Sample records for spherical blast waves

  1. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  2. On the Interaction and Coalescence if Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert J.

    2005-01-01

    The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.

  3. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  4. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  5. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  6. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  7. Reduction of optically observed artillery blast wave trajectories using low dimensionality models

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.

    2011-05-01

    Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.

  8. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  9. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  10. Planar blast scaling with condensed-phase explosives in a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less

  11. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  12. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early partmore » of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.« less

  14. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  15. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less

  16. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  17. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  18. Dynamics and stability of relativistic gamma-ray-bursts blast waves

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Keppens, R.

    2010-09-01

    Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.

  19. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  20. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20,more » with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.« less

  1. The effect of cosmic-ray acceleration on supernova blast wave dynamics

    NASA Astrophysics Data System (ADS)

    Pais, M.; Pfrommer, C.; Ehlert, K.; Pakmor, R.

    2018-05-01

    Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasi-parallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code AREPO for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.

  2. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  3. Initial decay of flow properties of planar, cylindrical and spherical blast waves

    NASA Astrophysics Data System (ADS)

    Sadek, H. S. I.; Gottlieb, J. J.

    1983-10-01

    Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.

  4. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  5. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  6. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  7. Air Blast Calculations

    DTIC Science & Technology

    2013-07-01

    composition C-4 (C4), a polymer-bonded explosive (PBXN-109), and nitromethane (NM). Each charge diameter (CD) is assumed to be 17.46 cm (equivalent to a 10-lb... explosive detonates, the rapid expansion of reaction gases generates a shock wave that propagates into the surrounding medium. The pressure history at a...spherical explosive charge suspended in air. A comparison of the results obtained using CTH are made to ones generated using the Friedlander

  8. Numerical Simulations of Near-Field Blast Effects using Kinetic Plates

    NASA Astrophysics Data System (ADS)

    Neuscamman, Stephanie; Manner, Virginia; Brown, Geoffrey; Glascoe, Lee

    2013-06-01

    Numerical simulations using two hydrocodes were compared to near-field measurements of blast impulse associated with ideal and non-ideal explosives to gain insight into testing results and predict untested configurations. The recently developed kinetic plate test was designed to measure blast impulse in the near-field by firing spherical charges in close range from steel plates and probing plate acceleration using laser velocimetry. Plate velocities for ideal, non-ideal and aluminized explosives tests were modeled using a three dimensional hydrocode. The effects of inert additives in the explosive formulation were modeled using a 1-D hydrocode with multiphase flow capability using Lagrangian particles. The relative effect of particle impact on the plate compared to the blast wave impulse is determined and modeling is compared to free field pressure results. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is abstract LLNL-ABS-622152.

  9. COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, Jeremy J.; Kashyap, Vinay; Delgado, Laura

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10{sup 7} K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s{sup 1}, an FWHM of 1200 ± 30 km s{sup 1}, and an average net blueshift of 165more » ± 10 km s{sup 1}. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 10{sup 43} erg and confirms an ejected mass of approximately 10{sup 7} M {sub ⊙}. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.« less

  10. Blast waves and how they interact with structures.

    PubMed

    Cullis, I G

    2001-02-01

    The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.

  11. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  12. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    PubMed

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  14. Gasdynamics of explosions today.

    NASA Technical Reports Server (NTRS)

    Brode, H. L.; Glass, I. I.; Oppenheim, A. K.

    1971-01-01

    A brief review is given of blast and detonation wave phenomena and some of their uses in war and peace. It is concluded that great strides have been made over the last three decades toward the physical understanding, the analytical-numerical solution, and the measurement of dynamic and thermodynamic quantities, also taking into consideration severe environments and extremely short durations. Questions of internal ballistics are discussed together with hypervelocity launchers and shock tubes, collapsing cylindrical drivers, spherical implosions, explosive weapons, dynamic response, and equation of state data.

  15. On the Exit Boundary Condition for One-Dimensional Calculations of Pulsed Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    2002-01-01

    In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D > 10, and moderate impact for L/D = 4.

  16. Relationship between orientation to a blast and pressure wave propagation inside the rat brain.

    PubMed

    Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M

    2011-01-30

    Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. Published by Elsevier B.V.

  17. 75 FR 4793 - Availability for Non-Exclusive, Exclusive, or Partially Exclusive Licensing of U.S. Provisional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Partially Exclusive Licensing of U.S. Provisional Patent Application Concerning Blast Wave Sensor AGENCY... ``Blast Wave Sensor,'' filed January 4, 2010. The United States Government, as represented by the... wave sensors and their use to detect blast induced pressure changes, and, in particular, a blast wave...

  18. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy overline{ω 2} and dilatation overline{Δ 2}.

  19. Blast-wave density measurements

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.

    Applications of a densitometer to obtain time-resolved data on the total density in blast-wave flows are described. A beta-source (promethium-147) is separated by a gap from a scintillator and a photomultiplier tube (PMT). Attenuation of the radiation beam by the passing blast wave is due to the total density in the gap volume during the wave passage. Signal conditioning and filtering methods permit the system to output linearized data. Results are provided from use of the system to monitor blast waves emitted by detonation of a 10.7 m diameter fiberglass sphere containing 609 tons of ammonium nitrate/fuel oil at a 50.6 m height. Blast wave density data are provided for peak overpressure levels of 245, 172 and 70 kPa and distances of 183, 201 and 314 m from ground zero. Data resolution was of high enough quality to encourage efforts to discriminate dust and gasdynamic phenomena within passing blast waves.

  20. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  1. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2018-07-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  2. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2017-11-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  3. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  4. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-05-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  5. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-02-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  6. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    NASA Astrophysics Data System (ADS)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  7. Analysis of the X-ray emission of nine Swift afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Mészáros, P.; Gehrels, N.; Burrows, D.; Nousek, J.

    2006-03-01

    The X-ray light curves of nine Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408 and 050505) display a complex behaviour: a steep t-3.0+/-0.3 decay until ~400 s, followed by a significantly slower t-0.65+/-0.20 fall-off, which at 0.2-2 day after the burst evolves into a t-1.7+/-0.5 decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t1.0+/-0.5, is required for five afterglows and could be at work in the other four as well. For some afterglows, there may be other mechanisms that can explain the t < 400 s fast falling-off X-ray light curve (e.g. the large-angle gamma-ray burst emission), the 400 s to 5 h slow decay (e.g. a structured outflow), or the steepening at 0.2-2 day (e.g. a jet-break, a collimated outflow transiting from a wind with a r-3 radial density profile to a homogeneous or outward-increasing density region). Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with a universal value.

  8. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  9. On the propagation and multiple reflections of a blast wave travelling through a dusty gas in a closed box

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello; Drikakis, Dimitris; Kokkinakis, Ioannis

    2017-03-01

    This paper concerns the propagation of shock waves in an enclosure filled with dusty gas. The main motivation for this problem is to probe the effect on such dynamics of solid particles dispersed in the fluid medium. This subject, which has attracted so much attention over recent years given its important implications in the study of the structural stability of systems exposed to high-energy internal detonations, is approached here in the framework of a hybrid numerical two-way coupled Eulerian-Lagrangian methodology. In particular, insights are sought by considering a relatively simple archetypal setting corresponding to a shock wave originating from a small spherical region initialized on the basis of available analytic solutions. The response of the system is explored numerically with respect to several parameters, including the blast intensity (via the related value of the initial shock Mach number), the solid mass fraction (mass load), and the particle size (Stokes number). Results are presented in terms of pressure-load diagrams. Beyond practical applications, it is shown that a kaleidoscope of fascinating patterns is produced by the "triadic" relationships among multiple shock reflection events and particle-fluid and particle-wall interaction dynamics. These would be of great interest to researchers and scientists interested in fundamental problems relating to the general theory of pattern formation in complex nonlinear multiphase systems.

  10. Instability of Taylor-Sedov blast waves propagating through a uniform gas

    NASA Astrophysics Data System (ADS)

    Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.; Crawford, J.; Ripin, B. H.

    1991-05-01

    An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.

  11. Novel Approach to Conducting Blast Load Analyses Using Abaqus/Explicit-CEL

    DTIC Science & Technology

    2010-05-01

    versus uncased, effects of afterburning , angle of incidence with respect to incoming shock, nearby geometry/barriers interacting with the shock...2. Blast parameters as a function of scaled distance – from TNT air blast data (DOE/TIC-11268, 1981). Due to inertial effects, the volume of air...positive phase duration) can be determined for a particular scaled distance. Figure 2 was generated from TNT air blast data for bare, spherical charges

  12. CFD Applications in Support of the Space Shuttle Risk Assessment

    NASA Technical Reports Server (NTRS)

    Baum, Joseph D.; Mestreau, Eric; Luo, Hong; Sharov, Dmitri; Fragola, Joseph; Loehner, Rainald; Cook, Steve (Technical Monitor)

    2000-01-01

    The paper describes a numerical study of a potential accident scenario of the space shuttle, operating at the same flight conditions as flight 51L, the Challenger accident. The interest in performing this simulation is derived by evidence that indicates that the event itself did not exert large enough blast loading on the shuttle to break it apart. Rather, the quasi-steady aerodynamic loading on the damaged, unbalance vehicle caused the break-up. Despite the enormous explosive potential of the shuttle total fuel load (both liquid and solid), the post accident explosives working group estimated the maximum energy involvement to be equivalent to about five hundreds of pounds of TNT. This understanding motivated the simulation described here. To err on the conservative side, we modeled the event as an explosion, and used the maximum energy estimate. We modeled the transient detonation of a 500 lbs spherical charge of TNT, placed at the main engine, and the resulting blast wave propagation about the complete stack. Tracking of peak pressures and impulses at hundreds of locations on the vehicle surface indicate that the blast load was insufficient to break the vehicle, hence demonstrating likely crew survivability through such an event.

  13. Dynamic response analysis of surrounding rock under the continuous blasting seismic wave

    NASA Astrophysics Data System (ADS)

    Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.

    2017-10-01

    The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.

  14. Characterising the acceleration phase of blast wave formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J.; Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relationmore » for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.« less

  15. Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    NASA Astrophysics Data System (ADS)

    Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos

    2017-12-01

    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.

  16. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  17. Note: A table-top blast driven shock tube.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  18. Cinematographic investigations of the explosively driven dispersion and ignition of solid particles

    NASA Astrophysics Data System (ADS)

    Grégoire, Y.; Sturtzer, M.-O.; Khasainov, B. A.; Veyssière, B.

    2014-07-01

    We present results of an experimental study of blast wave propagation and particle dispersion induced by a free-field detonation of spherical charges made of a 125 g C-4 explosive surrounded by inert or reactive particles. Visualization of the flow was performed with a high-frame-rate video camera. Background oriented Schlieren (BOS) methods were adapted to process the images that allowed the detection of the shock waves. BOS analysis also revealed that particles form agglomerates, which may generate precursor perturbations on the recorded pressure signals. While inert glass particles notably delay the shock, the combustion of aluminium particles can accelerate it, especially if they are small atomized or flaked particles. When a mixture of inert glass particles with reactive particles is dispersed, the agglomerates are formed by coalescence of both materials.

  19. Dynamics and Afterglow Light Curves of Gamma-Ray Burst Blast Waves Encountering a Density Bump or Void

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  20. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Ford, Corey C.

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  1. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  2. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  3. On the neutralization of bacterial spores in post-detonation flows

    NASA Astrophysics Data System (ADS)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  4. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  5. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    PubMed

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  6. Reactive Blast Waves from Composite Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-10-16

    Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuingmore » Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.« less

  7. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  8. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  9. Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves

    NASA Astrophysics Data System (ADS)

    Howard, T. A.; Pizzo, V. J.

    2016-06-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  10. Study of Perturbations on High Mach Number Blast Waves in Various Gasses

    NASA Astrophysics Data System (ADS)

    Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.

    2006-10-01

    We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).

  11. Computational modeling of human head under blast in confined and open spaces: primary blast injury.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G

    2014-01-01

    In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Study of blasting seismic effects of underground powerhouse of pumped storage project in granite condition

    NASA Astrophysics Data System (ADS)

    Wan, Sheng; Li, Hui

    2018-03-01

    Though the test of blasting vibration, the blasting seismic wave propagation laws in southern granite pumped storage power project are studied. Attenuation coefficient of seismic wave and factors coefficient are acquired by the method of least squares regression analysis according to Sadaovsky empirical formula, and the empirical formula of seismic wave is obtained. This paper mainly discusses on the test of blasting vibration and the procedure of calculation. Our practice might as well serve as a reference for similar projects to come.

  13. Blasting for abandoned-mine land reclamation (closure of individual subsidence features and erratic, undocumented underground coal-mine workings). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, J.L.; Thompson, J.

    1991-01-01

    The study has examined the feasibility of blasting for mitigating various abandoned mine land features on AML sites. The investigation included extensive field trial blasts at sites in North Dakota and Montana. A blasting technique was used that was based on spherical cratering concepts. At the Beulah, North Dakota site thirteen individual vertical openings (sinkholes) were blasted with the intent to fill the voids. The blasts were designed to displace material laterally into the void. Good success was had in filling the sinkholes. At the White site in Montana erratic underground rooms with no available documentation were collapsed. An aditmore » leading into the mine was also blasted. Both individual room blasting and area pattern blasting were studied. A total of eight blasts were fired on the one acre area. Exploration requirements and costs were found to be extensive.« less

  14. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431

  15. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.

  16. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@pku.edu.cn, E-mail: zhang@physics.unlv.edu

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blastmore » waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.« less

  17. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappe, A.; Rho, J.; Boersma, C.

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edgemore » of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.« less

  18. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. A.; Pizzo, V. J., E-mail: howard@boulder.swri.edu

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena.more » In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.« less

  19. Viscoelastic Materials Study for the Mitigation of Blast-Related Brain Injury

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Mock, Willis, Jr.

    2011-06-01

    Recent preliminary research into the causes of blast-related brain injury indicates that exposure to blast pressures, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficient to protect the warfighter from this danger and the effects are debilitating, costly, and long-lasting. Commercially available viscoelastic materials, designed to dampen vibration caused by shock waves, might be useful as helmet liners to dampen blast waves. The objective of this research is to develop an experimental technique to test these commercially available materials when subject to blast waves and evaluate their blast mitigating behavior. A 40-mm-bore gas gun is being used as a shock tube to generate blast waves (ranging from 1 to 500 psi) in a test fixture at the gun muzzle. A fast opening valve is used to release nitrogen gas from the breech to impact instrumented targets. The targets consist of aluminum/ viscoelastic polymer/ aluminum materials. Blast attenuation is determined through the measurement of pressure and accelerometer data in front of and behind the target. The experimental technique, calibration and checkout procedures, and results will be presented.

  20. Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts

    NASA Astrophysics Data System (ADS)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-01-01

    Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can be applied to other mines where faults are found in the vicinity of stopes.

  1. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  2. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  3. Off-axis Gamma-ray Burst Afterglow Modeling Based on a Two-dimensional Axisymmetric Hydrodynamics Simulation

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew

    2010-10-01

    Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.

  4. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury.

    PubMed

    Nyein, Michelle K; Jason, Amanda M; Yu, Li; Pita, Claudio M; Joannopoulos, John D; Moore, David F; Radovitzky, Raul A

    2010-11-30

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain's response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid-solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion.

  5. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury

    PubMed Central

    Nyein, Michelle K.; Jason, Amanda M.; Yu, Li; Pita, Claudio M.; Joannopoulos, John D.; Moore, David F.; Radovitzky, Raul A.

    2010-01-01

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid–solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion. PMID:21098257

  6. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  7. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  8. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics. Final report, 1987-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opalka, K.O.

    1989-08-01

    The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.

  9. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  10. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    NASA Astrophysics Data System (ADS)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  11. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  12. Investigation of blast-induced traumatic brain injury.

    PubMed

    Taylor, Paul A; Ludwigsen, John S; Ford, Corey C

    2014-01-01

    Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.

  13. Investigation of blast-induced traumatic brain injury

    PubMed Central

    Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

  14. Modelling and Testing of Blast Effect On the Structures

    NASA Astrophysics Data System (ADS)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  15. Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma.

    PubMed

    Mammadova, Najiba; Ghaisas, Shivani; Zenitsky, Gary; Sakaguchi, Donald S; Kanthasamy, Anumantha G; Greenlee, Justin J; West Greenlee, M Heather

    2017-07-01

    Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. We assessed retinal tissues using immunofluorescence for glial fibrillary acidic protein, microglia-specific proteins Iba1 and CD68, and phosphorylated tau (AT-270 pThr181 and AT-180 pThr231). Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.

    PubMed

    Taylor, Paul A; Ford, Corey C

    2009-06-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  17. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Corey C.; Taylor, Paul Allen

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less

  18. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, D.S.; Knudsen, S.D.

    The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in themore » capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.« less

  20. Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.

    PubMed

    Monloubou, Martin; Bruning, Myrthe A; Saint-Jalmes, Arnaud; Dollet, Benjamin; Cantat, Isabelle

    2016-09-28

    Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The understanding of the underlying dissipation mechanisms however still remains an active matter of debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based on thermal dissipation in the gas.

  1. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.; Quevedo, H. J.; Feldman, S.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less

  2. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  3. Simulation of detonation cell kinematics using two-dimensional reactive blast waves

    NASA Astrophysics Data System (ADS)

    Thomas, G. O.; Edwards, D. H.

    1983-10-01

    A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.

  4. The soft X-ray background as a supernova blast wave viewed from inside - Solar abundance models

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.

    1986-01-01

    A model of the soft X-ray background is presented in which the sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approximately 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 to the 6 power K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  5. Numerical modeling of an experimental shock tube for traumatic brain injury studies

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Regele, Jonathan D.

    2015-11-01

    Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.

  6. Characteristics of laser-induced shock wave injury to the inner ear of rats

    NASA Astrophysics Data System (ADS)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  7. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  8. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  9. Using Building Seismic Strong-Motion Data to Quantify Urban Blast Pressure Fields

    NASA Astrophysics Data System (ADS)

    Massari, A.; Kohler, M. D.; Heaton, T. H.; Kanamori, H.; Hauksson, E.; Clayton, R. W.; Guy, R.; Bunn, J.; Chandy, M.

    2015-12-01

    The use of building vibrations to measure blast wave propagation in a city is examined in this case study. The Exxon Mobil Corp. oil refinery in Torrance, California experienced an explosion on February 18, 2015 causing ground shaking equivalent to a magnitude 1.9 earthquake. The impulse response for the source was computed from Southern California Seismic Network data for a multi-orthogonal force system with a value of 2×105 kN vertically downward. The pressure wave excited by the explosion traveled through the city of Los Angeles, and was detected by a dense accelerometer array in a 52-story building also in downtown Los Angeles 22.8 km from the explosion. The array is part of the Community Seismic Network (CSN) and consists of three-component class-C MEMs sensors located on each floor of the building. The detection was verified by the nearly simultaneous arrival times of acceleration pulses on multiple floors of the building, corresponding to an average wave speed near the speed of sound in air. The pressure wave peak magnitude from the air blast was determined using accelerometer data collected on every floor of the building coupled with the elastic response of the structure as a whole. . Making use of high-fidelity finite element modeling of the building validated by previous low-level seismicity and ambient noise data, a procedure is outlined for pressure wave detection and quantification on well instrumented buildings. This case study for a 52 story building, instrumented by the CSN, acts as a proxy for blast wave quantification in dense urban environments. This type of information can be used to understand the flow of blast waves through a cityscape as well as enhance procedures for estimating blast source magnitude. Better understanding of the propagation of pressure waves in urban environments will lead to the development of improved countermeasures in those environments.

  10. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    NASA Astrophysics Data System (ADS)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three zones: the blasting shock zone, the axial extension zone, and the orifice influence zone. The explosion shock zone is the range that is directly impacted by the explosive shock waves. The axial extension zone is the axial crack area with uniform width, which is formed when the blasting fracture in the edge of the explosion shock zone extends along the drillhole wall. The extension of the orifice influence zone is very large because the explosion stress waves reflect at the free face and generate tensile stress waves. In the water pressure blasting of the drillhole, the sealing section should be lengthened to allow the drillhole blasting cracks to extend sufficiently under the long-time effect of the blasting stress field of quasi-hydrostatic pressure.

  11. Investigations of primary blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  12. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  13. Relationship between changes in the cochlear blood flow and disorder of hearing function induced by blast injury in guinea pigs.

    PubMed

    Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang

    2013-01-01

    The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.

  14. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  15. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    NASA Astrophysics Data System (ADS)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The possibility of a correct description of the non-stationary wave flow in the vicinity of the complex of obstacles is demonstrated. The results are compared with the experimental data on the pressure distribution in gauges located on the prism walls. The estimation of shock wave exposure intensity was performed to different objects.

  16. Characterization of Viscoelastic Materials for Low-Magnitude Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Mock, Willis

    2013-06-01

    Recent preliminary research indicates that exposure to low amplitude blast waves, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of this research is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. A 40-mm-bore gas gun is used as a shock tube to generate blast waves (ranging from 5 to 30 psi) in a test fixture mounted at the gun muzzle. A fast opening valve is used to release helium gas from a breech which forms into a blast wave and impacts instrumented targets in the test fixture. Blast attenuation of selected materials is determined through the measurement of pressure and accelerometer data in front of and behind the target. Materials evaluated in this research include 6061-T6 aluminum, polyurea 1000, Styrofoam, and Sorbothane (durometer 50, shore 00). The experimental technique, calibration and checkout procedures, and results will be presented.

