrell, Brock; Crawford, Earnest
1992-01-01
The second generation of Mars Habitat is to be utilized as an advanced permanent base for 20 crew members to live on Mars for a period of 6-12 months. It is designed to be a self-contained environment accommodating five main facilities: living, working, service, medical, and a greenhouse. The objective of the design is to create a comfortable, safe, living environment. Hexamars-2 and Lavapolis-2 are two different concepts for the advanced Mars Habitat. The design team assumes there will be an initial habitat located near or on the site from earlier missions that satisfies the requirement for a short-term habitation for the crew to use while constructing Hexamars-2 or Lavapolis-2. Prefabricated structures and materials will be shipped to the site before the long-term crew members arrive. Partial construction and preparation for the long-term habitat will be done by crew members or robotics from a previous mission. The construction of the long-term base will occur in phases. Hexamars-2 consists of six sphere-shaped inflatable modules that will be partially buried below the Martian surface. The construction of each sphere will occur in ten steps. Shape charges will be used to create the crater in which the spherical structure will be placed. The interior core will be unloaded and put into place followed by the exterior structure. The foundation will be filled, the interior bladder will be inflated, floor-to-floor joists connected, and sand pockets filled. Finally, the life support system and interior partitions are put in place. Each sphere consists of three levels of which the lower level will be safe haven. Particular attention is given to structural support, the dominance of internal pressure, the process of construction, and human factors.
NASA Astrophysics Data System (ADS)
Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan
2015-11-01
As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.
Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei
2016-02-15
Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao
2017-01-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662
Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen
2017-01-01
The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Witmer, E. A.
1975-01-01
The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large-deflection transient and/or permanent strain data on simple well-defined structural specimens and materials: initially-flat 6061-T651 aluminum beams with both ends ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides forcing function information of small uncertainty. These data will be useful for evaluating pertinent structural response prediction methods. A second objective was to obtain high-quality transient-strain data for a well-defined structural/material model subjected to impact by a rigid body of known mass, impact velocity, and geometry; large-deflection, elastic-plastic transient response conditions are of primary interest. The beam with both ends clamped and a steel sphere as the impacting body were chosen. The steel sphere was launched vertically by explosive propulsion to achieve various desired impact velocities. The sphere/beam impact tests resulted in producing a wide range of structural responses and permanent deformations, including rupture of the beam from excessive structural response in two cases. The transient and permanent strain data as well as the permanent deflection data obtained are of high quality and should be useful for checking and evaluating methods for predicting the responses of simple 2-d structures to fragment (sphere) impact. Transient strain data very close to the point of impact were not obtained over as long a time as desirable because the gage(s) in that region became detached during the transient response.
Jastrzebska, Katarzyna; Florczak, Anna; Kucharczyk, Kamil; Lin, Yinnan; Wang, Qin; Mackiewicz, Andrzej; Kaplan, David L; Dams-Kozlowska, Hanna
2018-02-01
Analysis of the properties and chemotherapeutics delivery potential of spheres made of bioengineered spider silks MS1 and MS2. MS1 and MS2 derived from Nephila clavipes dragline silks - MaSp1 and MaSp2, respectively - formed spheres that were compared in terms of physicochemical properties, cytotoxicity and loading/release of chemotherapeutics. MS2 spheres were more dispersed, smaller, of solid core, of higher beta-sheet structure content, and of opposite (negative) charge than MS1 spheres. Preloaded MS2 showed greater applicability for mitoxantrone, while postloaded for etoposide delivery compared with MS1 spheres. However, MS1 spheres were a better choice for doxorubicin delivery than MS2. Bioengineered silks can be tailored to develop a system with optimal drug loading and release properties.
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
NASA Astrophysics Data System (ADS)
Tao, Haijun; Li, Yongtao; Zhang, Chuanxiang; Wang, Kang; Wang, Jiayue; Tan, Bin; Han, Linxuan; Tao, Jie
2018-03-01
The permeability of the carbon counter electrode (CCE) is critical to the HTM-free fully printable perovskite solar cells. In this work, we report a CCE assisted by polystyrene spheres (PS-spheres) as pore-forming agent to gain microporous structure for a better permeability. Due to its decomposition temperature at 400 °C, the porous structure is obtained in the carbon layer easily. By optimization towards the contents of PS-spheres in CCE, the filling rate of perovskite solution and the photovoltaic performance of the device have been significantly improved. Using this method, an average efficiency enhancement of 22% has been obtained for HTM-free fully printable perovskite solar cells, resulting in a better fill rate of CH3NH3PbI3 and an efficiency of 4.49%. This kind of CCE with the advantages of simple, easy preparation process and well performance, show excellent potential application in perovskite solar cells.
Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P
2018-03-14
Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.
Intensity enhancement of vibrational sum frequency generation by gap-mode plasmon resonance
NASA Astrophysics Data System (ADS)
Okuno, Masanari; Tokimoto, Taichi; Eguchi, Miharu; Kano, Hideaki; Ishibashi, Taka-aki
2015-10-01
A metal sphere-plane structure consisting of gold nanoparticles, p-methylbenzenethiol and a gold substrate was measured by vibrational sum frequency generation spectroscopy with four excitation wavelengths, 630, 680, 720, and 780 nm. The enhancement factors of Raman signals were estimated to be 250 and 104 for the 532 and 647 nm excitation. Contrastingly, we found that the enhancements of VSFG signals were much smaller, a factor of 5 at maximum. We speculate that the small enhancement factor of VSFG signals is due to the coherent nature of the VSFG process or the extinction of the infrared laser by the gold nanoparticles.
Uniform electron gases. III. Low-density gases on three-dimensional spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGFmore » centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.« less
Brownian dynamics of sterically-stabilized colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, W.E.; Radke, C.J.; Denn, M.M.
1994-02-01
One application where microstructure plays a critical role is in the production of specialty ceramics, where colloidal suspensions act as precursors; here the microstructure influences the structural, thermal, optical and electrical properties of the ceramic products. Using Brownian dynamics, equilibrium and dynamic properties are calculated for colloidal suspensions that are stabilized through the Milner, Witten and Cates (1988) steric potential. Results are reported for osmotic pressures, radial distributions functions, static structure factors, and self-diffusion coefficients. The sterically-stabilized systems are also approximated by equivalent hard spheres, with good agreement for osmotic pressure and long-range structure. The suitability of the potential tomore » model the behavior of a real system is explored by comparing static structure factors calculated from Brownian dynamics simulations to those measured using SANS. Finally, the effects of Hamaker and hydrodynamic forces on calculated properties are investigated.« less
Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.
Rodríguez-López, Tonalli; del Río, Fernando
2012-01-28
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.
One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres
NASA Astrophysics Data System (ADS)
Zhu, Qing; Zhang, Yue; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao
2015-11-01
Uniform-sized Fe3O4 hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe3O4 hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (Ms) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
Phase diagram of heteronuclear Janus dumbbells
NASA Astrophysics Data System (ADS)
O'Toole, Patrick; Giacometti, Achille; Hudson, Toby
Using Aggregation-Volume-Bias Monte Carlo simulations along with Successive Umbrella Sampling and Histogram Re-weighting, we study the phase diagram of a system of dumbbells formed by two touching spheres having variable sizes, as well as different interaction properties. The first sphere ($h$) interacts with all other spheres belonging to different dumbbells with a hard-sphere potential. The second sphere ($s$) interacts via a square-well interaction with other $s$ spheres belonging to different dumbbells and with a hard-sphere potential with all remaining $h$ spheres. We focus on the region where the $s$ sphere is larger than the $h$ sphere, as measured by a parameter $1\\le \\alpha\\le 2 $ controlling the relative size of the two spheres. As $\\alpha \\to 2$ a simple fluid of square-well spheres is recovered, whereas $\\alpha \\to 1$ corresponds to the Janus dumbbell limit, where the $h$ and $s$ spheres have equal sizes. Many phase diagrams falling into three classes are observed, depending on the value of $\\alpha$. The $1.8 \\le \\alpha \\le 2$ is dominated by a gas-liquid phase separation very similar to that of a pure square-well fluid with varied critical temperature and density. When $1.3 \\le \\alpha \\le 1.8$ we find a progressive destabilization of the gas-liquid phase diagram by the onset of self-assembled structures, that eventually lead to a metastability of the gas-liquid transition below $\\alpha=1.2$.
Depletion zones and crystallography on pinched spheres
NASA Astrophysics Data System (ADS)
Chen, Jingyuan; Xing, Xiangjun; Yao, Zhenwei
2018-03-01
Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.
Spherical Lu2O2S:Eu3+ micro/nano-structure: Controlled synthesis and luminescence properties
NASA Astrophysics Data System (ADS)
Zhang, Bowen; Zou, Haifeng; Dai, Yunzhi; Guan, Hongxia; Song, Yanhua; Zheng, Keyan; Zhou, Xiuqing; Shi, Zhan; Sheng, Ye
2017-02-01
Monodisperse and uniform Lu2O2S:Eu3+ luminescent spheres have been successfully synthesized through a facile hydrothermal method followed by a subsequent calcination process. The sizes of the spheres can be tuned in the range of 65 nm-295 nm by only changing the pH value of the system. It is indicated that the luminescence properties of the spherical phosphors were strongly influenced by size of the spheres. Such a size-sensitive luminescence property was interpreted from the structures of the spheres, including the degree of crystallinity, band gap energy, crystal field symmetry around Eu3+. We expected that this study not only can provide important information for size-controlled synthesis of spherical phosphors, but also can give a reference for exploration of size-dependent luminescence.
NASA Astrophysics Data System (ADS)
Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun
2018-03-01
In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.
Chiral Structures of Thermoresponsive Soft Spheres in Hollow Cylinders
NASA Astrophysics Data System (ADS)
Lohr, Matthew A.; Alsayed, Ahmed; Zhang, Zexin; Yodh, Arjun G.
2009-03-01
We experimentally observe the formation of closely packed crystalline structures in hollow cylinders. The structures have varying degrees of chiral order. The systems are created from aqueous suspensions of thermoresponsive N-isopropylacrylamide (NIPA) microgel particles packed in micron-diameter glass capillaries. We categorize these structures according to classifications used by Erickson for tubular packings of hard spheres [1]. By varying the temperature-tunable diameter of these particles, the system's volume fraction is changed, permitting observations of the resilience of these structures and their melting transitions. Melting of these thermal crystalline structures is observed. [1] R. O. Erickson, Science 181 (1973) 705-716.
Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles
NASA Astrophysics Data System (ADS)
Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.
2012-01-01
Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.
Structure of ternary additive hard-sphere fluid mixtures.
Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano
2002-12-01
Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.
NASA Astrophysics Data System (ADS)
Hoy, Robert S.; Harwayne-Gidansky, Jared; O'Hern, Corey S.
2012-05-01
We analyze the geometric structure and mechanical stability of a complete set of isostatic and hyperstatic sphere packings obtained via exact enumeration. The number of nonisomorphic isostatic packings grows exponentially with the number of spheres N, and their diversity of structure and symmetry increases with increasing N and decreases with increasing hyperstaticity H≡Nc-NISO, where Nc is the number of pair contacts and NISO=3N-6. Maximally contacting packings are in general neither the densest nor the most symmetric. Analyses of local structure show that the fraction f of nuclei with order compatible with the bulk (rhcp) crystal decreases sharply with increasing N due to a high propensity for stacking faults, five- and near-fivefold symmetric structures, and other motifs that preclude rhcp order. While f increases with increasing H, a significant fraction of hyperstatic nuclei for N as small as 11 retain non-rhcp structure. Classical theories of nucleation that consider only spherical nuclei, or only nuclei with the same ordering as the bulk crystal, cannot capture such effects. Our results provide an explanation for the failure of classical nucleation theory for hard-sphere systems of N≲10 particles; we argue that in this size regime, it is essential to consider nuclei of unconstrained geometry. Our results are also applicable to understanding kinetic arrest and jamming in systems that interact via hard-core-like repulsive and short-ranged attractive interactions.
Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo
2004-01-26
In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions.
Beyond the therapeutic: A Habermasian view of self-help groups' place in the public sphere
Chaudhary, Sarah; Avis, Mark; Munn-Giddings, Carol
2013-01-01
Self-help groups in the United Kingdom continue to grow in number and address virtually every conceivable health condition, but they remain the subject of very little theoretical analysis. The literature to date has predominantly focused on their therapeutic effects on individual members. And yet they are widely presumed to fulfil a broader civic role and to encourage democratic citizenship. The article uses Habermas' model of the public sphere as an analytical tool with which to reconsider the literature on self-help groups in order to increase our knowledge of their civic functions. In doing this it also aims to illustrate the continuing relevance of Habermas' work to our understanding of issues in health and social care. We consider, within the context of current health policies and practices, the extent to which self-help groups with a range of different forms and functions operate according to the principles of communicative rationality that Habermas deemed key to democratic legitimacy. We conclude that self-help groups' civic role is more complex than is usually presumed and that various factors including groups' leadership, organisational structure and links with public agencies can affect their efficacy within the public sphere. PMID:23326207
First Observations with the New Dual Sphere Superconducting Gravimeter Osg-073 at Metsähovi, Finland
NASA Astrophysics Data System (ADS)
Virtanen, H.; Raja-Halli, A.; Bilker-Koivula, M.; Naranen, J.; Ruotsalainen, H. E. O.
2014-12-01
The new dual sphere superconducting gravimeter (SG) OSG-073 was installed in the Metsähovi Geodetic Observatory in February 2014. Its two gravity sensors are side by side, not one on top of another as in most earlier dual sensor installations. One sensor is the standard iGrav™ SG, with a lightweight sphere (5 grams) which is nearly drift-free. The second sensor uses a heavy 20-gram sphere which gives ultra low noise and a much higher quality factor Q. We present time domain observations of the first months, and estimate drift rates after the initial exponential drift. We have determined the transfer functions. Calibration factors were obtained using parallel registrations with the FG5X-221 absolute gravimeter of the FGI. We show selected free oscillation spectra from the SG, and seismic data obtained at Metsähovi with the Nanometrics Trillium 120P broadband seismometer of the Institute of Seismology (University of Helsinki). The noise level of the data is then compared with the New Low Noise Model NLNM. The results with the dual sphere SG can be compared with parallel observations with the SG T020. This 20-year old instrument is situated in the same room at a distance of 2 metres from the dual-sphere SG.
Research on effects of baffle position in an integrating sphere on the luminous flux measurement
NASA Astrophysics Data System (ADS)
Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei; Xia, Ming
2016-09-01
In the field of optical metrology, luminous flux is an important index to characterize the quality of electric light source. Currently, the majority of luminous flux measurement is based on the integrating sphere method, so measurement accuracy of integrating sphere is the key factor. There are plenty of factors affecting the measurement accuracy, such as coating, power and the position of light source. However, the baffle which is a key part of integrating sphere has important effects on the measurement results. The paper analyzes in detail the principle of an ideal integrating sphere. We use moving rail to change the relative position of baffle and light source inside the sphere. By experiments, measured luminous flux values at different distances between the light source and baffle are obtained, which we used to take analysis of the effects of different baffle position on the measurement. By theoretical calculation, computer simulation and experiment, we obtain the optimum position of baffle for luminous flux measurements. Based on the whole luminous flux measurement error analysis, we develop the methods and apparatus to improve the luminous flux measurement accuracy and reliability. It makes our unifying and transferring work of the luminous flux more accurate in East China and provides effective protection for our traceability system.
Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.
Yu, Huijuan; Huang, Qiangxian; Zhao, Jian
2014-06-25
A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.
Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa
2013-11-01
Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2015-08-01
The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui
2013-04-15
Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollowmore » zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.« less
Shi, Jiao Yi; Wang, Chang An; Li, Zhi Jun; Wang, Qiong; Zhang, Yuan; Wang, Wei
2011-05-23
We report a new method for the synthesis of hollow-structured phenylene-bridged periodic mesoporous organosilica (PMO) spheres with a uniform particle size of 100-200 nm using α-Fe(2)O(3) as a hard template. Based on this method, the hollow-structured phenylene PMO could be easily functionalized with MacMillan catalyst (H-PhPMO-Mac) by a co-condensation process and a "click chemistry" post-modification. The synthesized H-PhPMO-Mac catalyst has been found to exhibit high catalytic activity (98% yield, 81% enantiomeric excess (ee) for endo and 81% ee for exo) in asymmetric Diels-Alder reactions with water as solvent. The catalyst could be reused for at least seven runs without a significant loss of catalytic activity. Our results have also indicated that hollow-structured PMO spheres exhibit higher catalytic efficiency than solid (non-hollow) PMO spheres, and that catalysts prepared by the co-condensation process and "click chemistry" post-modification exhibit higher catalytic efficiency than those prepared by a grafting method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Shin, Jiwon
2013-01-01
Through the case of one online disputant, Minerva, this study intended to see the possibilities of online communities as the public sphere. Minerva's postings and comments were analyzed using discourse analysis and ground theory. It was found that the online community did act as the public sphere at that time, such as setting agenda and developing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The solvation sphere of halides in water has been investigated using a combination of extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) analysis techniques. The results have indicated that I{sup -} and Br{sup -} both have an asymmetric, 8 water molecule primary solvation spheres. These spheres are identical, with the Br{sup -} sphere about .3 {angstrom} smaller than the I{sup -} sphere. This study utilized near-edge analysis to supplement EXAFS analysis which suffers from signal dampening/broadening due to thermal noise. This paper has reported on the solvation first sphere of I{sup -} and Br{sup -} inmore » water. Using EXAFS and XANES analysis, strong models which describe the geometric configuration of water molecules coordinated to a central anion have been developed. The combination of these techniques has provided us with a more substantiated argument than relying solely on one or the other. An important finding of this study is that the size of the anion plays a smaller role than previously assumed in determining the number of coordinating water molecules. Further experimental and theoretical investigation is required to understand why the size of the anion plays a minor role in determining the number of water molecules bound.« less
Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
Banchio, Adolfo J; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard
2018-04-07
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, f c (q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of f c (q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with f c (q, t), there is indication of long-time exponential decay of f c (q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of f c (q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for f c (q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, f s (q, t), and its non-Gaussian parameter α 2 (t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from f c (q, t) is theoretically validated.
Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo
2014-01-01
A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.
The political economy of conservation
NASA Technical Reports Server (NTRS)
1975-01-01
A political economic purview of energy conservation in the United States was delineated. The concepts of substitution and elasticity are distinguished, and further distinctions are made between short run price elasticity, cross price elasticity, and available fund elasticity. An assessment of the role which cost factors can play in conservation is given. The structure of the petroleum industry and foreign petroleum resources is discussed. Also discussed is the role of government, industry and the consumer with the economic sphere.
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
IImage method for induced surface charge from many-body system of dielectric spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-28
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less
Hollow carbon spheres in microwaves: Bio inspired absorbing coating
NASA Astrophysics Data System (ADS)
Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.
2016-01-01
The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.
Theoretical and experimental studies on silica-coated carbon spheres composites
NASA Astrophysics Data System (ADS)
Guo, Xingmei; Liu, Haixing; Shen, Yinghua; Niu, Mei; Yang, Yongzhen; Liu, Xuguang
2013-10-01
In order to prepare carbon-based photonic crystals, first of all, theoretical modeling calculation was used to predict the bandgap characteristics of silica-coated carbon spheres. Then, silica-coated carbon spheres composites were synthesized using tetraethyl orthosilicate as precursor of silica by a sol-gel method combined with Stöber method. Effect of reaction conditions on surface coating of carbon spheres with silica, including the pH, the amount of precursor and reaction time, was emphasized. The morphology and structure of the composites and the effect coating of carbon spheres with silica were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and Fourier-transform infrared spectrometry. The coating ratio of silica was investigated by thermogravimetry. The results show that pH value played an important role in coating reaction, the dosage of the precursor and reaction time had significant effect on coating layer thickness, that is, coating ratio. Carbon spheres coated with silica had good dispersibility and dispersion stability in water and ethanol, which is preconditions of reactivity of carbon spheres in liquid phase and lays the basis for the application of carbon spheres.
NASA Astrophysics Data System (ADS)
Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-05-01
Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.
Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin
2010-09-21
In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.
Interaction of a shock wave with multiple spheres suspended in different arrangements
NASA Astrophysics Data System (ADS)
Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui
2018-03-01
In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.
Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon
2015-02-15
A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less
Colloidal alloys with preassembled clusters and spheres.
Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J
2017-06-01
Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.
Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina
Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.
1996-01-01
Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.
The structural origin of the hard-sphere glass transition in granular packing
Xia, Chengjie; Li, Jindong; Cao, Yixin; ...
2015-09-28
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleationmore » process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.« less
Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres
2014-01-01
We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595
Fe2O3 hollow sphere nanocomposites for supercapacitor applications
NASA Astrophysics Data System (ADS)
Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming
2018-02-01
Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.
Li, Xufan; Chi, Miaofang; Mahurin, Shannon Mark; ...
