Sample records for spherical casimir effect

  1. Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2014-05-01

    We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading order term is linear in D, indicating a larger correction at higher dimensions. The methodologies employed in this work and the results obtained can be used to study the one-loop effective action of the system of two spherical objects in the universe.

  2. Optical Modification of Casimir Forces for Improved Function of Micro-and Nano-Scale Devices

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Recently, there has been a considerable effort to study the Casimir and van der Waals forces, enabled by the improved ability to measure small forces near surfaces. Because of the continuously growing role of micro- and nanomechanical devices, the focus of this activity has shifted towards the ability to control these forces. Possible approaches to manipulating the Casimir force include development of composite materials, engineered nanostructures, mixed-phase materials, or active elements. So far, practical success has been limited. The role of geometrical factors in the Casimir force is significant. It is known, for example, that the Casimir force between two spherical shells enclosed one into the other is repulsive instead of normal attractive. Unfortunately, nanosurfaces with this topology are very difficult to make. A more direct approach to manipulating and neutralizing the Casimir force is using external mechanical or electromagnetic forces. Unfortunately, the technological overhead of such an approach is quite large. Using electromagnetic compensation instead of mechanical will considerably reduce this overhead and at the same time provide the degree of control over the Casimir force that mechanical springs cannot provide. A mechanical analog behind Casimir forces is shown.

  3. Casimir self-entropy of a spherical electromagnetic δ -function shell

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi; Li, Yang

    2017-10-01

    In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic δ -function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.

  4. Towards measuring quantum electrodynamic torque with a levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  5. Electromagnetic δ -function sphere

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver

    2017-10-01

    We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.

  6. Casimir effect and graphene: Tunability, scalability, Casimir rotor

    NASA Astrophysics Data System (ADS)

    Martinez, J. C.; Chen, X.; Jalil, M. B. A.

    2018-01-01

    We study the combined effects of separated parallel disks, birefringence and surface currents on the Casimir force and torque. All three contribute to the Casimir force and surface currents from graphene permit tuning and switching from attraction to repulsion thus allowing for an oscillating Casimir force which can be relevant to parametric amplification applications. Only the latter two contribute to the Casimir torque and their combined effect can enhance the torque by at least tenfold (possibly more) compared to that due to birefringence alone, a hint at a scalable Casimir torque. We also consider a feasible non-contact rotor.

  7. Casimir forces in a plasma: possible connections to Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Ninham, Barry W.; Boström, Mathias; Persson, Clas; Brevik, Iver; Buhmann, Stefan Y.; Sernelius, Bo E.

    2014-10-01

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect.

  8. Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A. Maia

    2017-07-01

    We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant numerical improvements allow us to extend the range of accessible parameters into the experimental regime. We compare our numerically exact results with those obtained within the proximity force approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so far. Special attention is paid to the difference between the Drude model and the dissipationless plasma model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy between the experimental data and the PFA result based on the Drude model. However, it turns out that for the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403 (2007), 10.1103/PhysRevLett.98.050403]. The corresponding corrections based on the Drude model are significantly smaller but still in violation of the experimental bound for small distances between plane and sphere.

  9. Casimir effect in presence of spontaneous Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.

    2018-01-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-violation effects of the minimal standard-model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method, we compute the relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force paying particular attention to the quantum effects as approaching the plates.

  10. Quantum mechanical effects of topological origin

    NASA Technical Reports Server (NTRS)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  11. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  12. Detecting Casimir torque with an optically levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  13. Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo; Ridolfo, Alessandro; Di Stefano, Omar; Kockum, Anton Frisk; Nori, Franco; Savasta, Salvatore

    2018-01-01

    We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.

  14. Implications of the Babinet Principle for Casimir interactions

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Abravanel, Ronen

    2011-09-01

    We formulate the Babinet Principle (BP) as a relation between scattering amplitudes and combine it with multiple scattering techniques to derive new properties of electromagnetic Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self-complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. Also, the BP suggests that Casimir edge effects are generically anomalously small. Furthermore, the BP can be used to relate any planar object to its complementary geometry, a relation we use to estimate Casimir forces between two screens with apertures.

  15. Resource Letter CF-1: Casimir Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamoreaux, S.K.

    1999-10-01

    This resource letter provides an introductory guide to the literature on the Casimir force. Journal articles and books are cited for the following topics: introductory articles and books, calculations, dynamical Casimir effect, mechanical analogs, applications, and experiments. {copyright} {ital 1999 American Association of Physics Teachers.}

  16. Casimir stress in an inhomogeneous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbin, T.G.; Xiong, C.; Leonhardt, U.

    2010-03-15

    The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes themore » contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.« less

  17. Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces

    NASA Astrophysics Data System (ADS)

    Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-04-01

    We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.

  18. Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza

    2015-09-01

    The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.

  19. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  20. Effect of hydrogen-switchable mirrors on the Casimir force.

    PubMed

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

  1. Effect of hydrogen-switchable mirrors on the Casimir force

    PubMed Central

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  2. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  3. Theoretical modeling of the effect of Casimir attraction on the electrostatic instability of nanowire-fabricated actuators

    NASA Astrophysics Data System (ADS)

    Mokhtari, J.; Farrokhabadi, A.; Rach, R.; Abadyan, M.

    2015-04-01

    The presence of the quantum vacuum fluctuations, i.e. the Casimir attraction, can strongly affect the performance of ultra-small actuators. The strength of the Casimir force is significantly influenced by the geometries of interacting bodies. Previous research has exclusively studied the impact of the vacuum fluctuations on the instability of nanoactuators with planar geometries. However, no work has yet considered this phenomenon in actuators fabricated from nanowires/nanotubes with cylindrical geometries. In our present work, the influence of the Casimir attraction on the electrostatic stability of nanoactuators fabricated from cylindrical conductive nanowire/nanotube is investigated. The Dirichlet mode is considered and an asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The size-dependent modified couple stress theory is employed to derive the constitutive equation of the actuator. The governing nonlinear equations are solved by two different approaches, i.e. the finite difference method and modified Adomian-Padé method. Various aspects of the problem, i.e. comparison with the van der Waals force regime, the variation of instability parameters, effect of geometry and coupling between the Casimir force and size dependency are discussed. This work is beneficial to determine the impact of Casimir force on nanowire/nanotube-fabricated actuators.