  17. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves

    PubMed Central

    Angstman, Nicholas B.; Kiessling, Maren C.; Frank, Hans-Georg; Schmitz, Christoph

    2015-01-01

    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI. PMID:25705183

  18. MCDU-8-A Computer Code for One-Dimensional Blast Wave Problems

    DTIC Science & Technology

    1975-07-01

    medium surrounding the explosion is assuned to be air obeying an ideal gas equation of state with a constant specific heat ratio, y2, of 1.4. The...characteristics Explosive blast Pentolite spheres ■ 20.\\ASSTRACT (Continue on reverie eld* II neceeemry end Identify by block number) he method...INVOLVING THE. SUDDEN RELEASE OF A HIGHLY COMPRESSED AIR SPHERE 11 V. A SAMPLE PROBLEM INVOLVING A BLAST WAVE RESULTING FROM THE DETONATION OF A

  19. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  20. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave

    PubMed Central

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  1. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects

    PubMed Central

    Gupta, Raj K.; Przekwas, Andrzej

    2013-01-01

    Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039

  2. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.

    PubMed

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-08-17

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.

  3. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

  4. On the Origin of a Maximum Peak Pressure on the Target Outside of the Stagnation Point upon Normal Impact of a Blunt Projectile and with Underwater Explosion

    NASA Astrophysics Data System (ADS)

    Gonor, Alexander; Hooton, Irene

    2006-07-01

    Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.

  5. The characterization and evaluation of accidental explosions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Baker, W. E.

    1975-01-01

    Accidental explosions are discussed from a number of viewpoints. First, all accidental explosions, intentional explosions and natural explosions are characterized by type. Second, the nature of the blast wave produced by an ideal (point source or HE) explosion is discussed to form a basis for describing how other explosion processes yield deviations from ideal blast wave behavior. The current status blast damage mechanism evaluation is also discussed. Third, the current status of our understanding of each different category of accidental explosions is discussed in some detail.

  6. Localization of Gunfire from Multiple Shooters (ARO Research Topic 5.2, Information Processing and Fusion; STIR Program)

    DTIC Science & Technology

    2016-03-03

    for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved

  7. [An experimental study of blast injury].

    PubMed

    Wang, Z G

    1989-01-01

    This paper presents some aspects of the authors' experimental research on blast injury in the past two years. The main results are as follows: (1) A new designed 39 meter-long shock tube for biological test has been built in the laboratory. Its maximal overpressure values are 215 kPa (in open condition) and 505 kPa (in closed condition). It may meet the need for inflicting blast injuries with various degree of severity. (2) A study of the effect of simulating gun muzzle blast wave on sheep indicated that in the single explosion, the threshold overpressure values inflicting the injury of internal organs were: Lung-37.27 kPa, G-I tract-41.0 kPa; the upper respiratory tract-negative until 73 kPa, while in the multiple (20 times) explosions, they were 23.7, 23.7 and 41.4 kPa, respectively. (3) Using TEM, SEM and some other special techniques, such as morphometry, freeze-fracture technique, labelled lanthanum nitrate technique, etc, it was demonstrated that in the lung with blast injury there were significant pathological changes in pulmonary capillary endothelium, alveolar epithelium and their intercellular junctions with apparent increase of permeability. (4) It has been shown that parallel superficial stripelike hemorrhage typical for lung blast injury is "Intercostal marking" instead of "Rib marking". (5) A new type of material (foamy nickel) for protection against blast wave is presented. It was proved that the material can effectively weaken or eliminate the effect of blast wave on human body.

  8. Correlative analysis of head kinematics and brain's tissue response: a computational approach toward understanding the mechanisms of blast TBI

    NASA Astrophysics Data System (ADS)

    Sarvghad-Moghaddam, H.; Rezaei, A.; Ziejewski, M.; Karami, G.

    2017-11-01

    Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain's ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid-solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain's dynamic responses and both global linear and rotational accelerations at different blast intensities (R^{2 }≥98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.

  9. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells

    PubMed Central

    Li, Huaidong; Li, Chunsun; Yang, Zhen; Li, Yanqin; She, Danyang; Cao, Lu; Wang, Wenjie; Liu, Changlin; Chen, Liangan

    2017-01-01

    Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis. PMID:28323898

  10. Characterization of viscoelastic materials for low-magnitude blast mitigation

    NASA Astrophysics Data System (ADS)

    Bartyczak, S.; Mock, W.

    2014-05-01

    Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.

  11. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  12. Experimental Study of the Effect of Water Mist Location On Blast Overpressure Attenuation in A Shock Tube

    NASA Astrophysics Data System (ADS)

    Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri

    2017-12-01

    Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.

  13. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves.

    PubMed

    Dal Cengio Leonardi, Alessandra; Keane, Nickolas J; Hay, Kathryn; Ryan, Anne G; Bir, Cynthia A; VandeVord, Pamela J

    2013-12-01

    Studies on blast neurotrauma have focused on investigating the effects of exposure to free-field blast representing the simplest form of blast threat scenario without considering any reflecting surfaces. However, in reality personnel are often located within enclosures or nearby reflecting walls causing a complex blast environment, that is, involving shock reflections and/or compound waves from different directions. The purpose of this study was to design a complex wave testing system and perform a preliminary investigation of the intracranial pressure (ICP) response of rats exposed to a complex blast wave environment (CBWE). The effects of head orientation in the same environment were also explored. Furthermore, since it is hypothesized that exposure to a CBWE would be more injurious as compared to a free-field blast wave environment (FFBWE), a histological comparison of hippocampal injury (cleaved caspase-3 and glial fibrillary acidic protein (GFAP)) was conducted in both environments. Results demonstrated that, regardless of orientation, peak ICP values were significantly elevated over the peak static air overpressure. Qualitative differences could be noticed compared to the ICP response in rats exposed to simulated FFBWE. In the CBWE scenario, after the initial loading the skull/brain system was not allowed to return to rest and was loaded again reaching high ICP values. Furthermore, results indicated consistent and distinct ICP-time profiles according to orientation, as well as distinctive values of impulse associated with each orientation. Histologically, cleaved caspase-3 positive cells were significantly increased in the CBWE as compared to the FFBWE. Overall, these findings suggest that the geometry of the skull and the way sutures are distributed in the rats are responsible for the difference in the stresses observed. Moreover, this increase stress contributes to correlation of increased injury in the CBWE.

  14. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J; Blackman, E G

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cmmore » from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).« less

  15. Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.

    2012-03-01

    It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with 1/(distance)2 when one represents the propagation in terms of spherical waves while it is independent of the distance if it is considered as a plane wave. In order to understand this puzzle, the propagation by a spherical wave form is reexamined. It is found that conversion of fields into particle (vice versa), via the field quantization process, explains several dilemma related with the radiation propagation.

  16. Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct

    NASA Astrophysics Data System (ADS)

    Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi

    2015-12-01

    Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.

  17. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.

    PubMed

    Cooper, G J; Townend, D J; Cater, S R; Pearce, B P

    1991-01-01

    Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear contributing little to the aetiology of the injury.

  18. Quarry blasts assessment and their environmental impacts on the nearby oil pipelines, southeast of Helwan City, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Adel M. E.; Mohamed, Abuo El-Ela A.

    2013-06-01

    Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC) on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV). The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW) technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP) classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV) and scaled distance (SD) relationship (PPV = 700.08 × SD-1.225) in mm/s and the Air over Pressure (air blast) formula (air blast = 170.23 × SD-0.071) in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.

  19. Chemical Initiation of FAE Clouds

    DTIC Science & Technology

    1980-11-01

    iadlded significant FAE blasts when performed in open air, no blasl when performed in an atmosphere of nitrogen, and a very strong blast when per...miniature experiments produced well-measurable blast pressures which were considerably larger when the ambient atmosphere was air instead of nitrogen, and...very much larger when the ambient atmosphere was oxygen. It was thus demonstrated that the blast wave is reinforced by release of combustion energy

  20. Spherical solitons in Earth'S mesosphere plasma

    NASA Astrophysics Data System (ADS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth's mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev-Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  1. Spherical solitons in Earth’S mesosphere plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annou, K., E-mail: kannou@cdta.dz; Annou, R.

    2016-01-15

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  2. Blast and Shock Mitigation Through the Use of Advanced Materials

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Edgerton, Lauren; Mock, Willis

    2017-06-01

    The dynamic response to low amplitude blast waves of four viscoelastic materials has been investigated: Dragonshield BCTM and three polyurea formulations (P1000, P650, and a P250/1000 blend). A 40-mm-bore gas gun was used as a shock tube to generate planar blast waves, ranging from 1 to 2 bars, that impacted instrumented target assemblies mounted on the gas gun muzzle. Each target assembly consisted of a viscoelastic material sample sandwiched between two gauge assemblies for measuring wave velocity and input/output stresses. Each gauge assembly consisted of one polyvinylidene fluoride (PVDF) stress gauge sandwiched between two 3.25 inch diameter 6061-T6 aluminum discs. Impedance matching techniques were used on the stress measurements to calculate the stresses on the front and back of the samples. The shock velocity-particle velocity relationship, stress-particle velocity relationship, and blast attenuation for each material were determined. The experimental technique, analysis methodology, and results will be presented.

  3. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.

  4. Pulmonary microvascular dysfunction and pathological changes induced by blast injury in a rabbit model.

    PubMed

    Wu, Si Yu; Han, Geng Fen; Kang, Jian Yi; Zhang, Liang Chao; Wang, Ai Min; Wang, Jian Min

    2016-09-01

    Vascular leakage has been proven to play a critical role in the incidence and development of explosive pulmonary barotrauma. Quantitatively investigated in the present study was the severity of vascular leakage in a gradient blast injury series, as well as ultrastructural evidence relating to pulmonary vascular leakage. One hundred adult male New Zealand white rabbits were randomly divided into 5 groups according to distance from the detonator (10 cm, 15 cm, 20 cm, 30 cm, and sham control). Value of pulmonary vascular leakage was monitored by a radioactive 125I-albumin labeling method. Pathological changes caused by the blast wave were examined under light and electron microscopes. Transcapillary escape rate of 125I-albumin and residual radioactivity in both lungs increased significantly at the distances of 10 cm, 15 cm, and 20 cm, suggesting increased severity of vascular leakage in these groups. Ultrastructural observation showed swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells in the 10-cm and 15-cm groups. Primary blast wave can result in pulmonary capillary blood leakage. Blast wave can cause swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells, which may be responsible for pulmonary vascular leakage.

  5. Computational Modeling of Blast Wave Transmission Through Human Ear.

    PubMed

    Leckness, Kegan; Nakmali, Don; Gan, Rong Z

    2018-03-01

    Hearing loss has become the most common disability among veterans. Understanding how blast waves propagate through the human ear is a necessary step in the development of effective hearing protection devices (HPDs). This article presents the first 3D finite element (FE) model of the human ear to simulate blast wave transmission through the ear. The 3D FE model of the human ear consisting of the ear canal, tympanic membrane, ossicular chain, and middle ear cavity was imported into ANSYS Workbench for coupled fluid-structure interaction analysis in the time domain. Blast pressure waveforms recorded external to the ear in human cadaver temporal bone tests were applied at the entrance of the ear canal in the model. The pressure waveforms near the tympanic membrane (TM) in the canal (P1) and behind the TM in the middle ear cavity (P2) were calculated. The model-predicted results were then compared with measured P1 and P2 waveforms recorded in human cadaver ears during blast tests. Results show that the model-derived P1 waveforms were in an agreement with the experimentally recorded waveforms with statistic Kurtosis analysis. The FE model will be used for the evaluation of HPDs in future studies.

  6. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  7. Self-similar relativistic blast waves with energy injection

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  8. No Flares from Gamma-Ray Burst Afterglow Blast Waves Encountering Sudden Circumburst Density Change

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; van Eerten, Hendrik; MacFadyen, Andrew

    2013-08-01

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  9. Relationship between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brian

    DTIC Science & Technology

    2011-01-01

    8217·’ 2.9 ± 0.4’ ·• 64 M. Chavko ec at. I j ournal of Neuroscience Mecl1ods 195 (20!1 ) 61-66 A 60 ~ c 60 ~ ------> ------> 40 40 ~ 20 20 v :; VI...WA, Prusaczyk WK. McCarron RM. Measurement or blast wave by a miniature fiber optic pressure transducer in the rat brain. J Neurosci Methods...AI. Blast related neuro- trauma: a review or cellular injury. Mol Cell Biomech 2008;3: 155-68. ling G. Bandak F, Armonda R, Grant G, Ecklund J

  10. Diffusion Tensor Imaging Reveals White Matter Injury in a Rat Model of Repetitive Blast-Induced Traumatic Brain Injury

    PubMed Central

    Calabrese, Evan; Du, Fu; Garman, Robert H.; Johnson, G. Allan; Riccio, Cory; Tong, Lawrence C.

    2014-01-01

    Abstract Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but existing data suggest cumulative increases in brain damage with a second blast. MRI and, in particular, diffusion tensor imaging (DTI), have become important tools for assessing bTBI in both clinical and preclinical settings. Computational statistical methods such as voxelwise analysis have shown promise in localizing and quantifying bTBI throughout the brain. In this study, we use voxelwise analysis of DTI to quantify white matter injury in a rat model of repetitive primary blast exposure. Our results show a significant increase in microstructural damage with a second blast exposure, suggesting that primary bTBI may sensitize the brain to subsequent injury. PMID:24392843

  11. Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?

    PubMed Central

    Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.

    2014-01-01

    High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system. PMID:25566175

  12. Explosively driven air blast in a conical shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less

  13. Convective instabilities in SN 1987A

    NASA Technical Reports Server (NTRS)

    Benz, Willy; Thielemann, Friedrich-Karl

    1990-01-01

    Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.

  14. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    PubMed

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  15. Spherical shock waves in general relativity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1991-11-01

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  16. [Confined blasting in microexplosion cystolithotripsy].

    PubMed

    Uchida, M

    1989-03-01

    This paper is the 12th report in a series of studies on the application of microexplosion to medicine and biology. Microexplosion lithotripsy is a newly developed technique in our clinic to crush urinary stones with small quantities of explosives. A systematic research project has been performed since the first report of microexplosion lithotripsy in 1977. As a result, microexplosion was successfully applied to the destruction of bladder stones in 130 cases from 1981 to 1988. In blasting to crush rocks in industrial works, two kinds of blasting are available: external charge blasting and confined blasting. The detonation power of the latter is 10 to 50 times larger than that of the former. A detruction test using several kinds of spherical form model calculus and lead azide explosive was performed. The formula to calculate the suitable explosive dose was determined experimentally as shown below. (formula; see text) Thus the theory in general industrial blasting with massive explosives was proved to be effective also in microexplosion with small explosives. An original electric drill system was developed to make a hole in stones for confined blasting. 60 cases, including 2 cases of giant bladder stones over 100 g in weight, were successfully treated by confined blasting using this system without any complication. We consider that any bladder stones, however big or however many, can be treated by microexplosion lithotripsy with confined blasting.

  17. Multi-thermal observations of the 2010 October 16 flare:heating of a ribbon via loops, or a blast wave?

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.

    2011-05-01

    On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?

  18. Prediction of air blast mitigation in an array of rigid obstacles using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, S. S.; Patnaik, B. S. V.; Ramamurthi, K.

    2018-04-01

    The mitigation of blast waves propagating in air and interacting with rigid barriers and obstacles is numerically investigated using the mesh-free smoothed particle hydrodynamics method. A novel virtual boundary particle procedure with a skewed gradient wall boundary treatment is applied at the interfaces between air and rigid bodies. This procedure is validated with closed-form solutions for strong and weak shock reflection from rigid surfaces, supersonic flows over a wedge, formation of reflected, transverse, and Mach stem shocks, and also earlier experiments on interaction of a blast wave with concrete blocks. The mitigation of the overpressure and impulse transmitted to the protected structure due to an array of rigid obstacles of different shapes placed in the path of the blast wave is thereafter determined and discussed in the context of the existing experimental and numerical studies. It is shown that blockages having the shape of a right facing triangle or square placed in tandem or staggered provide better mitigation. The influence of the distance between the blockage array and protected structure is assessed, and the incorporation of a gap in the blockages is shown to improve the mitigation. The mechanisms responsible for the attenuation of air blast are identified through the simulations.

  19. Off-center blast in a shocked medium

    DOE PAGES

    Duncan-Miller, Gabrielle Christiane; Stone, William D.

    2017-11-16

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less

  20. Air blast injuries killed the crew of the submarine H.L. Hunley.

    PubMed

    Lance, Rachel M; Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R

    2017-01-01

    The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull.

  1. Off-center blast in a shocked medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan-Miller, Gabrielle Christiane; Stone, William D.

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less

  2. Air blast injuries killed the crew of the submarine H.L. Hunley

    PubMed Central

    Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R.

    2017-01-01

    The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull. PMID:28832592

  3. Pressure pulse induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, C.; Balzer, J.; Godfrey, S.; Francois, M.; Saffell, J. L.; Rankin, S. M.; Proud, W. G.; Brown, K. A.

    2012-08-01

    Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast on live biological samples is critical for improving clinical outcomes. To analyze the effects of blast waves upon the cellular structures and the underlying physiological and biochemical changes, we have constructed an experimental platform capable of delivering compression waves, of amplitudes relevant to blast, to cell suspensions in a contained environment. Initial characterization of the system shows that cell cultures can be subjected to high-intensity compression waves up to 15 MPa in pressure and duration of 80 ± 10μs. Studies of mouse mesenchymal stem cells subjected to two different pressure impulses were analysed by cell counting, cell viability assays and microscopic evaluation: the experiments present evidence suggestive of increased levels of damage and loss of cellular integrity compared to uncompressed cell cultures.

  4. Blast induced mild traumatic brain injury/concussion: A physical analysis

    NASA Astrophysics Data System (ADS)

    Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.

    2012-11-01

    Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.

  5. Simulation and Measurements of Small Arms Blast Wave Overpressure in the Process of Designing a Silencer

    NASA Astrophysics Data System (ADS)

    Hristov, Nebojša; Kari, Aleksandar; Jerković, Damir; Savić, Slobodan; Sirovatka, Radoslav

    2015-02-01

    Simulation and measurements of muzzle blast overpressure and its physical manifestations are studied in this paper. The use of a silencer can have a great influence on the overpressure intensity. A silencer is regarded as an acoustic transducer and a waveguide. Wave equations for an acoustic dotted source of directed effect are used for physical interpretation of overpressure as an acoustic phenomenon. Decomposition approach has proven to be suitable to describe the formation of the output wave of the wave transducer. Electroacoustic analogies are used for simulations. A measurement chain was used to compare the simulation results with the experimental ones.

  6. On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1976-01-01

    The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.

  7. Intracranial pressure increases during exposure to a shock wave.

    PubMed

    Leonardi, Alessandra Dal Cengio; Bir, Cynthia A; Ritzel, Dave V; VandeVord, Pamela J

    2011-01-01

    Traumatic brain injuries (TBI) caused by improvised explosive devices (IEDs) affect a significant percentage of surviving soldiers wounded in Iraq and Afghanistan. The extent of a blast TBI, especially initially, is difficult to diagnose, as internal injuries are frequently unrecognized and therefore underestimated, yet problems develop over time. Therefore it is paramount to resolve the physical mechanisms by which critical stresses are inflicted on brain tissue from blast wave encounters with the head. This study recorded direct pressure within the brains of male Sprague-Dawley rats during exposure to blast. The goal was to understand pressure wave dynamics through the brain. In addition, we optimized in vivo methods to ensure accurate measurement of intracranial pressure (ICP). Our results demonstrate that proper sealing techniques lead to a significant increase in ICP values, compared to the outside overpressure generated by the blast. Further, the values seem to have a direct relation to a rat's size and age: heavier, older rats had the highest ICP readings. These findings suggest that a global flexure of the skull by the transient shockwave is an important mechanism of pressure transmission inside the brain.

  8. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  9. Survey of seismic conditions of drilling and blasting operations near overhead electricity power lines

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.

    2017-10-01

    The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.

  10. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  11. Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2014-01-01

    We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60 along the X-ray bright SE-NW axis from 0.84 plus or minus 0.06% yr(exp -1) to 0.52% plus or minus 0.03 yr(exp -1). This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% plus or minus 0.4% yr(exp -1). We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor.

  12. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew

    2013-08-10

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change inmore » density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.« less

  13. Spherical shock waves in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less

  14. Blast lung injury.

    PubMed

    Sasser, Scott M; Sattin, Richard W; Hunt, Richard C; Krohmer, Jon

    2006-01-01

    Current trends in global terrorism mandate that emergency medical services, emergency medicine and other acute care clinicians have a basic understanding of the physics of explosions, the types of injuries that can result from an explosion, and current management for patients injured by explosions. High-order explosive detonations result in near instantaneous transformation of the explosive material into a highly pressurized gas, releasing energy at supersonic speeds. This results in the formation of a blast wave that travels out from the epicenter of the blast. Primary blast injuries are characterized by anatomical and physiological changes from the force generated by the blast wave impacting the body's surface, and affect primarily gas-containing structures (lungs, gastrointestinal tract, ears). "Blast lung" is a clinical diagnosis and is characterized as respiratory difficulty and hypoxia without obvious external injury to the chest. It may be complicated by pneumothoraces and air emboli and may be associated with multiple other injuries. Patients may present with a variety of symptoms, including dyspnea, chest pain, cough, and hemoptysis. Physical examination may reveal tachypnea, hypoxia, cyanosis, and decreased breath sounds. Chest radiography, computerized tomography, and arterial blood gases may assist with diagnosis and management; however, they should not delay diagnosis and emergency interventions in the patient exposed to a blast. High flow oxygen, airway management, tube thoracostomy in the setting of pneumothoraces, mechanical ventilation (when required) with permissive hypercapnia, and judicious fluid administration are essential components in the management of blast lung injury.

  15. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  16. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.

    PubMed

    Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2014-07-01

    An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death.

  17. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-11-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  18. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  19. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  20. Effects of Filtering on Experimental Blast Overpressure Measurements.