2016-01-18
Hard-sphere-templating method has been widely used to synthesize hollow carbon spheres (HCSs), in which the spheres were firstly coated with a carbon precursor, followed by carbonization and core removal. The obtained HCSs are generally amorphous or weakly graphitized (with the help of graphitization catalysts). In this work, we report on the fabrication of graphitized HCSs and yolk–shell Au@HCS nanostructures using a modified templating method, in which smooth, uniform graphene layers were grown on SiO 2 spheres or Au@SiO 2 nanoparticles via metal-catalyst-free chemical vapor deposition (CVD) of methane. Furthermore, our work not only provides a new method to fabricate high-quality,more » graphitized HCSs but also demonstrates a reliable approach to grow quality graphene on oxide surfaces using CVD without the presence of metal catalysts.« less
Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres
Chen, Fashen; Chen, Gen; Liu, Tao; Zhang, Ning; Liu, Xiaohe; Luo, Hongmei; Li, Junhui; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou
2015-01-01
Uniform gadolinium oxysulfate (Gd2O2SO4) hollow spheres were successfully fabricated by calcination of corresponding Gd-organic precursor obtained via a facile hydrothermal process. The Gd2O2SO4 hollow spheres have a mean diameter of approximately 550 nm and shell thickness in the range of 30–70 nm. The sizes and morphologies of as-prepared Gd2O2SO4 hollow spheres could be deliberately controlled by adjusting the experimental parameters. Eu-doped Gd2O2SO4 hollow spheres have also been prepared for the property modification and practical applications. The structure, morphology, and properties of as-prepared products were characterized by XRD, TEM, HRTEM, SEM and fluorescence spectrophotometer. Excited with ultraviolet (UV) pump laser, successful downconversion (DC) could be achieved for Eu-doped Gd2O2SO4 hollow spheres. PMID:26671661
Analysis of dependent scattering mechanism in hard-sphere Yukawa random media
NASA Astrophysics Data System (ADS)
Wang, B. X.; Zhao, C. Y.
2018-06-01
The structural correlations in the microscopic structures of random media can induce the dependent scattering mechanism and thus influence the optical scattering properties. Based on our recent theory on the dependent scattering mechanism in random media composed of discrete dipolar scatterers [B. X. Wang and C. Y. Zhao, Phys. Rev. A 97, 023836 (2018)], in this paper, we study the hard-sphere Yukawa random media, in order to further elucidate the role of structural correlations in the dependent scattering mechanism and hence optical scattering properties. Here, we consider charged colloidal suspensions, whose effective pair interaction between colloids is described by a screened Coulomb (Yukawa) potential. By means of adding salt ions, the pair interaction between the charged particles can be flexibly tailored and therefore the structural correlations are modified. It is shown that this strategy can affect the optical properties significantly. For colloidal TiO2 suspensions, the modification of electric and magnetic dipole excitations induced by the structural correlations can substantially influence the optical scattering properties, in addition to the far-field interference effect described by the structure factor. However, this modification is only slightly altered by different salt concentrations and is mainly because of the packing-density-dependent screening effect. On the other hand, for low refractive index colloidal polystyrene suspensions, the dependent scattering mechanism mainly involves the far-field interference effect, and the effective exciting field amplitude for the electric dipole almost remains unchanged under different structural correlations. The present study has profound implications for understanding the role of structural correlations in the dependent scattering mechanism.
Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung
2016-04-21
A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.
Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu
2017-01-01
To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
NASA Technical Reports Server (NTRS)
Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)
2002-01-01
Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.
NASA Astrophysics Data System (ADS)
Liesegang, Moritz; Milke, Ralf
2015-04-01
Nanocolloidal amorphous silica (SiO2×nH2O) is a major component of environmental aqueous solutions and surface coatings on rocks or mineral grains. Detailed knowledge of amorphous silica formation is indispensable for a better understanding of silicate rock alteration and diagenetic processes. We analyzed a wide range of samples from the Australian precious opal fields in South Australia and Queensland using petrographic microscopy, XRPD, SEM, and EPMA to characterize opaline silica, the mineral assemblage, and the host rock. Over the past 90 Ma the Lower Cretaceous lithologies of central Australia have undergone a weathering regime ranging from sub-tropical to arid, in which pH fluctuated from alkaline to acidic. The prolonged chemical alteration of sedimentary rocks derived from andesitic volcaniclastics and organic matter liberated large volumes of silica into solution, eventually leading to precipitation of nanocolloidal amorphous silica and formation of opal-A. A regular arrangement of close-packed uniform (monodisperse) spheres permits diffraction of white light and gives rise to the famous play-of-color. The opals in this study consist of silica spheres with an average diameter of 100-320 nm and often show a prominent core-shell structure. Two groups are separated by their relative standard deviation (RSD): monodisperse spheres (RSD<6%) and polydisperse spheres (RDS>10%). Monodisperse and polydisperse spheres are separated by their Na/K ratio, restricting the appearance of monodisperse spheres to values <1.2 and polydisperse spheres to values >3.0. We suggest that the Na/K ratio represents significant differences in the overall solution characteristics. The associated minerals (e.g., alunite, gypsum, kaolinite, K feldspar) indicate large variations of fluid composition and pH. Probably, uniform spheres grew at acidic pH, with repulsive forces large enough to arrange them in an ordered array prior to the evaporation of interstitial fluids. The investigation of fossil shells replaced by opal-A reveals clues for the understanding of structural and chemical reorganization mechanisms behind silica pseudomorphism. Fundamental knowledge about the highly selective replacement process is absent so far, impeding an adequate interpretation of the observations. The replacement of calcitic shells by amorphous silica spheres (~300 nm in size) is a unique example for the transformation of an ionic to a photonic crystal accompanied by a large size contrast of ions and spheres, respectively, but preserving lattice planes. The observed replication of polysynthetic twinning and cleavage planes of calcite by opal-A spheres indicates that silicification occurs via dissolution of shell material and immediate precipitation of amorphous silica. This follows the interface-coupled dissolution-precipitation mechanism model (Putnis and Putnis, 2007), but requires some modification to allow for open space necessary to form spheres in the 100s-nm size range with a core-shell structure. While sphere growth by a gravitational ordering process is implausible, we assume that the ordered array of monodisperse spheres forms via layer-by-layer deposition. References: Putnis A. and Putnis C.V. (2007), J. Solid State Chem., 180, 1783-1786
Extreme Soft Limit Observation of Quantum Hall Effect in a 3-d Semiconductor
NASA Astrophysics Data System (ADS)
Bleiweiss, Michael; Yin, Ming; Amirzadeh, Jafar; Preston, Harry; Datta, Timir
2004-03-01
We report on the evidence for quantum hall effect at 38K and in magnetic fields (B) as low as 1k-Orsted. Our specimens were semiconducting, carbon replica opal (CRO) structures. CRO are three dimensional bulk systems where the carbon is grown by CVD into the porous regions in artificial silica opals. The carbon forms layers on top of the silica spheres as eggshells. The shells are of uneven thickness and are perforated at the contacts points of the opal spheres and form a closed packed, three dimensional crystal structure. Plateaus in inverse R_xy that are conjugated with well-defined Subnikov-deHass modulations in R_xx were observed. The quantum steps that are particularly prominent were the states with fill factors v = p/q (p,q are integers) were the well know fractions, 1/3, 1/2, 3/5, 1 and 5/2. QHE steps indicate that the carriers are localized in two-dimensional regions, which may be due to the extremely large surface to volume ratio associated with replica opal structure. From the B-1 vs v straight line, the effective surface carrier density, ns = 2.2 x 10^14 m-2. To the best of our knowledge, the current work is the first to report fractional quantum hall plateaus in a bulk system.
[Preparation and release exam of magnetic chitosan nano-spheres of doxorubicin].
Han, Tao; Xiao, Qingping; Zhang, Yuanming
2010-02-01
Magnetic chitosan (CS) nano-spheres were prepared by the modified suspension cross-linking technique. The results demonstrated that the magnetic drug nano-spheres are mainly spherical in form with a size of 200 to 800 nm, and show good magnetic responsivity. Here, Doxorubicin was used as exam drug. Glutaraldehyde connects Doxorubicin to CS by the chemical bond (-N = C-), and the drug content is in range of 1% to 15% (w/w). The chemical bond is broken depending on pH, so pH is the important factor for the release of doxorubicin. The doxorubicin release was 22.0%, 13.4%, and 4.1% in the space of 7d, when pH was 1, 2, 4. So the nano-spheres are pH-sensitive magnetic targeting drug micro-spheres.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang
2011-12-01
A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.
Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres
NASA Astrophysics Data System (ADS)
Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon
2011-12-01
TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.
METHOD AND APPARATUS FOR DETERMINING CHARGED PARTICLE MOTION
Kerns, Q.A.
1959-08-01
An analog system for determining the motion of charged particles in three dimensional electrical fields is described. A model electrode structure is formed and potentials are applied to the electrodes to provide an analog of the field which is to be studied. To simulate charged particles within the model, conducting spheres are placed at points from which particle motion is to be traced. To free the spheres from gravitational attraction in order that they will be electrostatically accelerated through the model, the apparatus is suspended and dropped. During the pericd that the model is dropping the spheres move through the electrcde structure with a motion corresponding to that of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data which frequently can otherwise be obtained only with a digital computer.
Assembly of hard spheres in a cylinder: a computational and experimental study.
Fu, Lin; Bian, Ce; Shields, C Wyatt; Cruz, Daniela F; López, Gabriel P; Charbonneau, Patrick
2017-05-14
Hard spheres are an important benchmark of our understanding of natural and synthetic systems. In this work, colloidal experiments and Monte Carlo simulations examine the equilibrium and out-of-equilibrium assembly of hard spheres of diameter σ within cylinders of diameter σ≤D≤ 2.82σ. Although phase transitions formally do not exist in such systems, marked structural crossovers can nonetheless be observed. Over this range of D, we find in simulations that structural crossovers echo the structural changes in the sequence of densest packings. We also observe that the out-of-equilibrium self-assembly depends on the compression rate. Slow compression approximates equilibrium results, while fast compression can skip intermediate structures. Crossovers for which no continuous line-slip exists are found to be dynamically unfavorable, which is the main source of this difference. Results from colloidal sedimentation experiments at low diffusion rate are found to be consistent with the results of fast compressions, as long as appropriate boundary conditions are used.
Pressure and compressibility factor of bidisperse magnetic fluids
NASA Astrophysics Data System (ADS)
Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.
2018-04-01
In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.
Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin
2016-09-20
A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Granular self-organization by autotuning of friction.
Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar
2015-09-15
A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.
Conformal structure of massless scalar amplitudes beyond tree level
NASA Astrophysics Data System (ADS)
Banerjee, Nabamita; Banerjee, Shamik; Bhatkar, Sayali Atul; Jain, Sachin
2018-04-01
We show that the one-loop on-shell four-point scattering amplitude of massless ϕ 4 scalar field theory in 4D Minkowski space time, when Mellin transformed to the Celestial sphere at infinity, transforms covariantly under the global conformal group (SL(2, ℂ)) on the sphere. The unitarity of the four-point scalar amplitudes is recast into this Mellin basis. We show that the same conformal structure also appears for the two-loop Mellin amplitude. Finally we comment on some universal structure for all loop four-point Mellin amplitudes specific to this theory.
The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
Temleitner, László; Pusztai, László; Schweika, Werner
2007-08-22
The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.
NASA Astrophysics Data System (ADS)
Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui
2018-01-01
Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy
Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto
2017-01-01
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.
Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano
2017-01-01
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.
Amokrane, S; Ayadim, A; Malherbe, J G
2005-11-01
A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.
Facile assembly of 3D binary colloidal crystals from soft microgel spheres.
Liu, Yang; Guan, Ying; Zhang, Yongjun
2014-03-01
It still remains a big challenge to fabricate binary colloidal crystals (binary CCs) from hard colloidal spheres, although a lot of efforts have been made. Here, for the first time, binary CCs are assembled from soft hydrogel spheres, PNIPAM microgels, instead of hard spheres. Different from hard spheres, microgel binary CCs can be facilely fabricated by simply heating binary microgel dispersions to 37 °C and then allowing them to cool back to room temperature. The formation of highly ordered structure is indicated by the appearance of an iridescent color and a sharp Bragg diffraction peak. Compared with hard sphere binary CCs, the assembly of PNIPAM microgel binary CCs is much simpler, faster and with a higher "atom" economy. The easy formation of PNIPAM microgel binary CC is attributed to the thermosensitivity and soft nature of the PNIPAM microgel spheres. In addition, PNIPAM microgel binary CCs can respond to temperature change, and their stop band can be tuned by changing the concentration of the dispersion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li
2014-07-01
The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
NASA Astrophysics Data System (ADS)
Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael
2010-10-01
Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.
Directionally Interacting Spheres and Rods Form Ordered Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg
The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less
Directionally Interacting Spheres and Rods Form Ordered Phases
Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...
2017-05-10
The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less
NASA Technical Reports Server (NTRS)
Cloud, Stanley D.
1987-01-01
A computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water are discussed. The computer calculations predict a very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres.
A projection operator method for the analysis of magnetic neutron form factors
NASA Astrophysics Data System (ADS)
Kaprzyk, S.; Van Laar, B.; Maniawski, F.
1981-03-01
A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesé, Luis M., E-mail: msese@ccia.uned.es
2016-03-07
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) thatmore » can be useful to characterize freezing.« less
Sensitivity analysis of physiological factors in space habitat design
NASA Technical Reports Server (NTRS)
Billingham, J.
1982-01-01
The costs incurred by design conservatism in space habitat design are discussed from a structural standpoint, and areas of physiological research into less than earth-normal conditions that offer the greatest potential decrease in habitat construction and operating costs are studied. The established range of human tolerance limits is defined for those physiological conditions which directly affect habitat structural design. These entire ranges or portions thereof are set as habitat design constraints as a function of habitat population and degree of ecological closure. Calculations are performed to determine the structural weight and cost associated with each discrete population size and its selected environmental conditions, on the basis of habitable volume equivalence for four basic habitat configurations: sphere, cylinder with hemispherical ends, torus, and crystal palace.
Emergent structures in reaction-advection-diffusion systems on a sphere.
Krause, Andrew L; Burton, Abigail M; Fadai, Nabil T; Van Gorder, Robert A
2018-04-01
We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.
Emergent structures in reaction-advection-diffusion systems on a sphere
NASA Astrophysics Data System (ADS)
Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.
2018-04-01
We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.
Hierarchical heterostructure of MoS2 flake anchored on TiO2 sphere for supercapacitor application
NASA Astrophysics Data System (ADS)
Chanda, K.; Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Das, A.; Sardar, K.; Chattopadhyay, K. K.
2018-05-01
Hierarchical architectures realized via rational coupling of several components not only boast synergy driven raised functionality compared to their structural constituents also exhibit noble interface phenomena, thus made them significantly pertinent from research and technological point of view. Here in, geometrically intricate hierarchical nanoform constituting MoS2 nanoflakes anchored on TiO2 sphere was realized via two steps hydrothermal protocol. Initially TiO2 sphere was synthesized using titanium isopropoxide assisted hydrothermal route followed by which the sphere was used as scaffold for secondary growth of MoS2. As synthesized hybrid sample displayed much improved electrochemical behavior than pristine TiO2 sphere. Assessed value of specific capacitance for the hybrid is found to 152.22 F/g at current density of 0.1A/g which is 30 fold than TiO2 sphere. This electrochemical performance enhancement can be accredited to high surface area of the hybrid sample.
Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen
2014-09-01
In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.
Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure.
Bonnet, Julien; Suissa, Gad; Raynal, Matthieu; Bouteiller, Laurent
2015-03-21
Some organic compounds form gels in liquids by forming a network of anisotropic fibres. Based on extensive solubility tests of four gelators of similar structures, and on Hansen solubility parameter formalism, we have probed the quantitative effect of a structural variation of the gelator structure on its gel formation ability. Increasing the length of an alkyl group of the gelator obviously reduces its polarity, which leads to a gradual shift of its solubility sphere towards lower δp and δh values. At the same time, its gelation sphere is shifted - to a much stronger extent - towards larger δp and δh values.
Fabrication of large binary colloidal crystals with a NaCl structure
Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.
2009-01-01
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259
Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.
2015-01-01
Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01 mm−1 and μs′=1.0 mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613
Contested Spaces in Policy Enactment: A Bourdieusian Analysis of Language Policy in Singapore
ERIC Educational Resources Information Center
Bokhorst-Heng, Wendy D.; Silver, Rita Elaine
2017-01-01
The basic structure and rhetoric of national language policy in multilingual Singapore has remained essentially unchanged since independence with four official languages positioned within the national quadrilingual framework and used in all public spheres, and individual bilingualism encouraged in the private sphere. However, also since…
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2016-11-09
Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.
NASA Astrophysics Data System (ADS)
Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui
2018-06-01
Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).
Low-Dimensional Network Formation in Molten Sodium Carbonate
Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie
2016-01-01
Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions. PMID:27080401
Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept
NASA Technical Reports Server (NTRS)
Peterson, Todd T.
2004-01-01
NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.
NASA Astrophysics Data System (ADS)
Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo
2011-03-01
We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.
Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.
2016-08-16
A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less
Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor
NASA Astrophysics Data System (ADS)
Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong
2018-06-01
In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.
Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.
Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei
2015-01-01
The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.
Crystalline Colloidal Arrays in Polymer Matrices
NASA Technical Reports Server (NTRS)
Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.
1997-01-01
Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.
Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.
Kumar, Vijay Bhooshan; Gedanken, Aharon; Kimmel, Giora; Porat, Ze'ev
2014-05-01
Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2-5 μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium. Copyright © 2013 Elsevier B.V. All rights reserved.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
Structural and Acoustic Damping Characteristics of Polyimide Microspheres
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Park, Junhong
2005-01-01
A broad range of tests have been performed to evaluate the capability of tiny lightweight polyimide spheres to reduce sound and vibration. The types of testing includes impedance tube measurement of propagation constant, sound power insertion loss for single and double wall systems, particle frame wave characterization and beam vibration reduction. The tests were performed using spheres made of two types of polyimide and with varying diameter. Baseline results were established using common noise reduction treatment materials such as fiberglass and foam. The spheres were difficult to test due to their inherent mobility. Most tests required some adaptation to contain the spheres. One test returned obvious non-linear behavior, a result which has come to be expected for treatments of this type. The polyimide spheres are found to be a competent treatment for both sound and vibration energy with the reservation that more work needs to be done to better characterize the non-linear behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Xia; Liu Bing; Hou Qian
A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstratedmore » that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.« less
Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations
2016-12-22
the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...taken when generating nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at...nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at each grain center, identifying atoms
Murine hepatocellular carcinoma derived stem cells reveal epithelial-to-mesenchymal plasticity.
Jayachandran, Aparna; Shrestha, Ritu; Dhungel, Bijay; Huang, I-Tao; Vasconcelos, Marianna Yumi Kawashima; Morrison, Brian J; Ramlogan-Steel, Charmaine A; Steel, Jason C
2017-09-26
To establish a model to enrich and characterize stem-like cells from murine normal liver and hepatocellular carcinoma (HCC) cell lines and to further investigate stem-like cell association with epithelial-to-mesenchymal transition (EMT). In this study, we utilized a stem cell conditioned serum-free medium to enrich stem-like cells from mouse HCC and normal liver cell lines, Hepa 1-6 and AML12, respectively. We isolated the 3-dimensional spheres and assessed their stemness characteristics by evaluating the RNA levels of stemness genes and a cell surface stem cell marker by quantitative reverse transcriptase-PCR (qRT-PCR). Next, we examined the relationship between stem cells and EMT using qRT-PCR. Three-dimensional spheres were enriched by culturing murine HCC and normal hepatocyte cell lines in stem cell conditioned serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor and heparin sulfate. The 3-dimensional spheres had enhanced stemness markers such as Klf4 and Bmi1 and hepatic cancer stem cell (CSC) marker Cd44 compared to parental cells grown as adherent cultures. We report that epithelial markers E-cadherin and ZO-1 were downregulated, while mesenchymal markers Vimentin and Fibronectin were upregulated in 3-dimensional spheres. The 3-dimensional spheres also exhibited changes in expression of Snai , Zeb and Twist family of EMT transcription factors. Our novel method successfully enriched stem-like cells which possessed an EMT phenotype. The isolation and characterization of murine hepatic CSCs could establish a precise target for the development of more effective therapies for HCC.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
NASA Astrophysics Data System (ADS)
Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger
2004-09-01
Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.
Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers
NASA Astrophysics Data System (ADS)
Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul
2010-03-01
In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.
NASA Astrophysics Data System (ADS)
Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei
2015-02-01
We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1984-05-01
Featuring the modified hypernetted-chain (MHNC) scheme as a variational fitting procedure, we demonstrate that the accuracy of the variational perturbation theory (VPT) and of the method based on additivity of equations of state is determined by the excess entropy dependence of the bridge-function parameters [i.e., η(s) when the Percus-Yevick hard-sphere bridge functions are employed]. It is found that η(s) is nearly universal for all soft (i.e., "physical") potentials while it is distinctly different for the hard spheres, providing a graphical display of the "jump" in pair-potential space (with respect to accuracy of VPT) from "hard" to "soft" behavior. The universality of η(s) provides a local criterion for the MHNC scheme that should be useful for inverting structure-factor data in order to obtain the potential. An alternative local MHNC criterion due to Lado is rederived and extended, and it is also analyzed in light of the plot of η(s).