  4. The dynamic Casimir effect within a vibrating metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2014-09-01

    The lattice-vibrating metal photonic crystal is exactly a system of dynamical Casimir effect connected in series, and so we can expect that a dynamical Casimir effect is enhanced by the photonic band effect. In the present study, when an electromagnetic field between metal plates is in the ground state in a one-dimensional metal photonic crystal, the radiation of electromagnetic wave in excited states has been investigated by artificially introducing lattice vibration to the photonic crystal. In this case as well as a dynamical Casimir effect, it has been shown that the harmonics of a ground state are generated just by vibrating a photonic crystal even without an incident wave. The dependencies of the radiating power on the number of layers and on the wavenumber of the lattice vibration are remarkable. It has been found that the radiation amplitude on lower excited states is not necessarily large and radiation on specific excited levels is large.

  5. Casimir-Foucault interaction: Free energy and entropy at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, Francesco; Ellingsen, Simen A.; Henkel, Carsten

    2010-09-15

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover,more » a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.« less

  6. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  7. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less

  8. Interplay of temperature, spatial dispersion, and topology in silicene Casimir interactions

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton; Dalvit, Diego

    Graphene materials have given an impetus to the field of electromagnetic fluctuation interactions, such as Casimir forces. The discovery of unusual distance asymptotics, pronounced thermal effects, and strong dependence on the chemical potential in graphene Casimir interactions have shown new directions for control of this universal force. Recently discovered silicene, a graphene-like material with staggered lattice and significant spin-orbit coupling, offers new opportunities to re-evaluate these unusual Casimir interaction functionalities. Utilizing the Lifshitz formalism we investigate how the spatial dispersion and temperature affect the Casimir interaction in silicene undergoing various topological phase transitions under an applied electric field and laser illumination. This study is facilitated by the comprehensive examination of the conductivity components calculated via the Kubo formalism. We show that the interplay between temperature, spatial dispersion, and topology result in novel features in Casimir interactions involving staggered graphene-like lattices. Support from the US Department of Energy under Grant Number DE-FG02-06ER46297 and the LANL LDRD program is acknowledged.

  9. Casimir force in a Lorentz violating theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2006-08-01

    We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less

  10. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azari, Arash; Golestanian, Ramin; Miri, MirFaez

    2010-09-15

    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz forcemore » to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.« less

  11. Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly

    2013-03-01

    Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.

  12. Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped graphene or a graphene-coated substrate

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-03-01

    We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 +1 ) -dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.

  13. Graphene Casimir Interactions and Some Possible Applications

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.

    Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.

  14. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  15. Laser Cooling and Trapping of Neutral Strontium for Spectroscopic Measurements of Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Cook, Eryn C.

    Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.

  16. Casimir effect due to a single boundary as a manifestation of the Weyl problem

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Langsjoen, Luke S.; Zaidi, Hussain

    2010-09-01

    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases, the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary, we explore the relationship between such approaches, with the goal of better understanding of the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978 J. Phys. A: Math. Gen. 11 895) and Deutsch and Candelas (1979 Phys. Rev. D 20 3063) that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases, the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having a geometrical origin, and an 'intrinsic' term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff and a non-geometrical intrinsic term. As by-products, we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.

  17. Casimir switch: steering optical transparency with vacuum forces.

    PubMed

    Liu, Xi-Fang; Li, Yong; Jing, H

    2016-06-03

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  18. Quantum Field Energy Sensor based on the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.

  19. Dynamical Casimir effect in a Josephson metamaterial

    PubMed Central

    Lähteenmäki, Pasi; Paraoanu, G. S.; Hassel, Juha; Hakonen, Pertti J.

    2013-01-01

    The zero-point energy stored in the modes of an electromagnetic cavity has experimentally detectable effects, giving rise to an attractive interaction between the opposite walls, the static Casimir effect. A dynamical version of this effect was predicted to occur when the vacuum energy is changed either by moving the walls of the cavity or by changing the index of refraction, resulting in the conversion of vacuum fluctuations into real photons. Here, we demonstrate the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity at 5.4 GHz. We modulate the effective length of the cavity by flux-biasing the metamaterial based on superconducting quantum interference devices (SQUIDs), which results in variation of a few percentage points in the speed of light. We extract the full 4 × 4 covariance matrix of the emitted microwave radiation, demonstrating that photons at frequencies symmetrical with respect to half of the modulation frequency are generated in pairs. At large detunings of the cavity from half of the modulation frequency, we find power spectra that clearly show the theoretically predicted hallmark of the Casimir effect: a bimodal, “sparrow-tail” structure. The observed substantial photon flux cannot be assigned to parametric amplification of thermal fluctuations; its creation is a direct consequence of the noncommutativity structure of quantum field theory.

  20. PREFACE: International Workshop '60 Years of the Casimir Effect'

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Carugno, Giovanni; Dodonov, Victor; Man'ko, Margarita