    PubMed

    Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M

    2015-01-01

    When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for test IOP test data. Though the region of interest of the signals examined in the current study did not contain extremely high frequency content, it is possible that live-fire testing may produce shock waves with higher frequency content. While post-processing filtering can remove experimental artifacts, special care should be taken to minimize or eliminate the possibility of recording these artifacts in the first place.

  1. Distributed Mobile Device Based Shooter Detection Simulation

    DTIC Science & Technology

    2013-09-01

    three signatures of a gunshot ( muzzle flash [optical], muzzle blast [auditory], and shock wave [auditory]), we focus only on information from the...bullet, while this proximity is important when using information from the shock wave. Detecting and using the muzzle flash would require accurate...Additionally, the mobile device would need to be aimed towards the blast to even have a chance detect the muzzle flash . 2.1 Single Microphone When a sound is

  2. Non-Impact, Blast-Induced Mild TBI and PTSD: Concepts and Caveats

    DTIC Science & Technology

    2011-07-01

    has been verified by wound ballistics experiments in animals and finite element simulation of blast loads on the torso. Blood surge caused by...ballistic pressure waves in animals An experimental study of wound ballistics demon- strates that a ballistic pressure wave can cause a remote injury to...surge. This hypothesis has been supported by some experimental data. A volumetric surge of blood moved through the thorax and abdomen has been observed

  3. Simulation of the Reflected Blast Wave froma C-4 Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 rangesmore » (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.« less

  4. Simulation of the reflected blast wave from a C-4 charge

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  5. Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations

    NASA Astrophysics Data System (ADS)

    Kim, Sungtae; Lee, Soogab; Kim, Kyu Hong

    2008-04-01

    A new numerical method toward accurate and efficient aeroacoustic computations of multi-dimensional compressible flows has been developed. The core idea of the developed scheme is to unite the advantages of the wavenumber-extended optimized scheme and M-AUSMPW+/MLP schemes by predicting a physical distribution of flow variables more accurately in multi-space dimensions. The wavenumber-extended optimization procedure for the finite volume approach based on the conservative requirement is newly proposed for accuracy enhancement, which is required to capture the acoustic portion of the solution in the smooth region. Furthermore, the new distinguishing mechanism which is based on the Gibbs phenomenon in discontinuity, between continuous and discontinuous regions is introduced to eliminate the excessive numerical dissipation in the continuous region by the restricted application of MLP according to the decision of the distinguishing function. To investigate the effectiveness of the developed method, a sequence of benchmark simulations such as spherical wave propagation, nonlinear wave propagation, shock tube problem and vortex preservation test problem are executed. Also, throughout more realistic shock-vortex interaction and muzzle blast flow problems, the utility of the new method for aeroacoustic applications is verified by comparing with the previous numerical or experimental results.

  6. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    USGS Publications Warehouse

    Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.

    1999-01-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.

  7. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.

    1999-10-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.

  8. Scattering of plane transverse waves by spherical inclusions in a poroelastic medium

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Greenhalgh, Stewart; Zhou, Bing

    2009-03-01

    The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.

  9. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P.

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  10. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  11. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2017-05-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  12. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.

  13. The multi-modal responses of a physical head model subjected to various blast exposure conditions

    NASA Astrophysics Data System (ADS)

    Ouellet, S.; Philippens, M.

    2018-01-01

    The local and global biomechanical response of the body to a blast wave is the first step of a sequence that leads to the development of stresses and strains which can exceed the tolerance of brain tissue. These stresses and strains may then lead to neuro-physical changes in the brain and contribute to initiate a cascade of events leading to injury. The specific biomechanical pathways by which the blast energy is transmitted through the head structure are, however, not clearly understood. Multiple transmission mechanisms have been proposed to explain the generation of brain stresses following the impingement of a blast wave on the head. With the use of a physical head model, the work presented here aims at demonstrating that the proposed transmission mechanisms are not mutually exclusive. They are part of a continuum of head responses where, depending on the exposure conditions, a given mechanism may or may not dominate. This article presents the joint analysis of previous blast test results generated with the brain injury protection evaluation device (BIPED) headform under four significantly different exposure conditions. The focus of the analysis is to demonstrate how the nature of the recorded response is highly dependent on the exposure characteristics and consequently, on the method used to reproduce blast exposure in a laboratory environment. The timing and magnitude of the variations in intra-cranial pressures (ICP) were analysed relative to the external pressure field in order to better understand the wave dynamics occurring within the brain structure of the headform. ICP waveforms were also analysed in terms of their energy spectral density to better identify the energy partitioning between the different modes of response. It is shown that the BIPED response is multi-modal and that the energy partitioning between its different modes of response is greatly influenced by exposure characteristics such as external peak overpressure, impulse, blast wave structure, and direction of propagation. Convincing evidence of stresses generated from local skull deformation is presented along with evidence of stress transmission through relative brain-to-skull motion. These findings suggest that research aimed at defining exposure thresholds should not focus on a single stress transmission mechanism or use experimental designs unrepresentative of realistic blast loading conditions that may favour a given mechanism over another.

  14. Integrated experimental platforms to study blast injuries: a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.

    2014-05-01

    We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.

  15. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    DTIC Science & Technology

    tissues, as carried out by immune cells; and thus is a promising target. Scope and timing, however, of this process must be better understood. Our study...uses an adult rat model of eye and brain injuries, as produced by exposure to simulated blast waves in a shock tube. Rats were kept on an omega-3

  16. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  17. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  18. Surface wave inversion of central Texas quarry blasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, J.L.; Goforth, T.T.

    1993-02-01

    Compressional and shear wave models of the upper crust in central Texas were obtained by inverting Rayleigh and Love waves recorded at the new W.M. Keck Foundation Seismological Observatory at Baylor University. The Keck Observatory, which became operational in April 1992, consists of a three-component, broadband Geotech seismometer located at a depth of 130 feet in a borehole 17 miles from the Baylor campus. The field station is solar powered, and the 140-dB dynamic range digital data are transmitted to the Baylor analysis lab via radio, where they are analyzed and archived. Limestone quarries located in all directions from themore » Keck Observatory detonate two to four tons of explosives per blast several times a week. Recordings of these blasts show sharp onsets of P and S waves, as well as dispersed Rayleigh and Love waves in the period band 1 to 3 seconds. Multiple filter analysis and phase matched filtering techniques were used to obtain high quality dispersion curves for the surface waves, and inversion techniques were applied to produce shear velocity models of the upper crust. A rapid increase in shear velocity at a depth of about 1.5 km is associated with the Ouachita Overthrust Belt. Portable seismic recording systems were placed at the quarries to monitor start times and initial wave forms. These data were combined with the Keck recordings to produce attenuation and compressional velocity models.« less

  19. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  20. Characteristics and mechanisms of cardiopulmonary injury caused by mine blasts in shoals: a randomized controlled study in a rabbit model.

    PubMed

    Han, Gengfen; Wang, Ziming; Wang, Jianmin; Yang, Weixiao; Chen, Jing; Kang, Jianyi; Zhang, Sen; Wang, Aimin; Lai, Xinan

    2013-01-01

    Because the characteristics of blast waves in water are different from those in air and because kinetic energy is liberated by a pressure wave at the water-air interface, thoracic injuries from mine blasts in shoals may be serious. The aim of the present study was to investigate the characteristics and mechanisms of cardiopulmonary injury caused by mine blasts in shoals. To study the characteristics of cardiopulmonary injury, 56 animals were divided randomly into three experimental groups (12 animals in the sham group, 22 animals in the land group and 22 animals in the shoal group). To examine the biomechanics of injury, 20 animals were divided randomly into the land group and the shoal group. In the experimental model, the water surface was at the level of the rabbit's xiphoid process, and paper electric detonators (600 mg RDX) were used to simulate mines. Electrocardiography and echocardiography were conducted, and arterial blood gases, serum levels of cardiac troponin I and creatine kinase-MB and other physiologic parameters were measured over a 12-hour period after detonation. Pressures in the thorax and abdomen and the acceleration of the thorax were measured. The results indicate that severe cardiopulmonary injury and dysfunction occur following exposure to mine blasts in shoals. Therefore, the mechanisms of cardiopulmonary injury may result from shear waves that produce strain at the water-air interface. Another mechanism of injury includes the propagation of the shock wave from the planta to the thorax, which causes a much higher peak overpressure in the abdomen than in the thorax; as a result, the abdominal organs and diaphragm are thrust into the thorax, damaging the lungs and heart.

  1. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  2. An Investigation of the Mechanism of Traumatic Brain Injury Caused by Blast in the Open Field

    NASA Astrophysics Data System (ADS)

    Feng, Ke

    Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo, and the correlation analysis between the biomechanical responses and its injury outcomes. Such information is crucial to the development of injury criteria of bTBI. This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field, and to conduct correlational studies with brain tissue damage. To better understand primary bTBI, we have implemented an open field experimental model to apply controlled shock waves on swine head. The applied pressure levels of shock waves were predicted by finite element modeling and verified with calibrated testing. Biomechanical responses of primary blasts such as intracranial pressure (ICP), head kinetics, strain rate of skull, were measured in vivo during the blasts. A positive correlation between incident overpressure (IOP) and its corresponding biomechanical responses of the brain was observed. A parallel group of non-instrumented animals were used to collect injury data 72 hours post experiment. Cellular responses governed by primary blasts, such as neuronal degeneration and apoptosis were studied via immunohistochemistry. Representative fluorescent-stained images were examined under microscope. A positive correlation was found between the amount of degenerative neurons and the blast level. Significant elevation of apoptosis was found in the high-level blast. Comparisons between brains with varies ICP readings demonstrate differences of the numbers of neuronal degeneration and apoptosis within the imaged volume. Additionally, comparisons between sections at different locations of the head did not show spatial changes for cellular responses. These metrics provide a pathway for direct connection between the cellular damage and the measured biomechanical responses of the brain within the same experimental model, and could be critical in understanding the mechanisms of bTBI. This experimental data can be used to validate computer models of bTBI.

  3. Characterization and Modeling of Thoraco-Abdominal Response to Blast Waves. Volume 4. Biomechanical Model of Thorax Response to Blast Loading

    DTIC Science & Technology

    1985-05-01

    non- zero Dirichlet boundary conditions and/or general mixed type boundary conditions. Note that Neumann type boundary condi- tion enters the problem by...Background ................................. ................... I 1.3 General Description ..... ............ ........... . ....... ...... 2 2. ANATOMICAL...human and varions loading conditions for the definition of a generalized safety guideline of blast exposure. To model the response of a sheep torso

  4. Ion-acoustic solitons do not exist in cylindrical and spherical geometries

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2017-09-01

    We investigate the time evolution of one-dimensional, compressive, ion acoustic solitary waves for planar, cylindrical, and spherical geometries in a plasma of cold fluid ions and Boltzmann electrons. For cylindrical and spherical geometries, we show that inward (outward) going solitary waves cannot be localized (i.e., always have a tail) since the effect of a unipolar velocity perturbation is to shift ions inward (outward) to smaller (larger) radii, thereby increasing (decreasing) the local ion density. That is, there are no quasi-particle soliton states in the cylindrical and spherical cases. These results are confirmed and expanded using a plasma simulation for the cylindrical case. We initialize the system with an inward propagating planar soliton. We find supersonic solitary waves which increase in speed as they near the origin, while the wave amplitude increases as r-1/2. All solitary waves develop the predicted tail, but for larger amplitudes, the tail is unstable and evolves into an acoustic wave train.

  5. Infection Casualty Estimation (ICE) Model: Predicting Sepsis in Nuclear Detonation Burn Patient Populations using Procalcitonin as a Biomarker

    DTIC Science & Technology

    2017-06-06

    environments may be injured or killed from the primary blast wave, thermal pulse and ionizing radiation . Burn casualties surviving the initial blast wave are...32]/1.8 degree Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation activity of radionuclides [curie (Ci)] 3.7 × 1010...develop casualty estimation models for improvised nuclear device (IND) scenarios. The HSRDIPT team has developed health effects models of radiation , burn

  6. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  7. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers.

    PubMed

    Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-04-28

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.

  8. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers

    PubMed Central

    Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-01-01

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807

  9. The circumstellar ring of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Migotto, Katia; Larsson, Josefin; Pesce, Dominic; Challis, Peter; Chevalier, Roger A.; France, Kevin; Kirshner, Robert P.; Leibundgut, Bruno; Lundqvist, Peter; McCray, Richard; Spyromilio, Jason; Taddia, Francesco; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Sollerman, Jesper; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Panagia, Nino; Pun, Chun S. J.; Sonneborn, George; Sugerman, Ben

    2016-06-01

    The circumstellar ring of supernova 1987A first became visible a few months after the explosion due to photoionisation by the supernova flash. From 1995 hotspots appeared in the ring and their brightness increased nearly exponentially as a result of interaction with the supernova blast wave. Imaging and spectroscopic observations with the Hubble Space Telescope and the Very Large Telescope now show that both the shocked and the unshocked emission components from the ring have been decreasing since ~ 2009. In addition, the most recent images reveal the brightening of new spots outside the ring. These observations indicate that the hotspots are being dissolved by the shocks and that the blast wave is now expanding and interacting with dense clumps beyond the ring. Based on the currently observed decay we predict that the ring will be destroyed by ~ 2025, while the blast wave will reveal the distribution of gas as it expands outside the ring, thus tracing the mass-loss history of the supernova progenitor.

  10. Optical shaping of gas targets for laser–plasma ion sources

    DOE PAGES

    Dover, N. P.; Cook, N.; Tresca, O.; ...

    2016-02-09

    In this paper, we report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser–plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense COmore » $$_{2}$$($${\\it\\lambda}\\approx 10~{\\rm\\mu}\\text{m}$$) drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Trescaet al.,Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as$$l\\approx 20~{\\rm\\mu}\\text{m}$$($1/e$), opening up new possibilities for laser–plasma studies with near-critical gaseous targets.« less

  11. Synaptic Mechanisms of Blast-Induced Brain Injury

    PubMed Central

    Przekwas, Andrzej; Somayaji, Mahadevabharath R.; Gupta, Raj K.

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro–in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  12. Updates to Blast Injury Criteria Models for Nuclear Casualty Estimation

    DTIC Science & Technology

    2015-12-01

    the likelihood of blast-related injury use a two-step process. First, the maximum velocity obtained by the human body or secondary missile is determined...the human body . Secondary injuries are caused by missiles that are accelerated by the blast wave. Tertiary injuries are caused by the acceleration of...the human body and the ensuing deceleration. In this work, we focus on secondary and tertiary injuries. Because of the dramatic effects experienced

  13. Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact

    DTIC Science & Technology

    2016-02-01

    discovery rate (FDR), which controls for the expected proportion of false rejected hypotheses. ANOVA was performed to evaluate the significance in gene...acceleration/deceleration11,27 and blast4,13 have also been designed for the purpose of evaluating coup-contrecoup and blast wave energies potentially... evaluation of different angles/ locations of the projectile impact to the surface of the rat head. Finally, pilot studies were conducted to provide further

  14. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  15. Integrated Experimental Platforms to Study Blast Injuries: a Bottom-Up Approach

    NASA Astrophysics Data System (ADS)

    Bo, Chiara

    2013-06-01

    Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast events on live biological samples is critical for improving clinical outcomes.1 To investigate the consequences of pressure waves upon cellular structures and the underlying physiological and biochemical changes, we are using an integrated approach to study the material and biological properties of cells, tissues and organs when subjected to extreme conditions. In particular we have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows us to subject cells in suspension or in a monolayer to compression waves of the order of few MPa and duration of hundreds of microseconds.2 The chamber design also enables recovery of the biological samples for cellular and molecular analysis. Specifically, cell survivability, viability, proliferation and morphological changes are investigated post compression for different cell populations. The SHPB platform, coupled with Quasi-Static experiments, is also used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Samples are also examined using histological techniques to study macro- and microscopical changes induced by compression waves. Finally, a shock tube has been developed to replicate primary blast damage on organs (i.e. mice lungs) and cell monolayers by generating single or multiple air blast of the order of kPa and few milliseconds duration. This platform allows us to visualize post-traumatic morphological changes at the cellular level as a function of the stimulus pressure and duration as well as biomarker signatures of blast injuries. Adapting and integrating a variety of approaches with different experimental platforms allows us to sample a vast pressure-time space in terms of biological and structural damage that mimic blast injuries and also to determine which physical parameters (peak pressure, stimulus duration, impulse) are contributing to the injury process. Moreover, understanding biological damage following blast events is crucial to developing novel clinical approaches to detect and treat traumatic injury pathologies. This work is supported by he Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK

  16. Off-center blast in a shocked medium

    NASA Astrophysics Data System (ADS)

    Duncan-Miller, G. C.; Stone, W. D.

    2018-07-01

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in the shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky (Astrophys J 398:184-189. https://doi.org/10.1086/171847 , 1992) on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and making use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. In particular, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.

  17. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  18. The Foulness Multiton Air Blast Simulator. Part 3. Blast Wave Formation and Methods Used to Drive the Simulator,

    DTIC Science & Technology

    1980-03-01

    the total energy release of the explosive driver using expanded polystyrene and at the same time, controlling the rate of release. The part played by aqueous foam in minimising irregularities in waveform also is described. (Author)

  19. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  20. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures✩

    PubMed Central

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L.; Pait, Morgan C.; Almeida, Michael F.; Ghukasyan, Vladimir V.; Bahr, Ben A.

    2017-01-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37 °C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15 cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1–3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1–2 days later, slices that received two consecutive RDX blasts 4 min apart exhibited a 26–40% reduction in GluR1, and the receptor subunit was further reduced by 64–72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72 h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology. PMID:27720798

  1. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591

  2. A plane wave generation method by wave number domain point focusing.

    PubMed

    Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2010-11-01

    A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.

  3. Time variation in the reaction-zone structure of two-phase spray detonations.

    NASA Technical Reports Server (NTRS)

    Pierce, T. H.; Nicholls, J. A.

    1973-01-01

    A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.

  4. Dynamic Pressure Impulse for Near-Ideal and Non-Ideal Blast Waves -- Height of Burst Charts. Supplement

    DTIC Science & Technology

    1983-12-31

    Law 79-565), 22 April 1967. Other requests shall be referred to Director, Defense Nuclear Agency, Washington, DC 20305- 10101. THIS WORK WAS SPONSORED...JPUMNTNYNOTATIO This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code 8344082466 Y99QAXSGO0039 H25900. I?. cosASI comR I& SUISCI TM...displacement which a vehicle exposed to a blast wave sufers can be used as a measure of the dynamic pressure impulse it receives. ,hat is, the vehicle

  5. Astrophysical blast wave data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  6. Structural Changes in Lipid Vesicles Generated by the Shock Blast Waves: Coarse-Grained Molecular Dynamics Simulation

    DTIC Science & Technology

    2013-11-01

    duration, or shock-pulse shape. Used in this computational study is a coarse-grained model of the lipid vesicle as a simplified model of a cell...Figures iv List of Tables iv 1. Introduction 1 2. Model and Methods 3 3. Results and Discussion 6 3.1 Simulation of the Blast Waves with Low Peak...realistic detail but to focus on a simple model of the major constituent of a cell membrane, the phospholipid bilayer. In this work, we studied the

  7. Blast-wave model description of the Hanbury-Brown-Twiss radii in pp collisions at LHC energies

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Florkowski, Wojciech; Zalewski, Kacper

    2015-04-01

    The blast wave model is applied to the recent data on Hanbury-Brown-Twiss radii in pp collisions, measured by the ALICE Collaboration. A reasonable description of data is obtained for a rather low temperature of the kinetic freeze-out, T≃ 100 MeV, and the transverse profile corresponding to the emission from a shell of a fairly small width 2δ ˜ 1.5 fm. The size and the life-time of the produced system are determined for various multiplicities of the produced particles.

  8. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  9. Blast Wave Experiments at Z

    DTIC Science & Technology

    2007-06-01

    radiation flows upward, it passes though a 1.7-mm high, tapered, 25-μm thick gold wall cone that is filled 20 ± 3 mg/cm3 silica aerogel (SiO2). Above...this cone is a 20 ± 3 mg/cm3 silica aerogel filled, 1-mm high, 2.4-mm inner diameter, 25-μm thick gold wall cylinder. On the cylinder rests a 4-mm...diameter gold platform that supports a higher density (40-60 mg/cm3) silica aerogel . This aerogel is the region where the blast wave forms after

  10. Internal ballistics of the detonation products of a blast-hole charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangush, S.K.; Garbunov, V.A.

    1986-07-01

    The authors investigate the gasdynamic flow of the detonation products of a blast-hole charge (the expansion of the detonation products in the blast hole and the gas outflow and propagation of shock airwaves into the face space). The problem is solved by means of a numerical program for integration of partial differential equations of one-dimensional gas-dynamics. A numerical model of the internal ballistics of a blast-hole charge is presented. In addition to the variation of the thermodynamic parameters in the blast hole, the formation of the shock wave in the face space is shown, which is the source of gasmore » ignition. Further development of the numerical model of the action of blast-hole charges is planned which will involve an analysis of a number of applied problems.« less

  11. Bomb blast mass casualty incidents: initial triage and management of injuries.

    PubMed

    Goh, S H

    2009-01-01

    Bomb blast injuries are no longer confined to battlefields. With the ever present threat of terrorism, we should always be prepared for bomb blasts. Bomb blast injuries tend to affect air-containing organs more, as the blast wave tends to exert a shearing force on air-tissue interfaces. Commonly-injured organs include the tympanic membranes, the sinuses, the lungs and the bowel. Of these, blast lung injury is the most challenging to treat. The clinical picture is a mix of acute respiratory distress syndrome and air embolism, and the institution of positive pressure ventilation in the presence of low venous pressures could cause systemic arterial air embolism. The presence of a tympanic membrane perforation is not a reliable indicator of the presence of a blast injury in the other air-containing organs elsewhere. Radiological imaging of the head, chest and abdomen help with the early identification of blast lung injury, head injury, abdominal injury, eye and sinus injuries, as well as any penetration by foreign bodies. In addition, it must be borne in mind that bomb blasts could also be used to disperse radiological and chemical agents.