NASA Astrophysics Data System (ADS)
Rachakonda, Prem; Muralikrishnan, Bala; Cournoyer, Luc; Cheok, Geraldine; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel
2017-10-01
The Dimensional Metrology Group at the National Institute of Standards and Technology is performing research to support the development of documentary standards within the ASTM E57 committee. This committee is addressing the point-to-point performance evaluation of a subclass of 3D imaging systems called terrestrial laser scanners (TLSs), which are laser-based and use a spherical coordinate system. This paper discusses the usage of sphere targets for this effort, and methods to minimize the errors due to the determination of their centers. The key contributions of this paper include methods to segment sphere data from a TLS point cloud, and the study of some of the factors that influence the determination of sphere centers.
A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters
NASA Technical Reports Server (NTRS)
Mackowski, D. W.; Mishchenko, M. I.
2011-01-01
A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS
NASA Astrophysics Data System (ADS)
Tanaka, M.; Takahashi, Y.; Yamaguchi, N.
2013-04-01
Anthropogenic organoarsenic compounds which were used such as agrochemicals, pesticides, and herbicides can have a potential as a source of arsenic pollution in water. In the process, the adsorption of arsenic onto mineral surface in soil may play an important role to affect arsenic distribution in solid-water interface. However, adsorption structures of organoarsenic compounds on the iron-(oxyhydr)oxides are not well known. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to know the adsorption structure of methyl- and phenyl-substituted organoarsenic compounds (methylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), and diphenylarsinic acid (DPAA) onto ferrihydrite which can be a strong adsorbent of arsenic. EXAFS analysis suggests that the formation of inner-sphere surface complex for all organoarsenic compounds with ferrihydrite regardless of the organic functional groups and the number of substitution. The As-Fe distances are around 3.27 , which suggests both mono-and bi-dentate inner-sphere complexes by DFT calculations. The corresponding coordination numbers (CNs) are less than two, suggesting that coexistence of both structures of inner-sphere complexes.
NASA Astrophysics Data System (ADS)
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2013-10-01
We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.
Zhang, Junjun; Li, Ruiqing; Liu, Lu; Li, Linlin; Zou, Lianchun; Gan, Shucai; Ji, Guijuan
2014-09-01
Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln(3+) ions doped SrMoO4 samples exhibit respective bright red-orange, yellow, green and white light of Eu(3+), Sm(3+), Tb(3+) and Dy(3+) under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Low density polyethylene (LDPE) was prepared into micro- or submicro-spheres or nanofibers via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE immiscible blends and subsequent removal of the CAB matrix. The sizes of the PE spheres or fibers can be successfully controlled by varyi...
Steady flow in a rotating sphere with strong precession
NASA Astrophysics Data System (ADS)
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle
2014-02-17
Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.
NASA Astrophysics Data System (ADS)
Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an
2016-03-01
Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.
From sticky-hard-sphere to Lennard-Jones-type clusters
NASA Astrophysics Data System (ADS)
Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter
2018-04-01
A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
NASA Technical Reports Server (NTRS)
Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.
1998-01-01
Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-08-11
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.
Wu, Hao Bin; Lou, Xiong Wen David; Hng, Huey Hoon
2012-02-13
Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO(2)-based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO(2) HSs without significant structural alteration. Depending on the calcination atmosphere of air or N(2), pure anatase TiO(2) HSs or carbon-supported TiO(2) HSs, respectively, can be obtained. Remarkably, both types of TiO(2) HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high-power lithium-ion batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-01-01
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089
From sticky-hard-sphere to Lennard-Jones-type clusters.
Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter
2018-04-01
A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
NASA Astrophysics Data System (ADS)
Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui
2017-01-01
We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
Shear Viscosity Coefficient of 5d Liquid Transition Metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.
2011-07-01
In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.
NASA Astrophysics Data System (ADS)
Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng
2015-06-01
A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.
Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen
2012-09-15
Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less
Su, Xin; Chang, Jie; Wu, Suli; Tang, Bingtao; Zhang, Shufen
2016-03-21
Monodisperse semiconductor colloidal spheres with a high refractive index hold great potential for building photonic crystals with a strong band gap, but the difficulty in separating the nucleation and growth processes makes it challenging to prepare highly uniform semiconductor colloidal spheres. Herein, real monodisperse Cu2O spheres were prepared via a hot-injection & heating-up two-step method using diethylene glycol as a milder reducing agent. The diameter of the as prepared Cu2O spheres can be tuned from 90 nm to 190 nm precisely. The SEM images reveal that the obtained Cu2O spheres have a narrow size distribution, which permits their self-assembly to form photonic crystals. The effects of precursor concentration and heating rates on the size and morphology of the Cu2O spheres were investigated in detail. The results indicate that the key points of the method include the burst nucleation to form seeds at a high temperature followed by rapid cooling to prevent agglomeration, and appropriate precursor concentration as well as a moderate growth rate during the further growth process. Importantly, photonic crystal films exhibiting a brilliant structural color were fabricated with the obtained monodisperse Cu2O spheres as building blocks, proving the possibility of making photonic crystals with a strong band gap. The developed method was also successfully applied to prepare monodisperse CdS spheres with diameters in the range from 110 nm to 210 nm.
NASA Astrophysics Data System (ADS)
Jansky, Bohumil; Rejchrt, Jiri; Novak, Evzen; Losa, Evzen; Blokhin, Anatoly I.; Mitenkova, Elena
2017-09-01
The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85 % of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe-56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.
NASA Astrophysics Data System (ADS)
Goel, V.; Mishra, S.; Ahlawat, A. S.; Sharma, C.; Kotnala, R. K.
2017-12-01
Aerosol particles are generally considered as chemically homogeneous spheres in the retrieval techniques of ground and space borne observations which is not accurate approach and can lead to erroneous observations. For better simulation of optical and radiative properties of aerosols, a good knowledge of aerosol's morphology, chemical composition and internal structure is essential. Till date, many studies have reported the morphology and chemical composition of particles but very few of them provide internal structure and spatial distribution of different chemical species within the particle. The research on the effect of particle internal structure and its contribution to particle optics is extremely limited. In present work, we characterize the PM10 particles collected form typical arid (the Thar Desert, Rajasthan, India) and typical urban (New Delhi, India) environment using microscopic techniques. The particles were milled several times to investigate their internal structure. The EDS (Energy Dispersive X-ray Spectroscopy) spectra were recorded after each milling to check the variation in the chemical composition. In arid environment, Fe, Ca, C, Al, and Mg rich shell was observed over a Si rich particle whereas in urban environment, shell of Hg, Ag, C and N was observed over a Cu rich particle. Based on the observations, different model shapes [homogenous sphere and spheroid; heterogeneous sphere and spheroid; core shell] have been considered for assessing the associated uncertainties with the routine modeling of optical properties where volume equivalent homogeneous sphere approximation is considered. The details will be discussed during presentation.
Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi
2016-09-27
Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.
The single scattering properties of the aerosol particles as aggregated spheres
NASA Astrophysics Data System (ADS)
Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.
2012-08-01
The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.
Swimming of a linear chain with a cargo in an incompressible viscous fluid with inertia
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2017-01-01
An approximation to the added mass matrix of an assembly of spheres is constructed on the basis of potential flow theory for situations where one sphere is much larger than the others. In the approximation, the flow potential near a small sphere is assumed to be dipolar, but near the large sphere it involves all higher order multipoles. The analysis is based on an exact result for the potential of a magnetic dipole in the presence of a superconducting sphere. Subsequently, the approximate added mass hydrodynamic interactions are used in a calculation of the swimming velocity and rate of dissipation of linear chain structures consisting of a number of small spheres and a single large one, with account also of frictional hydrodynamic interactions. The results derived for periodic swimming on the basis of a kinematic approach are compared with the bilinear theory, valid for small amplitude of stroke, and with the numerical solution of the approximate equations of motion. The calculations interpolate over the whole range of scale number between the friction-dominated Stokes limit and the inertia-dominated regime.
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-02-01
The electrical resistivity of compound forming liquid alloy HgPb is studied as a function of concentration. Hard sphere diameters of Hg and Pb are obtained through the inter-ionic pair potential evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. The concentration dependence in resistivity occurs due to preferential ordering of unlike atoms as nearest neighbours with help of complex formation model. Though the compound HgiPbi as per structure peaks is found to be less stable. However it contributes significantly to resistivity as compared to bare ions.
Light-Controlled Interconversion between a Self-Assembled Triangle and a Rhombicuboctahedral Sphere.
Han, Muxin; Luo, Yuansu; Damaschke, Bernd; Gómez, Laura; Ribas, Xavi; Jose, Anex; Peretzki, Patrick; Seibt, Michael; Clever, Guido H
2016-01-04
Stimuli-responsive structural reorganizations play an important role in biological processes, often in combination with kinetic control scenarios. In supramolecular mimics of such systems, light has been established as the perfect external trigger. Here, we report on the light-driven structural rearrangement of a small, self-assembled Pd3L6 ring based on photochromic dithienylethene (DTE) ligands into a rhombicuboctahedral Pd24L48 sphere measuring about 6.4 nm across. When the wavelength is changed, this interconversion can be fully reversed, as confirmed by NMR and UV/Vis spectroscopy as well as mass spectrometry. The sphere was visualized by AFM, TEM, and GISAXS measurements. Due to dissimilarities in the photoswitch conformations, the interconversion rates between the two assemblies are drastically different in the two directions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Challenging Age Power Structures: Creating a Public Sphere in Preschool through "Musicking"
ERIC Educational Resources Information Center
Wassrin, Maria
2016-01-01
This article explores the possibility of conceiving preschool music activities as a way of forming spaces of participation with society's youngest. The discussion draws on Hannah Arendt's ([1958] 1998) definition of public spheres, and the argumentation is closely linked to an empirical example from musicking events with 1-3 year olds in a…
Metal-Matrix/Hollow-Ceramic-Sphere Composites
NASA Technical Reports Server (NTRS)
Baker, Dean M.
2011-01-01
A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.
Self-determined shapes and velocities of giant near-zero drag gas cavities
Vakarelski, Ivan U.; Klaseboer, Evert; Jetly, Aditya; Mansoor, Mohammad M.; Aguirre-Pablo, Andres A.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2017-01-01
Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than 110 those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities. PMID:28913434
Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.
Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand
2018-04-03
Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.
Psychosocial factors associated with migraine and tension-type headache in medical students.
Lebedeva, Elena R; Kobzeva, Natalia R; Gilev, Denis V; Kislyak, Nadezhda V; Olesen, Jes
2017-11-01
Background In our previous study of workers, blood donors and medical students, students stood out with a higher 1-year prevalence of migraine (28%) and tension-type headache (TTH) (74%). General factors associated with headache were common for all groups except low physical activity. The hypothesis of this study was therefore that a number of psychosocial factors relating to the personal sphere would better explain the high prevalence of migraine and TTH in students. Methods The study population consisted of 1042 students (719 females, 323 males, mean age 20.6, range 17-40). Headache diagnoses and associated factors were identified by direct professional semi-structured interview. We also interviewed about the following psychosocial factors: dissatisfaction with study, dissatisfaction with family life, dissatisfaction for personal reasons, bad financial situation, overwork, stress, not enough sleep, insomnia, depressed mood, anxiety, irritability, tendency towards conflicts and not being married. We report psychosocial factors associated with headache according to diagnosis and sex using univariate and multivariate logistic regression analyses. Results Several factors were significantly associated with migraine and TTH in the univariate analysis. In the multivariate analysis, two psychosocial factors were statistically significantly associated with migraine in all students: irritability (OR 2.2, 95% CI 1.4-3.6) and overwork (OR 2.2, 95% CI 1.4-3.5). Insomnia (2.7, 95% CI 1.1-6.9) and depressed mood (OR 2.1, 95% CI 1.1-4.2) were associated with migraine only in females. Two psychosocial factors were associated with TTH: dissatisfaction with study in males (OR 2.0, 95% CI 1.0-3.8) and depressed mood in females (OR 1.8, 95% CI 1.0-3.5). Conclusion Psychosocial factors from the personal sphere showed significant association with migraine and TTH in students. Such factors should therefore be major targets for preventive efforts to reduce the prevalence of primary headache disorders in students.
Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Schweizer, Kenneth S.
2011-12-01
The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.
NASA Astrophysics Data System (ADS)
Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng
2018-04-01
In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.
Fano resonances in heterogeneous dimers of silicon and gold nanospheres
NASA Astrophysics Data System (ADS)
Zhao, Qian; Yang, Zhong-Jian; He, Jun
2018-06-01
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
A DIM model for sodium cluster-ions interacting with a charged conducting sphere
NASA Astrophysics Data System (ADS)
Kuntz, P. J.
A diatomics-in-molecules (DIM) model for the energy, shape and charge distribution of metal cluster ions in the presence of a charged insulated conducting sphere is presented. The electrostatic interaction between the sphere and the cluster-ion is introduced in a self-consistent manner which allows the sphere to be polarized by the ion and the ion by the sphere. This interaction appears in the diagonal elements of the model Hamiltonian matrix in such a way that the lowest eigenvalue includes the correct electrostatic energy for the charge distribution in the ground state. The model is applied to the calculation of fusion barriers for Na+2 and Na+3 ions. When both the charge distribution and the geometric configuration of the cluster-ion are allowed to relax freely, the energy as a function of distance from the sphere is nearly the same as that calculated from the electrostatic energy alone, which implies that details of the molecular structure of the cluster-ion can be neglected in calculating fusion barriers from charge polarization alone. That the fusion barriers lie sufficiently far away from the sphere so that the molecule does not dissociate under the influence of the Coulomb interaction confirms that it is meaningful to speak of two separate entities at the barrier position.
NASA Astrophysics Data System (ADS)
Kolikov, Kiril
2016-11-01
The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.
Luminescent LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres for encapsulation of biomolecules
NASA Astrophysics Data System (ADS)
Li, Dan; Liu, Chunlei; Jiang, Lianzhou
2015-10-01
In this study, LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres, synthesized via self-sacrificing templated route, are developed for enzyme immobilization and protein adsorption. The four LuVO4 hollow spheres with diameter of 180 nm, 280 nm, 370 nm and 480 nm were obtained. The size of LuVO4 hollow sphere is dependent on Lu(OH)CO3 template. Upon excitation by UV light, hollow LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) spheres exhibit red (Eu3+), orange (Sm3+), yellow-green (Dy3+), and green (Er3+) emissions. The good biocompatibility of sample is validated by MTT assay. Due to structure feature and size of obtained sample, the rapid encapsulation of biomolecules within samples has been achieved. Furthermore, the hollow spheres show different biomolecules adsorption capacities at different buffer solution pH values. The release behaviors of two kinds of biomolecules (lysozyme and bovine serum albumin) are also investigated. LuVO4 hollow spheres are suitable carriers for biomolecules. The emission intensity of Eu3+ in the LuVO4:Eu3+ varies with the released amount of LYZ. This enables the monitoring of release process by the change in the luminescence intensity.
Kim, Jong-Ho; Lim, I-Rang; Joo, Hyung Joon; Choi, Seung-Cheol; Choi, Ji-Hyun; Cui, Long-Hui; Im, Lisa; Hong, Soon Jun; Lim, Do-Sun
A number of researchers have been reporting a wide range of in vitro and in vivo studies of cell engraftment to enhance angiogenesis using stem cells. Despite these efforts, studies involving three-dimensional (3D) culture method that mimics in vivo environment have not reached its peak yet. In this study, we investigated the change and effects on cellular angiogenic growth factors through sphere formation of adipose stem cell (ASC) which is engineered by poly-2-hydroxyethyl methacrylate (Poly-HEMA). First of all, we successfully induced sphere formation of ASC (sph-ASC) on Poly-HEMA coated plates. sph-ASC represented significantly higher expression levels of anti-apoptotic and hypoxic factors compared to monolayer adherent ASC (adh-ASC). Interestingly, sph-ASC showed higher mRNA levels of the following genes; CD31, CD144, vWF, IGF-2, MCP-1, PDGF-A, VEGF-A, VEGF-C, and FGF-2. In addition, mRNA expressions of angiogenic growth factor receptors such as Flk1, FGFR1, FGFR2, and Tie2 were elevated in sph-ASC. In protein level, Cytokine/Chemokines antibody array revealed a significant increase of FGF-2 in sph-ASC (3.17-fold) compared to adh-ASC. To investigate the effects of FGF-2 on sph-ASC, Matrigel angiogenic invasion assay showed significant reduced level of FGF-2 in FGF-2 siRNA transfected sph-ASC (2.27-fold) compared to negative control siRNA transfected sph-ASC. These findings suggest that Poly-HEMA coated plates induce sphere formation of ASC which has significantly higher expression of FGF-2, and plays a critical role as a major regulating growth factor of in vitro angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamics of hard sphere colloidal dispersions
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.
1994-01-01
Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling
2015-10-15
Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less
Processing and properties of Ti-6Al-4V hollow sphere foams from hydride powder
NASA Astrophysics Data System (ADS)
Hardwicke, Canan Uslu
Honeycomb structures currently used in aerospace systems are expensive to manufacture, limited to sheet form, and present joining problems and mechanical anisotropy that promotes shear failure at low stresses. Metallic foams produced by point contact bonding of monosized hollow spheres offer an alternative if they can be processed into strong, light-weight, and reasonably priced structural materials. In this work, technology has been established for fabricating good quality, Ti-6Al-4V hollow sphere foams using the coaxial nozzle powder slurry technique. It was shown that hydride form of Ti-ELI can be used as the starting precursor powder and processed into fine particles of 1-10 mum size range without increasing the impurity levels. Hydride dispersion in acetone was provided by the addition of polyester/polyamine copolymers through electrosteric stabilization. Addition of PMMA to the pseudoplastically dispersed organic slurries helped bind hydride powder spherical shells. Furthermore, monosized Ti-6Al-4V hollow spheres were sintered to 98% dense cell walls in Ar and point-contact bonded into closed-cell foams through solid-state diffusion. These findings suggest that near-net shape Ti-6Al-4V structures may be produced with isotropic properties, strength, toughness, and densities as low as 10% of the bulk. Findings concerning the optimum processing parameters and implications for future research are discussed.
Xiang, Liqin; Zhao, Xiaopeng
2017-01-01
TiO2-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials have been widely investigated in past decades. Based on our group’s research works on TiO2 materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on the preparation and the formation mechanism of TiO2-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D (three-dimensional) urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO2 are briefly discussed. PMID:28991208
ERIC Educational Resources Information Center
Bomert, Christiane; Leinfellner, Stefanie
2017-01-01
The article deals with structural, cultural and habitual concepts, principles and ideals of parenthood in the German academic working context. It focuses on social processes of transformation and reconfiguration of reproduction and profession, which means within work and family spheres and especially within academia in times of neoliberalism,…
Finsler Geometry of Nonlinear Elastic Solids with Internal Structure
2017-01-01
should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei
2015-10-01
Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.
Kampa, Mario; Lubitz, Wolfgang; van Gastel, Maurice; Neese, Frank
2012-12-01
[NiFe] hydrogenases catalyze the reversible formation of H(2). The [NiFe] heterobimetallic active site is rich in redox states. Here, we investigate the key catalytic state Ni-C of Desulfovibrio vulgaris Miyazaki F hydrogenase using a cluster model that includes the truncated amino acids of the entire second coordination sphere of the enzyme. The optimized geometries, computed g tensors, hyperfine coupling constants, and IR stretching frequencies all agree well with experimental values. For the hydride in the bridging position, only a single minimum on the potential energy surface is found, indicating that the hydride bridges and binds to both nickel and iron. The influence of the second coordination sphere on the electronic structure is investigated by comparing results from the large cluster models with truncated models. The largest interactions of the second coordination sphere with the active site concern the hydrogen bonds with the cyanide ligands, which modulate the bond between iron and these ligands. Secondly, the electronic structure of the active site is found to be sensitive to the protonation state of His88. This residue forms a hydrogen bond with the spin-carrying sulfur atom of Cys549, which in turn tunes the spin density at the nickel and coordinating sulfur atoms. In addition, the unequal distribution of spin density over the equatorial cysteine residues results from different orientations of the cysteine side chains, which are kept in their particular orientation by the secondary structure of the protein.
Low-Dimensional Network Formation in Molten Sodium Carbonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.
2016-04-15
Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F-x(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) aremore » obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example similar to 55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.« less
Theoretical Investigation of Phonon Dispersion Relation of 3d Liquid Transition Metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.
2011-12-01
The phonon dispersion relations of 3d liquid transition metals have been obtained in the present study. We have used Hubbard and Beeby (HB) method to generate phonon dispersion relation of liquid metals. To describe the structural information, the structure factor S(q) due to the Percus-Yevick hard sphere (PYHS) reference systems is used along with our newly constructed parameter free model potential. The influence of exchange and correlation effect on the phonon dispersion relation of 3d liquid transition metals is examined explicitly, which reflects the varying effects of screening. We have used different local field correction functions like Hartree (H), Taylor (T) and Sarkar et al (S). Present results have found good in agreement with available experimental data.
Mechanical properties of 4d transition metals in molten state
NASA Astrophysics Data System (ADS)
Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.
2016-05-01
Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun
2017-02-01
A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
NASA Astrophysics Data System (ADS)
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere
NASA Astrophysics Data System (ADS)
Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano
2018-06-01
The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.
NASA Astrophysics Data System (ADS)
Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying
2018-05-01
Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.