    2009-07-01

    In 1948 Hendrick Casimir published a short article predicting that (neutral) ideal metallic plates attract each other. This attraction is widely ascribed to the quantum vacuum fluctuations of the electromagnetic field (even though away from the limit of ideal metals it depends demonstrably on the physics of the charge carriers vanishing when they cease to carry). Casimir's remarkable discovery, nowadays called the Casimir effect, has charmed several generations of physicists. In the last decade alone, more than a thousand publications have addressed its many consequences, generalizations, and possible applications in different areas from particle physics to cosmology. Interest in the field is still growing driven by impressive progress in experimental skills and its importance for the recently opened-up area of micro- and nano-electromechanical systems: according to the Thompson ISI Web of Science database, in 2005 the number of papers related to the Casimir effect or to Casimir forces jumped to over 125, compared to approximately 60 in 2000 and 30 in 1995. The increase continues, with more than 170 papers in 2008. The International Workshop '60 Years of the Casimir Effect' took place on 23-27June 2008, in Brasilia (Brazil) organized by the International Center for Condensed Matter Physics (ICCMP). The purpose was to celebrate this anniversary of Casimir's pioneering paper by inviting the leading specialists in the area, both theorists and experimentalists, together with young researchers and post-graduate students interested in hearing about the most recent achievements in the field. The Workshop was attended by 65 participants from 14 countries, who presented 41 talks and 12 posters. These Proceedings contain extended versions of almost all the talks and some posters, plus several papers by authors who had planned to attend but for various reasons could not. The contributions are divided (with some inevitable arbitrariness) into four groups. The largest one consists of work devoted to the current status of the theory and measurements related to Casimir forces. Readers must be warned that some topics in this field of research remain controversial (especially the dependence on temperature): they can and do generate debates that sometimes become quite heated. These controversies are reflected in the papers. We believe that at present it is not the business of conference organisers to adjudicate such issues, and hope that detailed expositions of different approaches and different points of view will help readers to formulate their own, and will eventually lead to a better understanding of the problems and of the solutions proposed. The other three groups contain contributions bearing on (1) topics related to causes and consequences of Casimir effects in quantum field theory and gravitation; (2) the so-called dynamical (or nonstationary) Casimir effect and motion-induced radiation, (3) some new manifestations and applications of the Casimir effect. We are grateful to the authors for making their papers so interesting; to the referees for their careful reading of the initial versions, and for their many helpful comments and suggestions; to the Institute of Physics for its kindness in offering to publish these Proceedings in Journal of Physics: Conference Series; and to the Institute of Physics office at the Lebedev Physical Institute in Moscow for essential help in the preparation of this volume. On behalf of the participants of the workshop, we thank the direction and staff of the ICCMP for their splendid organization of the event. Finally we acknowledge the support of the Brazilian scientific funding agencies FAP-DF and CNPQ, which covered the local and travel expenses of many participants. The Editors Gabriel Barton (University of Sussex, Brighton, UK) Giovanni Carugno (INFN - Sezione di Padova, Italy) Victor Dodonov (University of Brasilia, Brazil) Margarita Man'ko (Lebedev Physical Institute, Moscow, Russia) Workshop Organizers Gabriel Barton and Victor Dodonov International Advisory Committee of the Workshop Michael Bordag (Leipzig, Germany) Giovanni Carugno (Padova, Italy) Emilio Elizalde (Barcelona, Spain) Francisco Mazzitelli (Buenos Aires, Argentina) Kimball Milton (Norman, USA) Vladimir Mostepanenko (St Petersburg, Russia) Serge Reynaud (Paris, France) Conference photograph

  1. Optical and Casimir effects in topological materials

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.

    Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state path integral breaks down for both the single-site Bose-Hubbard model and the spin path integral. Specifically, when the Hamiltonian is quadratic in a generator of the algebra used to construct coherent states, the path integral fails to produce correct results following from an operator approach. We note that the problems do not arise in the time-discretized version of the path integral, as expected.

  2. Casimir force in O(n) systems with a diffuse interface.

    PubMed

    Dantchev, Daniel; Grüneberg, Daniel

    2009-04-01

    We study the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry infinity;{d-1}xL , where 2infinity limit of O(n) models with antiperiodic boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel}) of the anisotropic d -dimensional system is related to that of the isotropic system Delta_{Casimir}(d) via Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel})=(J_{ perpendicular}J_{ parallel});{(d-1)2}Delta_{Casimir}(d) . For d=3 we derive the exact Casimir amplitude Delta_{Casimir}(3,mid R:J_{ perpendicular},J_{ parallel})=[Cl_{2}(pi3)3-zeta(3)(6pi)](J_{ perpendicular}J_{ parallel}) , as well as the exact scaling functions of the Casimir force and of the helicity modulus Upsilon(T,L) . We obtain that beta_{c}Upsilon(T_{c},L)=(2pi;{2})[Cl_{2}(pi3)3+7zeta(3)(30pi)](J_{ perpendicular}J_{ parallel})L;{-1} , where T_{c} is the critical temperature of the bulk system. We find that the contributions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in the whole temperature region.

  3. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  4. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.

    2018-07-01

    The Casimir and Casimir–Polder interactions are investigated in a stack of equally spaced graphene layers. The optical response of the individual graphene is taken into account using gauge invariant components of the polarization tensor extended to the whole complex frequency plane. The planar symmetry for the electromagnetic boundary conditions is further used to obtain explicit forms for the Casimir energy stored in the stack and the Casimir–Polder energy between an atom above the stack. Our calculations show that these fluctuation induced interactions experience strong thermal effects due to the graphene Dirac-like energy spectrum. The spatial dispersion and temperature dependence in the optical response are also found to be important for enhancing the interactions especially at smaller separations. Analytical expressions for low and high temperature limits and their comparison with corresponding expressions for an infinitely conducting planar stack are further used to expand our understanding of Casimir and Casimir–Polder energies in Dirac materials. Our results may be useful to experimentalists as new ways to probe thermal effects at the nanoscale in such universal interactions.

  5. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    NASA Astrophysics Data System (ADS)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  6. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    PubMed

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  7. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-07-01

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  8. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  9. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Decca, R. S.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; López, D.; Mostepanenko, V. M.

    2003-12-01

    We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2 1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≈0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton’s law of gravity are strengthened by more than an order of magnitude in the range 56 330 nm.

  10. Nonequilibrium Tuning of the Thermal Casimir Effect.

    PubMed

    Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf

    2016-06-17

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  11. Casimir Effect in de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Saharian, A. A.

    2011-06-01

    The vacuum expectation value of the energy-momentum tensor and the Casimir forces are investigated for a massive scalar field with an arbitrary curvature coupling parameter in the geometry of two parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. The vacuum energy-momentum tensor is non-diagonal, with the off-diagonal component corresponding to the energy flux along the direction normal to the plates. It is shown that the curvature of the background spacetime decisively influences the behavior of the Casimir forces at separations larger than the curvature radius of de Sitter spacetime. In dependence of the curvature coupling parameter and the mass of the field, two different regimes are realized, which exhibit monotonic or oscillatory behavior of the forces. The decay of the Casimir force at large plate separation is shown to be power-law, with independence of the value of the field mass.