  12. Impulsive spherical gravitational waves

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    2001-03-01

    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.

  13. Nonlinear Interaction of Waves in Rotating Spherical Layers

    NASA Astrophysics Data System (ADS)

    Zhilenko, D.; Krivonosova, O.; Gritsevich, M.

    2018-01-01

    Flows of a viscous incompressible fluid in a spherical layer that are due to rotational oscillations of its inner boundary at two frequencies with respect to the state of rest are numerically studied. It is found that an increase in the amplitude of oscillations of the boundary at the higher frequency can result in a significant enhancement of the low-frequency mode in a flow near the outer boundary. The direction of propagation of the low-frequency wave changes from radial to meridional, whereas the high-frequency wave propagates in the radial direction in a limited inner region of the spherical layer. The role of the meridional circulation in the energy exchange between spaced waves is demonstrated.

  14. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    PubMed

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Expressions for the spherical-wave-structure function based on a bump spectrum model for the index of refraction

    NASA Astrophysics Data System (ADS)

    Richardson, Christina E.; Andrews, Larry C.

    1991-07-01

    New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.

  16. Molecular Signatures and Diagnostic Biomarkers of Cumulative, Blast-Graded Mild TBI

    DTIC Science & Technology

    2012-10-01

    These results are in agreement with data obtained using non-blast TBI models (Diet- rich et al., 2004; Maegele et al., 2007). Moreover, CX3CL1 chemokine...the shoulder at Figure 1A), substantially contaminating the blast wave in the direction of shock tube axis (Figure 1A). In addition, the exhaust...highly spe- cific for the CNS and is present in platelets and red blood cells (see Svetlov et al., 2009 for review). In previous studies, we reported a

  17. In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury

    DTIC Science & Technology

    2010-09-01

    how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat...analyzing stress wave propagation, which is the main dynamic effect loading the brain tissue during a blast event. We consider two key metrics of stress ...Cauchy stress tensor, and sij ¼ σij − 13σkkδij are the compo- nents of the deviatoric stress tensor (24). Fig. 1 shows snapshots of the pressure

  18. A Late-time Flattening of Light Curves in Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Giannios, Dimitrios

    2013-12-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from relativistic electrons accelerated at the GRB external shock. We investigate the temporal decay of the afterglow emission at late times, when the bulk of the shock-accelerated electrons are non-relativistic (the "deep Newtonian phase," as denoted by Huang and Cheng). We assume that the electron spectrum in the deep Newtonian phase is a power-law distribution in momentum with slope p, as dictated by the theory of Fermi acceleration in non-relativistic shocks. For a uniform circumburst medium, the deep Newtonian phase begins at t{_{\\scriptsize {DN}}}\\sim 3\\,\\epsilon _{e,-1}^{5/6}t{_{\\scriptsize {ST}}}, where t ST marks the transition of the blast wave to the non-relativistic, spherically symmetric Sedov-Taylor (ST) solution, and epsilon e = 0.1 epsilon e, -1 quantifies the amount of shock energy transferred to the electrons. For typical parameters, the deep Newtonian stage starts ~0.5 to several years after the GRB. The radio flux in this phase decays as F νvpropt -3(p + 1)/10vpropt -(0.9÷1.2), for a power-law slope 2 < p < 3. This is shallower than the scaling F νvpropt -3(5p - 7)/10vpropt -(0.9÷2.4) derived by Frail et al., which only applies if the GRB shock is non-relativistic, but the electron distribution still peaks at ultra-relativistic energies (a regime that is relevant for a narrow time interval, and only if t DN >~ t ST, namely, epsilon e >~ 0.03). We discuss how the deep Newtonian phase can be reliably used for GRB calorimetry, and we comment on the good detection prospects of trans-relativistic blast waves at 0.1÷10 GHz with the Karl G. Jansky Very Large Array and LOw-Frequency ARray.

  19. Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

    PubMed

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-20

    A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.

  20. A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.

    2015-01-01

    Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273

  1. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse

    PubMed Central

    Bricker-Anthony, Courtney; Rex, Tonia S.

    2015-01-01

    Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. PMID:26148200

  2. Blast overpressure after tire explosion: a fatal case.

    PubMed

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  3. Blast from the Past Gives Clues About Early Universe

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have gained tantalizing insights into the nature of the most distant object ever observed in the Universe -- a gigantic stellar explosion known as a Gamma Ray Burst (GRB). The explosion was detected on April 23 by NASA's Swift satellite, and scientists soon realized that it was more than 13 billion light-years from Earth. It represents an event that occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars," said Dale Frail of the National Radio Astronomy Observatory. Astronomers turned telescopes from around the world to study the blast, dubbed GRB 090423. The VLA first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later. "It's important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast," said Derek Fox of Pennsylvania State University. "The result is a unique look into the very early Universe that we couldn't have gotten any other way," he added. The scientists concluded that the explosion was more energetic than most GRBs, was a nearly-spherical blast, and that it expanded into a tenuous and relatively uniform gaseous medium surrounding the star. Astronomers suspect that the very first stars in the Universe were very different -- brighter, hotter, and more massive -- from those that formed later. They hope to find evidence for these giants by observing objects as distant as GRB 090423 or more distant. "The best way to distinguish these distant, early-generation stars is by studying their explosive deaths, as supernovae or Gamma Ray Bursts," said Poonam Chandra, of the Royal Military College of Canada, and leader of the research team. While the data on GRB 090423 don't indicate that it resulted from the death of such a monster star, new astronomical tools are coming that may reveal them. "The Atacama Large Millimeter/submillimeter Array (ALMA), will allow us to pick out these very-distant GRBs more easily so we can target them for intense followup observations. The Expanded Very Large Array, with much greater sensitivity than the current VLA, will let us follow these blasts much longer and learn much more about their energies and environments. We'll be able to look back even further in time," Frail said. Both ALMA and the EVLA are scheduled for completion in 2012. Chandra, Frail and Fox worked with Shrinivas Kulkarni of Caltech, Edo Berger of Harvard University, S. Bradley Cenko of the University of California at Berkeley, Douglas C.-J. Bock of the Combined Array for Research in Millimeter-wave Astronomy in California, and Fiona Harrison and Mansi Kasliwal of Caltech. The scientists described their research in a paper submitted to the Astrophysical Journal Letters.

  4. Stochastic Lanchester Air-To-Air Campaign Model: Methods Used to Generate Model Outputs and a User’s Guide: 2007

    DTIC Science & Technology

    2007-05-01

    only the non-dimensional parameter Kill Rate Ra- tio = KRR = κ = kb/kr: . [Eq. 2-6] 1(0)Pexcept0(0)P Mmb,κPmP Nnr, nPP ;NnrandMmb ,nPκPm)Pnκ(mP NM,nm...varies with explosive yield E. Dy- namic overpressure p is proportional to the square of the air velocity v immedi- ately behind the blast wave ...ρ and the time t required for the blast wave to reach the locations of interest. According to the principles of dimensional analysis, v can be

  5. Combining Advanced Turbulent Mixing and Combustion Models with Advanced Multi-Phase CFD Code to Simulate Detonation and Post-Detonation Bio-Agent Mixing and Destruction

    DTIC Science & Technology

    2017-10-01

    perturbations in the energetic material to study their effects on the blast wave formation. The last case also makes use of the same PBX, however, the...configuration, Case A: Spore cloud located on the top of the charge at an angle 45 degree, Case B: Spore cloud located at an angle 45 degree from the charge...theoretical validation. The first is the Sedov case where the pressure decay and blast wave front are validated based on analytical solutions. In this test

  6. Computation of viscous blast wave flowfields

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1991-01-01

    A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.

  7. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.

    PubMed

    Bolander, Richard; Mathie, Blake; Bir, Cynthia; Ritzel, David; VandeVord, Pamela

    2011-10-01

    The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.

  8. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  9. Towards anti-causal Green's function for three-dimensional sub-diffraction focusing

    NASA Astrophysics Data System (ADS)

    Ma, Guancong; Fan, Xiying; Ma, Fuyin; de Rosny, Julien; Sheng, Ping; Fink, Mathias

    2018-06-01

    In causal physics, the causal Green's function describes the radiation of a point source. Its counterpart, the anti-causal Green's function, depicts a spherically converging wave. However, in free space, any converging wave must be followed by a diverging one. Their interference gives rise to the diffraction limit that constrains the smallest possible dimension of a wave's focal spot in free space, which is half the wavelength. Here, we show with three-dimensional acoustic experiments that we can realize a stand-alone anti-causal Green's function in a large portion of space up to a subwavelength distance from the focus point by introducing a near-perfect absorber for spherical waves at the focus. We build this subwavelength absorber based on membrane-type acoustic metamaterial, and experimentally demonstrate focusing of spherical waves beyond the diffraction limit.

  10. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.

    PubMed

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-02-24

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.

  11. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  12. Low-cost rapid miniature optical pressure sensors for blast wave measurements.

    PubMed

    Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2011-05-23

    This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.

  13. A study of the effect of solid particle impact and particle shape on the erosion morphology of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1984-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.

  14. A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1982-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials.

  15. Mabs monograph, air blast instrumentation, 1943-1993 measurement techniques and instrumentation. Volume 1. The nuclear era. 1945-1963. Technical report, 17 September 1992-31 May 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisler, R.E.; Keefer, J.H.; Ethridge, N.H.

    1995-03-01

    Blast wave measurement techniques and instrumentation developed by Military Applications of Blast Simulators (MABS) participating countries to study blast phenomena during the nuclear era are summarized. Passive and active gages both mechanical self-recording and electronic systems deployed on kiloton and megaton explosive tests during the period 1945-1963 are presented. The country and the year the gage was introduced are included with the description. References are also provided. Volume 2 covers measurement techniques and instrumentation for the period 1959-1993 and Volume 3 covers structural target and gage calibration from 1943 to 1993.

  16. An Electron is the God Particle

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2001-04-01

    Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff

  17. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  18. Huygens-Fresnel picture for electron-molecule elastic scattering★

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2017-11-01

    The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  19. The effect of suppressors and muzzle brakes on shock wave strength

    NASA Astrophysics Data System (ADS)

    Phan, K. C.; Stollery, J. L.

    Experimental simulations of a gun blast were performed in the course of an optimization study of shock-wave suppressor and muzzle-brake geometry. A single-spark schlieren system was used to photograph the shock waves emerging from a 32-mm shock tube. The suppressor systems tested with respect to the overpressure level included a perforated tube enclosed in an expansion chamber, a cup-and-box suppressor, and noise-absorbent materials inside a suppressor; high suppression efficiency was observed for the first two. Recoil simulation tests, performed with plain and pyramidal baffles, disk, and cylinder, show that the blast level is generally higher for a more efective muzzle brake. An optimum distance from the muzzle to the brake is suggested to be in the region of one caliber.

  20. Navier-Stokes simulations of unsteady transonic flow phenomena

    NASA Technical Reports Server (NTRS)

    Atwood, C. A.

    1992-01-01

    Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.

  1. Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

    PubMed Central

    Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.

    2013-01-01

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173

  2. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model.

    PubMed

    Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C

    2012-05-16

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.

  3. Formation and propagation of Love waves in a surface layer with a P-wave source. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, A.L.; Miller, S.A.

    The objective of this research is to investigate experimentally, and support with theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The P-wave source is a spherical piezoelectric crystal cast in a surface layer of rock simulant overlaying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a spherical compressional pulse of known amplitude to the surrounding medium. Lateral heterogeneities cast in the surface layer convert incident P-wave energy into shear waves. The horizontally polarized shear waves (SH waves) trapped in the surface layermore » wave guide are the Love waves we will measure at the surface.« less

  4. Analysis of scattering by a linear chain of spherical inclusions in an optical fiber

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis D.; Uzunoglu, Nikolaos K.

    2006-12-01

    The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE11 mode, are presented for several cases.

  5. Improvements to the Sandia CTH Hydro-Code to Support Blast Analysis and Protective Design of Military Vehicles

    DTIC Science & Technology

    2014-04-15

    used for advertising or product endorsement purposes. 6.0 REFERENCES [1] McGlaun, J., Thompson, S. and Elrick, M. “CTH: A Three-Dimensional Shock-Wave...Validation of a Loading Model for Simulating Blast Mine Effects on Armoured Vehicles,” 7 th International LS-DYNA Users Conference, Detroit, MI 2002. [14

  6. A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2010-01-01

    We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.

  7. Analysis of dynamical response of air blast loaded safety device

    NASA Astrophysics Data System (ADS)

    Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.

    2018-03-01

    Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.

  8. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  9. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    NASA Technical Reports Server (NTRS)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  10. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    NASA Astrophysics Data System (ADS)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  11. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media

    PubMed Central

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-01-01

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves. PMID:26905367

  12. Characterization of dust from blast furnace cast house de-dusting.

    PubMed

    Lanzerstorfer, Christof

    2017-10-01

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  13. Numerical estimates of seismic effects after collisions of small bodies with the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Svetsov, Vladimir; Shuvalov, Valery

    Small bodies - meteoroids, asteroids or cometary objects of moderate size (10 - 100 m) every so often do not survive the entry through the planetary atmosphere and release their energy at some altitudes. Then the aerial blast waves reach the ground and generate Rayleigh seismic surface waves. The magnitude of the following earthquake can be significant as in the cases of the Tunguska event of 30 June 1908 or the Chelyabinsk airburst of 15 February 2013. If the pressure on the ground is known as a function of coordinates and time, the energy of seismic waves can be calculated using a solution of Lamb’s problem of the response to vertical load acting on the surface of an elastic half-space. The numerical procedure includes calculations of pressure spectra and integrals which are proportional to the energy of seismic waves. The final formula for the calculation of earthquake magnitudes was calibrated using published results of measurements made during nuclear tests on Novaya Zemlya in 1961 - 1962. We carried out numerical simulations of the aerial shock waves in Chelyabinsk event of 15 February 2013, using hydrodynamic codes. The energy input along the atmospheric trajectory inclined at 19° to the Earth surface was assumed to be proportional to the radiation intensity derived from numerous video records. The calculated magnitude of the seismic source proved to be 3.85 on the assumption that the initial kinetic energy of the asteroid was 300 kt TNT. For the energy of 500 kt TNT the magnitude was 4.0. These values are in agreement with the results of magnitude records within the measurement errors. We also calculated the magnitudes of earthquakes caused by spherical explosions with the energies from 30 kt to 30 Mt TNT (bodies from ~7 to 70 m in size) at altitudes from 5 to 45 km. The earthquake magnitude of the Chelyabinsk event corresponds to a spherical explosion at an altitude of about 35 km. For the Tunguska event of 1908, we obtained the earthquake magnitudes from 4.8 to 5.0, assuming that the body energy was from 7 to 18 Mt. Furthermore, we determined the energy of the Chulym bolide of 26 February 1984 which caused an earthquake with a magnitude of about 3.4. The calculated energy is 35 Mt TNT. The work was partly supported by the Russian Foundation for Basic Research, grant no. 13-05-00309-a

  14. Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1983-01-01

    The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.

  15. LETTER TO THE EDITOR: A disintegrating cosmic string

    NASA Astrophysics Data System (ADS)

    Griffiths, J. B.; Docherty, P.

    2002-06-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.

  16. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    PubMed

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  17. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  18. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-09-21

    The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.

  19. Airblast Simulator Studies.

    DTIC Science & Technology

    1984-02-01

    RAREFACTION WAVE ELIMINATOR CONSIDERATIONS 110 5.1 FLIP CALCULATIONS 110 5.2 A PASSIVE/ACTIVE RWE 118 6 DISTRIBUTED FUEL AIR EXPLOSIVES 120 REFERENCES 123 TA...conventional and distributed-charge fuel- air explosive charges used in a study of the utility of distributed charge FAE systems for blast simulation. The...limited investigation of distributed charge fuel air explosive configurations for blast simulator applications. During the course of this study

  20. Bumps of the wave structure function in non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Qiao, Chunhong; Lu, Lu; Zhang, Pengfei; Wang, Haitao; Huang, Honghua; Fan, Chengyu

    2015-10-01

    The analytical expressions for wave structure function of plane and spherical waves are derived both in the viscous dissipation and inertial range. Due to previously research, there is a discrepancy between theoretical results and the experimental datum in viscous dissipation range. In this paper, only considering the inertial range, taking plane waves for example, we give a comparison of results of WSF calculated by the analytical formula obtained in this paper and the numerical calculations of the definition at the fixed parameter (i.e., the generalized exponent α), it can be seen that the two results are in agreement with each other exactly. Based on non-Kolmogorov power spectrum, new characteristics for wave structure function (WSF) have been found for plane and spherical wave models when the different ratio of inner scale l0 and outer scale of turbulence L0 is obtained. In outer scale assumed finite case (i.e., L0 =1m), WSF obtains the maximum when α approximates to 3.3 both for plane and spherical wave models. In outer scale assumed infinite case (i.e., L0 = ∞), the WSF can be sorted into three parts, including two rapid-rising regions (i.e., 3.0 < α < 3.3 and 3.8 < α < 4.0 ) and one gently rising region (i.e., 3.3 < α < 3.8 ).Further, the changes of scaled WSF versus the ratio of separation distance and inner scale ( p/ l0 ) are investigated under mentioned above conditions for two models. In L0 = 1m case, both for plane and spherical waves, the value of α determines the bump position of WSF. In L0 = ∞ case, the bump of scaled WSF disappears when the generalized exponent has large values. The changings of scaled WSF monotonically increase as α increased when the generalized exponent is larger than11/3 for two models. Besides, the properties of spherical waves are similar to plane waves, except which the values of WSF and the scaled WSF are smaller than plane ones.

  1. "Special Case" Stellar Blast Teaching Astronomers New Lessons About Cosmic Explosions

    NASA Astrophysics Data System (ADS)

    2006-07-01

    A powerful thermonuclear explosion on a dense white-dwarf star last February has given astronomers their best look yet at the early stages of such explosions, called novae, and also is giving them tantalizing new clues about the workings of bigger explosions, called supernovae, that are used to measure the Universe. RS Ophiuchi Expansion RS Ophiuchi Expansion CREDIT: Rupen, Mioduszewski & Sokoloski, NRAO/AUI/NSF (Click on image for full-sized image and detailed caption) Using the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes, "We have seen structure in the blast earlier than in any other stellar explosion," said Tim O'Brien of the University of Manchester's Jodrell Bank Observatory in the U.K. "We see evidence that the explosion may be ejecting material in jets, contrary to theoretical models that assumed a spherical shell of ejected material," O'Brien added. The explosion occurred in a star system called RS Ophiuchi, in the constellation Ophiuchus. RS Ophiuchi consists of a dense white dwarf star with a red giant companion whose prolific stellar wind dumps material onto the surface of the white dwarf. When enough of this material has accumulated, theorists say, a gigantic thermonuclear explosion, similar to a hydrogen bomb but much larger, occurs. Systems such as RS Ophiuchi may eventually produce a vastly more powerful explosion -- a supernova -- when the white dwarf accumulates enough mass to cause it to collapse and explode violently. Because such supernova explosions (called Type 1a supernovae by astronomers) all are triggered as the white dwarf reaches the same mass, they are thought to be identical in their intrinsic brightness. This makes them extremely valuable as "standard candles" for measuring distances in the Universe. "We think the white dwarf in RS Ophiuchi is about as massive as a white dwarf can get, and so is close to the point when it will become a supernova," said Jennifer Sokoloski, of the Harvard- Smithsonian Center for Astrophysics. "If astronomers use such supernovae to measure the Universe, it's important to fully understand how these systems evolve prior to the explosion," she added. RS Ophiuchi is a "recurrent" nova that experienced such blasts in 1898, 1933, 1958, 1967, and 1985 prior to this year's event. Sokoloski also pointed out that RS Ophiuchi is "a very special type of system," in which the nova explosions occur inside a gaseous nebula created by the stellar wind coming from the red giant companion to the white dwarf. "This means that we can track the outward-moving blast wave from the explosion by observing X-rays produced as the blast plows through this nebula," said Sokoloski, who led a team using the Rossi X-Ray Timing Explorer (RXTE) satellite to do so. "One natural way to produce what we observe is with an explosion that was not spherical," she added. Another surprise came when the radio waves coming from RS Ophiuchi indicated that a strong magnetic field is present in the material ejected by the explosion. "This is the first case we've seen that showed signs of such a magnetic field in a recurrent nova," said Michael Rupen who, with Amy Mioduszewski, both of the National Radio Astronomy Observatory, and Sokoloski, did another study of the system using the VLBA. Rupen pointed out the importance of observing the object with both X-ray and radio telescopes. "What we could infer from the X-ray data, we could image with the radio telescopes," he said. All the researchers agree that their studies show that the explosion is more complex than scientists previously thought such blasts to be. "It's a jet-like explosion, probably shaped by the geometry of the binary-star system at the center," said O'Brien. Rupen added that RS Ophiuchi showed the "earliest detection ever of such a jet. In fact, we could actually tell -- within a couple of days -- when the jet turned on." The new information is valuable for understanding not just nova explosions but other stellar blasts, the scientists believe. "The physics is analogous to the physics of supernova explosions, so what we're learning from this object can be applied to supernovae and possibly to stellar explosions in general," Sokoloski said. In addition, she said, "in the early days of this explosion, we saw changes in the blast wave that it would take hundreds of years to see in a supernova explosion." The teams led by O'Brien and Sokoloski reported their findings in the July 20 edition of the scientific journal Nature. Rupen and Mioduszewski are submitting their results to the Astrophysical Journal Letters. Working with O'Brien were Mike Bode of Liverpool John Moores University in the U.K., Richard Porcas of the Max Planck Institute for Radioastronomy in Germany, Tom Muxlow of Jodrell Bank Observatory, Stewart Eyres of the University of Central Lancashire in the U.K., Rob Beswick, Simon Garrington and Richard Davis, all of Jodrell Bank, and Nye Evans of Keele University in the U.K. Working with Sokoloski were Gerardo Luna of the Harvard Smithsonian Center for Astrophysics, Koji Mukai of NASA's Goddard Space Flight Center and Scott Kenyon of the Harvard-Smithsonian Center for Astrophysics. In addition to the VLBA, O'Brien's group used the NSF's Very Large Array (VLA), the Multi-Element Radio-Linked Interferometer Network (MERLIN) in the U.K., and the European VLBI Network (EVN). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. Air Blasts from Cased and Uncased Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg 1/3 at sea level. At a height of 30 km, where themore » ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg 1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg 1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and impulse also decrease rapidly with altitude. The effect of the fragments is to increase lethality. Whereas at a scaled range of 10 m/kg 1/3 , the peak overpressure is an order of magnitude less than the ambient pressure, the number of fragments per unit area is close to 1 m -2 /kg 1/3 , independent of case thickness or altitude. For sufficient ratio of case-to- explosive mass, the number of fragments scales with the cube root of the yield and is independent of case thickness.« less

  3. Ozone formation behind pulsed-laser-generated blast waves in oxygen

    NASA Astrophysics Data System (ADS)

    Stricker, J.; Parker, J. G.