Confinement dynamics of a semiflexible chain inside nano-spheres
NASA Astrophysics Data System (ADS)
Fathizadeh, A.; Heidari, Maziar; Eslami-Mossallam, B.; Ejtehadi, M. R.
2013-07-01
We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.
Structure of marginally jammed polydisperse packings of frictionless spheres
NASA Astrophysics Data System (ADS)
Zhang, Chi; O'Donovan, Cathal B.; Corwin, Eric I.; Cardinaux, Frédéric; Mason, Thomas G.; Möbius, Matthias E.; Scheffold, Frank
2015-03-01
We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres. To this end we expand on the granocentric model [Clusel et al., Nature (London) 460, 611 (2009), 10.1038/nature08158], explicitly taking into account rattlers. This leads to a relationship between the characteristic parameters of the packing, such as the mean number of neighbors and the fraction of rattlers, and the radial distribution function g (r ) . We find excellent agreement between the model predictions for g (r ) and packing simulations, as well as experiments on jammed emulsion droplets. The observed quantitative agreement opens the path towards a full structural characterization of jammed particle systems for imaging and scattering experiments.
Structural properties of liquid lanthanides using charge hard sphere reference system
NASA Astrophysics Data System (ADS)
Thakora, P. B.; Sonvane, Y. A.; Patel, H. P.; Gajjar, P. N.; Jani, A. R.
2012-06-01
In the present paper Charge Hard Sphere (CHS) system is employed to investigate the structural properties like long wavelength limit S(0), isothermal compressibility (χT) and coordination number n for some liquid lanthanides viz.: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Our well established parameter free model potential is used to describe the electron-ion interaction alongwith sarkar et al. dielectric function. From the present results, it is seen that good agreement between present results and available experimental data have been achieved. At last, we establish the applicability of our parameter free model potential and CHS method to account such structural properties.
Numerical simulation of a shear-thinning fluid through packed spheres
NASA Astrophysics Data System (ADS)
Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol
2012-12-01
Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.
Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.
Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1 while they form a pointlike one in model 2. We then examine the effects of geometric features of the solute on the amplitudes and asymmetry of the entropic potential field acting on the solute along the filament. A large aspherical solute with a cleft near the solute-filament interface, which mimics the myosin motor domain, is considered in the examination. Thus, the two fields in our physical picture described above are qualitatively reproduced. The factors to be taken into account in further studies are also discussed.
Institutional Structure: An Impediment to Professionalism.
ERIC Educational Resources Information Center
Palardy, J. Michael.
1988-01-01
Large schools have a tall organizational structure with long chains of command and limited control for "low-level" staff, including teachers and principals. To resolve this problem, two alternative structures are suggested: a dual structure involving spheres of administrative and professional responsibility and a flat structure featuring…
Song, Junling; Yang, Hong Bin; Wang, Xiu; Khoo, Si Yun; Wong, C C; Liu, Xue-Wei; Li, Chang Ming
2012-07-25
We demonstrate a strategy to improve utilization of photogenerated charge in dye-sensitized solar cells (DSSCs) with fluorine-doped TiO2 hollow spheres as the scattering layer, which improves the fill factor from 69.4% to 74.1% and in turn results in an overall efficiency of photoanode increased by 13% (from 5.62% to 6.31%) in comparison with the control device using undoped TiO2 hollow spheres. It is proposed that the fluorine-doping improves the charge transfer and inhibition of charge recombination to enhance the utilization of the photogenerated charge in the photoanode.
The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering
Szala‐Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T.
2017-01-01
Abstract Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. PMID:28672104
Spectral action models of gravity on packed swiss cheese cosmology
NASA Astrophysics Data System (ADS)
Ball, Adam; Marcolli, Matilde
2016-06-01
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the packed swiss cheese cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of three-dimensional spheres inside a four-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
Comparing photonic band structure calculation methods for diamond and pyrochlore crystals.
Vermolen, E C M; Thijssen, J H J; Moroz, A; Megens, M; van Blaaderen, A
2009-04-27
The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.
Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong
2011-07-05
Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society
Thermodynamic perturbation theory for fused sphere hard chain fluids using nonadditive interactions
NASA Astrophysics Data System (ADS)
Abu-Sharkh, Basel F.; Sunaidi, Abdallah; Hamad, Esam Z.
2004-03-01
A model is developed for the equation of state of fused chains based on Wertheim thermodynamic perturbation theory and nonadditive size interactions. The model also assumes that the structure (represented by the radial distribution function) of the fused chain fluid is the same as that of the touching hard sphere chain fluid. The model is completely based on spherical additive and nonadditive size interactions. The model has the advantage of offering good agreement with simulation data while at the same time being independent of fitted parameters. The model is most accurate for short chains, small values of Δ (slightly fused spheres) and at intermediate (liquidlike) densities.
Numerical analyses of planer plasmonic focusing lens
NASA Astrophysics Data System (ADS)
Chou, Yen-Yu; Lee, Yeeu-Chang
2018-03-01
The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.
Random close packing of disks and spheres in confined geometries
NASA Astrophysics Data System (ADS)
Desmond, Kenneth W.; Weeks, Eric R.
2009-11-01
Studies of random close packing of spheres have advanced our knowledge about the structure of systems such as liquids, glasses, emulsions, granular media, and amorphous solids. In confined geometries, the structural properties of random-packed systems will change. To understand these changes, we study random close packing in finite-sized confined systems, in both two and three dimensions. Each packing consists of a 50-50 binary mixture with particle size ratio of 1.4. The presence of confining walls significantly lowers the overall maximum area fraction (or volume fraction in three dimensions). A simple model is presented, which quantifies the reduction in packing due to wall-induced structure. This wall-induced structure decays rapidly away from the wall, with characteristic length scales comparable to the small particle diameter.
Ren, Hua; Zhu, Chao; Li, Zhaohui; Yang, Wei; Song, E
2014-01-01
The applications of anti-VEGF (vascular endothelial growth factor) treatment in ophthalmic fields to inhibit angiogenesis have been widely documented in recent years. However, the hydrophobic nature of many agents makes its delivery difficult in practice. Therefore, the aim of the present study was to introduce a new kind of hydrophobic drug carrier by employing nanoparticles with a hollow structure inside. Followed by the synthesis and characterization of magnesium silicate hollow spheres, cytotoxicity was evaluated in retina capillary endothelial cells. The loading and releasing capacity were tested by employing emodin, and the effect on VEGF expression was performed at the gene and protein level. Finally, an investigation on angiogenesis was carried on fertilized chicken eggs. The results indicated that the magnesium silicate nanoparticles had low toxicity. Emodin–MgSiO3 can inhibit the expression of both VEGF gene and protein effectively. Angiogenesis of eggs was also reduced significantly. Based on the above results, we concluded that magnesium silicate hollow spheres were good candidates as drug carriers with enough safety. PMID:25250911
On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium
NASA Technical Reports Server (NTRS)
Daly, S. F.; Raefsky, A.
1985-01-01
The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.
Size versus electronic factors in transition metal carbide and TCP phase stability
NASA Astrophysics Data System (ADS)
Pettifor, D. G.; Seiser, B.; Margine, E. R.; Kolmogorov, A. N.; Drautz, R.
2013-09-01
The contributions of atomic size and electronic factors to the structural stability of transition metal carbides and topologically close-packed (TCP) phases are investigated. The hard-sphere model that has been used by Cottrell to rationalize the occurrence of the octahedral and trigonal local coordination polyhedra within the transition metal carbides is shown to have limitations in TiC since density functional theory (DFT) predicts that the second most metastable phase closest to the B1 (NaCl) ground state takes the B? (BN) structure type with 5-atom local coordination polyhedra with very short Ti-C bond lengths. The importance of electronic factors in the TCP phases is demonstrated by DFT predictions that the A15, ? and ? phases are stabilized between groups VI and VII of the elemental transition metals, whereas the ? and Laves phases are destabilized. The origin of this difference is related to the bimodal shape parameter of the electronic density of states by using the bond-order potential expansion of the structural energy within a canonical tight-binding model. The importance of the size factor in the TCP phases is illustrated by the DFT heats of formation for the binary systems Mo-Re, Mo-Ru, Nb-Re and Nb-Ru which show that the ? and Laves phases become more and more stable compared to A15, ? and ? as the size factor increases from Mo-Re through to Nb-Ru.
Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, JF; Luo, C; Gao, T
2015-01-01
Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less
Essa, Khalid S
2014-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.
Essa, Khalid S.
2013-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472
Bartosh, Thomas J; Ylostalo, Joni H
2014-02-06
Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.
Bartosh, Thomas J.
2014-01-01
Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3D culture without addition of exogenous chemicals or gene transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, reported lag time for activation in experimental models have prompted investigations to pre-activate the cells prior to their administration. In this protocol, standard 2D culture expanded MSCs are activated by aggregation into 3D spheres using hanging drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Furthermore, we elucidate methods to prepare MSC sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. PMID:24510769
Pushing the glass transition towards random close packing using self-propelled hard spheres
NASA Astrophysics Data System (ADS)
Ni, Ran; Stuart, Martien A. Cohen; Dijkstra, Marjolein
2013-10-01
Although the concept of random close packing with an almost universal packing fraction of approximately 0.64 for hard spheres was introduced more than half a century ago, there are still ongoing debates. The main difficulty in searching the densest packing is that states with packing fractions beyond the glass transition at approximately 0.58 are inherently non-equilibrium systems, where the dynamics slows down with a structural relaxation time diverging with density; hence, the random close packing is inaccessible. Here we perform simulations of self-propelled hard spheres, and we find that with increasing activity the relaxation dynamics can be sped up by orders of magnitude. The glass transition shifts to higher packing fractions upon increasing the activity, allowing the study of sphere packings with fluid-like dynamics at packing fractions close to RCP. Our study opens new possibilities of investigating dense packings and the glass transition in systems of hard particles.
NASA Astrophysics Data System (ADS)
Krasovsky, Victor L.; Kiselyov, Alexander A.
2017-12-01
New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-08-27
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Light-scattering efficiency of starch acetate pigments as a function of size and packing density.
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-20
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 microm.
Light-scattering efficiency of starch acetate pigments as a function of size and packing density
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-01
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 μm.
NASA Astrophysics Data System (ADS)
Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua
2015-10-01
Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.
Cui, Hang; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku
2013-10-15
Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m(2)/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ~255,000 BVs and ~271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys
NASA Astrophysics Data System (ADS)
Reeve, Kathlene N.; Handwerker, Carol A.
2018-01-01
The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.
Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates
NASA Astrophysics Data System (ADS)
Marquez, Maricel
The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic chain of the surfactant. Nanostructures with fewer defects were found for surfactants with the longest hydrophobic tails (i.e. 12 carbon atoms). The hydrophobic nature of the monomer also seemed to affect the morphology of the nanostructure; poly(methyl methacrylate) (PMMA) honeycombs showed thicker walls compared to polyaniline (PANI) and polypyrrole (Ppy). In general, HOPG seems to be a better choice of substrate for TAAP compared to gold-coated glass and SiO2 wafers. Preliminary results on the formation of layered polymer nanostructures via multiple TAAP sequences were also presented.
Champmartin, S; Ambari, A; Chhabra, R P
2012-12-01
In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.
NASA Astrophysics Data System (ADS)
Champmartin, S.; Ambari, A.; Chhabra, R. P.
2012-12-01
In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.
Synthesis and Study of Optical Characteristics of Ti0.91O2/CdS Hybrid Sphere Structures
NASA Astrophysics Data System (ADS)
Kong, Lingbin; Xu, Qinfeng; Zhang, Meng; Wang, Dehua; Liu, Mingliang; Zhang, Lei; Jiao, Mengmeng; Wang, Honggang; Yang, Chuanlu
2018-03-01
The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.
Diverse assembly behavior in colloidal Platonic polyhedral sphere clusters
NASA Astrophysics Data System (ADS)
Marson, Ryan; Teich, Erin; Dshemuchadse, Julia; Glotzer, Sharon; Larson, Ronald
We simulate the self-assembly of colloidal ``polyhedral sphere clusters (PSCs)'', which consist of equal-sized spheres placed at the vertices of a polyhedron such that they just touch along each edge. These colloidal building blocks have recently been experimentally fabricated; here we predict crystal structures that would appear in the phase diagram of resulting particle assemblies. We use Brownian dynamics (BD) simulations of rigid body clusters performed in the open-source GPU-based HOOMD-Blue particle simulation package to show the assembly behavior of the 5 Platonic PSCs. The simulations contain as many as 4096 individual polyhedra, across over 30 different densities per cluster geometry, with some ordered phases possessing unit cells with 20 or more particles. We observe the formation of not only traditional cubic structures such as BCC and FCC, but also more complex phases having structure symmetries with Pearson symbols - hP7, cP20, cI2, mP6, and hR3. The observations reported here will serve as a guide for future colloidal assembly experiments using an expanded library of PSCs, consisting of other regular and irregular polyhedra, allowing researchers to target specific arrangements of ``halo'' and ``core'' particles for technologically relevant applications including photonics and structural color.
Three-Dimensional Self-Assembled Photonic Crystal Waveguide
NASA Astrophysics Data System (ADS)
Baek, Kang-Hyun
Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.
NASA Astrophysics Data System (ADS)
Liu, Shaobo; Zhao, Yang; Zhang, Baihui; Xia, Hui; Zhou, Jianfei; Xie, Wenke; Li, Hongjian
2018-03-01
Hierarchical nano-micro carbon spheres@rice straw-derived porous carbon composites are successfully synthesized by the in situ decoration of the porous carbon with carbon spheres from glucose under the assistance of cetyltrimethyl ammonium bromide micelles and further activated by KOH. The scanning electron microscope images clearly show the carbon spheres disperse homogeneously and orderly onto the surface and in the inner macropores of the porous carbon. The diameter of the carbon spheres varies from 475 nm to 1.6 μm, which can be easily controlled by introducing extra inducing agent. The optimal composites exhibit a large specific surface area (1122 m2 g-1), rich content of oxygen (14.2 wt %), and tunable hierarchical porous structure. When used as supercapacitor electrodes, the novel composites with abundant fruits present a high specific capacitance of 337 F g-1 at 1 A g-1, excellent rate retention of 83% from 1 to 20 A g-1 and a good cycling stability with 96% capacitance retention after 10000 cycles. In this strategy, the thought of shared ion-buffering reservoirs is proposed and the mutual promotion effects between the carbon spheres and porous carbon in the composites are also practically demonstrated to contribute the enhanced electrochemical performances.
Qiu, Cheng-Wei; Li, Le-Wei; Yeo, Tat-Soon; Zouhdi, Saïd
2007-02-01
Vector potential formulation and parametric studies of electromagnetic scattering problems of a sphere characterized by the rotationally symmetric anisotropy are studied. Both epsilon and mu tensors are considered herein, and four elementary parameters are utilized to specify the material properties in the structure. The field representations can be obtained in terms of two potentials, and both TE (TM) modes (with respect to r) inside (outside) the sphere can be derived and expressed in terms of a series of fractional-order (in a real or complex number) Ricatti-Bessel functions. The effects due to either electric anisotropy ratio (Ae=epsilont/epsilonr) or magnetic anisotropy ratio (Am=mut/mur) on the radar cross section (RCS) are considered, and the hybrid effects due to both Ae and Am are also examined extensively. It is found that the material anisotropy affects significantly the scattering behaviors of three-dimensional dielectric objects. For absorbing spheres, however, the Ae or Am no longer plays a significant role as in lossless dielectric spheres and the anisotropic dependence of RCS values is found to be predictable. The hybrid effects of Ae and Am are considered for absorbing spheres as well, but it is found that the RCS can be greatly reduced by controlling the material parameters. Details of the theoretical treatment and numerical results are presented.
The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering.
Szala-Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T; Hardacre, Christopher; Youngs, Tristan G A
2017-09-20
Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.
Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue
2016-04-18
Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mandal Goswami, Madhuri
2016-01-01
This paper reports on synthesis of hollow spheres of magnetite, guided by micelles and their application in drug release by the stimulus responsive technique. Here oleyelamine micelles are used as the core substance for the formation of magnetite nano hollow spheres (NHS). Diameter and shell thickness of NHS have been changed by changing concentration of the micelles. Mechanism of NHS formation has been established by investigating the aliquot collected at different time during the synthesis of NHS. It has been observed that oleyelamine as micelles play an important role to generate hollow-sphere particles of different diameter and thickness just by varying its amount. Structural analysis was done by XRD measurement and morphological measurements, SEM and TEM were performed to confirm the shape and size of the NHS. FTIR measurement support the formation of magnetite phase too. Frequency dependent AC magnetic measurements and AC magnetic field stimulated drug release event by these particles provide a direction of the promising application of these NHS for better cancer treatment in near future. Being hollow & porous in structure and magnetic in nature, such materials will also be useful in other applications such as in removal of toxic materials, magnetic separation etc. PMID:27796329
NASA Astrophysics Data System (ADS)
Pizio, O.; Sokołowski, S.; Sokołowska, Z.
2014-05-01
We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
Liu, Li; Zhang, Jing; Dong, Shaonan; Zhang, Fuping; Wang, Ye; Bi, Shuping
2018-03-07
Density functional theory (DFT) calculations combined with cluster models are performed at the B3LYP/6-311+G(d,p) level for investigating the solvent effects in Al(H 2 O) 6 3+ water-exchange reactions. A "One-by-one" method is proposed to obtain the most representative number and arrangement of explicit H 2 Os in the second hydration sphere. First, all the possible ways to locate one explicit H 2 O in second sphere (N m ' = 1) based on the gas phase structure (N m ' = 0) are examined, and the optimal pathway (with the lowest energy barrier) for N m ' = 1 is determined. Next, more explicit H 2 Os are added one by one until the inner-sphere is fully hydrogen bonded. Finally, the optimal pathways with N m ' = 0-7 are obtained. The structural and energetic parameters as well as the lifetimes of the transition states are compared with the results obtained with the "Independent-minimum" method and the "Independent-average" method, and all three methods show that the pathway with N m ' = 6 may be representative. Our results give a new idea for finding the representative pathway for water-exchange reactions in other hydrated metal ion systems.
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang
2007-01-01
Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.
NASA Astrophysics Data System (ADS)
Tong, Wei; Huang, Yudai; Cai, Yanjun; Guo, Yong; Wang, Xingchao; Jia, Dianzeng; Sun, Zhipeng; Pang, Weikong; Guo, Zaiping; Zong, Jun
2018-01-01
Hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres have been synthesized by urea-assisted solvothermal method with adding Triton X-100. The structure and morphology of the as-prepared materials were analyzed by X-ray diffraction and electron microscope. The results show that the as-prepared samples can be indexed as hexagonal layered structure with hierarchical architecture, and the possible formation mechanism is speculated. When evaluated as cathode material, the hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres show good electrochemical properties with high initial discharge capacity of 129.9 mAh g-1, and remain the discharge capacity of 95.5 mAh g-1 after 160 cycles at 10C. The excellent electrochemical performance of the as-prepared sample can be attributed to its stable hierarchical mesoporous framework in conjunction with large specific surface, low cation mixing and small particle size. They not only provide a large number of reaction sites for surface or interface reaction, but also shorten the diffusion length of Li+ ions. Meanwhile, the mesoporous spheres composed of nanoparticles can contribute to high rate ability and buffer volume changes during charge/discharge process.
Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L
2014-12-07
We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri
2014-03-01
Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.
Zhang, Zhi-Kun; Guo, Deng-Zhu; Zhang, Geng-Min
2011-05-01
CuO nano/microspheres with a wide diametric distribution were prepared by thermal decomposition of Cu(2)(OH)(3)NO(3) nano/microspheres formed in a simple asymmetric-electrode based cathodic-plasma electrolysis. The morphological, componential, and structural information about the two kinds of spheres were characterized in detail by SEM, TEM, EDX, XPS and XRD, and the results revealed that the morphology of the spheres were well kept after the componential and structural transformation from Cu(2)(OH)(3)NO(3) into CuO. The TGA/DSC study showed that the CuO nano/microspheres could be explored to be a promising additive for accelerating the thermal decomposition of ammonium perchlorate (AP). Combining with the current curve and emission spectrum measured in the plasma electrolysis, formation mechanism of the Cu(2)(OH)(3)NO(3) spheres was also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, Yurij V.; Cummings, Peter T.
2006-03-01
The Blum-Høye [J. Stat. Phys. 19 317 (1978)] solution of the mean spherical approximation for a multicomponent multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-Yukawa hard-sphere fluid. Our extension is based on the application of the orthogonal polynomial expansion method of Lado [Phys. Rev. E 54, 4411 (1996)]. Closed form analytical expressions for the structural and thermodynamic properties of the model are presented. They are given in terms of the parameters that follow directly from the solution. By way of illustration the method of solution is applied to describe the thermodynamic properties of the one- and two-Yukawa versions of the model.
NASA Astrophysics Data System (ADS)
Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng
2018-03-01
Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.
Tidal Amplitude Delta Factors and Phase Shifts for an Oceanic Earth
NASA Astrophysics Data System (ADS)
Spiridonov, E. A.