  12. Archimedes force on Casimir apparatus

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Shevrin, E.

    2016-11-01

    The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded by a dense medium. The falling of the apparatus has to be governed by the equivalence principle, taking into account proper contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general ex pression for the corresponding force in terms of the effective action. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  13. Enhancement of the dynamic Casimir effect within a metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2013-05-01

    If the counterposed metal plates are vibrated, when the gap between the plates becomes narrow, the energy of stationary states between the plates increases, and when it spreads, the energy decreases. Light with the energy for this energy difference arises. This is called dynamical Casimir effect. The author has so far investigated the interaction between lattice vibration and light in a one-dimensional metal photonic crystal whose stacked components are artificially vibrated by using actuators. A simple model was numerically analyzed, and the following novel phenomena were found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon was analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works. The lattice-vibrating metal photonic crystal is a system of dynamical Casimir effect connected in series, and so we can expect that a dynamical Casimir effect is enhanced by the photonic band effect. In the present study, when an electromagnetic field between metal plates is in the ground state in a one-dimensional metal photonic crystal, the radiation of electromagnetic wave in excited states has been investigated by artificially introducing lattice vibration to the photonic crystal. In this case as well as a dynamical Casimir effect, it has been shown that the harmonics of a ground state are generated just by vibrating a photonic crystal even without an incident wave. The dependencies of the radiating power on the number of layers and on the wavenumber of the lattice vibration are remarkable. It has found that the radiation amplitude on lower excited states is not necessarily large and radiation on specific excited levels is large.

  14. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise

    NASA Astrophysics Data System (ADS)

    Román-Ancheyta, Ricardo; Ramos-Prieto, Irán; Perez-Leija, Armando; Busch, Kurt; León-Montiel, Roberto de J.

    2017-09-01

    We theoretically investigate the dynamical Casimir effect in a single-mode cavity endowed with a driven off-resonant mirror. We explore the dynamics of photon generation as a function of the ratio between the cavity mode and the mirror's driving frequency. Interestingly, we find that this ratio defines a threshold—which we referred to as a metal-insulator phase transition—between exponential growth and low photon production. The low photon production is due to Bloch-like oscillations that produce a strong localization of the initial vacuum state, thus preventing higher generation of photons. To break localization of the vacuum state and enhance the photon generation, we impose a dephasing mechanism, based on dynamic disorder, into the driving frequency of the mirror. Additionally, we explore the effects of finite temperature on the photon production. Concurrently, we propose a classical analog of the dynamical Casimir effect in engineered photonic lattices, where the propagation of classical light emulates the photon generation from the quantum vacuum of a single-mode tunable cavity.

  15. Nonequilibrium Casimir-Polder plasmonic interactions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco

    2016-04-01

    We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  16. Nonequilibrium Casimir-Polder plasmonic interactions

    DOE PAGES

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego Alejandro Roberto; ...

    2016-04-18

    Here we investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Lastly, our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  17. Intermolecular Casimir-Polder forces in water and near surfaces

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  18. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less

  19. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    DOE PAGES

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    2016-10-12

    Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less

  20. Casimir Interaction from Magnetically Coupled Eddy Currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, Francesco; Henkel, Carsten

    2009-09-25

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  1. Critical Casimir effect for colloids close to chemically patterned substrates.

    PubMed

    Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S

    2010-08-21

    Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.

  2. Casimir energy between two parallel plates and projective representation of the Poincaré group

    NASA Astrophysics Data System (ADS)

    Akita, Takamaru; Matsunaga, Mamoru

    2016-06-01

    The Casimir effect is a physical manifestation of zero point energy of quantum vacuum. In a relativistic quantum field theory, Poincaré symmetry of the theory seems, at first sight, to imply that nonzero vacuum energy is inconsistent with translational invariance of the vacuum. In the setting of two uniform boundary plates at rest, quantum fields outside the plates have (1 +2 )-dimensional Poincaré symmetry. Taking a massless scalar field as an example, we have examined the consistency between the Poincaré symmetry and the existence of the vacuum energy. We note that, in quantum theory, symmetries are represented projectively in general and show that the Casimir energy is connected to central charges appearing in the algebra of generators in the projective representations.

  3. Dynamical Casimir Effect for Gaussian Boson Sampling.

    PubMed

    Peropadre, Borja; Huh, Joonsuk; Sabín, Carlos

    2018-02-28

    We show that the Dynamical Casimir Effect (DCE), realized on two multimode coplanar waveg-uide resonators, implements a gaussian boson sampler (GBS). The appropriate choice of the mirror acceleration that couples both resonators translates into the desired initial gaussian state and many-boson interference in a boson sampling network. In particular, we show that the proposed quantum simulator naturally performs a classically hard task, known as scattershot boson sampling. Our result unveils an unprecedented computational power of DCE, and paves the way for using DCE as a resource for quantum simulation.

  4. Development of a second generation torsion balance based on a spherical superconducting suspension

    NASA Astrophysics Data System (ADS)

    Hammond, Giles D.; Speake, Clive C.; Matthews, Anthony J.; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within ≈50mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3×10-8rads-2/√Hz and 30nm/√Hz at 100mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles δ are (1.5±2.3)×10-4 and (2.0±2.2)×10-4 at frequencies of 5 and 10mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  5. Development of a second generation torsion balance based on a spherical superconducting suspension.

    PubMed

    Hammond, Giles D; Speake, Clive C; Matthews, Anthony J; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  6. Normal and lateral Casimir forces between deformed plates

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten; Hanke, Andreas; Golestanian, Ramin; Kardar, Mehran

    2003-02-01

    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length λ: For λ≪H we find a slower decay ˜H-4, compared to the H-5 behavior predicted by PWS which we show to be valid only for λ≫H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of λ≈2.5 H. With increasing H/λ≳0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.