    1984-12-01

    The formation of ozone behind blast waves in oxygen generated by a pulsed laser has been investigated both experimentally and theoretically, over cell pressure range of 0.68-27 atm. Ozone buildup formed by successive pulses was monitored by recording UV absorption at 2540 Å. It was found that, as the number of pulses increase, the rate of ozone formation decreased until finally an equilibrium concentration was reached. This equilibrium magnitude was determined by the condition that the number of ozone molecules produced by the wave equals the number decomposed by the same wave. The decomposition and formation of O3 during a single pulse were monitored by time-resolved UV absorption measurements. In order to provide a fundamental basis for interpretation of the mechanism of ozone formation, a mathematical model was developed. Although qualitatively measurements and theory agree, the data, mainly on the number of O3 molecules produced per pulse, is in significant disagreement. Several possible explanations of this discrepancy are given.

  4. The ratio between corner frequencies of source spectra of P- and S-waves—a new discriminant between earthquakes and quarry blasts

    NASA Astrophysics Data System (ADS)

    Ataeva, G.; Gitterman, Y.; Shapira, A.

    2017-01-01

    This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md = 1.4-3.4, which occurred at distances up to 250 km during 2001-2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune's source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217-226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.

  5. A Spherical to Plane Wave Transformation Using a Reflectarray

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lee, Richard Q.

    1997-01-01

    A reflectarray has generally been used as a replacement for a reflector antenna. Using in this capacity, different configurations (prime focus, offset etc.) and various applications (dual frequency, scanning etc.) have been demonstrated with great success. Another potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space power combining applications such as space-fed lens and power combining amplifier. In these applications, it is required to convert a spherical wave to a plane wave with proper phase correction added to each element of the reflectarray. This paper reports an experiment to investigate the feasibility of using a reflectarray as an alternative to a lens in space power combining. The experiment involves transforming a spherical wave from a orthomode horn to a plane wave at the horn aperture. The reflcctarray consists of square patches terminated in open stubs to provide necessary phase compensation. In this paper, preliminary results will be presented and the feasibility of such compensation scheme will be discussed.

  6. Grating tuned unstable resonator laser cavity

    DOEpatents

    Johnson, Larry C.

    1982-01-01

    An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.

  7. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  8. Blast and Fragment Protective Sandwich Panel Concepts for Stainless Steel Monohull Designs

    DTIC Science & Technology

    2008-10-21

    to draw broader conclusions. 8. Concluding remarks The resistance of metallic sandwich panels to localized spherical impulsive sources has been...hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and...applications and ship hull blister attachments. Technical Approach The approach used in this research program exploited progress made in metallic

  9. The influence of clothing on human intrathoracic pressure during airblast.

    PubMed

    Young, A J; Jaeger, J J; Phillips, Y Y; Yelverton, J T; Richmond, D R

    1985-01-01

    Exposure to airblast can result in injury to the lungs and other gas-containing organs. The mechanism of lung injury is not clearly understood, but may be related to the rapid increase in intrathoracic pressure (ITP) which is produced when the blast wave strikes the chest wall. The purpose of this study was to determine if ITP during airblast would be influenced by several different types of protective clothing. Ten healthy young male volunteers were exposed to airblast while standing face-on and wearing 1) military fatigues (control condition); 2) fatigues with field jacket; 3) fatigues with ballistic armor vest; 4) fatigues with ceramic vest; 5) fatigues with ceramic vest over the ballistic vest. The incident blast waves simulated artillery muzzle blast. In each subject, an esophageal strain-gauge pressure transducer measured ITP during the blast. The pressure signal was analyzed for ITPmax, and maximum rate of rise of ITP (dP X dt max-1). In addition, the power density spectra of each ITP wave was computed and the peak frequency (fp) and centroid frequency (fc) were calculated. When the subjects wore the ballistic vest, the mean ITPmax was higher (p less than 0.05) than when they were exposed to airblast in fatigues alone. ITPmax was not influenced by the other clothing ensembles. The mean dP X dtmax-1 was not significantly different with any protective clothing ensemble. Clothing had no significant effect of fp, but with the ballistic vest, the mean calculated fc was higher (p less than 0.05) than that for the fatigues alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  11. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  12. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  13. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    NASA Astrophysics Data System (ADS)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  14. Shear wave induced resonance elastography of spherical masses with polarized torsional waves.

    PubMed

    Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-26

    Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  15. Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.

    PubMed

    Davie, C J; Evans, R G

    2013-05-03

    We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy.

  16. Forensic Seismology: constraints on terrorist bombings

    NASA Astrophysics Data System (ADS)

    Wallace, T. C.; Koper, K. D.

    2002-05-01

    Seismology has long been used as a tool to monitor and investigate explosions, both accidental and intentional. Seismic records can be used to provide a precise chronology of events, estimate the energy release in explosions and produce constraints to test various scenarios for the explosions. Truck bombs are a popular tool of terrorists, and at least two such attacks have been recorded seismically. On August 7, 1998 a truck bomb was detonated near the US embassy in Nairobi, Kenya. The bomb seriously damaging a dozen buildings, injuring more than 4000 people and causing 220 fatalities. The explosion was recorded on a short-period seismometer located north of the blast site; the blast seismogram contained body waves, Rayleigh waves and vibrations associated with the air blast. Modeling of the body and surfaces wave allowed an estimate of the origin time of the bombing, which it turn could be used as a constraint the timing of the air blasts. The speed of the air waves from an explosion depend on the air temperature and the size, or yield, of the explosion. In an effort to fully utilize the seismic recordings from such attacks, we analyzed the seismic records from a series of controlled truck bomb explosions carried out at White Sand Missile Range in New Mexico. We developed a new set of scaling laws that relate seismic and acoustic observations directly to the explosive mass (yield). These relationships give a yield of approximately 3000 kg of TNT equivalent for the Nairobi bomb. The terrorist bombing of the Murrah Federal Building in Oklahoma City in 1995 was also recorded on seismometers. One of these records showed 2 discrete surface wavetrains separated by approximately 10 seconds. Some groups seized on the seismic recordings as evidence that there were 2 explosions, and that the US government was actually behind the bombing. However, the USGS monitored the demolition of the remainder of the Murrah Building and showed that the collapse also produced 2 surface waves. The interpretation is that one group was the fundamental mode Rayleigh wave while the other was either a higher-mode surface wave or a scattered S-wave (Lg like) packet (Holzer et al, 1996). This example illustrates the utility of forensic seismology for testing various hypothesis for the explosions. As the number of permanent and temporarily installed seismometers increase in the next decade, the number of "exotic" sources recorded and investigated is grow dramatically. These studies can be very useful for investigating terrorist attacks, and developing scenarios for the crimes.

  17. Vascular and Inflammatory Factors in the Pathophysiology of Blast-Induced Brain Injury

    PubMed Central

    Elder, Gregory A.; Gama Sosa, Miguel A.; De Gasperi, Rita; Stone, James Radford; Dickstein, Dara L.; Haghighi, Fatemeh; Hof, Patrick R.; Ahlers, Stephen T.

    2015-01-01

    Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI. PMID:25852632

  18. A spherical harmonic approach for the determination of HCP texture from ultrasound: A solution to the inverse problem

    NASA Astrophysics Data System (ADS)

    Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.

    2015-10-01

    A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.

  19. Resonance energy transfer: The unified theory via vector spherical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherentmore » in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.« less

  20. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less

  1. Primary blast injuries.

    PubMed

    Phillips, Y Y

    1986-12-01

    Injury from explosion may be due to the direct cussive effect of the blast wave (primary), being struck by material propelled by the blast (secondary), to whole-body displacement and impact (tertiary), or to miscellaneous effects from burns, toxic acids, and so on. Severe primary blast injury is most likely to be seen in military operations but can occur in civilian industrial accidents or terrorist actions. Damage is seen almost exclusively in air-containing organs--the lungs, the gastrointestinal tract, and the auditory system. Pulmonary injury is characterized by pneumothorax, parenchymal hemorrhage, and alveolar rupture. The last is responsible for the arterial air embolism that is the principle cause of early mortality. Treatment for blast injury is similar to that for blunt trauma. The sequalae of air embolization to the cerebral or coronary circulation may be altered by immediate hyperbaric therapy. Use of positive pressure ventilatory systems should be closely monitored as they may increase the risk of air embolism in pneumothorax. Morbidity and mortality may be increased by strenuous exertion after injury and by the wearing of a cloth ballistic vest at the time of the blast.

  2. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

    PubMed

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M

    2013-05-15

    To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.

  3. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  4. Gun muzzle blast and flash

    NASA Astrophysics Data System (ADS)

    Klingenberg, Guenter; Heimerl, Joseph M.

    A repository of fundamental experimental and analytical data concerning the complex phenomena associated with gun-muzzle blast and flash effects is presented, proceeding from gun muzzle signatures to modern gun-propulsion concepts, interior and transitional ballistics, and characterizations of blast-wave research and muzzle flash. Data are presented in support of a novel hypothesis which explains the ignition of secondary flash and elucidates the means for its suppression. Both chemical and mechanical (often competing) methods of flash suppression are treated. The historical work of Kesslau and Ladenburg is noted, together with French, British, Japanese and American research efforts and current techniques of experimental characterization for gun muzzle phenomena.

  5. Comprehensive 3D Model of Shock Wave-Brain Interactions in Blast-Induced Traumatic Brain Injuries

    DTIC Science & Technology

    2009-10-01

    waves can cause brain damage by other mechanisms including excess pressure (leading to contusions), excess strain (leading to subdural ... hematomas and/or diffuse axonal injuries), and, in particular, cavitation effects (leading to subcellular damage). This project aims at the development of a

  6. Aluminum Micro-Balloons as Improved Fuel for Warhead Explosives

    DTIC Science & Technology

    2018-01-29

    12-1-0006 Dr. Jerry W. Forbes Prepared by: Energetics Technology Center 10400 O Donnell Place Suite 202 St. Charles, MD 20603...the goal of enhancing blast waves. This 6.2 grant work provides the baseline technology to understand shock wave experiments done and to be done

  7. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition

    PubMed Central

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-01-01

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065

  8. Dynamic morphology applied to human and animal leukemia cells.

    PubMed

    Haemmerli, G; Felix, H; Sträuli, P

    1979-08-01

    Dynamic morphology, which describes the shape and surface architecture of fixed cells in terms related to their behavior in the living state, is based on the concurrent use of two methods: scanning electron microscopy and microcinematography. This combination has both advantages and disadvantages. In this study on leukemic cells, we were able to draw the following conclusions about the usefulness of dynamic morphology. It confirms that white blood cells do not flatten on a glass substrate; they stay spherical and are either round or polarized. Round cells of similar size, whatever their origin, cannot be classified by dynamic morphology. Polarized cells can be classified as blasts, promyelocytes, myelocytes, granulocytes and lymphocytes, although polarized blast cells of different origins cannot be differentiated. Dynamic morphology cannot classify the same cell type as benign or malignant.

  9. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered asmore » a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.« less

  10. Electron Bernstein waves in spherical torus plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saveliev, A. N.

    2006-11-30

    Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less

  11. Approximation method for a spherical bound system in the quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.

    2010-08-15

    A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.

  12. Spherical shock-wave propagation in three-dimensional granular packings.

    PubMed

    Xue, Kun; Bai, Chun-Hua

    2011-02-01

    We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.

  13. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  14. Compact and reliable triggering method for near muzzle flash radiography

    NASA Astrophysics Data System (ADS)

    Lee, Eun S.; Hwang, Eul H.; Yim, Dong W.; Song, So Y.

    1993-01-01

    Precise timing for x-ray bursts is crucial in acquiring useful information from flash radiographic experiments. Triggering the flash x-ray system near the muzzle is a difficult task because of the intrinsic nature of the muzzle blast. In this work a compact and reliable triggering method for near muzzle flash radiography is introduced; a piezoelectric pin probe attached at the end of the barrel. These types of probes have not been activated by the precursor shock wave, but they have been activated by the main blast wave only. Reliability in triggering the flash x-ray system has been confirmed throughout a series of flash radiographic experiments near the muzzle for gun barrels with calibers up to 105 mm.

  15. Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, Gennadiy

    2015-03-01

    The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  16. Modeling and simulation of explosion effectiveness as a function of blast and crowd characteristics

    NASA Astrophysics Data System (ADS)

    Usmani, Zeeshan-Ul-Hassan

    Suicide bombing has become one of the most lethal and favorite modus operandi of terrorist organizations around the world. On average, there is a suicide bombing attack every six days somewhere in the world. While various attempts have been made to assess the impact of explosions on structures and military personnel, little has been done on modeling the impact of a blast wave on a crowd in civilian settings. The assessment of an explosion's effect on a crowd can lead to better management of disasters, triage of patients, locating blast victims under the debris, development of protective gear, and safe distance recommendations to reduce the casualties. The overall goal of this work is to predict the magnitude of injuries and lethality on humans from a blast-wave with various explosive and crowd characteristics, and to compare, contrast, and analyze the performance of explosive and injury models against the real-life data of suicide bombing incidents. This thesis introduces BlastSim---a physics based stationary multi-agent simulation platform to model and simulate a suicide bombing event. The agents are constrained by the physical characteristics and mechanics of the blast wave. The BlastSim is programmed to test, analyze, and validate the results of different model combinations under various conditions with different sets of parameters, such as the crowd and explosive characteristics, blockage and human shields, fragmentation and the bomber's position, in 2-dimensional and 3-dimensional environments. The suicide bombing event can be re-created for forensic analysis. The proposed model combinations show a significant performance---the Harold Brode explosive model with Catherine Lee injury model using the blockage stands out consistently to be the best with an overall cumulative accuracy of 87.6%. When comparing against actual data, overall, prediction accuracy can be increased by 71% using this model combination. The J. Clutter with Reflection explosive model using Charles Stewart injury model with blockage works best for confined-space incidents with an accuracy of 80%. Blockage in a crowd can increase the accuracy by 17% for all models. Line-of-sight with an attacker, rushing towards an exit, announcing the threat of a suicide bombing, sitting inside a vehicle or building, and standing closer to a wall or a rigid surface were found to be the most lethal choices both during and after an attack. The findings can have implications for emergency response and counter terrorism.

  17. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury.

    PubMed

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W; Martyniuk, Christopher J; Langlois, Valerie S

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.

  18. Transcriptional Profiling in Rat Hair Follicles following Simulated Blast Insult: A New Diagnostic Tool for Traumatic Brain Injury

    PubMed Central

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W.; Martyniuk, Christopher J.; Langlois, Valerie S.

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis. PMID:25136963

  19. Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Drake, Jeremy J.; Miceli, Marco

    2017-02-01

    The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blueshifted emission lines. Here we investigate the origin of these asymmetries through 3D hydrodynamic simulations describing the outburst during the first 20 d of evolution. The model takes into account thermal conduction and radiative cooling, and assumes that a blast wave propagates through an equatorial density enhancement (EDE). From these simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the EDE. The majority of the X-ray emission originates from the interaction of the blast with the EDE and is concentrated on the equatorial plane as a ring-like structure. Our `best-fitting' model requires a mass of ejecta in the outburst Mej ≈ 3 × 10-7 M⊙ and an explosion energy Eb ≈ 3 × 1043 erg, and reproduces the distribution of emission measure versus temperature and the evolution of shock velocity and temperature inferred from the observations. The model predicts asymmetric and blueshifted line profiles similar to those observed and explains their origin as due to substantial X-ray absorption of redshifted emission by ejecta material. The comparison of predicted and observed Ne and O spectral line ratios reveals no signs of strong Ne enhancement and suggests that the progenitor is a CO white dwarf.

  20. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  1. Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators

    NASA Astrophysics Data System (ADS)

    Alamri, Sagr; Li, Bing; Tan, K. T.

    2018-03-01

    Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.

  2. Regular and chaotic dynamics of non-spherical bodies. Zeldovich's pancakes and emission of very long gravitational waves

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-10-01

    > In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.

  3. Discontinuity-free edge-diffraction model for characterization of focused wave fields.

    PubMed

    Sedukhin, Andrey G

    2010-03-01

    A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.

  4. Retinal Ganglion Cell Damage in an Experimental Rodent Model of Blast-Mediated Traumatic Brain Injury

    PubMed Central

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.

    2013-01-01

    Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426

  5. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure.

    PubMed

    Song, Hailong; Konan, Landry M; Cui, Jiankun; Johnson, Catherine E; Langenderfer, Martin; Grant, DeAna; Ndam, Tina; Simonyi, Agnes; White, Tommi; Demirci, Utkan; Mott, David R; Schwer, Doug; Hubler, Graham K; Cernak, Ibolja; DePalma, Ralph G; Gu, Zezong

    2018-07-16

    Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10 -3  ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  7. Analysis of Multi-Layered Materials Under High Velocity Impact Using CTH

    DTIC Science & Technology

    2008-03-01

    of state . The other relationship deals with the deviatoric stress and is taken care of by the constitutive equations which are discussed in the next...models in CTH decompose the total stress tensor into the spherical and deviatoric parts. The spherical part of the stress tensor is the equation of state ...investigate the effects of wave propagation. Waves in rods are considered to create a state of

  8. Radiative precursors driven by converging blast waves in noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.

    2014-03-15

    A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicularmore » to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.« less

  9. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat.

    PubMed

    Dal Cengio Leonardi, Alessandra; Keane, Nickolas J; Bir, Cynthia A; Ryan, Anne G; Xu, Liaosa; Vandevord, Pamela J

    2012-10-11

    Since an increasing number of returning military personnel are presenting with neurological manifestations of traumatic brain injury (TBI), there has been a great focus on the effects resulting from blast exposure. It is paramount to resolve the physical mechanism by which the critical stress is being inflicted on brain tissue from blast wave encounters with the head. This study quantitatively measured the effect of head orientation on intracranial pressure (ICP) of rats exposed to a shock wave. Furthermore, the study examined how skull maturity affects ICP response of animals exposed to shock waves at various orientations. Results showed a significant increase in ICP values in larger rats at any orientation. Furthermore, when side-ICP values were compared to the other orientations, the peak pressures were significantly lower suggesting a relation between ICP and orientation of the head due to geometry of the skull and location of sutures. This finding accentuates the importance of skull dynamics in explaining possible injury mechanisms during blast. Also, the rate of pressure change was measured and indicated that the rate was significantly higher when the top of the head was facing the shock front. The results confirm that the biomechanical response of the superior rat skull is distinctive compared to other areas of the skull, suggesting a skull flexure mechanism. These results not only present insights into the mechanism of brain injury, but also provide information which can be used for designing more effective protective head gear. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Protection of the lung from blast overpressure by stress wave decouplers, buffer plates or sandwich panels.

    PubMed

    Sedman, Andrew; Hepper, A

    2018-03-19

    This paper outlines aspects of UK Ministry of Defence's research and development of blast overpressure protection technologies appropriate for use in body armour, with the aim of both propagating new knowledge and updating existing information. Two simple models are introduced not only to focus the description of the mechanism by which the lungs can be protected, but also to provide a bridge between fields of research that may hold the key to further advances in protection technology and related body armour. Protection can be provided to the lungs by decoupling the stress wave transmission into the thorax by managing the blast energy imparted through the protection system. It is proposed that the utility of the existing 'simple decoupler' blast overpressure protection is reviewed in light of recent developments in the treatment of those sustaining both overpressure and fragment injuries. It is anticipated that further advances in protection technology may be generated by those working in other fields on the analogous technologies of 'buffer plates' and 'sandwich panels'. © Crown copyright (2018), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

  11. Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.

    2016-01-01

    The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.

  12. AN EXTERNAL SHOCK ORIGIN OF GRB 141028A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ -ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF{sub ν} peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF{sub ν} peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of themore » blast wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF{sub ν} peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.« less

  13. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  14. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  15. Acoustically excited surface waves on empty or fluid-filled cylindrical and spherical shells

    NASA Astrophysics Data System (ADS)

    Ahyi, A. Claude; Cao, H.; Raju, P. K.; Werby, M. F.; Bao, X. L.; Überall, H.