2017-12-01
M.S. Molodenskiy's problem, which describes the state of an elastic self-gravitating compressible sphere, is generalized to the case of a biaxial hydrostatically equilibrium rotating elliptical inelastic shell. The system of sixth-order equations is supplemented with corrections due to the relative and Coriolis accelerations. The ordinary and load Love numbers of degree 2 are calculated with allowance for their latitude dependence and dissipation for different models of the Earth's structure (the AK135, IASP91, and PREM models). The problem is solved by Love's method. The theoretical amplitude delta factors and phase shifts of second-order tidal waves for an oceanic Earth are compared with their most recent empirical counterparts obtained by the GGP network superconducting gravimeters. In particular, it is shown that a good matching (up to the fourth decimal place) of the theoretical and observed amplitude factors of semidiurnal tides does not require the application of the nonhydrostatic theory.
Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles
Liu, Siqi; Senses, Erkan; Jiao, Yang; ...
2016-04-15
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less
TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation
NASA Astrophysics Data System (ADS)
Moura, K. F.; Maul, J.; Albuquerque, A. R.; Casali, G. P.; Longo, E.; Keyson, D.; Souza, A. G.; Sambrano, J. R.; Santos, I. M. G.
2014-02-01
In this study, a microwave assisted solvothermal method was used to synthesize TiO2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min.
A hollow sphere soft lithography approach for long-term hanging drop methods.
Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali
2010-04-01
In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.
A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods
Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J.; Bae, Hojae
2010-01-01
In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine. PMID:19505251
NASA Astrophysics Data System (ADS)
Lee, Yong Sam; Kim, Sang Hyuk; Park, Je Hoon
2013-09-01
Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y'n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.
Orientational ordering of lamellar structures on closed surfaces
NASA Astrophysics Data System (ADS)
Pȩkalski, J.; Ciach, A.
2018-05-01
Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.
Solvation structure of the halides from x-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu
2016-07-28
Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less
Garraway, Isla P; Sun, Wenyi; Tran, Chau P; Perner, Sven; Zhang, Bao; Goldstein, Andrew S; Hahm, Scott A; Haider, Maahum; Head, Christian S; Reiter, Robert E; Rubin, Mark A; Witte, Owen N
2010-01-01
BACKGROUND Prostate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study. METHODS Prostaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice. RESULTS Prostate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3–5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5–4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8−AR−PSA−) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells. CONCLUSION Human prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells. Prostate 70: 491–501, 2010. © 2009 Wiley-Liss, Inc. PMID:19938015
Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu
2015-12-28
Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.
Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.
Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk
2013-11-20
Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oil exudation and histological structures of duck egg yolks during brining.
Lai, K M; Chung, W H; Jao, C L; Hsu, K C
2010-04-01
Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.
Inhibition and oxygen activation in copper amine oxidases.
Shepard, Eric M; Dooley, David M
2015-05-19
Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.
Datskos, Panos; Polizos, Georgios; Cullen, David A.; ...
2016-11-11
Role of water and ammonium hydroxide is investigated in evolution of shape of silica structures in the polyvinylpyrrolidone-pentanol emulsion droplet system. Shape control of silica structures is demonstrated by localization of the reagents. A uniform dispersion of reagents provided straight silica rods, while localization of the reagents at the emulsion droplet periphery provided a new type of structures half sphere-half funnel. The absence of water in the initial stages prompted a different nucleation process for the structure growth compared to when water was present in the intial stages. Effect of effective water concentration appeared to be related to the easemore » of diffusion of silica percursor inside the emulsion droplet,i.e., the higher the water concentration, the lower the silica precursor diffusion. Additionally, mixing the reagents in different combinations before adding to the reaction mixture also affected the silica structure thickness, length, and shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos; Polizos, Georgios; Cullen, David A.
Role of water and ammonium hydroxide is investigated in evolution of shape of silica structures in the polyvinylpyrrolidone-pentanol emulsion droplet system. Shape control of silica structures is demonstrated by localization of the reagents. A uniform dispersion of reagents provided straight silica rods, while localization of the reagents at the emulsion droplet periphery provided a new type of structures half sphere-half funnel. The absence of water in the initial stages prompted a different nucleation process for the structure growth compared to when water was present in the intial stages. Effect of effective water concentration appeared to be related to the easemore » of diffusion of silica percursor inside the emulsion droplet,i.e., the higher the water concentration, the lower the silica precursor diffusion. Additionally, mixing the reagents in different combinations before adding to the reaction mixture also affected the silica structure thickness, length, and shape.« less
Optical response from lenslike semiconductor nipple arrays
NASA Astrophysics Data System (ADS)
Wu, H.-M.; Lai, C.-M.; Peng, L.-H.
2008-11-01
The authors reported the use of recessive size reduction in self-assembled polystyrene sphere mask with anisotropic etching to form lenslike nipple arrays onto the surface of silicon and gallium nitride. These devices are shown to exhibit a filling factor near to an ideal close-packed condition and paraboloidlike etch profile with slope increased proportionally to the device aspect ratio. Specular reflectivity of less than 3% was observed over the visible spectral range for the 0.35-μm-period nipple-lens arrays. Using two-dimensional rigorous coupled-wave analysis, the latter phenomenon can be ascribed to a gradual index matching mechanism accessed by a high surface-coverage semiconductor nipple array structure.
NASA Astrophysics Data System (ADS)
Caillol, J. M.; Levesque, D.
1992-01-01
The reliability and the efficiency of a new method suitable for the simulations of dielectric fluids and ionic solutions is established by numerical computations. The efficiency depends on the use of a simulation cell which is the surface of a four-dimensional sphere. The reliability originates from a charge-charge potential solution of the Poisson equation in this confining volume. The computation time, for systems of a few hundred molecules, is reduced by a factor of 2 or 3 compared to this of a simulation performed in a cubic volume with periodic boundary conditions and the Ewald charge-charge potential.
Leasing instruments of high-rise construction financing
NASA Astrophysics Data System (ADS)
Aleksandrova, Olga; Ivleva, Elena; Sukhacheva, Viktoria; Rumyantseva, Anna
2018-03-01
The leasing sector of the business economics is expanding. Leasing instruments for high-rise construction financing allow to determine the best business behaviour in the leasing economy sector, not only in the sphere of transactions with equipment and vehicles. Investments in high-rise construction have a multiplicative effect. It initiates an active search and leasing instruments use in the economic behaviour of construction organizations. The study of the high-rise construction sector in the structure of the leasing market participants significantly expands the leasing system framework. The scheme of internal and external leasing process factors influence on the result formation in the leasing sector of economy is offered.
Models of metal binding structures in fulvic acid from the Suwannee River, Georgia
Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.
1998-01-01
Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.
Absorption and scattering by fractal aggregates and by their equivalent coated spheres
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Heng, Ri-Liang; Pilon, Laurent
2015-01-01
This paper demonstrates that the absorption and scattering cross-sections and the asymmetry factor of randomly oriented fractal aggregates of spherical monomers can be rapidly estimated as those of coated spheres with equivalent volume and average projected area. This was established for fractal aggregates with fractal dimension ranging from 2.0 to 3.0 and composed of up to 1000 monodisperse or polydisperse monomers with a wide range of size parameter and relative complex index of refraction. This equivalent coated sphere approximation was able to capture the effects of both multiple scattering and shading among constituent monomers on the integral radiation characteristics of the aggregates. It was shown to be superior to the Rayleigh-Debye-Gans approximation and to the equivalent coated sphere approximation proposed by Latimer. However, the scattering matrix element ratios of equivalent coated spheres featured large angular oscillations caused by internal reflection in the coating which were not observed in those of the corresponding fractal aggregates. Finally, the scattering phase function and the scattering matrix elements of aggregates with large monomer size parameter were found to have unique features that could be used in remote sensing applications.
Many-body dynamics of chemically propelled nanomotors
NASA Astrophysics Data System (ADS)
Colberg, Peter H.; Kapral, Raymond
2017-08-01
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
Optical super-resolution and periodical focusing effects by dielectric microspheres
NASA Astrophysics Data System (ADS)
Darafsheh, Arash
Optical microscopy is one of the oldest and most important imaging techniques; however, its far-field resolution is diffraction-limited. In this dissertation, we proposed and developed a novel method of optical microscopy with super-resolution by using high-index dielectric microspheres immersed in liquid and placed on the surface of the structures under study. We used barium titanate glass microspheres with diameters of D~2-220 mum and refractive indices n˜1.9-2.1 to discern minimal feature sizes ˜lambda/4 (down to ˜lambda/7) of various photonic and plasmonic nanostructures, where lambda is the illumination wavelength. We studied the magnification, field of view, and resolving power, in detail, as a function of sphere sizes. We studied optical coupling, transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory. We studied optical coupling,transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=a3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory.
Calculated photonic structures for infrared emittance control
NASA Astrophysics Data System (ADS)
Rung, Andreas; Ribbing, Carl G.
2002-06-01
Using an available program package based on the transfer-matrix method, we calculated the photonic band structure for two different structures: a quasi-three-dimensional crystal of square air rods in a high-index matrix and an opal structure of high-index spheres in a matrix of low index, epsilon = 1.5. The high index used is representative of gallium arsenide in the thermal infrared range. The geometric parameters of the rod dimension, sphere radius, and lattice constants were chosen to give total reflectance for normal incidence, i.e., minimum thermal emittance, in either one of the two infrared atmospheric windows. For these four photonic crystals, the bulk reflectance spectra and the wavelength-averaged thermal emittance as a function of crystal thickness were calculated. The results reveal that potentially useful thermal signature suppression is obtained for crystals as thin as 20-50 mum, i.e., comparable with that of a paint layer.
Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio
2014-06-24
Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.
New spherical optical cavities with non-degenerated whispering gallery modes
NASA Astrophysics Data System (ADS)
Kumagai, Tsutaru; Palma, Giuseppe; Prudenzano, Francesco; Kishi, Tetsuo; Yano, Tetsuji
2017-02-01
New spherical resonators with internal defects are introduced to show anomalous whispering gallery modes (WGMs). The defect induces a symmetry breaking spherical cavity and splits the WGMs. A couple of defects, a hollow sphere (bubble), and a hollow ring, have been studied. The hollow sphere was fabricated and the splitting of WGM was observed. In this paper, this "non-degenerated WGMs (non-DWGMs) resonance" in a microsphere with hollow defect structure is reviewed based on our research. The resonance of WGMs in a sphere is identified by three integer parameters: the angular mode number, l, azimuthal mode number m, and radial mode number, n. The placement of the defect such as a hollow ring or single bubble is shown to break symmetry and resolve the degeneracy concerning m. This induces a variety of resonant wavelengths of the spherical cavity. A couple of simulations using the eigenmode and transient analyses propose how the placed defects affect the WGM resonance in the spherical cavity. For the sphere with a single bubble defect, the experimentally observed resonances in Nd-doped tellurite glass microsphere with a single bubble are clarified to be due to the splitting of resonance modes, i.e., the existence of "non-DWGMs" in the sphere. The defect bubble plays a role of opening the optically wide gate to introduce excitation light for Nd3+ pumping using non-DWGMs in the sphere efficiently.
Proteomic Profiling of β-hCG-Induced Spheres in BRCA1 Defective Triple Negative Breast Cancer Cells.
Sengodan, Satheesh Kumar; Rajan, Arathi; Hemalatha, Sreelatha Krishnakumar; Nadhan, Revathy; Jaleel, Abdul; Srinivas, Priya
2018-01-05
Previously, we identified that β-hCG is expressed by BRCA1 mutated but not wild type breast cancers in vitro/in vivo and exhibited a novel event in β-hCG overexpressing BRCA1 mutated HCC1937 cells where the cells were able to form spheres (HCC1937 β spheres) in adherent cell culture plates even in the absence of any growth factors. These spheres express stem cell and EMT markers. In the present study, we carried out the total proteomic profiling of these HCC1937 β spheres obtained from BRCA1 defective β-hCG expressing stable breast cancer cells to analyze the cell signaling pathways that are active in these cells. Functional annotation revealed proteins (164 cellular and 97 secretory) predominantly involved in oxygen binding, nucleosome assembly, cytoskeleton organization, protein folding, etc. Many of the proteins identified from HCC1937 β spheres in this study are also up regulated in breast cancers, which are directly linked with poor prognosis in human cancer samples as analyzed using TCGA data set. Survival analysis shows that β-hCG expressing cancer patients are linked with poor survival rate. Interestingly, hemoglobins were identified at both cellular and secretory level in HCC1937 β spheres and experiments after treating with ROS inducers revealed that β-hCG induces hemoglobin and protects the cancer cells during oxidative stress. Our proteomic data strongly propose β-hCG as an oncogenic molecule associated with BRCA1 mutation, and hence, targeting β-hCG could be a strategy to treat BRCA1 defective breast cancers.
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
NASA Astrophysics Data System (ADS)
Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut
2018-05-01
Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.
Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow
NASA Astrophysics Data System (ADS)
Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca
2017-10-01
The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.
NASA Astrophysics Data System (ADS)
Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei
2018-04-01
Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.
Hard Spheres on the Primitive Surface
NASA Astrophysics Data System (ADS)
Dotera, Tomonari; Takahashi, Yusuke
2015-03-01
Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.
Atsumi, Sonoko; Nosaka, Chisato; Adachi, Hayamitsu; Kimura, Tomoyuki; Kobayashi, Yoshihiko; Takada, Hisashi; Watanabe, Takumi; Ohba, Shun-Ichi; Inoue, Hiroyuki; Kawada, Manabu; Shibasaki, Masakatsu; Shibuya, Masabumi
2016-07-19
EGFRvIII is a mutant form of the epidermal growth factor receptor gene (EGFR) that lacks exons 2-7. The resulting protein does not bind to ligands and is constitutively activated. The expression of EGFRvIII is likely confined to various types of cancer, particularly glioblastomas. Although an anti-EGFRvIII vaccine is of great interest, low-molecular-weight substances are needed to obtain better therapeutic efficacy. Thus, the purpose of this study is to identify low molecular weight substances that can suppress EGFRvIII-dependent transformation. We constructed a new throughput screening system and searched for substances that decreased cell survival of NIH3T3/EGFRvIII spheres under 3-dimensional (3D)-culture conditions, but retained normal NIH3T3 cell growth under 2D-culture conditions. In vivo activity was examined using a mouse transplantation model, and derivatives were chemically synthesized. Functional characterization of the candidate molecules was investigated using an EGFR kinase assay, immunoprecipitation, western blotting, microarray analysis, quantitative polymerase chain reaction analysis, and measurement of lactate and ATP synthesis. In the course of screening 30,000 substances, a reagent, "Ertredin" was found to inhibit anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII cDNA. Ertredin also inhibited sphere formation in cells expressing wild-type EGFR in the presence of EGF. However, it did not affect anchorage-dependent 2D growth of parental NIH3T3 cells. The 3D-growth-inhibitory activity of some derivatives, including those with new structures, was similar to Ertredin. Furthermore, we demonstrated that Ertredin suppressed tumor growth in an allograft transplantation mouse model injected with EGFRvIII- or wild-type EGFR-expressing cells; a clear toxicity to host animals was not observed. Functional characterization of Ertredin in cells expressing EGFRvIII indicated that it stimulated EGFRvIII ubiquitination, suppressed both oxidative phosphorylation and glycolysis under 3D conditions, and promoted cell apoptosis. We developed a high throughput screening method based on anchorage-independent sphere formation induced by EGFRvIII-dependent transformation. In the course of screening, we identified Ertredin, which inhibited anchorage-independent 3D growth and tumor formation in nude mice. Functional analysis suggests that Ertredin suppresses both mitochondrial oxidative phosphorylation and cytosolic glycolysis in addition to promoting EGFRvIII degradation, and stimulates apoptosis in sphere-forming, EGFRvIII-overexpressing cells.
Peng, Lei; Dong, Sheying; Wei, Wenbo; Yuan, Xiaojing; Huang, Tinglin
2017-06-15
Electrode materials play a key role in the development of electrochemical sensors, particularly enzyme-based biosensors. Here, a novel NiCo 2 S 4 with reticulated hollow spheres assembled from rod-like structures was prepared by a one-pot solvothermal method and its formation mechanism was discussed. Moreover, comparison of NiCo 2 S 4 materials from different experiment conditions as biosensors was investigated by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV), and the best one that was reticulated hollow spheres assembled from rod-like structures NiCo 2 S 4 has been successfully employed as a matrix of AChE immobilization for the special structure, superior conductivity and rich reaction active sites. When using common two kinds of organophosphate pesticides (OPs) as model analyte, the biosensors demonstrated a wide linear range of 1.0×10 -12 -1.0×10 -8 gmL -1 with the detection limit of 4.2×10 -13 gmL -1 for methyl parathion, and 1.0×10 -13 -1.0×10 -10 gmL -1 with the detection limit of 3.5×10 -14 gmL -1 for paraoxon, respectively. The proposed biosensors exhibited many advantages such as acceptable stability and low cost, providing a promising tool for analysis of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Pauling, L
1991-02-01
Whereas 234(92)U142 and other actinon nuclei have ground-state bands that indicate that each nucleus consists of a sphere and a single revolving cluster with constant composition and with only a steady increase in the moment of inertia with increase in J, the angular-momentum quantum number, many of the lanthanon ground-state bands show discontinuities, usually with an initial slightly or strongly curved segment followed by one or two nearly straight segments. The transition to nearly straight segments is interpreted as a change in structure from one revolving cluster to two revolving clusters. The proton-neutron compositions of the clusters and the central sphere are assigned, leading to values of the radius of revolution. The approximation of the two-cluster sequences to linearity is attributed to the very small values of the quadrupole polarizability of the central sphere. Values of the nucleon numbers of clusters and spheres, of the radius of revolution, and of promotion energy are discussed.
NASA Technical Reports Server (NTRS)
Johns, Robert H.; Orange, Thomas W.
1961-01-01
The deformation and complete stress distribution are determined for each of the following edge loaded thin shells of revolution: (1) a right circular cylinder, (2) a frustum of a right circular cone, and (3) a portion of a sphere. The locations of the maximum circumferential and meridional stresses on both the inner and outer surfaces are also found. The basic equations for the above were selected from the published literature on the subject and expanded to produce to resultant-stress equations in closed from where practicable to do so. Equations are also developed for the discontinuity shear force and bending moment at each of the following junction: (1) axial change of thickness in a circular cylinder, (2) axial change of thickness in a cone, (3) change of thickness in a portion of a sphere, (4) a cylinder and a cone, (5) a cylinder and a portion of a sphere(6) a cylinder and a flat head, and (7) a cone and a portion of a sphere.
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn
2016-07-20
Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation.
Carey, Robert I; Kyle, Christopher C; Carey, Donna L; Leveillee, Raymond J
2008-01-01
To prepare artificial kidney stones of defined shape, size, mass, and material composition via precision injection molding of Ultracal 30 cement slurries into an inexpensive biodegradable mold. A calcium alginate and silica-based mold was used to prepare casts of varying shapes in a reproducible manner. Ultracal 30 cement slurries mixed 1:1 with water were injected into these casts and allowed to harden. The artificial stones were recovered and their physical properties determined. Ex-vivo and in-vivo responses to holmium laser lithotripsy were examined. Spheres, half spheres, cylinders, cubes, tapered conical structures, and flat angulated structures were prepared with high precision without post-molding manipulations. Large spheres of average mass 0.661 g (+/- 0.037), small spheres of average mass 0.046 g (+/- 0.0026), and hexagons of average mass 0.752 g (+/- 0.0180) were found to have densities (1610-1687 kg/m(3)) within the expected range for Ultracal 30 cement stones. Ex-vivo holmium laser lithotripsy of small spheres in saline showed uniformly reproducible efficiencies of comminution. Implantation of a tapered conical stone into the ureter of a porcine model demonstrated stone comminution in vivo consistent with that seen in the ex-vivo models. We present an environmentally safe, technically simple procedure for the formation of artificial kidney stones of predetermined size and shape. The technique does not require the use of hazardous solvents or postprocedural processing of the stones. These stones are intended for use in standardized experiments of lithotripsy efficiency in which the shape of the stone as well as the mass can be predetermined and precisely controlled.
Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail
Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusivelymore » through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.« less
A comparative study of the electrostatic potential of fullerene-like structures of Au 32 and Au 42
NASA Astrophysics Data System (ADS)
Wang, Dong-Lai; Sun, Xiao-Ping; Shen, Hong-Tao; Hou, Dong-Yan; Zhai, Yu-Chun
2008-05-01
By using density functional theory calculations, it is found that the most negative MEP inside the gold cage occurs at the center of the sphere. The largest regions with the most negative MEP outside the sphere are localized in the neighborhood of the bridge sites and the vertex regions of the five-coordinated are more positive. The absolute values of the most negative potentials in both the inner and outer cages as well as the vertex regions of the five-coordinated of Au 32 structure are much larger than those of Au 42, which means Au 32 is preferable for electrophilic attack or nucleophilic processes.
The adsorption of rare earth ions using carbonized polydopamine nano shells
Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...
2016-01-07
Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less
Local thermodynamic mapping for effective liquid density-functional theory
NASA Technical Reports Server (NTRS)
Kyrlidis, Agathagelos; Brown, Robert A.
1992-01-01
The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.
Aortic Sca-1+ Progenitor Cells Arise from the Somitic Mesoderm Lineage in Mice.