  7. Casimir force in brane worlds: Coinciding results from Green's and zeta function approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar

    2010-06-15

    Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Green's function, and zeta function yield the same result, but for brane world models this was only assumed. In this work we show that both approaches yield the same Casimir force in the case of universal extra dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter themore » Casimir force in the Green's function approach get removed due to their orthogonality relations with a measure involving the right hypervolume of the plates, and this leaves just the contribution coming from the zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hypervolume of the plates introduced by the authors when using the Green's function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four-dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.« less

  8. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohideen, Umar

    2015-04-14

    Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to onlymore » those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.« less

  9. Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf

    2012-03-01

    Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

  10. Universality for shape dependence of Casimir effects from Weyl anomaly

    NASA Astrophysics Data System (ADS)

    Miao, Rong-Xin; Chu, Chong-Sun

    2018-03-01

    We reveal elegant relations between the shape dependence of the Casimir effects and Weyl anomaly in boundary conformal field theories (BCFT). We show that for any BCFT which has a description in terms of an effective action, the near boundary divergent behavior of the renormalized stress tensor is completely determined by the central charges of the theory. These relations are verified by free BCFTs. We also test them with holographic models of BCFT and find exact agreement. We propose that these relations between Casimir coefficients and central charges hold for any BCFT. With the holographic models, we reproduce not only the precise form of the near boundary divergent behavior of the stress tensor, but also the surface counter term that is needed to make the total energy finite. As they are proportional to the central charges, the near boundary divergence of the stress tensor must be physical and cannot be dropped by further artificial renormalization. Our results thus provide affirmative support on the physical nature of the divergent energy density near the boundary, whose reality has been a long-standing controversy in the literature.

  11. Casimir-Polder shifts on quantum levitation states

    NASA Astrophysics Data System (ADS)

    Crépin, P.-P.; Dufour, G.; Guérout, R.; Lambrecht, A.; Reynaud, S.

    2017-03-01

    An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schrödinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall, and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting, respectively, as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose an approximate treatment which is precise enough to discuss spectroscopy experiments aimed at tests of the weak-equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.

  12. A note on a boundary sine-Gordon model at the free-Fermion point

    NASA Astrophysics Data System (ADS)

    Murgan, Rajan

    2018-02-01

    We investigate the free-Fermion point of a boundary sine-Gordon model with nondiagonal boundary interactions for the ground state using auxiliary functions obtained from T  -  Q equations of a corresponding inhomogeneous open spin-\\frac{1}{2} XXZ chain with nondiagonal boundary terms. In particular, we obtain the Casimir energy. Our result for the Casimir energy is shown to agree with the result from the TBA approach. The analytical result for the effective central charge in the ultraviolet (UV) limit is also verified from the plots of effective central charge for intermediate values of volume.

  13. Zeta Function Regularization in Casimir Effect Calculations and J. S. DOWKER's Contribution

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2012-06-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so-called operator regularization procedure are presented.

  14. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  15. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble.

    PubMed

    Gross, Markus; Gambassi, Andrea; Dietrich, S

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  16. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Gross, Markus; Gambassi, Andrea; Dietrich, S.

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ɛ =4 -d , where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ɛ and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  17. Scalar Casimir energies in M4>=N for even N

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Milton, Kimball A.

    1987-01-01

    We construct a Green's-function formalism for computing vacuum-fluctuation energies of scalar fields in 4+N dimensions, where the extra N dimensions are compactified into a hypersphere SN of radius a. In all cases a leading cosmological energy term ucosmo~aN/b4+N results. Here b is an ultraviolet cutoff at the Planck scale. In all cases an unambiguous Casimir energy is computed. For odd N these energies agree with those calculated by Candelas and Weinberg. For even N, the Casimir energy is logarithmically divergent: uCasimir~(αN/a4)ln(a/b). The coefficients αN are computed in terms of Bernoulli numbers.

  18. The role of the “Casimir force analogue” at the microscopic processes of crystallization and melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvildeev, V.N., E-mail: chuvildeev@gmail.com; Semenycheva, A.V., E-mail: avsemenycheva@gmail.com

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, “the Casimir force analogue”, to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. “The Casimir force analogue” helps to estimate latent melting heat and to gain an insight into a solid–liquid transition problem.

  19. The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting

    NASA Astrophysics Data System (ADS)

    Chuvildeev, V. N.; Semenycheva, A. V.

    2016-10-01

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.

  20. Alternative method for evaluating the pair energy of nucleons in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmukhamedov, A. M., E-mail: fattah52@mail.ru

    2015-12-15

    An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.

  1. Correlation among the effective mass (m*), λab and Tc of superconducting cuprates in a Casimir energy scenario

    NASA Astrophysics Data System (ADS)

    Orlando, M. T. D.; Rouver, A. N.; Rocha, J. R.; Cavichini, A. S.

    2018-06-01

    The relevance of the Casimir effect, discovered in 1948, has recently been pointed out in studies on materials such as graphene and high-temperature superconducting cuprates. In particular, the relationship between Casimir energy and the energy of a superconducting condensate with anisotropy characterized by high bidimensionality has already been discussed in certain theoretical scenarios. Using this proposal, this work describes the relationship between the effective mass of the charge carriers (m* = αme) and the macroscopic parameters characteristic of several families of high-Tc superconducting cuprates (Cu-HTSC) that have copper and oxygen superconducting planes (Cu-O). We have verified that an expression exists that correlates the effective mass, the London penetration length in the plane λab, the critical temperature Tc and the distance d between the equivalent superconducting planes of Cu-HTSC. This study revealed that the intersection between the asymptotic behavior of α as a function of Tc and the line describing the optimal value of α ≃ 2 (m* ≃ 2me) indicates that a nonadiabatic region exists, which implies a carrier-lattice interaction and where the critical temperature can have its highest value in Cu-HTSC.

  2. On the global Casimir effect in the Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Muniz, C. R.; Tahim, M. O.; Cunha, M. S.; Vieira, H. S.