    2002-05-01

    A comparative study is presented of the acoustical excitation of circumferential (surface) waves on fluid-immersed cylindrical or spherical metal shells, which may be either evacuated, or filled with the same or a different fluid. The excited surface waves can manifest themselves by the resonances apparent in the sound scattering amplitude, which they cause upon phase matching following repeated circumnavigations of the target object, or by their re-radiation into the external fluid in the manner of head waves. We plot dispersion curves versus frequency of the surface waves, which for evacuated shells have a generally rising character, while the fluid filling adds an additional set of circumferential waves that descend with frequency. The resonances of these latter waves may also be interpreted as being due to phase matching, but they may alternately be interpreted as constituting the eigenfrequencies of the internal fluid contained in an elastic enclosure.

  16. Initiation and structures of gaseous detonation

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. A.; Vasiliev, V. A.

    2018-03-01

    The analysis of the initiation of a detonation wave (DW) and the emergence of a multi-front structure of the DW-front are presented. It is shown that the structure of the DW arises spontaneously at the stage of a strong overdriven of the wave. The hypothesis of the gradual enhancement of small perturbations on an initially smooth initiating blast wave, traditionally used in the numerical simulation of multi-front detonation, does not agree with the experimental data. The instability of the DW is due to the chemical energy release of the combustible mixture Q. A technique for determining the Q-value of mixture was proposed, based on reconstruction of the trajectory of the expanding wave from the position of the strong explosion model. The wave trajectory at the critical initiation of a multifront detonation in a combustible mixture is compared with the trajectory of an explosive wave from the same initiator in an inert mixture whose gas-dynamic parameters are equivalent to the parameters of the combustible mixture. The energy release of a mixture is defined as the difference in the joint energy release of the initiator and the fuel mixture during the critical initiation and energy release of the initiator when the blast wave is excited in an inert mixture. Observable deviations of the experimental profile of Q from existing model representations were found.

  17. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    NASA Astrophysics Data System (ADS)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn-cut blast design. The possible step by step approach to establish a vibration predictor equation is also proposed.

  18. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  19. Random Choice Solutions for Weak Spherical Shock-Wave Transitions of N-Waves in Air with Vibrational Excitation.

    DTIC Science & Technology

    1983-07-01

    ionalI relaxat in dii icons whe-re kricrw-i aitMSo~lli-l-ic cirrd it ions could efc-tes for spherical I\\ -svrmetric wave s . bc obitani rd - It will lit...of cibirat jona 1 nonequ iiib rium cont rihuteCs to tr univ for weak waves. The rise times for the ieI ciCUlatijun for cases A5 , 81l, Cl and DI real...I ibrium thle c;iI itid ma iuum oci-rpressiire t I pIm1 atid in) :ompairisoni with c-ase A5 . hi ile almxost the same the half diii t iou tdI

  20. Photoacoustic Effect Generated from an Expanding Spherical Source

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Diebold, Gerald J.

    2018-02-01

    Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.

  1. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  2. The Sedov Blast Wave as a Radial Piston Verification Test

    DOE PAGES

    Pederson, Clark; Brown, Bart; Morgan, Nathaniel

    2016-06-22

    The Sedov blast wave is of great utility as a verification problem for hydrodynamic methods. The typical implementation uses an energized cell of finite dimensions to represent the energy point source. We avoid this approximation by directly finding the effects of the energy source as a boundary condition (BC). Furthermore, the proposed method transforms the Sedov problem into an outward moving radial piston problem with a time-varying velocity. A portion of the mesh adjacent to the origin is removed and the boundaries of this hole are forced with the velocities from the Sedov solution. This verification test is implemented onmore » two types of meshes, and convergence is shown. Our results from the typical initial condition (IC) method and the new BC method are compared.« less

  3. The state of clouds in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Heathcote, S. R.; Brand, P. W. J. L.

    1983-04-01

    A highly approximate but simple model is developed which describes the interaction of a supernova blast wave with an interstellar cloud. The behavior of a cloud when exposed to conditions prevalent in a violent interstellar medium is examined using this model. Results show that after a cloud has been shocked it is rarely allowed sufficient time to return to pressure equilibrium with its surroundings before encountering a second shock. Thus, significant departures from pressure equilibrium are inevitable. It is determined that the disruption of a cloud by its passage through a blast wave is quite effective and the half life of clouds cannot greatly exceed the mean interval between shocks striking a given cloud. In addition, it is found that composite core-envelope clouds are not viable under typical conditions.

  4. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  5. Cellular characterization of compression-induceddamage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William

    2012-03-01

    Understanding the damage that high intensity compression waves induce in human tissues is critical for developing improved therapies for patients suffering from blast injuries. Experimentally based models of blast injury using live biological samples are needed. In this study we have developed a system to directly assess the effects of dynamic loading conditions on live cells. Here, we describe a confinement chamber designed to subject live cell cultures in a liquid environment to high intensity compression waves using a split Hopkinson pressure bar system. Signals from the strain gauges mounted on the bars and the chamber allow the measurement of parameters such as pressure and duration of the stimulus. The chamber itself also allows recovery of cells subjected to compression for assessment of cellular damage. In these studies we present evidence of increased levels of damage and loss of cellular integrity in cultured mouse mesenchymal stem cells subjected to a high-intensity compression wave with a peak pressure of 7.6 ± 0.8 MPa.

  6. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  7. Modeling of weak blast wave propagation in the lung.

    PubMed

    D'yachenko, A I; Manyuhina, O V

    2006-01-01

    Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.

  8. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

    PubMed

    Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary

    2016-10-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  10. Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin

    2013-04-01

    Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.

  11. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  12. Solitary waves in shallow water hydrodynamics and magnetohydrodynamics in rotating spherical coordinates

    NASA Astrophysics Data System (ADS)

    London, Steven D.

    2018-01-01

    In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.

  13. Assessment and Treatment of Blast-Induced Auditory and Vestibular Injuries

    DTIC Science & Technology

    2016-06-01

    Year 2: Q 1 – 2. Examine cochlear and vestibular tissue at 1d and 7d after bTBI Q 3 – 4. Examine cochlear and vestibular tissue at 30d and 60d...the key features of blast wave flow conditions, including the negative phase and secondary shock. However the ABS has not been previously utilized to...isoflurane can be easily adjusted by the flow control. However, due to movement artefact and nosecone constraints, it is a sub-optimal anesthetic

  14. Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.

    NASA Astrophysics Data System (ADS)

    Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam

    2017-04-01

    The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  15. AFWL (Air Force Weapons Laboratory) HULL (Hydrodynamics Unlimited) calculations of air blast over a dam slope. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, M.A.; Needham, C.E.; Stucker, M.

    1976-10-01

    This laboratory performed Hydrodynamics Unlimited (HULL) calculations of the air blast over a dam for two yields and two pressure regions. A 5th calculation included a rigid blockhouse at the foot of the dam. Although the shielding effect of the dam reduced the incident blast wave overpressure, reflection of the shock from the valley floor raised the peak overpressure up to at least 40% of the free air value. In almost every case, the overpressure impulses near the foot of the dam were greater than or equal to free air values. The rigid blockhouse experienced the most severe overpressure environments.more » The assumption of a 50-psi hard blockhouse is reasonable. During collapse of the blockhouse, it appears to be rigid to the air flow, since it responds slowly to the rapid air blast. Although there may be other reasons to detonate the weapon on the surface of the reservoir, the best way to destroy the blockhouse and any related structures with air blast, probably would be to detonate the device downstream of the blockhouse.« less

  16. Gangliosides and Ceramides Change in a Mouse Model of Blast Induced Traumatic Brain Injury

    PubMed Central

    2013-01-01

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced “mild” traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5–5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  17. Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions.

    PubMed

    Needham, Charles E; Ritzel, David; Rule, Gregory T; Wiri, Suthee; Young, Leanne

    2015-01-01

    Over the past several years, we have noticed an increase in the number of blast injury studies published in peer-reviewed biomedical journals that have utilized improperly conceived experiments. Data from these studies will lead to false conclusions and more confusion than advancement in the understanding of blast injury, particularly blast neurotrauma. Computational methods to properly characterize the blast environment have been available for decades. These methods, combined with a basic understanding of blast wave phenomena, enable researchers to extract useful information from well-documented experiments. This basic understanding must include the differences and interrelationships of static pressure, dynamic pressure, reflected pressure, and total or stagnation pressure in transient shockwave flows, how they relate to loading of objects, and how they are properly measured. However, it is critical that the research community effectively overcomes the confusion that has been compounded by a misunderstanding of the differences between the loading produced by a free field explosive blast and loading produced by a conventional shock tube. The principles of blast scaling have been well established for decades and when properly applied will do much to repair these problems. This paper provides guidance regarding proper experimental methods and offers insights into the implications of improperly designed and executed tests. Through application of computational methods, useful data can be extracted from well-documented historical tests, and future work can be conducted in a way to maximize the effectiveness and use of valuable biological test data.

  18. Neurological Effects of Blast Injury

    PubMed Central

    Hicks, Ramona R.; Fertig, Stephanie J.; Desrocher, Rebecca E.; Koroshetz, Walter J.; Pancrazio, Joseph J.

    2010-01-01

    Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurological consequences in the brain, but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April, 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurological focus alone. PMID:20453776

  19. Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma

    PubMed Central

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT. PMID:22485104

  20. Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse

    NASA Astrophysics Data System (ADS)

    Eslami, Majid; Goshtasbi, Kamran

    2018-04-01

    One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.

  1. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  2. X-Ray Emission from Supernova Remnants.

    NASA Astrophysics Data System (ADS)

    Sackville Hamilton, Andrew James

    1984-12-01

    This thesis deals with the x-ray spectra of supernova remnants (SNRs), and in particular the x-ray spectra of the two young Type I SNRs SN1006 and Tycho. Firstly an extensive grid of nonequilibrium model spectra of SNRs in the adiabatic blast wave stage of evolution is computed, and numerous diagnostics of the state and composi- tion of the blast wave plasma are plotted over parameter space. It is demonstrated that the spectrum of an adiabatic blast wave is a good approximation to several other model SNR structures in which emission is dominated by gas undergoing quasi steady state ioni- zation near a shock front, including the one-fluid isothermal blast wave similarity solution, and the reverse shock similarity solution advocated by Chevalier for the early evolution of Type I SNe. None of these structures appears able to account for the observed spectra of SN1006 or Tycho. A new similarity solution for the early time evolution of uniform ejecta moving into an external medium is presented. It is argued that the x-ray spectra of SN1006 and Tycho are consistent with emission mainly from a reverse shock into 1.4M(,o) of initially uniform density SN ejecta consisting of pure heavy elements, moving into a uniform medium. Satisfactory fits to the observed spectra are obtained with a two layer structure of ejecta, an outer layer of unprocessed material, and an inner layer of mixed processed heavy elements. The structure of ejecta inferred is similar for both SN1006 and Tycho, the marked difference between the two spectra being attributed largely to the lower density of the ambient medium around SN1006. The results are consistent with the theory of Type I SNe as exploded white dwarfs, and resolve the apparent problems of too little iron, and too much total mass, deduced by other authors from earlier analyses of the x-ray emission of SN1006 and Tycho. Various salient aspects of the physics of a shock-heated pure heavy element plasma are discussed.

  3. Observation of interaction of shock wave with gas bubble by image converter camera

    NASA Astrophysics Data System (ADS)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  4. Nonplanar ion acoustic waves with kappa-distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Biswajit

    2011-06-15

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing {kappa}) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. Themore » present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.« less

  5. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  6. Instability of a Planar Expansion Wave

    DTIC Science & Technology

    2005-10-11

    Israel 3E. T. S. I. Industriales , Universidad de Castilla-La Mancha, 13071 Cuidad Real, Spain Received 18 March 2005; published 11 October 2005 An...modulation amplitude m=dx. As first shown in 3, for ideal gases with moderate values of , like 5 3 or 7 5 , m in a rippled rarefaction wave exhibits...radiating gases . The accuracy of such approximation is beyond the scope of the present paper see 17 and refer- ences therein. A blast wave

  7. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    PubMed

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  8. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  9. Rigid polyurethane foam as an efficient material for shock wave attenuation

    NASA Astrophysics Data System (ADS)

    Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.

    2016-09-01

    A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.

  10. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  11. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  12. Reactivity and Fragmentation of Aluminum-based Structural Energetic Materials under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Glumac, Nick; Clemenson, Michael; Guadarrama, Jose; Krier, Herman

    2015-06-01

    Aluminum-cased warheads have been observed to generate enhanced blast and target damage due to reactivity of the aluminum fragments with ambient air. This effect can more than double the output of a conventional warhead. The mechanism by which the aluminum reacts under these conditions remains poorly understood. We undertake a highly controlled experimental study to investigate the phenomenon of aluminum reaction under explosive loading. Experiments are conducted with Al 6061 casings and PBX-N9 explosive with a fixed charge to case mass ratio of 1:2. Results are compared to inert casings (steel), as well as to tests performed in nitrogen environments to isolate aerobic and anaerobic effects. Padded walls are used in some tests to isolate the effects of impact-induced reactions, which are found to be non-negligible. Finally, blast wave measurements and quasi-static pressure measurements are used to isolate the fraction of case reaction that is fast enough to drive the primary blast wave from the later time reaction that generates temperature and overpressure only in the late-time fireball. Fragment size distributions, including those in the micron-scale range, are collected and quantified.

  13. Development of a 3D numerical methodology for fast prediction of gun blast induced loading

    NASA Astrophysics Data System (ADS)

    Costa, E.; Lagasco, F.

    2014-05-01

    In this paper, the development of a methodology based on semi-empirical models from the literature to carry out 3D prediction of pressure loading on surfaces adjacent to a weapon system during firing is presented. This loading is consequent to the impact of the blast wave generated by the projectile exiting the muzzle bore. When exceeding a pressure threshold level, loading is potentially capable to induce unwanted damage to nearby hard structures as well as frangible panels or electronic equipment. The implemented model shows the ability to quickly predict the distribution of the blast wave parameters over three-dimensional complex geometry surfaces when the weapon design and emplacement data as well as propellant and projectile characteristics are available. Considering these capabilities, the use of the proposed methodology is envisaged as desirable in the preliminary design phase of the combat system to predict adverse effects and then enable to identify the most appropriate countermeasures. By providing a preliminary but sensitive estimate of the operative environmental loading, this numerical means represents a good alternative to more powerful, but time consuming advanced computational fluid dynamics tools, which use can, thus, be limited to the final phase of the design.

  14. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    NASA Astrophysics Data System (ADS)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  15. Coherent backscattering of light by complex random media of spherical scatterers: numerical solution

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri

    2004-07-01

    Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.

  16. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  17. Simplified modeling of blast waves from metalized heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Zarei, Z.; Frost, D. L.

    2011-09-01

    The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.

  18. The quinary pattern of blast injury.

    PubMed

    Kluger, Yoram; Nimrod, Adi; Biderman, Philippe; Mayo, Ami; Sorkin, Patric

    2007-01-01

    Bombing is the primary weapon of global terrorism, and it results in a complicated, multidimensional injury pattern. It induces bodily injuries through the well-documented primary, secondary, tertiary, and quaternary mechanisms of blast. Their effects dictate special medical concern and timely implementation of diagnostic and management strategies. Our objective is to report on clinical observations of patients admitted to the Tel Aviv Medical Center following a terrorist bombing. The explosion injured 27 patients, and three died. Four survivors who had been in close proximity to the explosion, as indicated by their eardrum perforation and additional blast injuries, were exposed to the blast wave. They exhibited a unique and immediate hyperinflammatory state, two upon admission to the intensive care unit and two during surgery. This hyperinflammatory state manifested as hyperpyrexia, sweating, low central venous pressure, and positive fluid balance. This state did not correlate with the complexity of injuries sustained by any of the 67 patients admitted to the intensive care unit after previous bombings. The patients' hyperinflammatory behavior, unrelated to their injury complexity and severity of trauma, indicates a new injury pattern in explosions, termed the "quinary blast injury pattern." Unconventional materials used in the manufacture of the explosive can partly explain the observed early hyperinflammatory state. Medical personnel caring for blast victims should be aware of this new type of bombing injury.

  19. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    NASA Astrophysics Data System (ADS)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  20. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves

    PubMed Central

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-01-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  1. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  2. A Novel Closed-Head Model of Mild Traumatic Brain Injury Caused by Primary Overpressure Blast to the Cranium Produces Sustained Emotional Deficits in Mice

    PubMed Central

    Heldt, Scott A.; Elberger, Andrea J.; Deng, Yunping; Guley, Natalie H.; Del Mar, Nobel; Rogers, Joshua; Choi, Gy Won; Ferrell, Jessica; Rex, Tonia S.; Honig, Marcia G.; Reiner, Anton

    2014-01-01

    Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25–40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50–60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2–8 weeks after blast, 50–60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3–8 weeks after blast. Thus, the TBI caused by single 50–60 psi blasts in mice exhibits the minimal neuronal loss coupled to “diffuse” axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI. PMID:24478749

  3. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    PubMed

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.

  4. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777

  5. Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.

    2016-01-01

    Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.

  6. Primary Blast-Induced Traumatic Brain Injury in Rats Leads to Increased Prion Protein in Plasma: A Potential Biomarker for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory

    2015-01-01

    Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  7. Analysis of Ultrasonic Wave Scattering for Characterization of Defects in Solids

    DTIC Science & Technology

    1976-05-01

    embedded in a solid matrix.’ The results of this work have been partially reported in a paper sub- mitted to the "Journal of the Acoustical Society of...America." The abstract of this paper is presented here: a. "Scattering of Longitudinal Waves Incident on a Spherical Cavity in a Solid," B. R. Tittmann...F I 7 ... .OCT..9 UM... ... .. . ... U SCS7g. 31R 2. Scattering by a Spherical Inclusion During this past year the experimental portion of the

  8. Spherical Harmonic Decomposition of Gravitational Waves Across Mesh Refinement Boundaries

    NASA Technical Reports Server (NTRS)

    Fiske, David R.; Baker, John; vanMeter, James R.; Centrella, Joan M.

    2005-01-01

    We evolve a linearized (Teukolsky) solution of the Einstein equations with a non-linear Einstein solver. Using this testbed, we are able to show that such gravitational waves, defined by the Weyl scalars in the Newman-Penrose formalism, propagate faithfully across mesh refinement boundaries, and use, for the first time to our knowledge, a novel algorithm due to Misner to compute spherical harmonic components of our waveforms. We show that the algorithm performs extremely well, even when the extraction sphere intersects refinement boundaries.

  9. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  10. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID:21541261

  11. Quantifying Coastal Hazard of Airburst-Generated Tsunamis

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Boslough, M.

    2017-12-01

    The effort to prevent or mitigate the effects of an impact on Earth is known as planetary defense. A significant component of planetary defense research involves risk assessment. Much of our understanding of the risk from near-Earth objects comes from the geologic record in the form of impact craters, but not all asteroid impacts are crater-forming events. Small asteroids explode before reaching the surface, generating an airburst, and most impacts into the ocean do not penetrate the water to form a crater in the sea floor. The risk from these non-crater-forming ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall threat. One of the suggested mechanisms for the production of asteroid-generated tsunami is by direct coupling of the pressure wave to the water, analogous to the means by which a moving weather front can generate a meteotsunami. To test this hypothesis, we have run a series of airburst simulations and provided time-resolved pressure and wind profiles for tsunami modelers to use as source functions. We used hydrocodes to model airburst scenarios and provide time dependent boundary conditions as input to shallow-water wave propagation codes. The strongest and most destructive meteotsunami are generated by atmospheric pressure oscillations with amplitudes of only a few hPa, corresponding to changes in sea level of a few cm. The resulting wave is strongest when there is a resonance between the ocean and the atmospheric forcing. The blast wave from an airburst propagates at a speed close to a tsunami speed only in the deepest part of the ocean, and a Proudman resonance cannot be usually achieved even though the overpressures are orders of magnitude greater. However, blast wave profiles are N-waves in which a sharp shock wave leading to overpressure is followed by a more gradual rarefaction to a much longer-duration underpressure phase. Even though the blast outruns the water wave it is forcing, the tsunami should continue to be driven by the out-of-resonance gradient associated with the suction phase, which may depend strongly on the details of the airburst scenario. The open question is whether there are any conditions under which such an airburst can generate tsunami with substantial coastal hazard to contribute to the overall impact risk.

  12. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    PubMed

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  13. Quantification of non-ideal explosion violence with a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Hill, Larry G

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less

  14. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  15. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  16. Consortium Study of the Chelyabinsk Meteorite

    NASA Technical Reports Server (NTRS)

    Righter, K.; Fries, M. D.; Gibson, E. K.; Harrington, R.; Keller, L. P.; McCoy, T. J.; Morris, R. V.; Nagao, K.; Nakamura-Messenger, K.; Niles, P.; hide

    2013-01-01

    On February 15, 2013 approximately 17 m asteroid hit Earth, causing shock waves and air blasts over a portion of Russia. A significant amount of material has been recovered from this meteorite fall, officially named Chelyabinsk.

  17. Case Report: Lightning-Induced Pneumomediastinum.

    PubMed

    Blumenthal, Ryan; Saayman, Gert

    2017-06-01

    We present the case of a 41-year-old woman who was fatally injured during a witnessed lightning strike event and in whom autopsy revealed the unusual keraunopathological finding of overt pneumomediastinum. The possible pathophysiological mechanism(s) of causation of this phenomenon are discussed, with specific reference also to the "Macklin" effect and the role of blast overpressures associated with lightning strike. It is suggested that the latter may lead to sudden alveolar rupture, with subsequent rapid tracking of air along bronchovascular sheaths in a centripetal manner toward the hilum of the lung and thus into the mediastinum. A review of the blast literature suggests that this victim would have been exposed to a blast pressure wave of approximately 29-psi (200 kPa) to 72-psi (500 kPa) magnitude.