Steinbach, Sarah K; Wang, Tao; Carruthers, Martha H; Li, Angela; Besla, Rickvinder; Johnston, Adam P; Robbins, Clinton S; Husain, Mansoor
2018-05-31
Sca-1 + progenitor cells in the adult mouse aorta are known to generate vascular smooth muscle cells (VSMCs), but their embryological origins and temporal abundance are not known. Using tamoxifen-inducible Myf5-Cre ER mice, we demonstrate that Sca-1 + adult aortic cells arise from the somitic mesoderm beginning at E8.5 and continue throughout somitogenesis. Myf5 lineage-derived Sca-1 + cells greatly expand in situ, starting at 4 weeks of age, and become a major source of aortic Sca-1 + cells by 6 weeks of age. Myf5-derived adult aortic cells are capable of forming multicellular sphere-like structures in vitro and express the pluripotency marker Sox2. Exposure to transforming growth factor-β3 induces these spheres to differentiate into calponin-expressing VSMCs. Pulse-chase experiments using tamoxifen-inducible Sox2-Cre ERT2 mice at 8 weeks of age demonstrate that ∼35% of all adult aortic Sca-1 + cells are derived from Sox2 + cells. The present study demonstrates that aortic Sca-1 + progenitor cells are derived from the somitic mesoderm formed at the earliest stages of somitogenesis and from Sox2-expressing progenitors in adult mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H
2004-06-15
The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate ofreductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5–3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with ~1.1 H₂/nm², but can be fairly disordered (especiallymore » when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate–surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H
2003-12-01
The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with {approx}1.1 QH{sub 2}/nm{sup 2}, but can bemore » fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less
Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Jiang, Tao; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.
2011-01-01
Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here we demonstrated for the first time a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure. This polymer system was developed on the highly versatile platform of polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generated a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permitted the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures revealed macropores (10-100 μm) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern was confirmed in vivo using a rat subcutaneous implantation model. 12 weeks of implantation resulted in an interconnected porous structure with 82-87% porosity. Cell infiltration and collagen tissue in-growth between microspheres observed by histology confirmed the formation of an in situ 3D interconnected porous structure. It was determined that the in situ porous structure resulted from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation. PMID:21789036
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
Gentle, A R; Smith, G B
2014-10-20
Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based spectrophotometers and integrating spheres. Localized "hot spots" of intensity are common in such materials, so data on small samples is unreliable. A novel device and simple protocols have been developed and undergone validation testing. Simultaneous solar and visible transmittance and reflectance data have been acquired for skylight components and multilayer polycarbonate roof panels. The pyranometer and lux sensor setups also directly yield "light coolness" in lumens/watt. Sample areas must be large, and, although mainly in sheet form, some testing has been done on curved panels. The instrument, its operation, and the simple calculations used are described. Results on a subset of diffuse and partially diffuse materials with no hot spots have been cross checked using 150 mm integrating spheres with a spectrophotometer and the Air Mass 1.5 spectrum. Indications are that results are as good or better than with such spheres for transmittance, but reflectance techniques need refinement for some sample types.
Jiang, Hao; Adidharma, Hertanto
2014-11-07
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.
Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushida, Soh; Yamamoto, Yohei; Braam, Daniel
2015-12-31
Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.
Mechanical Characterization of Partially Crystallized Sphere Packings
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.
2014-10-01
We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Nanjing Artillery Academy, Nanjing 211132; Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn
2014-06-15
In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstratemore » that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.« less
Weyl Points and Line Nodes in Gyroid Photonic Crystals
2013-04-01
ANSI Std Z39-18 © 2013 Macmillan Publishers Limited. All rights reserved. direct-product group of I4132 and inversion. The red gyroid in Fig. 1a...the inversion counterpart of the red gyroid with respect to the origin; the two gyroids do not overlap in space. The band structures of both the SG...air-spheres (one on each gyroid). The first air-sphere is placed in the red gyroid as illustrated in Fig. 1a, and the other is its inversion
Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-03-01
We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.
Large-scale structure of randomly jammed spheres
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio
2017-05-01
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Bulk and monolayer ordering of block copolymer blends
NASA Astrophysics Data System (ADS)
Onikoyi, Adetunji J.
The control of the nanoscale structure or morphology of a block copolymer is a desired goal for nanolithography applications. In this work, we are particularly interested in providing guides for controlling domain size, domain shape and defect densities in block copolymers and their blends for thin film applications. To reach this goal, a sphere forming PS-b-P2VP (having a PS majority block) and its blends with PS homopolymer or cylinder forming PS-b-P2VP are studied in both the bulk and thin films. Structure characterization is performed using a variety of experimental techniques including small angle X-ray scattering, scanning force microscopy and transmission electron microscopy. In the bulk, the spherical domains of the pure, sphere forming PS-b-P2VP arrange on a BCC lattice. On adding PS homopolymer (hPS), the lattice parameter of the BCC spheres increases, while the order-to-disorder temperature (ODT) of the BCC lattice simultaneously decreases. At a given hPS composition, the use of larger sized hPS leads to larger increases in the lattice parameter and larger decreases in the ODT. In bulk blends of cylinder forming PS-b-P2VP with sphere forming PS-b-P2VP, the ordered morphology changes (e.g., cylindrical morphology → coexisting spherical and cylindrical morphologies → spherical morphology) as the sphere forming PS-b-P2VP volume fraction phis increases, while the ODT of the cylindrical morphology decreases. The phase boundaries of these morphologies in monolayers shift to lower phis compared to those of the bulk, apparently caused by a selective adsorption of the cylindrical PS-b-P2VP to form a brush on the substrate. This selective adsorption leads to a preference for spherical domains in diamond-shaped lateral confinements when cylindrical domains are stabilized outside the confinements on the same substrate. Finally, we explore the use of graphoepitaxy to order monolayers of sphere forming PS-b-P2VP and its blends with hPS. The probability of forming isolated dislocations, or of adding (or removing) a full row of spherical domains, in diamond-shaped lateral confinements is shown to be higher when the well size is incommensurate with the lattice parameter. Square-shaped lateral confinement leads to a preference for square sphere packing if the PS-b-P2VP is blended with appropriate amounts of hPS.
Novel morphology of calcium carbonate controlled by poly(L-lysine).
Yao, Yuan; Dong, Wenyong; Zhu, Shenmin; Yu, Xinhai; Yan, Deyue
2009-11-17
The novel calcium carbonate (CaCO(3)) morphology, twin-sphere with an equatorial girdle, has been obtained under the control of poly(L-lysine) (PLys) through gas-diffusion method. The effect of the concentration of calcium cation and PLys, the reaction time, and the initial pH value are investigated, and various interesting morphologies, including twin-sphere, discus-like, hexagonal plate, and hallow structure are observed by using scanning electronic microscopy. Laser microscopic Raman spectroscopy studies indicated that all these CaCO(3) are vaterite. A possible mechanism is suggested to explain the formation of the twin-sphere based morphologies according to the results. It is proven that alkaline polypeptides can control the mineralization of CaCO(3) precisely as the reported acidic polypeptides and double hydrophilic block copolymers.
[Ethology of panic disorders].
Cyrulnik, B
1996-12-01
Animal's world is perfectly coded. According to genetical equipment, there are in natural sphere, signals whose bio-physical structure releases panics behaviours. But the mere fact that an organism is developing from birth to death makes it sensitive to different informations. Imprinting allows to young to incorporate another live-being or a sphere, category it. From now, if we change this sphere, it's a trouble of relation of world which panics the young. Surpopulation regarded in an animal world as an impossibility to classify its world, impairs animal's behaviours and released accidental panics. Overgenerational appears soon in animals, a long time before words. But when human language appears, it modifies memory's nature and allows therefore troubles released by a representation. The tranquilizing mechanism often consists of changing fear in anxiety, easier to manage.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
On the probability distribution function of the mass surface density of molecular clouds. II.
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-11-01
The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The corresponding asymptote of the PDF of cylinders for the large q-1 is approximately given by Pcyl(Σ) ∝ Σ-4/3(1 - (Σ/Σ(0))2/3)-1/2. The distribution of overpressures q-1 produces a power-law asymptote at high mass surface densities given by
Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng
2017-10-15
Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao
2017-06-01
The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.
Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes
2017-04-04
Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.
Thermal Cycle Testing of the Powersphere Engineering Development Unit
NASA Technical Reports Server (NTRS)
Curtis, Henry; Piszczor, Mike; Kerslake, Thomas W.; Peterson, Todd T.; Scheiman, David A.; Simburger, Edward J.; Giants, Thomas W.; Matsumoto, James H.; Garcia, Alexander; Liu, Simon H.;
2007-01-01
During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU.
Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song
2016-01-01
Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967
Improved Bonner sphere neutron spectrometry measurements for the nuclear industry
NASA Astrophysics Data System (ADS)
Roberts, N. J.; Thomas, D. J.; Visser, T. P. P.
2017-11-01
A novel, two-stage approach has been developed for producing the a priori spectrum for Bonner sphere unfolding in a case where neutrons are produced by spontaneous fission and (α,n) reactions, e.g. in UF6. The code SOURCES 4C is first used to obtain the energy spectrum of the neutrons inside the material, which is then fed into a MCNP model of the entire geometry to derive the neutron spectrum at the location of the Bonner sphere. Using this as the a priori spectrum produces a much more detailed unfolded Bonner sphere spectrum retaining fine structure from the calculation that would not be present if a simple estimated spectrum had been used as the a priori spectrum. This is illustrated using a Bonner sphere measurement of the neutron energy spectrum produced by a 48Y cylinder of UF6. From the unfolded spectrum an estimate has been made of the neutron ambient dose equivalent, i.e. the quantity which a neutron survey instrument should measure. The difference in the ambient dose equivalent of the unfolded spectrum is over 10% when using the novel approach instead of using a simpler estimate consisting of a single high energy peak, 1/E continuum, and thermal peak.
Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.
Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang
2015-10-14
Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less
Welding at the Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Clautice, W. E.
1973-01-01
Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.
Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.
Wilson, John W; Slaba, Tony C; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Li, Wenjiang; He, Jinglong; He, Sailing
2005-02-01
The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
FCC-HCP coexistence in dense thermo-responsive microgel crystals
NASA Astrophysics Data System (ADS)
Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.
2017-06-01
Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ < 0.74 and sub-diffusive at short times in PNIPAM crystals with ϕ > 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.
Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Yang, Lichun; Zhu, Min
2017-01-25
The MOFs (metal-organic frameworks) have been extensively used for electrode materials due to their high surface area, permanent porosity, and hollow structure, but the role of antimony on the MOFs is unclear. In this work, we design the hollow spheres Ni-MOFs with SbCl 3 to synthesize NiSb⊂CHSs (NiSb-embedded carbon hollow spheres) via simple annealing and galvanic replacement reactions. The NiSb⊂CHSs inherited the advantages of Ni-MOFs with hollow structure, high surface area, and permanent porosity, and the NiSb nanoparticles are coated by the formed carbon particles which could effectively solve the problem of vigorous volume changes during the Li + insertion/extraction process. The porous and network structure could well provide an extremely reduced pathway for fast Li + diffusion and electron transport and provide extra free space for alleviating the structural strain. The NiSb⊂CHSs with these features were used as Li-ion batteries for the first time and exhibited excellent cycling performance, high specific capacity, and great rate capability. When coupled with a nanostructure LiMn 2 O 4 cathode, the NiSb⊂CHSs//LiMn 2 O 4 full cell also characterized a high voltage operation of ≈3.5 V, high rate capability (210 mA h g -1 at a current density of 2000 mA g -1 ), and high Coulombic efficiency of approximate 99%, meeting the requirement for the increasing demand for improved energy devices.
Modeling the assessment of the economic factors impact on the development of social entrepreneurship
NASA Astrophysics Data System (ADS)
Absalyamov, T.; Kundakchyan, R.; Zulfakarova, L.; Zapparova, Z.
2017-12-01
The article deals with the research of modern trends in the development of social entrepreneurship in Russia. The results of the research allow the authors to identify a system of factors that affect the development of entrepreneurship in the modern Russian economy. Moreover, the authors argue the regional specificity of the development of social entrepreneurship. The paper considers specific features and formulates the main limitations of the development of entrepreneurship and the competitive environment in the social sphere. The authors suggest an econometric model for assessing the influence of economic factors on the development of socially-oriented entrepreneurship and present an algorithm for calculating its components. The results of the econometric analysis identify the main factors of the change in the performance indicators of entrepreneurial activity and determine the degree of their impact on social entrepreneurship. The results and conclusions can serve as an estimation of the socioeconomic consequences of the sustainability disruption of the entrepreneurial potential realization in the social sphere.
NASA Astrophysics Data System (ADS)
Strathmann, Timothy J.; Myneni, Satish C. B.
2004-09-01
Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).
NASA Astrophysics Data System (ADS)
Chen, Linlin; Guo, Xingpeng; Zhang, Guoan
2017-08-01
It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.
Anomalous columnar order of charged colloidal platelets
NASA Astrophysics Data System (ADS)
Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.
2012-01-01
Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.
A convenient technique for polarimetric calibration of single-antenna radar systems
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1990-01-01
A practical technique for calibrating single-antenna polarimetric radar systems is introduced. This technique requires only a single calibration target such as a conducting sphere or a trihedral corner reflector to calibrate the radar system, both in amplitude and phase, for all linear polarization configurations. By using a metal sphere, which is orientation independent, error in calibration measurement is minimized while simultaneously calibrating the crosspolarization channels. The antenna system and two orthogonal channels (in free space) are modeled as a four-port passive network. Upon using the reciprocity relations for the passive network and assuming the crosscoupling terms of the antenna to be equal, the crosstalk factors of the antenna system and the transmit and receive channel imbalances can be obtained from measurement of the backscatter from a metal sphere. For an X-band radar system with crosspolarization isolation of 25 dB, comparison of values measured for a sphere and a cylinder with theoretical values shows agreement within 0.4 dB in magnitude and 5 deg in phase. An effective polarization isolation of 50 dB is achieved using this calibration technique.
Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei
2017-01-01
Summary High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of TH-MYCN mice, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element-binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. PMID:27705805
Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei
2016-10-04
High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.
2013-08-01
The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.
NASA Astrophysics Data System (ADS)
Hayashi, Tomohiko; Yasuda, Satoshi; Škrbić, Tatjana; Giacometti, Achille; Kinoshita, Masahiro
2017-09-01
Taking protein G with 56 residues for a case study, we investigate the mechanism of protein folding. In addition to its native structure possessing α-helix and β-sheet contents of 27% and 39%, respectively, we construct a number of misfolded decoys with a wide variety of α-helix and β-sheet contents. We then consider a hierarchy of 8 different models with increasing level of detail in terms of the number of entropic and energetic physical factors incorporated. The polyatomic structure is always taken into account, but the side chains are removed in half of the models. The solvent is formed by either neutral hard spheres or water molecules. Protein intramolecular hydrogen bonds (H-bonds) and protein-solvent H-bonds (the latter is present only in water) are accounted for or not, depending on the model considered. We then apply a physics-based free-energy function (FEF) corresponding to each model and investigate which structures are most stabilized. This special approach taken on a step-by-step basis enables us to clarify the role of each physical factor in contributing to the structural stability and separately elucidate its effect. Depending on the model employed, significantly different structures such as very compact configurations with no secondary structures and configurations of associated α-helices are optimally stabilized. The native structure can be identified as that with lowest FEF only when the most detailed model is employed. This result is significant for at least the two reasons: The most detailed model considered here is able to capture the fundamental aspects of protein folding notwithstanding its simplicity; and it is shown that the native structure is stabilized by a complex interplay of minimal multiple factors that must be all included in the description. In the absence of even a single of these factors, the protein is likely to be driven towards a different, more stable state.
NASA Astrophysics Data System (ADS)
Koizumi, Ryota
This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.
Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand
2016-08-24
Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.
On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies
NASA Astrophysics Data System (ADS)
Degiacomi, Matteo T.
2018-05-01
Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.
Liu, Chang; Zhao, Liupeng; Wang, Boqun; Sun, Peng; Wang, Qingji; Gao, Yuan; Liang, Xishuang; Zhang, Tong; Lu, Geyu
2017-06-01
NiO/ZnO composites were synthesized by decorating numerous NiO nanoparticles on the surfaces of well dispersed ZnO hollow spheres using a facile solvothermal method. Various kinds of characterization methods were utilized to investigate the structures and morphologies of the hybrid materials. The results revealed that the NiO nanoparticles with a size of ∼10nm were successfully distributed on the surfaces of ZnO hollow spheres in a discrete manner. As expected, the NiO/ZnO composites demonstrated dramatic improvements in sensing performances compared with pure ZnO hollow spheres. For example, the response of NiO/ZnO composites to 100ppm acetone was ∼29.8, which was nearly 4.6 times higher than that of primary ZnO at 275°C, and the response/recovery time were 1/20s, respectively. Meanwhile, the detection limit could extend down to ppb level. The likely reason for the improved gas sensing properties was also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abed, A. H.; Shcheklein, S. E.
2018-05-01
This paper aims to determine the hydrodynamic characteristics of flow around the sphere in unsteady state condition. An experimental test-rig was designed and constructed for this purpose with the application of an adjusted laser optics system. It is based on the technology of pulsed particle visualization of micro tracers in the cross section per unit time interval. Visualization with Particle Image Velocimetry (PIV-system) is used to study the properties of the flow such as its structure. The PIV-system is the most accepted technique allowed one to measure the instantaneous velocity distribution in fluid applications. In this experimental study, o-ring is used to simulate turbulence on the sphere surface and creates very high-level fluctuations, which creates the flow undergoing a laminar-to-turbulent transition. This transition leads to a delay of the separation point of flow from the sphere surface causing a significant reduction in the drag coefficient, reaching 45%. New results obtained can be useful in the development of numerical validation as well as in design processes.
Tuning structure and mobility of solvation shells surrounding tracer additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmer, James; Jain, Avni; Bollinger, Jonathan A.
2015-03-28
Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less
Tuning structure and mobility of solvation shells surrounding tracer additives.
Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M
2015-03-28
Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.
Glushko, O; Meisels, R; Kuchar, F
2010-03-29
The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
2015-09-03
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
Influence of the plasma environment on atomic structure using an ion-sphere model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
NASA Astrophysics Data System (ADS)
Groehn, Franziska; Duering, Jasmin; Moldenhauer, Daniel; Interdisciplinary CenterMolecular Materials Team
2013-03-01
Recently we have introduced a novel type of self-assembled ``nano-objects'' in solution: From the association of macroions and multivalent counterions well-defined and stable structures in the shape of spheres, rod, rings, hollow spheres and networks can form in solution. Using light-addressable counterions, it is possible to switch the particle size through UV irradiation. Building blocks can be of organic or inorganic nature: Using gold or cadmium sulphide nanoclusters results in hybrid assemblies which also functionally combine nanoparticle and dye. Thermodynamic studies in combination with a detailed structural characterization yield insight into driving forces and structural control in the self-assembly process. Crucial is the delicate interplay of ionic, π - π , and Hamaker interaction. The concept is particularly attractive, as it relies on general physical effects - that is the combination of different non-covalent interactions - and hence is very versatile. Great potential of the structures presented lies in areas such as catalysis and energy conversion.
Effects of monohydric alcohols and polyols on the thermal stability of a protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Shota; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp
2016-03-28
The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either puremore » water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.« less
Effects of monohydric alcohols and polyols on the thermal stability of a protein
NASA Astrophysics Data System (ADS)
Murakami, Shota; Kinoshita, Masahiro
2016-03-01
The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.
NASA Astrophysics Data System (ADS)
Behrens, R.
2015-03-01
The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.
Structure and thermodynamics of a simple fluid
NASA Astrophysics Data System (ADS)
Stell, G.; Weis, J. J.
1980-02-01
Monte Carlo results are found for a simple fluid with a pair potential consisting of a hard-sphere core and a Lennard-Jones attractive tail. They are compared with several of the most promising recent theoretical treatments of simple fluids, all of which involve the decomposition of the pair potential into a hard-sphere-core term and an attractive-tail term. This direct comparison avoids the use of a second perturbation scheme associated with softening the core, which would introduce an ambiguity in the significance of the differences found between the theoretical and Monte Carlo results. The study includes the optimized random-phase approximation (ORPA) and exponential (EXP) approximations of Andersen and Chandler, an extension of the latter approximation to nodal order three (the N3 approximation), the linear-plus-square (LIN + SQ) approximation of Høye and Stell, the renormalized hypernetted chain (RHNC) approximation of Lado, and the quadratic (QUAD) approximation suggested by second-order self-consistent Γ ordering, the lowest order of which is identical to the ORPA. As anticipated on the basis of earlier studies, it is found that the EXP approximation yields radial distribution functions and structure factors of excellent overall accuracy in the liquid state, where the RHNC results are also excellent and the EXP, QUAD, and LIN + SQ results prove to be virtually indistinguishable from one another. For all the approximations, however, the thermodynamics from the compressibility relation are poor and the virial-theorem results are not uniformly reliable. Somewhat more surprisingly, it is found that the EXP results yield a negative structure factor S(k) for very small k in the liquid state and poor radial distribution functions at low densities. The RHNC results are nowhere worse than the EXP results and in some states (e.g., at low densities) much better. In contrast, the N3 results are better in some respects than the EXP results but worse in others. The authors briefly comment on the RHNC and EXP approximations applied to the full Lennard-Jones potential, for which the EXP approximation appears somewhat improved in the liquid state as a result of the softening of the potential core.
Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.
Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena
2015-05-01
Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes. © 2015 Institute of Food Technologists®
Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope
NASA Astrophysics Data System (ADS)
Saito, Shigeki; Miyazaki, Hideki T.; Sato, Tomomasa; Takahashi, Kunio
2002-11-01
In this paper, the kinematics of mechanical and adhesional micromanipulation using a needle-shaped tool under a scanning electron microscope is analyzed. A mode diagram is derived to indicate the possible micro-object behavior for the specified operational conditions. Based on the diagram, a reasonable method for pick and place operation is proposed. The keys to successful analysis are to introduce adhesional and rolling-resistance factors into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate, and to consider the time dependence of these factors due to the electron-beam (EB) irradiation. Adhesional force and the lower limit of maximum rolling resistance are evaluated quantitatively in theoretical and experimental ways. This analysis shows that it is possible to control the fracture of either the tool-sphere or substrate-sphere interface of the system selectively by the tool-loading angle and that such a selective fracture of the interfaces enables reliable pick or place operation even under EB irradiation. Although the conventional micromanipulation was not repeatable because the technique was based on an empirically effective method, this analysis should provide us with a guideline to reliable micromanipulation.
Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres
NASA Astrophysics Data System (ADS)
Li, Mingqi; Zeng, Ying; Ren, Yurong; Zeng, Chunmei; Gu, Jingwei; Feng, Xiaofang; He, Hongyan
2015-08-01
Nonstoichiometric SiOx is a kind of very attractive anode material for high-energy lithium-ion batteries because of a high specific capacity and facile synthesis. However, the poor electrical conductivity and unstable electrode structure of SiOx severely limit its electrochemical performance as anode in lithium-ion batteries. In this work, highly durable sugar apple-shaped SiOx@C nanocomposite spheres are fabricated to achieve significantly improved electrochemical performance. The composite is synthesized by homogenous one-pot synthesis, using ethyltriethoxysilanes (EtSi(OEt)3) and resorcinol/formaldehyde (RF) as starting materials. The morphology, composition and structure of the composite are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis (EA) and X-ray photoelectron spectroscopy (XPS). At a current density of 50 mA g-1, the sugar apple-shaped SiOx@C spheres exhibit a stable discharge capacity of about 630 mAh g-1 calculated on the total mass of both SiOx and C. At a current density of 100 mA g-1, a stable discharge capacity of about 550 mAh g-1 is obtained and the capacity has been kept up to 400 cycles. The excellent cycling performance is attributed to the homogeneous dispersion of SiOx in disordered carbon at the nanometer scale and the unique structure of the composite.
Design of intelligent mesoscale periodic array structures utilizing smart hydrogel
NASA Technical Reports Server (NTRS)
Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.
1996-01-01
Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.
1980-01-01
The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.
Leinweber, Felix C; Tallarek, Ulrich
2003-07-18
Monolithic chromatographic support structures offer, as compared to the conventional particulate materials, a unique combination of high bed permeability, optimized solute transport to and from the active surface sites and a high loading capacity by the introduction of hierarchical order in the interconnected pore network and the possibility to independently manipulate the contributing sets of pores. While basic principles governing flow resistance, axial dispersion and adsorption capacity are remaining identical, and a similarity to particulate systems can be well recognized on that basis, a direct comparison of sphere geometry with monolithic structures is less obvious due, not least, to the complex shape of theskeleton domain. We present here a simple, widely applicable, phenomenological approach for treating single-phase incompressible flow through structures having a continuous, rigid solid phase. It relies on the determination of equivalent particle (sphere) dimensions which characterize the corresponding behaviour in a particulate, i.e. discontinuous bed. Equivalence is then obtained by dimensionless scaling of macroscopic fluid dynamical behaviour, hydraulic permeability and hydrodynamic dispersion in both types of materials, without needing a direct geometrical translation of their constituent units. Differences in adsorption capacity between particulate and monolithic stationary phases show that the silica-based monoliths with a bimodal pore size distribution provide, due to the high total porosity of the material of more than 90%, comparable maximum loading capacities with respect to random-close packings of completely porous spheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vik-Mo, Einar Osland, E-mail: e.o.vik-mo@medisin.uio.no; Department of Neurosurgery, Oslo University Hospital, Oslo; Sandberg, Cecilie
2011-04-15
Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells,more » but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.« less
NASA Astrophysics Data System (ADS)
Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.
2018-03-01
The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.
Numerical method of carbon-based material ablation effects on aero-heating for half-sphere
NASA Astrophysics Data System (ADS)
Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng
2018-05-01
A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.
Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin
NASA Astrophysics Data System (ADS)
Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.
2015-09-01
We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.
Gas Sensor Based on 3-D WO₃ Inverse Opal: Design and Applications.
Xing, Ruiqing; Du, Yang; Zhao, Xiaonan; Zhang, Xiu
2017-03-29
A three-dimensional inverse opal (3DIO) WO₃ architecture has been synthesized via a simple sacrificial template method. Morphology features of the 3DIO were characterized by scanning electron microscope (SEM) and its structure was characterized by X-ray diffraction (XRD). The shrinking ratio of the PMMA spheres was ~28.2% through measuring the distribution of the PMMA spheres and 3DIO WO₃ center-to-center distance between the spheres and macropores, respectively. Beyond that, the 3DIO gas sensing properties were investigated systematically and the sensing mechanism of 3DIO WO₃ was proposed. The results indicated that the response of the 3DIO sensor possessed excellent sensitivity to acetone gas, especially at trace levels. The 3DIO gas sensor response was ~7 to 5 ppm of acetone and could detect acetone low to 0.2 ppm effectively, which was in close proximity to the theoretical low detection limit of 0.14 ppm when R a /R g ≥ 1.2 was used as the criterion for reliable gas sensing. All in all, the obvious satisfaction of the gas-sensing properties was ascribed to the structure of the 3DIO, and the sensor could be a promising novel device in the future.
Optimum structure of Whipple shield against hypervelocity impact
NASA Astrophysics Data System (ADS)
Lee, M.
2014-05-01
Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Adidharma, Hertanto, E-mail: adidharm@uwyo.edu
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must thereforemore » be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.« less
Arctic Strato-Mesospheric Temperature and Wind Variations
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Goldberg, R. A.
2004-01-01
Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.
Generalized Lorenz equations on a three-sphere
NASA Astrophysics Data System (ADS)
Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.
2017-06-01
Edward Lorenz is best known for one specific three-dimensional differential equation, but he actually created a variety of related N-dimensional models. In this paper, we discuss a unifying principle for these models and put them into an overall mathematical framework. Because this family of models is so large, we are forced to choose. We sample the variety of dynamics seen in these models, by concentrating on a four-dimensional version of the Lorenz models for which there are three parameters and the norm of the solution vector is preserved. We can therefore restrict our focus to trajectories on the unit sphere S 3 in ℝ4. Furthermore, we create a type of Poincaré return map. We choose the Poincaré surface to be the set where one of the variables is 0, i.e., the Poincaré surface is a two-sphere S 2 in ℝ3. Examining different choices of our three parameters, we illustrate the wide variety of dynamical behaviors, including chaotic attractors, period doubling cascades, Standard-Map-like structures, and quasiperiodic trajectories. Note that neither Standard-Map-like structure nor quasiperiodicity has previously been reported for Lorenz models.
Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.
2013-01-01
Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155
NASA Astrophysics Data System (ADS)
Shurygin, A. V.; Korochentsev, V. V.; Cherednichenko, A. I.; Mirochnik, A. G.; Kalinovskaya, I. V.; Vovna, V. I.
2018-03-01
Adducts of tris-β-diketonates of the rare earth metal Eu(III) with 1,10-phenanthroline are studied by photoelectron spectroscopy and quantum chemistry methods. The electronic structure, peculiarities of the nature of chemical bonds, and the geometric structure of the adducts are determined. The interpretation of UV photoelectron spectra of vapors and X-ray photoelectron spectra of solid is carried out with the chosen technique. DFT/TDDFT methods make it possible to study the 1,10-phenanthroline molecule influence on the adduct electronic structure and to analyze the electronic effects of substitution of methyl groups by trifluoromethyl groups in the ligands. At transition from the tris-β-diketonate complexes to the adducts, it is observed an increase of the absorption region and a decrease in the energy gap that contributes to the efficiency growth in electronic excitation energy transfer in the ligand-metal. Moreover, phenanthroline displaces water groups, that are luminescence quenchers, from the first coordination sphere, closes coordination in the adduct, and blocks their further attachment. Both factors contribute to an increase in the luminescence intensity.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...
2017-02-24
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.
Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan
2017-03-21
We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongzheng; Sun, Kai; Liang, Zhan; Wang, Yanli; Ling, Licheng
2018-01-01
N-doped yolk-shell hollow carbon sphere wrapped with reduced graphene oxide (rGO/N-YSHCS) is designed and fabricated as sulfur host for lithium-sulfur batteries. The shuttle effect of polysulfides can be suppressed effectively by the porous yolk-shell structure, graphene layer and N-doping. A good conductivity network is provided for electron transportation through the graphene layer coupled with the unique yolk-shell carbon matrix. Such unique structure offers the synthesized rGO/N-YSHCS/S electrode with a high reversible capacity (800 mAh g-1 at 0.2 C after 100 cycles) and good high-rate capability (636 mAh g-1 at 1 C and 540 mAh g-1 at 2 C).
Tunable Porosities and Shapes of Fullerene-Like Spheres
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-01-01
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976
Synthesis of nano grade hollow silica sphere via a soft template method.
Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu
2008-06-01
The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.
Effective, Low-Cost Recovery of Toxic Arsenate Anions from Water by Using Hollow-Sphere Geode Traps.
Shenashen, Mohamed A; Akhtar, Naeem; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Kawada, Satoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; Alamoudi, Ahmad S; El-Safty, Sherif A
2017-08-04
Because of the devastating impact of arsenic on terrestrial and aquatic organisms, the recovery, removal, disposal, and management of arsenic-contaminated water is a considerable challenge and has become an urgent necessity in the field of water treatment. This study reports the controlled fabrication of a low-cost adsorbent based on microscopic C-,N-doped NiO hollow spheres with geode shells composed of poly-CN nanospherical nodules (100 nm) that were intrinsically stacked and wrapped around the hollow spheres to form a shell with a thickness of 500-700 nm. This C-,N-doped NiO hollow-sphere adsorbent (termed CNN) with multiple diffusion routes through open pores and caves with connected open macro/meso windows over the entire surface and well-dispersed hollow-sphere particles that create vesicle traps for the capture, extraction, and separation of arsenate (AsO 4 3- ) species from aqueous solution. The CNN structures are considered to be a potentially attractive adsorbent for AsO 4 3- species due to 1) superior removal and trapping capacity from water samples and 2) selective trapping of AsO 4 3- from real water samples that mainly contained chloride and nitrate anions and Fe 2+ , and Mn 2+ , Ca 2+ , and Mg 2+ cations. The structural stability of the hierarchal geodes was evident after 20 cycles without any significant decrease in the recovery efficiency of AsO 4 3- species. To achieve low-cost adsorbents and toxic-waste management, this superior CNN AsO 4 3- dead-end trapping and recovery system evidently enabled the continuous control of AsO 4 3- disposal in water-scarce environments, presents a low-cost and eco-friendly adsorbent for AsO 4 3- species, and selectively produced water-free arsenate species. These CNN geode traps show potential as excellent adsorbent candidates in environment remediation tools and human healthcare. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T
2016-10-15
A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables advanced strategies for threating bone-related diseases, e.g. osteoporosis and multiple myeloma. Copyright © 2016. Published by Elsevier Ltd.
ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection
NASA Technical Reports Server (NTRS)
Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.
2004-01-01
Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also discussed.
NASA Astrophysics Data System (ADS)
van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry
2018-02-01
In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaret A. Marshall
In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.« less
Extraction of membrane structure in eyeball from MR volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kin, Taichi; Mori, Kensaku
2017-03-01
This paper presents an accurate extraction method of spherical shaped membrane structures in the eyeball from MR volumes. In ophthalmic surgery, operation field is limited to a small region. Patient specific surgical simulation is useful to reduce complications. Understanding of tissue structure in the eyeball of a patient is required to achieve patient specific surgical simulations. Previous extraction methods of tissue structure in the eyeball use optical coherence tomography (OCT) images. Although OCT images have high resolution, imaging regions are limited to very small. Global structure extraction of the eyeball is difficult from OCT images. We propose an extraction method of spherical shaped membrane structures including the sclerotic coat, choroid, and retina. This method is applied to a T2 weighted MR volume of the head region. MR volume can capture tissue structure of whole eyeball. Because we use MR volumes, out method extracts whole membrane structures in the eyeball. We roughly extract membrane structures by applying a sheet structure enhancement filter. The rough extraction result includes parts of the membrane structures. Then, we apply the Hough transform to extract a sphere structure from the voxels set of the rough extraction result. The Hough transform finds a sphere structure from the rough extraction result. An experimental result using a T2 weighted MR volume of the head region showed that the proposed method can extract spherical shaped membrane structures accurately.
Cao, Zhiji; Balasubramanian, K
2009-10-28
Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.
Air-fluidized grains as a model system: Self-propelling and jamming
NASA Astrophysics Data System (ADS)
Daniels, Lynn J.
This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. [12]. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we approach jamming. We obtain an equation of state that agrees well with simulation and free volume theory. We collapse the relaxation time by defining a time- and energy-scale using pressure, consistent with recent simulation [82]. These experiments are further confirmation of the universality of the concepts of self-propelling and jamming.
Microwave Diffraction Techniques from Macroscopic Crystal Models
ERIC Educational Resources Information Center
Murray, William Henry
1974-01-01
Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…
An Investigation of Factors Related to the Retention of Teachers in Rural Middle Schools
ERIC Educational Resources Information Center
Dixon, Timothy M.
2012-01-01
Studies about factors specific to rural middle-school teachers' decisions to remain in the profession are limited. Within a framework of Boylan's spheres of influence, the purpose of this qualitative descriptive case study was to investigate the factors that teachers considered to be most important in decisions to remain teaching in a rural middle…
Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.
1996-01-01
We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.
Quantitation of tumor uptake with molecular breast imaging.
Bache, Steven T; Kappadath, S Cheenu
2017-09-01
We developed scatter and attenuation-correction techniques for quantifying images obtained with Molecular Breast Imaging (MBI) systems. To investigate scatter correction, energy spectra of a 99m Tc point source were acquired with 0-7-cm-thick acrylic to simulate scatter between the detector heads. System-specific scatter correction factor, k, was calculated as a function of thickness using a dual energy window technique. To investigate attenuation correction, a 7-cm-thick rectangular phantom containing 99m Tc-water simulating breast tissue and fillable spheres simulating tumors was imaged. Six spheres 10-27 mm in diameter were imaged with sphere-to-background ratios (SBRs) of 3.5, 2.6, and 1.7 and located at depths of 0.5, 1.5, and 2.5 cm from the center of the water bath for 54 unique tumor scenarios (3 SBRs × 6 sphere sizes × 3 depths). Phantom images were also acquired in-air under scatter- and attenuation-free conditions, which provided ground truth counts. To estimate true counts, T, from each tumor, the geometric mean (GM) of the counts within a prescribed region of interest (ROI) from the two projection images was calculated as T=C1C2eμtF, where C are counts within the square ROI circumscribing each sphere on detectors 1 and 2, μ is the linear attenuation coefficient of water, t is detector separation, and the factor F accounts for background activity. Four unique F definitions-standard GM, background-subtraction GM, MIRD Primer 16 GM, and a novel "volumetric GM"-were investigated. Error in T was calculated as the percentage difference with respect to in-air. Quantitative accuracy using the different GM definitions was calculated as a function of SBR, depth, and sphere size. Sensitivity of quantitative accuracy to ROI size was investigated. We developed an MBI simulation to investigate the robustness of our corrections for various ellipsoidal tumor shapes and detector separations. Scatter correction factor k varied slightly (0.80-0.95) over a compressed breast thickness range of 6-9 cm. Corrected energy spectra recovered general characteristics of scatter-free spectra. Quantitatively, photopeak counts were recovered to <10% compared to in-air conditions after scatter correction. After GM attenuation correction, mean errors (95% confidence interval, CI) for all 54 imaging scenarios were 149% (-154% to +455%), -14.0% (-38.4% to +10.4%), 16.8% (-14.7% to +48.2%), and 2.0% (-14.3 to +18.3%) for the standard GM, background-subtraction GM, MIRD 16 GM, and volumetric GM, respectively. Volumetric GM was less sensitive to SBR and sphere size, while all GM methods were insensitive to sphere depth. Simulation results showed that Volumetric GM method produced a mean error within 5% over all compressed breast thicknesses (3-14 cm), and that the use of an estimated radius for nonspherical tumors increases the 95% CI to at most ±23%, compared with ±16% for spherical tumors. Using DEW scatter- and our Volumetric GM attenuation-correction methodology yielded accurate estimates of tumor counts in MBI over various tumor sizes, shapes, depths, background uptake, and compressed breast thicknesses. Accurate tumor uptake can be converted to radiotracer uptake concentration, allowing three patient-specific metrics to be calculated for quantifying absolute uptake and relative uptake change for assessment of treatment response. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen
2018-02-01
In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili
2013-10-15
Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less
Structure and Hydration of Highly-Branched, Monodisperse Phytoglycogen Nanoparticles
Nickels, Jonathan D.; Atkinson, John; Papp-Szabo, Erzsebet; ...
2016-01-30
Phytoglycogen is a naturally occurring polysaccharide nanoparticle made up of extensively branched glucose monomers. It has a number of unusual and advantageous properties, such as high water retention, low viscosity, and high stability in water, which make this biomaterial a promising candidate for a wide variety of applications. For this paper, we have characterized the structure and hydration of aqueous dispersions of phytoglycogen nanoparticles using neutron scattering. Small angle neutron scattering results suggest that the phytoglycogen nanoparticles behave similar to hard sphere colloids and are hydrated by a large number of water molecules (each nanoparticle contains between 250% and 285%more » of its mass in water). This suggests that phytoglycogen is an ideal sample in which to study the dynamics of hydration water. To this end, we used quasielastic neutron scattering (QENS) to provide an independent and consistent measure of the hydration number, and to estimate the retardation factor (or degree of water slow-down) for hydration water translational motions. These data demonstrate a length-scale dependence in the measured retardation factors that clarifies the origin of discrepancies between retardation factor values reported for hydration water using different experimental techniques. Finally, the present approach can be generalized to other systems containing nanoconfined water.« less
NASA Astrophysics Data System (ADS)
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2018-03-01
Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.
Cole, Judith A; Smith, Susan M; Hart, Nigel; Cupples, Margaret E
2013-08-28
Healthy lifestyles help to prevent coronary heart disease (CHD) but outcomes from secondary prevention interventions which support lifestyle change have been disappointing. This study is a novel, in-depth exploration of patient factors affecting lifestyle behaviour change within an intervention designed to improve secondary prevention for patients with CHD in primary care using personalised tailored support. We aimed to explore patients' perceptions of factors affecting lifestyle change within a trial of this intervention (the SPHERE Study), using semi-structured, one-to-one interviews, with patients in general practice. Interviews (45) were conducted in purposively selected general practices (15) which had participated in the SPHERE Study. Individuals, with CHD, were selected to include those who succeeded in improving physical activity levels and dietary fibre intake and those who did not. We explored motivations, barriers to lifestyle change and information utilised by patients. Data collection and analysis, using a thematic framework and the constant comparative method, were iterative, continuing until data saturation was achieved. We identified novel barriers to lifestyle change: such disincentives included strong negative influences of social networks, linked to cultural norms which encouraged consumption of 'delicious' but unhealthy food and discouraged engagement in physical activity. Findings illustrated how personalised support within an ongoing trusted patient-professional relationship was valued. Previously known barriers and facilitators relating to support, beliefs and information were confirmed. Intervention development in supporting lifestyle change in secondary prevention needs to more effectively address patients' difficulties in overcoming negative social influences and maintaining interest in living healthily.
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2018-03-14
Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.
Ohnishi, Yuichi; Yasui, Hiroki; Kakudo, Kenji; Nozaki, Masami
2016-11-01
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In the present study, we examined the effects of lapatinib on growth of oral and prostate cancer cells. Oral squamous cell carcinoma (OSCC) cell lines HSC3, HSC4 and Ca9-22 were sensitive to the antiproliferative effects of lapatinib in anchorage-dependent culture, but the OSCC cell lines KB and SAS and the prostate cancer cell line DU145 were resistant to lapatinib. Phosphorylation levels of EGFR in all cell lines decreased during lapatinib treatment in anchorage‑dependent culture. Furthermore, the phosphorylation levels of ErbB2, ErbB3 and Akt and the protein levels of cyclin D1 were decreased by lapatinib treatment of HSC3, HSC4 and Ca9-22 cells. ErbB3 was not expressed and cyclin D1 protein levels were not altered by lapatinib treatment in KB, DU145 and SAS cells. The phosphorylation of ErbB2 and AKT was not affected by lapatinib in SAS cells and was not detected in KB and DU145 cells. Lapatinib-resistant cell lines exhibited sphere-forming ability, and SAS cells developed sensitivity to lapatinib during sphere formation. The phosphorylation levels of ErbB2 and AKT and protein levels of cyclin D2 increased during sphere formation of SAS cells and decreased with lapatinib treatment. In addition, sphere formation of SAS cells was inhibited by the AKT inhibitor MK2206. AKT phosphorylation and cyclin D2 levels in SAS spheres were decreased by MK2206 treatment. SAS cells expressed E-cadherin, but not vimentin and KB cells expressed vimentin, but not E-cadherin. DU145 cells expressed vimentin and E-cadherin. These results suggested that phosphorylation of EGFR and ErbB2 by cell detachment from the substratum induces the AKT pathway/cyclin D2-dependent sphere growth in SAS epithelial cancer stem-like cells, thereby rendering SAS spheres sensitive to lapatinib treatment.