    2018-01-01

    In this paper we study the vacuum quantum fluctuations of the stationary modes of an uncharged scalar field with mass m around a Schwarzschild black hole with mass M, at zero and non-zero temperatures. The procedure consists of calculating the energy eigenvalues starting from the exact solutions found for the dynamics of the scalar field, considering a frequency cutoff in which the particle is not absorbed by the black hole. From this result, we obtain the exterior contributions for the vacuum energy associated to the stationary states of the scalar field, by considering the half-summing of the levels of energy and taking into account the respective degeneracies, in order to better capture the nontrivial topology of the black hole spacetime. Then we use the Riemann's zeta function to regularize the vacuum energy thus found. Such a regularized quantity is the Casimir energy, whose analytic computation we show to yield a convergent series. The Casimir energy obtained does not take into account any boundaries artificially imposed on the system, just the nontrivial spacetime topology associated to the source and its singularity. We suggest that this latter manifests itself through the vacuum tension calculated on the event horizon. We also investigate the problem by considering the thermal corrections via Helmholtz free energy calculation, computing the Casimir internal energy, the corresponding tension on the event horizon, the Casimir entropy, and the thermal capacity of the regularized quantum vacuum, analyzing their behavior at low and high temperatures, pointing out the thermodynamic instability of the system in the considered regime, i.e. mMll 1.

  3. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  4. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    PubMed

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.

  5. Supersymmetric Casimir energy and SL(3,Z) transformations

    NASA Astrophysics Data System (ADS)

    Brünner, Frederic; Regalado, Diego; Spiridonov, Vyacheslav P.

    2017-07-01

    We provide a recipe to extract the supersymmetric Casimir energy of theories defined on primary Hopf surfaces directly from the superconformal index. It involves an SL(3,Z) transformation acting on the complex structure moduli of the background geometry. In particular, the known relation between Casimir energy, index and partition function emerges naturally from this framework, allowing rewriting of the latter as a modified elliptic hypergeometric integral. We show this explicitly for N=1 SQCD and N=4 supersymmetric Yang-Mills theory for all classical gauge groups, and conjecture that it holds more generally. We also use our method to derive an expression for the Casimir energy of the nonlagrangian N=2 SCFT with E6 flavour symmetry. Furthermore, we predict an expression for Casimir energy of the N=1 SP(2N) theory with SU(8) × U(1) flavour symmetry that is part of a multiple duality network, and for the doubled N=1 theory with enhanced E7 flavour symmetry.

  6. Singular perturbations with boundary conditions and the Casimir effect in the half space

    NASA Astrophysics Data System (ADS)

    Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.

    2010-06-01

    We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.

  7. Casimir Pressure in Mds-Structures

    NASA Astrophysics Data System (ADS)

    Yurova, V. A.; Bukina, M. N.; Churkin, Yu. V.; Fedortsov, A. B.; Klimchitskaya, G. L.

    2012-07-01

    The Casimir pressure on the dielectric layer in metal-dielectric-semiconductor (MDS) structures is calculated in the framework of the Lifshitz theory at nonzero temperature. In this calculation the standard parameters of semiconductor devices with a thin dielectric layer are used. We consider the thickness of a layer decreasing from 40 to 1 nm. At the shortest thickness the Casimir pressure achieves 8 MPa. At small thicknesses the results are compared with the predictions of nonrelativistic theory.

  8. Finite difference computation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing vertically on smooth glass.

  9. CALL FOR PAPERS: Topical issue on the nonstationary Casimir effect and quantum systems with moving boundaries

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.

    2004-05-01

    The past few years have seen a growing interest in quantum mechanical systems with moving boundaries. One of its manifestations was the First International Workshop on Problems with Moving Boundaries organized by Professor J Dittrich in Prague in October 2003. Another event in this series will be the (first) International Workshop on the Dynamical Casimir Effect in Padua in June 2004, organized by Professor G Carugno (see webpage www.pd.infn.it/casimir/ for details). As Guest Editors we invite researchers working in any area related to moving boundaries to contribute to a Topical Issue of Journal of Optics B: Quantum and Semiclassical Optics on the nonstationary Casimir effect and quantum systems with moving boundaries. Our intention is to cover a wide range of topics. In particular, we envisage possible contributions in the following areas: Theoretical and experimental studies on quantum fields in cavities with moving boundaries and time-dependent media. This area includes, in particular, various manifestations of the nonstationary (dynamical) Casimir effect, such as creation of quanta and modifications of Casimir force due to the motion of boundaries. Other relevant subjects are: generation and evolution of nonclassical states of fields and moving mirrors; interaction between quantized fields and atoms in cavities with moving boundaries; decoherence and entanglement due to the motion of boundaries; field quantization in nonideal cavities with moving boundaries taking into account losses and dispersion; nano-devices with moving boundaries. Quantum particles in domains confined with moving boundaries. This area includes: new exact and approximate solutions of the evolution equations (Schrödinger, Klein-Gordon, Dirac, Fokker-Planck, etc); quantum carpets and revivals; escape and tunnelling through moving barriers; evolution of quantum packets in the presence of moving boundaries; ultracold atoms (ions) in traps with moving boundaries. The topical issue is scheduled for publication in March 2005 and the deadline for submission of contributions is 1 August 2004. The Editorial Division of Institute of Physics Publishing at the P. N. Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the main Publishing Office in Bristol. All contributions will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. There are no page charges for publication. Contributions to the topical issue, quoting `Topical Issue/NCE', should be submitted by e-mail to IOPP@sci.lebedev.ru or as hard copy (enclosing the electronic code) to IOPP Division, P. N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 Russia.

  10. Graphene cantilever under Casimir force

    NASA Astrophysics Data System (ADS)

    Derras-Chouk, Amel; Chudnovsky, Eugene M.; Garanin, Dmitry A.; Jaafar, Reem

    2018-05-01

    The stability of graphene cantilever under Casimir attraction to an underlying conductor is investigated. The dependence of the instability threshold on temperature and flexural rigidity is obtained. Analytical work is supplemented by numerical computation of the critical temperature above which the graphene cantilever irreversibly bends down and attaches to the conductor. The geometry of the attachment and exfoliation of the graphene sheet is discussed. It is argued that graphene cantilever can be an excellent tool for precision measurements of the Casimir force.