  18. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    DTIC Science & Technology

    2016-10-01

    Righting Reflex of rats following double blast exposure. 0 4 8 12 16 20 R ig ht in g Re fle x (m in ut es ) PLACEBO FISH OIL Total Lived Died...experiments. Funding Support: Geneva Foundation contractor – WRAIR Name: Joseph B. Long, Ph.D. Project Role: Co-Investigator – WRAIR Researcher...Funding Support: Clinical Research Management contractor Name: Andrew B. Batuure Project Role: Technician - WRAIR Researcher Identifier (e.g. ORCID

  19. The point explosion with radiation transport

    NASA Astrophysics Data System (ADS)

    Lin, Zhiwei; Zhang, Lu; Kuang, Longyu; Jiang, Shaoen

    2017-10-01

    Some amount of energy is released instantaneously at the origin to generate simultaneously a spherical radiative heat wave and a spherical shock wave in the point explosion with radiation transport, which is a complicated problem due to the competition between these two waves. The point explosion problem possesses self-similar solutions when only hydrodynamic motion or only heat conduction is considered, which are Sedov solution and Barenblatt solution respectively. The point explosion problem wherein both physical mechanisms of hydrodynamic motion and heat conduction are included has been studied by P. Reinicke and A.I. Shestakov. In this talk we numerically investigate the point explosion problem wherein both physical mechanisms of hydrodynamic motion and radiation transport are taken into account. The radiation transport equation in one dimensional spherical geometry has to be solved for this problem since the ambient medium is optically thin with respect to the initially extremely high temperature at the origin. The numerical results reveal a high compression of medium and a bi-peak structure of density, which are further theoretically analyzed at the end.

  20. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    PubMed

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.

  1. Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Hongtao; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI, also called intracranial injury) is a high potential threat to our soldiers. A helmet structural health monitoring system can be effectively used to study the effects of ballistic/blast events on the helmet and human skull to prevent soldiers from TBI. However, one of the biggest challenges lies in that the pressure sensor installed inside the helmet system must be fast enough to capture the blast wave during the transient period. In this paper, an ultrafast optical fiber sensor is presented to measure the blast signal. The sensor is based on a Fabry-Pérot (FP) interferometeric principle. An FP cavity is built between the endface of an etched optical fiber tip and the silica thin diaphragm attached on the end of a multimode optical fiber. The sensor is small enough to be installed in different locations of a helmet to measure blast pressure simultaneously. Several groups of tests regarding multi-layer blast events were conducted to evaluate the sensors' performance. The sensors were mounted in different segments of a shock tube side by side with the reference sensors, to measure a rapidly increasing pressure. The segments of the shock tube were filled with different media. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors. In addition, the home-made shock tube could provide a good resource to study the propagation of blast event in different media.

  2. Mitigation of explosions of hydrogen-air mixtures using bulk materials and aqueous foam

    NASA Astrophysics Data System (ADS)

    Medvedev, S. P.; Khomik, S. V.; Mikhalkin, V. N.; Ivantsov, A. N.; Agafonov, G. L.; Cherepanov, A. A.; Cherepanova, T. T.; Betev, A. S.

    2018-01-01

    The objective of this work is to determine experimentally the effectiveness of protective barriers under conditions when blast waves are generated during premixed hydrogen- air combustion in various regimes. Experiments are conducted in a vertical tube having a diameter of 54 mm and a length of up to 2 m. Blast loads are produced by acceleration of premixed hydrogen-air flames in the tube with ring obstacles. Comparative tests are performed between protection barriers made of bulk materials with different densities and aqueous foams with different expansion ratios. It is demonstrated that the degree of blast load attenuation by an aqueous foam barrier increases with decreasing molecular weight of the filling gas and increasing density (decreasing expansion ratio) of the foam. An Aerosil barrier three times thicker than a titanium-dioxide one is found to have a similar attenuating effect on blast action. However, the mass per unit area of an Aerosil barrier is lower than titanium dioxide by a factor of 6 and is comparable to foam. The observed dependence of blast load attenuation on parameters of bulk materials and aqueous foams must be taken into account in systems designed to mitigate the consequences of accidental hydrogen release and combustion.

  3. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    PubMed

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.

  4. Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads.

    PubMed

    Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques

    2017-04-15

    The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.

  5. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  6. Sound Beams with Shockwave Pulses

    NASA Astrophysics Data System (ADS)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  7. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.

    PubMed

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-04

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  8. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties

    NASA Astrophysics Data System (ADS)

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-01

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  9. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  10. Wave equations in conformal gravity

    NASA Astrophysics Data System (ADS)

    Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng

    2018-05-01

    We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.

  11. Revisiting the emission from relativistic blast waves in a density-jump medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J. J.; Huang, Y. F.; Dai, Z. G.

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an earlymore » time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.« less

  12. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  13. Waves in Radial Gravity Using Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.

    1999-01-01

    Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.

  14. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  15. High resolution seismic tomography imaging of Ireland with quarry blast data

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  16. Analysis of MINIE2013 Explosion Air-Blast Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, Julie M.; Rodgers, Arthur J.; Kim, Keehoon

    We report analysis of air-blast overpressure measurements from the MINIE2013 explosive experiments. The MINIE2013 experiment involved a series of nearly 70 near-surface (height-ofburst, HOB, ranging from -1 to +4 m) low-yield (W=2-20 kg TNT equivalent) chemical highexplosives tests that were recorded at local distances (230 m – 28.5 km). Many of the W and HOB combinations were repeated, allowing for quantification of the variability in air-blast features and corresponding yield estimates. We measured canonical signal features (peak overpressure, impulse per unit area, and positive pulse duration) from the air-blast data and compared these to existing air-blast models. Peak overpressure measurementsmore » showed good agreement with the models at close ranges but tended to attenuate more rapidly at longer range (~ 1 km), which is likely caused by upward refraction of acoustic waves due to a negative vertical gradient of sound speed. We estimated yields of the MINIE2013 explosions using the Integrated Yield Determination Tool (IYDT). Errors of the estimated yields were on average within 30% of the reported yields, and there were no significant differences in the accuracy of the IYDT predictions grouped by yield. IYDT estimates tend to be lower than ground truth yields, possibly because of reduced overpressure amplitudes by upward refraction. Finally, we report preliminary results on a development of a new parameterized air-blast waveform.« less

  17. Cylindrical and spherical Akhmediev breather and freak waves in ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.; El-Awady, E. I.

    2018-01-01

    The properties of cylindrical and spherical ion-acoustic breathers Akhmediev breather and freak waves in strongly coupled ultracold neutral plasmas (UNPs), whose constituents are inertial strongly coupled ions and weakly coupled Maxwellian electrons, are investigated numerically. Using the derivative expansion method, the basic set of fluid equations is reduced to a nonplanar (cylindrical and spherical)/modified nonlinear Schrödinger equation (mNLSE). The analytical solutions of the mNLSE were not possible until now, so their numerical solutions are obtained using the finite difference scheme with the help of the Dirichlet boundary conditions. Moreover, the criteria for the existence and propagation of breathers are discussed in detail. The geometrical effects due to the cylindrical and spherical geometries on the breather profile are studied numerically. It is found that the propagation of the ion-acoustic breathers in one-dimensional planar and nonplanar geometries is very different. Finally, our results may help to manipulate matter breathers experimentally in UNPs.

  18. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  19. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  20. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  1. Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yitian; Tian Bo; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083

    2006-11-15

    The spherical modified Kadomtsev-Petviashvili (smKP) model is hereby derived with symbolic computation for the dust-ion-acoustic waves with zenith-angle perturbation in a cosmic dusty plasma. Formation and properties of both dark and bright smKP nebulons are obtained and discussed. The relevance of those smKP nebulons to the supernova shells and Saturn's F-ring is pointed out, and possibly observable nebulonic effects for the future cosmic plasma experiments are proposed. The difference of the smKP nebulons from other types of nebulons is also analyzed.

  2. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  3. Focusing of Finite-Amplitude Cylindrical and Spherical Sound Waves in a Viscous and Heat-Conducting Medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chu, T.

    1971-01-01

    The focusing of acoustic pulses is studied analytically by considering the region of study in three parts: the converging, interaction and diverging regions. First, the linear problem of a pulse of infinitesimal amplitude is studied. For the spherical case, the expected phase change as a result of focusing is verified. The nonlinear case of finite-amplitude pulses leads to the development of M-waves, as determined by applying the method of matched-asymptotic expansions to Burges equation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Z. Lucas; Zhang Bing; Hascoeet, Romain

    We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the ''mechanical model'' that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adoptingmore » a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.« less

  5. Hydrodynamic Simulations of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  6. PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com

    2014-07-10

    We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less

  7. Numerical simulation of blast wave propagation in vicinity of standalone prism on flat plate

    NASA Astrophysics Data System (ADS)

    Valger, Svetlana; Fedorova, Natalya; Fedorov, Alexander

    2018-03-01

    In the paper, numerical simulation of shock wave propagation in the vicinity of a standalone prism and a prism with a cavity in front of it was carried out. The modeling was based on the solution of 3D Euler equations and Fluent software was used as a main computational tool. The algorithm for local dynamic mesh adaptation to high gradients of pressure was applied. The initial stage of the explosion of condensed explosive was described with the help of "Compressed balloon method". The research allowed describing the characteristic stages of the blast in a semi-closed space, the structure of secondary shock waves and their interaction with obstacles. The numerical approach in Fluent based on combining inviscid gas dynamics methods and "Compressed balloon method" was compared with the method which had been used by the authors earlier with the help of AUTODYN and which is based on the use of the hydrodynamic model of a material to describe state of detonation products. For the problem of shock wave propagation in the vicinity of standalone prism the comparison of the simulation results obtained using both the methods with the experimental data was performed on the dependence of static pressure and effective momentum on time for the characteristic points located on prism walls.

  8. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice

    PubMed Central

    Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.

    2016-01-01

    Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  9. Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI.

    PubMed

    Lotan, E; Morley, C; Newman, J; Qian, M; Abu-Amara, D; Marmar, C; Lui, Y W

    2018-05-24

    Cerebral microhemorrhages are a known marker of mild traumatic brain injury. Blast-related mild traumatic brain injury relates to a propagating pressure wave, and there is evidence that the mechanism of injury in blast-related mild traumatic brain injury may be different from that in blunt head trauma. Two recent reports in mixed cohorts of blunt and blast-related traumatic brain injury in military personnel suggest that the prevalence of cerebral microhemorrhages is lower than in civilian head injury. In this study, we aimed to characterize the prevalence of cerebral microhemorrhages in military service members specifically with chronic blast-related mild traumatic brain injury. Participants were prospectively recruited and underwent 3T MR imaging. Susceptibility-weighted images were assessed by 2 neuroradiologists independently for the presence of cerebral microhemorrhages. Our cohort included 146 veterans (132 men) who experienced remote blast-related mild traumatic brain injury (mean, 9.4 years; median, 9 years after injury). Twenty-one (14.4%) reported loss of consciousness for <30 minutes. Seventy-seven subjects (52.7%) had 1 episode of blast-related mild traumatic brain injury; 41 (28.1%) had 2 episodes; and 28 (19.2%) had >2 episodes. No cerebral microhemorrhages were identified in any subject, as opposed to the frequency of SWI-detectable cerebral microhemorrhages following blunt-related mild traumatic brain injury in the civilian population, which has been reported to be as high as 28% in the acute and subacute stages. Our results may reflect differences in pathophysiology and the mechanism of injury between blast- and blunt-related mild traumatic brain injury. Additionally, the chronicity of injury may play a role in the detection of cerebral microhemorrhages. © 2018 by American Journal of Neuroradiology.

  10. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haniff, S.; Taylor, P. A.

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  11. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE PAGES

    Haniff, S.; Taylor, P. A.

    2017-10-17

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  12. Implementation of Smoothed Particle Hydrodynamics for Detonation of Explosive with Application to Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Pramanik, R.; Deb, D.

    2015-07-01

    The paper presents a methodology in the SPH framework to analyze physical phenomena those occur in detonation process of an explosive. It mainly investigates the dynamic failure mechanism in surrounding brittle rock media under blast-induced stress wave and expansion of high pressure product gases. A program burn model is implemented along with JWL equation of state to simulate the reaction zone in between unreacted explosive and product gas. Numerical examples of detonation of one- and two-dimensional explosive slab have been carried out to investigate the effect of reaction zone in detonation process and outward dispersion of gaseous product. The results are compared with those obtained from existing solutions. A procedure is also developed in SPH framework to apply continuity conditions between gas and rock interface boundaries. The modified Grady-Kipp damage model for the onset of tensile yielding and Drucker-Prager model for shear failure are implemented for elasto-plastic analysis of rock medium. The results show that high compressive stress causes high crack density in the vicinity of blast hole. The major principal stress (tensile) is responsible for forming radial cracks from the blast hole. Spalling zones are also developed due to stress waves reflected from the free surfaces.

  13. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  14. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  15. Photogrammetry of the particle trajectories on DIPOLE WEST Shots 8, 9, 10, and 11. Volume III. Shot 8. Final report, 1 October--31 December 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, J.M.; McMillin, D.J.; Trill, D.

    1978-01-01

    This volume describes the photogrammetry and analysis of the particle trajectories in blast waves produced by the simultaneous detonation of two spherical 1080-lb (490-kg) Pentolite charges (DIPOLE WEST Shot 8). One of the charges was positioned at a height of 25 feet above smooth ground, and the second charge 50 feet above the first. Photogrammetrical measurements were made of the trajectories of air particle flow tracers (smoke puffs), which had been placed in a vertical grid at heights ranging from 3 to 58 feet above the ground and at radial distances ranging from 25 to 140 feet from the verticalmore » axis through the charges. From the measured particle trajectories, calculations were made, as described in AD-A058 377. From the shock front times-of-arrival, calculations were made of the shock velocities and, in turn, the peak particle velocities, air densities and hydrostatic overpressure immediately behind each shock. Calculations were also made of the variation with time of the particle velocity, density, hydrostatic overpressure, dynamic pressure, and total pressure at several fixed points. Results, presented both graphically and in tables, are compared to results previously calculated for the same experiment using shock front photogrammetry.« less

  16. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  17. Continuum modeling of neuronal cell under blast loading

    PubMed Central

    Jérusalem, Antoine; Dao, Ming

    2012-01-01

    Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus ongoing to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progresses are also being made at the experimental and modeling levels to better characterize many of the cell functions such as differentiation, growth, migration and death, among others. The work presented here aims at bridging both efforts by proposing a continuum model of neuronal cell submitted to blast loading. In this approach, cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different material constitutive models are adequately chosen for each one. The material parameters are calibrated against published experimental work of cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete fluid-structure interaction computational framework. The results are compared to the nanoindentation simulation and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during its deformation under blast loading and potentially leading to cell damage. It suggests more particularly the localization of damage at the nucleus membrane similarly to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. As a conclusion, the proposed model ultimately provides a new three dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014

  18. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  19. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  20. Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves.

    PubMed

    Mitri, F G

    2006-07-01

    In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.

  1. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple methodmore » of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.« less

  2. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    PubMed

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  3. Effect of casing yield stress on bomb blast impulse

    NASA Astrophysics Data System (ADS)

    Hutchinson, M. D.

    2012-08-01

    An equation to predict blast effects from cased charges was first proposed by U. Fano in 1944 and revised by E.M. Fisher in 1953 [1]. Fisher's revision provides much better matches to available blast impulse data, but still requires empirical parameter adjustments. A new derivation [2], based on the work of R.W. Gurney [3] and G.I. Taylor [4], has resulted in an equation which nearly matches experimental data. This new analytical model is also capable of being extended, through the incorporation of additional physics, such as the effects of early case fracture, finite casing thickness, casing metal strain energy dissipation, explosive gas escape through casing fractures and the comparative dynamics of blast wave and metal fragment impacts. This paper will focus on the choice of relevant case fracture strain criterion, as it will be shown that this allows the explicit inclusion of the dynamic properties of the explosive and casing metal. It will include a review and critique of the most significant earlier work on this topic, contained in a paper by Hoggatt and Recht [5]. Using this extended analytical model, good matches can readily be made to available free-field blast impulse data, without any empirical adjustments being needed. Further work will be required to apply this model to aluminised and other highly oxygen-deficient explosives.

  4. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  5. Numerical modeling of a spherical buoy moored by a cable in three dimensions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangqian; Yoo, Wan-Suk

    2016-05-01

    Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.

  6. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  7. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  8. Consequences of impacts of small asteroids and comets with Earth

    NASA Technical Reports Server (NTRS)

    Hills, J. G.

    1994-01-01

    The fragmentation of a small asteroid in the atmosphere greatly increases its cross sections for aerodynamic braking and energy dissipation. At a typical impact velocity of 22 km/s, the atmosphere absorbs more than half the kinetic energy of stony meteoroids with diameters, D(sub m), less than 220 m and iron meteoroids with D(sub m) less than 80 m. The corresponding diameter for comets with impact velocity 50 km/s is D(sub m) less than 1600 m. Most of the atmospheric energy dissipation occurs in a fraction of a scale height, so large meteors appear to 'explode' or 'flare' at the end of their visible paths. This dissipation of energy in the atmosphere protects the earth from direct impact damage (e.g., craters), but it produces a blast wave that can do considerable damage. The area of destruction around the impact point in which the over-pressure in the blast wave exceeds 4 lb/sq in = 2.8 x 10(exp 5) dynes/cu cm, which is enough to knock over trees and destroy buildings, increases rapidly from zero for chondritic meteoroids less than 56 m in diameter (15 megatons) to about 200 sq km for those 80 m in diameter (48 megatons); the probable diameter of the tunguska impactor of 1908 is about 80 m. Crater formation and earthquakes are not significant in land impacts by stony asteroids less than about 200 m in diameter because of the air protection. A tsunami is probably the most devastating type of damage for asteroids 200 m to 1 km in diameter. An impact by an asteroid this size anywhere in the Atlantic would devastate coastal areas on both sides of the ocean. An asteroid a few kilometers across would produce a tsunami that would reach the foothills of the Appalachian Mountains in the upper half of the East Coast of the United States. Most of Florida is protected from a tsunami by the gradual slope of the ocean off its coast, which causes most of the tsunami energy to be reflected back into the Atlantic. The atmosphere plume produced by asteroids with diameters exceeding about 120 m cannot be contained by the atmosphere, so this bubble of high-temperature gas forms a new layer on top of the atmosphere. The dust entrapped in this hot gas is likely to have optical depths exceeding tau = 10 for asteroids with diameters exceeding about 0.5 to 1 km. The optical flux from asteroids 60 m or more in diameter is enough to ignite pine forests. However, the blast wave from an impacting asteroid goes beyond the radius in which the fire starts. The blast wave tends to blow out the fire, so it is likely that the impact will char the forest, as at Tunguska, but the impact will not produce a sustained fire. Because comets dissipate their energy much higher in the atmosphere than asteroids, they illuminate a much larger region and their blast wave is weaker. So they are much more effective in producing large fires. This suggests that the KT impactor was a comet rather than an asteroid.

  9. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    NASA Astrophysics Data System (ADS)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  10. Combined approach to the Hubble Space Telescope wave-front distortion analysis

    NASA Astrophysics Data System (ADS)

    Roddier, Claude; Roddier, Francois

    1993-06-01

    Stellar images taken by the HST at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-micron rms with a maximum deviation of 0.005 micron. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.

  11. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  12. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast.

    PubMed

    Krzystała, Edyta; Mężyk, Arkadiusz; Kciuk, Sławomir

    2016-01-01

    The aim of this study was to elaborate identification method of crew overload as a result of trinitrotoluene charge explosion under the military wheeled vehicle. During the study, an experimental military ground research was carried out. The aim of this research was to verify the mine blast resistance of the prototype wheeled vehicle according to STANG 4569 as well as the anti-explosive seat. Within the work, the original methodology was elaborated along with a prototype research statement. This article presents some results of the experimental research, thanks to which there is a possibility to estimate the crew's lives being endangered in an explosion through the measurement of acceleration as well as the pressure on the chest, head and internal organs. On the basis of our acceleration results, both effectiveness and infallibility of crew protective elements along with a blast mitigation seat were verified.

  13. Evolution of a superbubble blastwave in a magnetized medium

    NASA Technical Reports Server (NTRS)

    Ferriere, Katia M.; Zweibel, Ellen G.; Maclow, Mordecai-Mark

    1990-01-01

    Researchers investigate the effects of interstellar magnetic fields on the evolution and structure of interstellar superbubbles, using both analytic and numerical magnetohydrodynamic (MHD) calculations. These cavities of hot gas, surrounded by shells of cold dense material preceded by a shock wave result from the combined action of stellar winds and supernova explosions in OB associations. If the medium in which a superbubble goes off is homogeneous and unmagnetized, the blast wave expands isotropically. As the interstellar gas flows through the shock, it cools significantly and gets strongly compressed such that thermal pressure remains approximately equal to ram pressure. Hence, the swept up material is confined to a very thin shell. However, if the ambient medium is permeated by a uniform magnetic field B sub o approx. 3 mu G (typical value for the interstellar matter (ISM)), the configuration loses its spherical symmetry, and, due to magnetic pressure, the shell of swept up material does not remain thin. Researchers found the following qualitative differences: (1) Except in the immediate vicinity of the magnetic poles, the shell is supported by magnetic pressure. (2) The refraction of field lines at the shock and the thermal pressure gradient along the shell both contribute to accelerating the gas toward the equator. The resulting mass flux considerably decreases the column density at the magnetic poles. (3) Away from the poles, magnetic tension in the shell causes the field lines (particularly the inner boundary) to elongate in the direction of B sub o. In contrast, the shock wave radius increases with increasing theta. (4) The reduced inertia of a parcel in the polar neighborhood makes it easier to decelerate, and accounts for the dimple which appears at the poles in numerical simulations. This dimple also results from the necessity to call on intermediate shocks in order to insure a smooth transition between a purely thermal shock at the poles and a magnetic shock in the rest of the shell. (5) The shock wave propagates faster than in the absence of magnetic field, except near the poles where the reduced mass of the shell allows it to be more efficiently decelerated.