Characterization of a CT unit for the detection of low contrast structures
NASA Astrophysics Data System (ADS)
Viry, Anais; Racine, Damien; Ba, Alexandre; Becce, Fabio; Bochud, François O.; Verdun, Francis R.
2017-03-01
Major technological advances in CT enable the acquisition of high quality images while minimizing patient exposure. The goal of this study was to objectively compare two generations of iterative reconstruction (IR) algorithms for the detection of low contrast structures. An abdominal phantom (QRM, Germany), containing 8, 6 and 5mm-diameter spheres (with a nominal contrast of 20HU) was scanned using our standard clinical noise index settings on a GE CT: "Discovery 750 HD". Two additional rings (2.5 and 5 cm) were also added to the phantom. Images were reconstructed using FBP, ASIR-50%, and VEO (full statistical Model Based Iterative Reconstruction, MBIR). The reconstructed slice thickness was 2.5 mm except 0.625 mm for VEO reconstructions. NPS was calculated to highlight the potential noise reduction of each IR algorithm. To assess LCD (low Contrast Detectability), a Channelized Hotelling Observer (CHO) with 10 DDoG channels was used with the area under the curve (AUC) as a figure of merit. Spheres contrast was also measured. ASIR-50% allowed a noise reduction by a factor two when compared to FBP without an improvement of the LCD. VEO allowed an additional noise reduction with a thinner slice thickness compared to ASIR-50% but with a major improvement of the LCD especially for the large-sized phantom and small lesions. Contrast decreased up to 10% with the phantom size increase for FBP and ASIR-50% and remained constant with VEO. VEO is particularly interesting for LCD when dealing with large patients and small lesion sizes and when the detection task is difficult.
Adjustable link for kinematic mounting systems
Hale, Layton C.
1997-01-01
An adjustable link for kinematic mounting systems. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two.
Adjustable link for kinematic mounting systems
Hale, L.C.
1997-07-01
An adjustable link for kinematic mounting systems is disclosed. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two. 3 figs.
Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.
Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong
2015-09-01
Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.
Sparse Image Reconstruction on the Sphere: Analysis and Synthesis.
Wallis, Christopher G R; Wiaux, Yves; McEwen, Jason D
2017-11-01
We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l 1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.
Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.
Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen
2016-09-09
In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.
NASA Technical Reports Server (NTRS)
Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia
2005-01-01
HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.
NASA Astrophysics Data System (ADS)
Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.
2018-04-01
Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).
Stokes versus Basset: comparison of forces governing motion of small bodies with high acceleration
NASA Astrophysics Data System (ADS)
Krafcik, A.; Babinec, P.; Frollo, I.
2018-05-01
In this paper, the importance of the forces governing the motion of a millimetre-sized sphere in a viscous fluid has been examined. As has been shown previously, for spheres moving with a high initial acceleration, the Basset history force should be used, as well as the commonly used Stokes force. This paper introduces the concept of history forces, which are almost unknown to students despite their interesting mathematical structure and physical meaning, and shows the implementation of simple and efficient numerical methods as a MATLAB code to simulate the motion of a falling sphere. An important application of this code could be, for example, the simulation of microfluidic systems, where the external forces are very large and the relevant timescale is in the order of milliseconds to seconds, and therefore the Basset history force cannot be neglected.
Creatine supports propagation and promotes neuronal differentiation of inner ear progenitor cells.
Di Santo, Stefano; Mina, Amir; Ducray, Angélique; Widmer, Hans R; Senn, Pascal
2014-05-07
Long-term propagation of inner ear-derived progenitor/stem cells beyond the third generation and differentiation into inner ear cell types has been shown to be feasible, but challenging. We investigated whether the known neuroprotective guanidine compound creatine (Cr) promotes propagation of inner ear progenitor/stem cells as mitogen-expanded neurosphere cultures judged from the formation of spheres over passages. In addition, we studied whether Cr alone or in combination with brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation of inner ear progenitors. For this purpose, early postnatal rat spiral ganglia, utricle, and organ of Corti-derived progenitors were grown as floating spheres in the absence (controls) or presence of Cr (5 mM) from passage 3 onward. Similarly, dissociated sphere-derived cultures were differentiated for 14 days in the presence or absence of Cr (5 mM) and spiral ganglia sphere-derived cultures in a combination of Cr with the neurotrophin BDNF (50 ng/ml). We found that the cumulative total number of spheres over all passages was significantly higher after Cr supplementation as compared with controls in all the three inner ear cultures. In contrast, sphere sizes were not affected by the administration of Cr. Administration of Cr during differentiation of spiral ganglia cells resulted in a significantly higher density of β-III-tubulin-positive cells compared with controls, whereas densities of myosin VIIa-positive cells in cultures of utricle and organ of Corti were not affected by the treatment. Importantly, a combination of Cr with the neurotrophin BDNF resulted in further significantly increased densities of β-III-tubulin-positive cells in cultures of spiral ganglia cells as compared with single treatments. In sum, Cr promoted continuing propagation of rat inner ear-derived progenitor cells and supported specifically in combination with BDNF the differentiation of neuronal cell types from spiral ganglion-derived spheres.
Winterhoff, Boris J N; Arlt, Alexander; Duttmann, Angelika; Ungefroren, Hendrik; Schäfer, Heiner; Kalthoff, Holger; Kruse, Marie-Luise
2012-03-01
The present study investigated the expression and localisation of FAP-1 (Fas associated phosphatase-1) and CD95 in a 3D differentiation model in comparison to 2D monolayers of the pancreatic adenocarcinoma cell line A818-6. Under non-adherent growth conditions, A818-6 cells differentiate into 3D highly organised polarised epithelial hollow spheres, resembling duct-like structures. A818-6 cells showed a differentiation-dependent FAP-1 localisation. Cells grown as 2D monolayers revealed FAP-1 staining in a juxtanuclear cisternal position, as well as localisation in the nucleus. After differentiation into hollow spheres, FAP-1 was relocated towards the actin cytoskeleton beneath the outer plasma membrane of polarised cells and no further nuclear localisation was observed. CD95 surface staining was found only in a subset of A818-6 monolayer cells, while differentiated hollow spheres appeared to express CD95 in all cells of a given sphere. We rarely observed co-localisation of CD95 and FAP-1 in A818-6 monolayer cells, but strong co-localisation beneath the outer plasma membrane in polarised cells. Analysis of surface expression by flow cytometry revealed that only a subset (36%) of monolayer cells showed CD95 surface expression, and after induction of hollow spheres, CD95 presentation at the outer plasma membrane was reduced to 13% of hollow spheres. Induction of apoptosis by stimulation with agonistic anti-CD95 antibodies, resulted in increased caspase activity in both, monolayer cells and hollow spheres. Knock down of FAP-1 mRNA in A818-6 monolayer cells did not alter resposiveness to CD95 agonistic antibodies. These data suggested that CD95 signal transduction was not affected by FAP-1 expression in A818-6 monolayer cells. In differentiated 3D hollow spheres, we found a polarisation-induced co-localisation of CD95 and FAP-1. A tight control of receptor surface representation and signalling induced apoptosis ensures controlled removal of individual cells instead of a "snowball effect" of apoptotic events. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2015-12-01
Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure that compare well with more time-consuming classical MD calculations. This approach also sheds light on the universality of the increasing Grüneisen parameter trend for liquids (opposite that of solids), which directly reflects their progressive evolution toward more compact solid-like structures upon compression.
NASA Astrophysics Data System (ADS)
Ma, Jianqi; Guo, Xiaohua; Ge, Hongguang; Tian, Guanghui; Zhang, Qiang
2018-03-01
Ag-decorated SiO2@TiO2 microspheres (SiO2@TiO2-Ag) with ideal core-shell structure and enhanced photocatalytic activity were successfully fabricated by combining both coating anatase TiO2 on the surface of SiO2 spheres and subsequent depositing face-centered cubic Ag nanoparticles (NPs) on the coated TiO2 surface via novel sol-gel method and Ag-seed-mediated photodeposition (PD) route, respectively. The morphology, structure, composition and optical properties of the resulting composites were characterized in detail. The results reveal that the monodisperse SiO2 spheres of ∼260 nm were covered uniformly and perfectly by the TiO2 nanoparticle coating layer with the thickness of ca. 55 nm by the novel sol-gel method. Further, homogeneously and highly dispersed Ag NPs with an average size of 8 ± 1.5 nm were strongly anchored onto the TiO2 surface in SiO2@TiO2 core-shell spheres by the modified PD process (Ag-seed-mediated PD route), whereas polydispersed Ag aggregates and detached Ag NPs were irregularly deposited over the TiO2 surface in previous works, which is the inherent problem and has not been effectively solved for depositing noble metal NPs such as Au, Ag, Pt, Pd on TiO2 surface by conventional PD method. The formation mechanism of small and uniformly dispersed Ag NPs with narrow size distribution via the modified PD method is tentatively explained by both nucleation kinetics and growth kinetics. The key reason is that the pre-deposited seeds firmly tethered on SiO2@TiO2 spheres served as nucleation sites and anchoring points for the further nucleation and subsequent growth of Ag via photoreduction of Ag+.
Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang
2012-11-01
It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
A ocean bottom vector magnetometer
NASA Astrophysics Data System (ADS)
Wang, Xiaomei; Teng, Yuntian; Wang, Chen; Ma, Jiemei
2017-04-01
The new development instrument with a compact spherical coil system and Overhauser magnetometer for measuring the total strength of the magnetic field and the vectors of strength, Delta inclination - Delta declination, meanwhile we also use a triaxial fluxgate instrument of the traditional instrument for geomagnetic vector filed measurement. The advantages of this method are be calibrated by each other and get good performances with automatic operation, good stability and high resolution. Firstly, a brief description of the instrument measurement principles and the key technologies are given. The instrument used a spherical coil system with 34 coils to product the homogeneous volume inside the coils which is large enough to accommodate the sensor of Overhauser total field sensor; the rest of the footlocker-sized ocean-bottom vector magnetometer consists of equipment to run the sensors and records its data (batteries and a data logger), weight to sink it to the sea floor, a remote-controlled acoustic release and flotation to bring the instrument back to the surface. Finally, the accuracy of the instrument was tested in the Geomagnetic station, and the measurement accuracies of total strength and components were better than 0.2nT and 1nT respectively. The figure 1 shows the development instrument structure. it includes six thick glass spheres which protect the sensor, data logger and batteries from the pressures of the deep sea, meanwhile they also provide recycling positive buoyancy; To cushion the glass, the spheres then go inside yellow plastic "hardhats". The triaxial fluxgate is inside No.1 glass spheres, data logger and batteries are inside No.2 glass spheres, the new vector sensor is inside No.3 glass spheres, acoustic communication unit is inside No.4 glass spheres, No.5 and No.6 glass spheres are empty which only provide recycling positive buoyancy. The figure 2 shows the development instrument Physical photo.
Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair
In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.« less
Multipurpose Fiber Injected-micro-spherical LIDAR System
NASA Technical Reports Server (NTRS)
Abdelayem, Hossin; Jamison, Tracee
2005-01-01
A technological revolution is occurring in the field of fiber lasers. Over the past two years, the level of power has increased from approx. 100 watts to nearly 1 kilowatt. We are developing a novel fiber laser system, which is a satellite-based LIDAR transmitter of multi-lines. The system is made of a hollow fiber filled with micro-spheres doped with lasing materials. Each sphere has its inherent optical cavity, which makes the system a cavity free and in the same time, emits multi-laser lines for simultaneous multi-task operations. The system is also rugged, compact, lightweight, and durable. Our earlier studies on micro-spheres doped with different laser dyes demonstrated the emission of extremely fine laser lines of less than 3 A line-width, which are of interest for spectroscopic applications, sensing, imaging, and optical communications. Individual dye-doped micro-spheres demonstrated a lasing resonance peaks phenomenon in their fluorescence spectra of linear and nonlinear features that do not exist in the bulk dye solutions. Each individual micro-sphere acts as a laser system with inherent cavity, where the fluorescence line suffers multiple internal reflections within the micro-sphere and gains enough energy to become a laser line. Such resonance peaks are dependent on the sphere's morphology, size, shape, and its refractive index. These resonance peaks are named structural resonance, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomenon of morphology dependent resonance (MDR), which has already been described and predicted precisely by electromagnetic theory and Lorentz-Mie theory since 1908. The resonance peaks become more obvious when the particle size approaches and exceeds the wavelength of the laser used and the relative index of the particle is greater than that of the surrounding medium. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira
2013-04-01
The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.
Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin
2017-09-06
TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.
Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.
Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung
2018-06-27
A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.
Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo
2014-07-15
Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri
2005-11-01
An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.
Niu, Xiaoyu; Zhao, Tieying; Yuan, Fulong; Zhu, Yujun
2015-01-01
The hollow CuO@SiO2 spheres with a mean diameter of 240 nm and a thin shell layer of about 30 nm in thickness was synthesized using an inorganic SiO2 shell coating on the surface of Cu@C composite that was prepared by a two-step hydrothermal method. The obtained hollow CuO@SiO2 spheres were characterized by ICP-AES, nitrogen adsorption-desorption, SEM, TEM, XRD, H2-TPR, CO-TPR, CO-TPD and NO-TPD. The results revealed that the hollow CuO@SiO2 spheres consist of CuO uniformly inserted into SiO2 layer. The CuO@SiO2 sample exhibits particular catalytic activities for CO oxidation and NO + CO reactions compared with CuO supported on SiO2 (CuO/SiO2). The higher catalytic activity is attributed to the special hollow shell structure that possesses much more highly dispersed CuO nanocluster that can be easy toward the CO and NO adsorption and the oxidation of CO on its surface. PMID:25777579
Silicon hollow sphere anode with enhanced cycling stability by a template-free method
NASA Astrophysics Data System (ADS)
Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao
2017-04-01
Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.
Inverse opal photonic crystals with photonic band gaps in the visible and near-infrared
NASA Astrophysics Data System (ADS)
Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Parikh, Kunjal; Glosser, R.; Landon, Preston B.
2005-08-01
Colloidal silica spheres with 200nm, 250nm, and 290nm diameters were self-assembled with single crystal crystallites 4-5mm wide and 10-15mm long. Larger spheres with diameters between 1000-2300nm were self-assembled with single crystal crystallites up to 1.5mm wide and 2mm long. The silica opals self-assembled vertically along the [100] direction of the face centered cubic lattice resulting in self-templated opals. Inverse opal photonic crystals with a partial band gap possessing a maximum in the near infrared at 3.8μm were constructed from opal templates composed of 2300nm diameter spheres with chalcogenide Ge33As12Se55 (AMTIR-1), a transparent glass in the near infrared with high refractive index. Inverse gold and gold/ polypropylene composite photonic crystals were fabricated from synthetic opal templates composed of 200-290nm silica spheres. The reflectance spectra and electrical conductance of the resulting structures is presented. Gold was infiltrated into opal templates as gold chloride and heat converted to metallic gold. Opals partially infiltrated with gold were co-infiltrated with polypropylene plastic for mechanical support prior to removal of the silica template with hydrofluoric acid.
Simulation and study of stratified flows around finite bodies
NASA Astrophysics Data System (ADS)
Gushchin, V. A.; Matyushin, P. V.
2016-06-01
The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.
Bidispersed Sphere Packing on Spherical Surfaces
NASA Astrophysics Data System (ADS)
Atherton, Timothy; Mascioli, Andrew; Burke, Christopher
Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.
Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiemstra, T.; Riemsdijk, W.H. van
1999-02-01
An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less
NASA Astrophysics Data System (ADS)
Plakhotnik, Taras; Reichardt, Jens
2018-03-01
A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis
2014-08-19
Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris–Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris–Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ~7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ~19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us tomore » investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.« less
Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters
NASA Astrophysics Data System (ADS)
Khlebtsov, Boris; Zharov, Vladimir; Melnikov, Andrei; Tuchin, Valery; Khlebtsov, Nikolai
2006-10-01
Recently, several groups (Anderson, Halas, Zharov, and their co-workers, 2003; El-Sayed and co-workers, 2006) demonstrated, through pioneering results, the great potential of photothermal (PT) therapy for the selective treatment of cancer cells, bacteria, viruses, and DNA targeted with gold nanospheres, nanoshells, nanorods, and nanosphere clusters. However, the current understanding of the relationship between the nanoparticle/cluster parameters (size, shape, particle/cluster structure, etc) and the efficiency of PT therapy is limited. Here, we report theoretical simulations aimed at finding the optimal single-particle and cluster structures to achieve its maximal absorption, which is crucial for PT therapeutic effects. To characterize the optical amplification in laser-induced thermal effects, we introduce relevant parameters such as the ratio of the absorption cross section to the gold mass of a single-particle structure and absorption amplification, defined as the ratio of cluster absorption to the total absorption of non-interacting particles. We consider the absorption efficiency of single nanoparticles (gold spheres, rods, and silica/gold nanoshells), linear chains, 2D lattice arrays, 3D random volume clusters, and the random aggregated N-particle ensembles on the outer surface of a larger dielectric sphere, which mimic aggregation of nanosphere bioconjugates on or within cancer cells. The cluster particles are bare or biopolymer-coated gold nanospheres. The light absorption of cluster structures is studied by using the generalized multiparticle Mie solution and the T-matrix method. The gold nanoshells with (silica core diameter)/(gold shell thickness) parameters of (50-100)/(3-8) nm and nanorods with minor/major sizes of (15-20)/(50-70) nm are shown to be more efficient PT labels and sensitizers than the equivolume solid single gold spheres. In the case of nanosphere clusters, the interparticle separations and the short linear-chain fragments are the main structural parameters determining the absorption efficiency and its spectral shifting to the red. Although we have not found a noticeable dependence of absorption amplification on the cluster sphere size, 20-40 nm particles are found to be most effective, in accordance with our experimental observations. The long-wavelength absorption efficiency of random clusters increases with the cluster particle number N at small N and reveals a saturation behaviour at N>20.
Factorization approach to superintegrable systems: Formalism and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Á., E-mail: angelb@ubu.es; Herranz, F. J., E-mail: fjherranz@ubu.es; Kuru, Ş., E-mail: kuru@science.ankara.edu.tr
2017-03-15
The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (super) integrable anisotropic oscillators on the sphere are constructed. The Tremblay–Turbiner–Winternitz system on the Euclidean plane is also studied from this viewpoint.
NASA Astrophysics Data System (ADS)
Yan, Shaojiu; Wang, Lina; Wang, Tihong; Zhang, Liqiang; Li, Yongfeng; Dai, Shenglong
2016-03-01
We report a simple procedure to fabricate graphene oxide/carbon nanotube hybrids coated with cauliflower-like Fe3O4 sphere. Characterizations have been carried out to investigate the morphology, crystalline structure of the composites by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Fe3O4 particles have the morphologies of multi-lacuna; moreover, some spheres are hollow. As a kind of potential microwave absorption material, the composites are lightweight and exhibit excellent microwave absorbing ability in the range of 2-16 GHz.
Templated Sphere Phase Liquid Crystals for Tunable Random Lasing
Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang
2017-01-01
A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283
Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams
NASA Astrophysics Data System (ADS)
Dennis, M. R.; Alonso, M. A.
2017-02-01
The connection between Poincaré spheres for polarization and Gaussian beams is explored, focusing on the interpretation of elliptic polarization in terms of the isotropic two-dimensional harmonic oscillator in Hamiltonian mechanics, its canonical quantization and semiclassical interpretation. This leads to the interpretation of structured Gaussian modes, the Hermite-Gaussian, Laguerre-Gaussian and generalized Hermite-Laguerre-Gaussian modes as eigenfunctions of operators corresponding to the classical constants of motion of the two-dimensional oscillator, which acquire an extra significance as families of classical ellipses upon semiclassical quantization. This article is part of the themed issue 'Optical orbital angular momentum'.
NASA Technical Reports Server (NTRS)
Morris, R. E.
1973-01-01
An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.
The lanthanide contraction beyond coordination chemistry
Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.; ...
2016-04-06
Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.
Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, P.P. Gonis, A.; de Fontaine, D.
1991-12-03
We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.
The lanthanide contraction beyond coordination chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.
Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.
Internal structure of shock waves in disparate mass mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.
21 CFR 184.1375 - Iron, elemental.
Code of Federal Regulations, 2010 CFR
2010-04-01
... microscope, it appears as an amorphous powder free from particles having a crystalline structure. It is... pentacarbonyl. It occurs as a dark gray powder. When viewed under a microscope, it appears as spheres built up...