  11. Detecting chameleons through Casimir force measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field.more » As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.« less

  12. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  13. Casimir force phase transitions in the graphene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less

  14. Casimir force phase transitions in the graphene family

    DOE PAGES

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; ...

    2017-03-15

    The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less

  15. Forces exerted by a correlated fluid on embedded inclusions.

    PubMed

    Bitbol, Anne-Florence; Fournier, Jean-Baptiste

    2011-06-01

    We investigate the forces exerted on embedded inclusions by a fluid medium with long-range correlations, described by an effective scalar field theory. Such forces are the basis for the medium-mediated Casimir-like force. To study these forces beyond thermal average, it is necessary to define them in each microstate of the medium. Two different definitions of these forces are currently used in the literature. We study the assumptions underlying them. We show that only the definition that uses the stress tensor of the medium gives the sought-after force exerted by the medium on an embedded inclusion. If a second inclusion is embedded in the medium, the thermal average of this force gives the usual Casimir-like force between the two inclusions. The other definition can be used in the different physical case of an object that interacts with the medium without being embedded in it. We show in a simple example that the two definitions yield different results for the variance of the Casimir-like force.

  16. Measured long-range repulsive Casimir-Lifshitz forces.

    PubMed

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  17. Critical Casimir forces, Goldstone modes and anomalous wetting

    NASA Astrophysics Data System (ADS)

    Balibar, Sebastien

    2004-03-01

    We have measured the contact angle of a ^3He - ^4He interface on a sapphire window, near the tricritical temperature Tt of liquid helium mixtures (T. Ueno et al., J. Low Temp. Phys. 130, 543, 2003). We have found the first experimental evidence of a violation of "critical point wetting", the general phenomenon introduced by J.W. Cahn in 1977. We then proposed that Fisher and de Gennes' "critical Casimir effect" provides the necessary long range force for this anomalous wetting behavior to occur (T. Ueno et al. Phys. Rev. Lett. 90, 116102, 2003). Our measurements are now extended to the superfluid region far below the tricritical temperature T_t. Our goal is to test the prediction by M. Kardar and R. Golestanian that the confinement of Goldstone modes in superfluid films leads to an additionnal contribution to the Casimir force (M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233, 1999). We compare theoretical predictions to experimental results.

  18. Casimir stress in materials: Hard divergency at soft walls

    NASA Astrophysics Data System (ADS)

    Griniasty, Itay; Leonhardt, Ulf

    2017-11-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.

  19. Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.

    2011-06-01

    Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.

  20. Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.

    Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.

  1. Casimir force in the Gödel space-time and its possible induced cosmological inhomogeneity

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, Sh.; Shojai, A.

    2017-07-01

    The Casimir force between two parallel plates in the Gödel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Gödel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied.

  2. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  3. Repulsive Casimir-Polder potential by a negative reflecting surface

    NASA Astrophysics Data System (ADS)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  4. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2014-09-01

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.

  5. Chameleons with field-dependent couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Mota, David F.

    2010-10-15

    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power runaway potentials and field-independent couplings to matter. In this paper we investigate field theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for Eoet-Wash experiments, fifth-force searches andmore » Casimir-force experiments. Requiring that the scalar field evades gravitational tests, we find that the coupling is sensitive to a mass scale which is of order of the Hubble scale today.« less

  6. Casimir force in Randall-Sundrum models with q+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail; Saad, Nasser

    2008-09-01

    We evaluate the Casimir force between two parallel plates in Randall-Sundrum (RS) scenarios extended by q compact dimensions. After giving exact expressions for one extra compact dimension (6D RS model), we generalize to an arbitrary number of compact dimensions. We present the complete calculation for both the two-brane scenario (RSI model) and the one-brane scenario (RSII model) using the method of summing over the modes. We investigate the effects of extra dimensions on the magnitude and sign of the force, and comment on limits for the size and number of the extra dimensions.

  7. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Vasile, Ruggero; Passante, Roberto

    2010-12-15

    We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.

  8. Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction.

    PubMed

    Chan, Eng Aik; Aljunid, Syed Abdullah; Adamo, Giorgio; Laliotis, Athanasios; Ducloy, Martial; Wilkowski, David

    2018-02-01

    Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules, or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. We perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P 3/2 ) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its nonresonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited-state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step toward atom trapping in the extreme near field, possibly without the use of external fields.

  9. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  10. Apparent Endless Extraction of Energy from the Vacuum by Cyclic Manipulation of Casimir Cavity Dimensions

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    In 1983, Ambjorn and Wolfram produced plots of the energy density of the quantum mechanical electromagnetic fluctuations in a volume of vacuum bounded by perfectly conducting walls in the shape of a rectangular cavity of dimensions a(1), a(2), and a(3), as a function of the ratios a(2)/a(1) and a(3)/a(1). Portions of these plots are double-valued, in that they allow rectangular cavities with the same, value of a(2)/a(1), but different values of a(3)/a(1), to have the saint total energy. Using these double-valued regions of the plots, I show that it is possible to define a "Casimir Vacuum Energy Extraction Cycle" which apparently would allow for the endless extraction of energy from the vacuum in the Casimir cavity by cyclic manipulation of the Casimir cavity dimensions.

  11. Thermal corrections to the Casimir energy in a general weak gravitational field

    NASA Astrophysics Data System (ADS)

    Nazari, Borzoo

    2016-12-01

    We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.

  12. Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Martin, Paul J.

    In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.

  13. Casimir repulsion in sphere-plate geometry

    NASA Astrophysics Data System (ADS)

    Pirozhenko, Irina G.; Bordag, Michael

    2013-04-01

    The electromagnetic vacuum energy is considered in the presence of a perfectly conducting plane and a ball with dielectric permittivity ɛ and magnetic permeability μ, μ≠1. The attention is focused on the Casimir repulsion in this system caused by the magnetic permeability of the sphere. In the case of a perfectly permeable sphere, μ=∞, the vacuum energy is estimated numerically. The short- and long-distance asymptotes corresponding to the repulsive force and respective low-temperature corrections and high-temperature limits are found for a wide range of μ. The constraints on the Casimir repulsion in this system are discussed.