  14. An Investigation of the Interstellar Environment of Supernova Remnant CTB87

    NASA Astrophysics Data System (ADS)

    Liu, Qian-Cheng; Chen, Yang; Chen, Bing-Qiu; Zhou, Ping; Wang, Xiao-Tao; Su, Yang

    2018-06-01

    We present a new millimeter CO-line observation toward supernova remnant (SNR) CTB 87, which was regarded purely as a pulsar wind nebula (PWN), and an optical investigation of a coincident surrounding superbubble. The CO observation shows that the SNR delineated by the radio emission is projectively covered by a molecular cloud (MC) complex at {V}LSR}=-60 to -54 {km} {{{s}}}-1. Both the symmetric axis of the radio emission and the trailing X-ray PWN appear projectively to be along a gap between two molecular gas patches at ‑58 to -57 {km} {{{s}}}-1. Asymmetric broad profiles of 12CO lines peaked at -58 {km} {{{s}}}-1 are found at the eastern and southwestern edges of the radio emission. This represents a kinematic signature consistent with an SNR–MC interaction. We also find that a superbubble, ∼37‧ in radius, appears to surround the SNR from H I 21 cm ({V}LSR}∼ -61 to -68 {km} {{{s}}}-1), WISE mid-IR, and optical extinction data. We build a multi-band photometric stellar sample of stars within the superbubble region and find 82 OB star candidates. The likely peak distance in the stars’ distribution seems consistent with the distance previously suggested for CTB 87. We suggest the arc-like radio emission is mainly a relic of the part of the blast wave that propagates into the MC complex and is now in a radiative stage while the other part of the blast wave has been expanding into the low-density region in the superbubble. This scenario naturally explains the lack of X-ray emission related to the ejecta and blast wave. The SNR–MC interaction also favors a hadronic contribution to the γ-ray emission from the CTB 87 region.

  15. Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard; hide

    2007-01-01

    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.

  16. Dynamic behaviour of a two-microbubble system under ultrasonic wave excitation.

    PubMed

    Huang, Xiao; Wang, Qian-Xi; Zhang, A-Man; Su, Jian

    2018-05-01

    Acoustic bubbles have wide and important applications in ultrasonic cleaning, sonochemistry and medical ultrasonics. A two-microbubble system (TMS) under ultrasonic wave excitation is explored in the present study, by using the boundary element method (BEM) based on the potential flow theory. A parametric study of the behaviour of a TMS has been carried out in terms of the amplitude and direction of ultrasound as well as the sizes and separation distance of the two bubbles. Three regimes of the dynamic behaviour of the TMS have been identified in terms of the pressure amplitude of the ultrasonic wave. When subject to a strong wave with the pressure amplitude of 1 atm or larger, the two microbubbles become non-spherical during the first cycle of oscillation, with two counter liquid jets formed. When subject to a weak wave with the pressure amplitude of less than 0.5 atm, two microbubbles may be attracted, repelled, or translate along the wave direction with periodic stable separation distance, depending on their size ratio. However, for the TMS under moderate waves, bubbles undergo both non-spherical oscillation and translation as well as liquid jet rebounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field.

    PubMed

    Mitri, F G

    2005-08-01

    The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.

  18. Turbulent mixing& combustion in TNT explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Oppenheim, A K

    2000-12-12

    Effects of turbulent mixing induced by explosion of a 1-g spherical TNT charge in air are investigated. The detonation wave in the charge transforms the solid explosive (C{sub 7}H{sub 5}N{sub 3}O{sub 6}) to gaseous products, rich in C{sub (S)}, and CO. The detonation pressure ({approx}210 kb) causes the products to expand rapidly, driving a blast wave into the surrounding air (Brode, 1959). The interface between the products and air is unstable (Richtmyer, 1960; Meshkov, 1960; Anisimov & Zel'dovich, 1977). As shown in Collage Ia-c, this region rapidly transitions into a turbulent mixing layer (Kuhl, 1996). As the embedded shock, I,more » implodes, it draws the mixing structures (Taylor cavities) into the origin (Collage Id-e). In this way air becomes distributed throughout the hot detonation products gases. This process is enhanced by shock reflections from confining walls. In either case (confined or unconfined), rapid combustion takes place where the expanded detonation products play the role of fuel. This leads to a dramatic increase in chamber pressure (Fig. 1)-in contrast to a corresponding TNT explosion in nitrogen. The problem was modeled as turbulent combustion in an unmixed system at large Reynolds, Peclet and Damkohler numbers (Kuhl et al, 1997). The numerical solution was obtained by a high-order Godunov scheme (Colella & Glaz, 1985). Adaptive Mesh Refinement (Berger & Colella, 1989) was used to follow the turbulent mixing on the computational grid in as much detail as possible. The results reveal all the dynamic features (Fig. 2) of the exothermic process of combustion controlled by fluid-mechanic transport in a highly turbulent field (Kuhl & Oppenheim, 1997), in contrast to the conventional reaction-diffusion mechanism of Zel'dovich & Frank-Kamenetskii (1938).« less

  19. Shear wave propagation in anisotropic soft tissues and gels

    PubMed Central

    Namani, Ravi; Bayly, Philip V.

    2013-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987

  20. A computational study of laser-supported detonation waves propagating up an oblique incident beam

    NASA Astrophysics Data System (ADS)

    Bohn, C. L.; Crawford, M. L.

    1987-01-01

    A series of numerical experiments was conducted to study the propagation of laser-supported detonation waves (LSDWs) in the case that a CO2 laser beam strikes an aluminum surface obliquely in air. A reflected shock formed at the aluminum surface was more prominent at higher angles of incidence theta of the beam, but otherwise the hydrodynamics of the plasma and the LSDW were insensitive to theta. Furthermore, the total impulse delivered to the aluminum varied approximately as 1/cos theta, a result that can be modeled with elementary blast-wave theory.

  1. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    NASA Astrophysics Data System (ADS)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  2. Vane Flow Direction Sensor for Blast Waves

    DTIC Science & Technology

    1987-02-07

    APPLICATIONS INTL CORP IIT RESEARCH INSTITUTE ATTN: K SITES ATTN: DOCUMENTS LIBRARY SCIENCE APPLICATIONS INTL CORP KAMAN SCIENCES CORP ATTN: TECHNICAL...UBRARY ATTN: L MENTE ATTN: W PLOWS ATTN: LIBRARY SCIENCE APPLICATIONS INTL CORP KAMAN SCIENCE§ CORP ATTN: J MCRARY ATTN: B KINSLOW SCIENCE APPLICATIONS

  3. Excitation and Disruption of a Giant Molecular Cloud by the Sepurnova Remnant 3C 391

    NASA Technical Reports Server (NTRS)

    Reach, W. T.; Rho, J.

    1998-01-01

    The ambient molecular gas at the distance of the remnant comprises a giant molecular cloud whose edge is closely parallel to a ridge of bright non-thermal radio continuum, which evidently delineates the blast-wave into the cloud.

  4. Shock tubes and waves; Proceedings of the Fourteenth International Symposium on Shock Tubes and Shock Waves, University of Sydney, Sydney, Australia, August 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Archer, R. D.; Milton, B. E.

    Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.

  5. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  6. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  7. The X-Ray Evolution of the Symbiotic Star V 407 Cygni During Its 2010 Outburst

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.

    2011-01-01

    We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V 407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.

  8. The X-Ray Evolution of the Symbiotic Star V407 Cygni During Its 2010 Outburst

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.

    2011-01-01

    We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.

  9. The numerical design of a spherical baroclinic experiment for Spacelab flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Roberts, G. O.

    1982-01-01

    The near-zero G environment of Spacelab is the basis of a true spherical experimental model of synoptic scale baroclinic atmospheric processes, using a radial dielectric body force analogous to gravity over a volume of liquid within two concentric spheres. The baroclinic motions are generated by corotating the spheres and imposing thermal boundary conditions, such that the liquid is subjected to a stable radial gradient and a latitudinal gradient. Owing to mathematical difficulties associated with the spherical geometry, quantitative design criteria can be acquired only by means of numerical models. The procedure adopted required the development of two computer codes based on the Navier-Stokes equations. The codes, of which the first calculates axisymmetric steady flow solutions and the second determines the growth or decay rates of linear wave perturbations with different wave numbers, are combined to generate marginal stability curves.

  10. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  11. Electromagnetic retroreflection augmented by spherical and conical metasurfaces

    NASA Astrophysics Data System (ADS)

    Shang, Yuping; Shen, Zhongxiang

    2017-11-01

    The focus of this paper is on phase gradient metasurfaces conformal to spherical and conical bodies of revolution, with an aim of engineering retroreflections and therefore augmenting backscattering cross-sections of those three-dimensional geometries under the illumination of a plane electromagnetic wave. Based on the conducting sphere and cone, the effect of the geometric revolution property on the selection of the unit inclusion of metasurfaces is considered. The procedure for using the selected unit inclusion to implement the proper reflection phase gradient onto the illuminated surfaces of those objects is formulated in detail. Retroreflections resembling conducting plates under normal incidence are observed for both the conducting sphere and cone coated with conformal metasurfaces. As a result, the redirection-induced retroreflection effectively contributes to the backscattering cross-section enhancement. A good agreement between full-wave simulations and measurements demonstrates the validity and effectiveness of backscattering cross-section enhancement using spherical and conical metasurfaces.

  12. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  13. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  14. Basic Research Investigations into Multimode Laser and EM Launchers for Affordable Rapid Access to Space (Volumes 1 and 2)

    DTIC Science & Technology

    2010-08-31

    not defined. Figure 5.9: Run 10-Schlieren image with only the laser-induced air-breakdown glow visible. (M=8.77, T∞=68.7 K , P∞=0.15 kPa...Run #13-Laser induced blast wave interaction with oblique shock. (M-5.95, T∞=263.7 K , P∞=5.62 kPa, Ep=196±20 J) ................ Error! Bookmark not...the air-breakdown geometry. (M-5.95, T∞=262.3 K , P∞=5.16 kPa, Ep=176±18 J)Error! Bookmark not defined. Figure 5.13: Run#16 - Laser induced blast

  15. Numerical and theoretical analyses of underground explosion cavity decoupling

    NASA Astrophysics Data System (ADS)

    Jensen, R.; Aldridge, D. F.; Chael, E. P.

    2013-12-01

    It has long been established that the amplitudes of seismic waves radiated from an underground explosion can be reduced by detonating the explosive within a fluid-filled cavity of adequate size. Significant amplitude reduction occurs because the reflection coefficient at the fluid/rock interface (i.e., the cavity wall) is large. In fact, the DC frequency limit of the reflection coefficient for a spherically-diverging seismic wave incident upon a concentric spherical interface is -1.0, independent of radius of curvature and all material properties. In order to quantify to the degree of amplitude reduction expected in various realistic scenarios, we are conducting mathematical and numerical investigations into the so-called 'cavity decoupling problem' for a buried explosion. Our working tool is a numerical algorithm for simulating fully-coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via an FD operator 'order switching' formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Point explosions detonated at the center of an air-filled or water-filled spherical cavity lead to strong resonant oscillations in radiated seismic energy, with period controlled by cavity radius and sound speed of the fill fluid. If the explosion is off-center, or the cavity is non-spherical, shear waves are generated in the surrounding elastic wholespace. Equilibrating the moment magnitudes of explosions for differing fill materials leads to misleading results in the amplitudes of the radiated elastic waves. The proper procedure entails equalizing the intrinsic energies of the explosions. Numerically-calculated results are in reasonable agreement with a theoretical model based on acoustic and elastic spherical wave propagation from a point center of symmetry. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  17. Bose--Einstein Correlations and Thermal Cluster Formation in High-energy Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Florkowski, W.; Zalewski, K.

    The blast wave model is generalized to include the production of thermal clusters, as suggested by the apparent success of the statistical model of particle production at high energies. The formulae for the HBT correlation functions and the corresponding HBT radii are derived.

  18. A miniature pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI) is a great potential threat to people who deal with explosive devices. Protection from TBI has attracted more and more interest. Great efforts have been taken to the studies on the understanding of the propagation of the blast events and its effect on TBI. However, one of the biggest challenges is that the current available pressure sensors are not fast enough to capture the blast wave especially the transient period. This paper reports an ultrafast pressure sensor that could be very useful for analysis of the fast changing blast signal. The sensor is based on Fabry-Perot (FP) principle. It uses a 45º angle polished fiber sitting in a V-groove on a silicon chip. The endface of the angle polished fiber and the diaphragm which is lifted off on the side wall of the V-groove form the FP cavity. The sensor is very small and can be mounted on different locations of a helmet to measure blast pressure simultaneously. The tests were conducted at Natick Soldier Research, Development, and Engineering Center (NSRDEC) in Natick, MA. The sensors were mounted in a shock tube, side by side with the reference sensors, to measure a rapidly increased pressure. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors and their response time is comparable.

  19. Traumatic brain injury produced by exposure to blasts, a critical problem in current wars: biomarkers, clinical studies, and animal models

    NASA Astrophysics Data System (ADS)

    Dixon, C. Edward

    2011-06-01

    Traumatic brain injury (TBI) resulting from exposure to blast energy released by Improvised Explosive Devices (IEDs) has been recognized as the "signature injury" of Operation Iraqi Freedom and Operation Enduring Freedom. Repeated exposure to mild blasts may produce subtle deficits that are difficult to detect and quantify. Several techniques have been used to detect subtle brain dysfunction including neuropsychological assessments, computerized function testing and neuroimaging. Another approach is based on measurement of biologic substances (e.g. proteins) that are released into the body after a TBI. Recent studies measuring biomarkers in CSF and serum from patients with severe TBI have demonstrated the diagnostic, prognostic, and monitoring potential. Advancement of the field will require 1) biochemical mining for new biomarker candidates, 2) clinical validation of utility, 3) technical advances for more sensitive, portable detectors, 4) novel statistical approach to evaluate multiple biomarkers, and 5) commercialization. Animal models have been developed to simulate elements of blast-relevant TBI including gas-driven shock tubes to generate pressure waves similar to those produced by explosives. These models can reproduce hallmark clinical neuropathological responses such as neuronal degeneration and inflammation, as well as behavioral impairments. An important application of these models is to screen novel therapies and conduct proteomic, genomic, and lipodomic studies to mine for new biomarker candidates specific to blast relevant TBI.

  20. Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, I. John; De Buizer, James M.; Gehrz, Robert D.; Park, Sangwook; Polomski, Elisha F.; hide

    2010-01-01

    We have used the Spitzer satellite to monitor the laid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output, is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from approximately 180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of 5 x 10(exp 6) K and approximately 3 x 10(exp 4) per cubic centimeter, respectively. The mass of the radiating dust is approximately 1.2 x 10(exp -6) solar mass on day 7554, and scales linearly with IR flux. Comparison of the IR data with the soft X-ray flux derived from Chandra observations shows that the IR-to-X-ray flux ratio, IRX, is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of IRX is most consistent with the scenario that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased by a factor of approximately 5 with a time dependence of t(sup '0.87 plus or minus 0.20), t' being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER, as also suggested by X-ray observations. The constant spectral shape of they IR, emission provides strong constraints on the density and temperature of the shocked gas in which the interaction takes place. The IR spectra also suggest the presence of a secondary population of very small, hot (T greater than or equal to 350 K), featureless dust. If these grains spatially coexists with the silicates, then they must have shorter lifetimes. The data show slightly different rates of increase of their respective fluxes, lending some support to this hypothesis. However, the origin of this emission component and the exact nature of its relation to the silicate emission is still a major unsolved puzzle.

  1. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  2. Absolute Equation-of-State Measurement for Polystyrene from 25 - 60 Mbar Using a Spherically Converging Shock Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenzer, Siegfried

    We have developed an experimental platform for the National Ignition Facility (NIF) that uses spherically converging shock waves for absolute equation of state (EOS) measurements along the principal Hugoniot. In this Letter we present radiographic compression measurements for polystyrene that were taken at shock pressures reaching 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)] at strongly improved precision, allowing to discriminate between different EOS models. We find excellent agreement with Kohn-Sham Density Functional Theory based molecular dynamics simulations.

  3. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  4. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  5. Transient Flows in a Pipe System with Pump Shut-Down and the Simultaneous Closing of a Spherical Valve

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2016-11-01

    Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.

  6. On the completeness and the linear dependence of the Cartesian multipole series in representing the solution to the Helmholtz equation.

    PubMed

    Liu, Yangfan; Bolton, J Stuart

    2016-08-01

    The (Cartesian) multipole series, i.e., the series comprising monopole, dipoles, quadrupoles, etc., can be used, as an alternative to the spherical or cylindrical wave series, in representing sound fields in a wide range of problems, such as source radiation, sound scattering, etc. The proofs of the completeness of the spherical and cylindrical wave series in these problems are classical results, and it is also generally agreed that the Cartesian multipole series spans the same space as the spherical waves: a rigorous mathematical proof of that statement has, however, not been presented. In the present work, such a proof of the completeness of the Cartesian multipole series, both in two and three dimensions, is given, and the linear dependence relations among different orders of multipoles are discussed, which then allows one to easily extract a basis from the multipole series. In particular, it is concluded that the multipoles comprising the two highest orders in the series form a basis of the whole series, since the multipoles of all the lower source orders can be expressed as a linear combination of that basis.

  7. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  8. Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure.

    PubMed

    Vandevord, Pamela J; Bolander, Richard; Sajja, Venkata Siva Sai Sujith; Hay, Kathryn; Bir, Cynthia A

    2012-01-01

    Identifying the level of overpressure required to create physiological deficits is vital to advance prevention, diagnostic, and treatment strategies for individuals exposed to blasts. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute neurological alterations occurred. Rats were exposed to a single low intensity shock wave at a pressure of 0, 97, 117, or 153 kPa. Following exposure, rats were assessed for acute cognitive alterations using the Morris water maze and motor dysfunction using the horizontal ladder test. Subsequently, histological analyses of three brain regions (primary motor cortex, the hippocampal dentate gyrus region, and the posteromedial cortical amygdala) were conducted. Histological parameters included measuring the levels of glial fibrillary acidic protein (GFAP) to identify astrocyte activation, cleaved caspase-3 for early apoptosis identification and Fluoro-Jade B (FJB) which labels degenerating neurons within the brain tissue. The results demonstrated that an exposure to a single 117 kPa shock wave revealed a significant change in overall neurological deficits when compared to controls and the other pressures. The animals showed significant alterations in water maze parameters and a histological increase in the number of GFAP, caspase-3, and FJB-positive cells. It is suggested that when exposed to a low level shock wave, there may be a biomechanical response elicited by a specific pressure range which can cause low level neurological deficits within the rat. These data indicate that neurotrauma induced from a shock wave may lead to cognitive deficits in short-term learning and memory of rats. Additional histological evidence supports significant and diffuse glial activation and cellular damage. Further investigation into the biomechanical aspects of shock wave exposure is required to elucidate this pressure range-specific phenomenon.

  9. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  10. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switchesmore » by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.« less

  11. Large Blast and Thermal Simulator Reflected Wave Eliminator Study

    DTIC Science & Technology

    1990-03-01

    it delays the passage of this wave through the test section until after the test is complete. The required length of extra duct depends on the strength...tube axis, which acts like an additional contraction effect since Se = Sj/[Cqsin(aj)]. Tii extra area is illustrated best by plotting (Se-Ae)/Ac versus...34Simulation de Choc et de Soaffie. Comimpensateur d’Ondes de Detente de Bouche pour tube a Choc de 2400 mm de diametre de Veine. Description, Compte- Renda

  12. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families.

    PubMed

    Reintjes, Moritz; Temple, Blake

    2015-05-08

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C 0,1 to C 1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C 1,1 , cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.

  13. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families

    PubMed Central

    Reintjes, Moritz; Temple, Blake

    2015-01-01

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein–Euler equations remains open. PMID:27547092

  14. Properties of the Average Distribution of Equatorial Kelvin Waves Investigated with the GROGRAT Ray Tracer

    DTIC Science & Technology

    2009-01-01

    spheric quasi-biennial oscillation ( QBO ). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT...equatorial wave modes and a broad spectrum of gravity waves (GWs) Kelvin waves are one of the main drivers of the quasi-biennial oscil- lation ( QBO ) of the...and dy- namics in the stratosphere and mesosphere (even at high lati- tudes) are modulated or influenced by the QBO , showing the importance of the

  15. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission

  16. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  17. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  18. Dispersion of gravitational waves in cold spherical interstellar medium

    NASA Astrophysics Data System (ADS)

    Barta, Dániel; Vasúth, Mátyás

    We investigate the propagation of locally plane, small-amplitude, monochromatic gravitational waves (GWs) through cold compressible interstellar gas in order to provide a more accurate picture of expected waveforms for direct detection. The quasi-isothermal gas is concentrated in a spherical symmetric cloud held together by self-gravitation. Gravitational waves can be treated as linearized perturbations on the background inner Schwarzschild spacetime. The perturbed quantities lead to the field equations governing the gas dynamics and describe the interaction of gravitational waves with matter. We have shown that the transport equation of these amplitudes provides numerical solutions for the frequency-alteration. The decrease in frequency is driven by the energy dissipating process of GW-matter interactions. The decrease is significantly smaller than the magnitude of the original frequency and too small to be detectable by present second-generation and planned third-generation detectors. It exhibits a power-law relationship between original and decreased frequencies. The frequency deviation was examined particularly for the transient signal GW150914.

  19. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  20. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

Top