  14. Materials perspective on Casimir and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  15. Casimir Effect in Hemisphere Capped Tubes

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.

    2016-02-01

    In this paper we investigate the vacuum densities for a massive scalar field with general curvature coupling in background of a (2 + 1)-dimensional spacetime corresponding to a cylindrical tube with a hemispherical cap. A complete set of mode functions is constructed and the positive-frequency Wightman function is evaluated for both the cylindrical and hemispherical subspaces. On the base of this, the vacuum expectation values of the field squared and energy-momentum tensor are investigated. The mean field squared and the normal stress are finite on the boundary separating two subspaces, whereas the energy density and the parallel stress diverge as the inverse power of the distance from the boundary. For a conformally coupled field, the vacuum energy density is negative on the cylindrical part of the space. On the hemisphere, it is negative near the top and positive close to the boundary. In the case of minimal coupling the energy density on the cup is negative. On the tube it is positive near the boundary and negative at large distances. Though the geometries of the subspaces are different, the Casimir pressures on the separate sides of the boundary are equal and the net Casimir force vanishes. The results obtained may be applied to capped carbon nanotubes described by an effective field theory in the long-wavelength approximation.

  16. Semiclassical states on Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following themore » methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.« less

  17. Casimir and Casimir-Polder forces with dissipation from first principles

    NASA Astrophysics Data System (ADS)

    Bordag, M.

    2017-12-01

    We consider Casimir-Polder and Casimir forces with finite dissipation by coupling heat baths to the dipoles introducing, this way, dissipation from first principles. We derive a representation of the free energy as an integral over real frequencies, which can be viewed as an generalization of the remarkable formula introduced by Ford et al. [Phys. Rev. Lett. 55, 2273 (1985), 10.1103/PhysRevLett.55.2273]. For instance, we obtain a nonperturbative representation for the atom-atom and atom-wall interactions. We investigate several limiting cases. From the limit T →0 we show that the third law of thermodynamics cannot be violated within the given approach, where the dissipation parameter cannot depend on temperature by construction. We conclude that the given approach is insufficient to resolve the thermodynamic puzzle connected with the Drude model when inserted into the Lifshitz formula. Further, we consider the transition to the Matsubara representation and discuss modifications of the contribution from the zeroth Matsubara frequency.

  18. The square lattice Ising model on the rectangle II: finite-size scaling limit

    NASA Astrophysics Data System (ADS)

    Hucht, Alfred

    2017-06-01

    Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.

  19. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2018-04-01

    A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.

  20. Archimedes force on Casimir apparatus

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Shevrin, Efim

    2016-08-01

    This paper addresses a problem of Casimir apparatus in dense medium, put in weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example, we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  1. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  2. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  3. Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Antezza, Mauro; CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier

    2011-10-15

    We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different temperatures and immersed in environmental radiation at a third different temperature. We derive explicit closed-form analytic expressions for the correlations of the electromagnetic field and for the heat transfer and Casimir-Lifshitz force in terms of the bodies' scattering matrices. We then consider some particular cases which we investigate in detail: the atom-surface and the slab-slab configurations.

  4. Materials perspective on Casimir and van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  5. Materials perspective on Casimir and van der Waals interactions

    DOE PAGES

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; ...

    2016-11-02

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  6. A theoretical model for investigating the effect of vacuum fluctuations on the electromechanical stability of nanotweezers

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, A.; Mokhtari, J.; Koochi, A.; Abadyan, M.

    2015-06-01

    In this paper, the impact of the Casimir attraction on the electromechanical stability of nanowire-fabricated nanotweezers is investigated using a theoretical continuum mechanics model. The Dirichlet mode is considered and an asymptotic solution, based on path integral approach, is applied to consider the effect of vacuum fluctuations in the model. The Euler-Bernoulli beam theory is employed to derive the nonlinear governing equation of the nanotweezers. The governing equations are solved by three different approaches, i.e. the modified variation iteration method, generalized differential quadrature method and using a lumped parameter model. Various perspectives of the problem, including the comparison with the van der Waals force regime, the variation of instability parameters and effects of geometry are addressed in present paper. The proposed approach is beneficial for the precise determination of the electrostatic response of the nanotweezers in the presence of Casimir force.

  7. Anti-de Sitter-space/conformal-field-theory Casimir energy for rotating black holes.

    PubMed

    Gibbons, G W; Perry, M J; Pope, C N

    2005-12-02

    We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.

  8. Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.

    PubMed

    Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin

    2010-01-01

    Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems.

  9. 3 CFR 8582 - Proclamation 8582 of October 8, 2010. General Pulaski Memorial Day, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of America A Proclamation From before our Nation's founding until today, daring individuals have fought to defend America with unwavering devotion. Casimir Pulaski was a Polish patriot, yet he laid down... General Casimir Pulaski witnessed the occupation of Poland by foreign troops and fought for his homeland's...

  10. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    NASA Astrophysics Data System (ADS)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  11. Entanglement of a quantum field with a dispersive medium.

    PubMed

    Klich, Israel

    2012-08-10

    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  12. EDITORIAL: The nonstationary Casimir effect and quantum systems with moving boundaries

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.

    2005-03-01

    This topical issue of Journal of Optics B: Quantum and Semiclassical Optics contains 16 contributions devoted to quantum systems with moving boundaries. In a broad sense, the papers continue the studies opened exactly 100 years ago by Einstein in his seminal work on the electrodynamics of moving bodies and the quantum nature of light. Another jubilee which we wish to celebrate by launching this issue is the 80th anniversary of the publication of two papers, where the first solutions of the classical Maxwell equations in a one-dimensional cavity with moving boundaries were obtained, by T H Havelock (1924 Some dynamical illustrations of the pressure of radiation and of adiabatic invariance Phil. Mag. 47 754-71) and by E L Nicolai (1925 On a dynamical illustration of the pressure of radiation Phil. Mag. 49 171-7). As was shown by Einstein, studying the fluctuations of the electromagnetic field inevitably leads one to its quantum (corpuscular) nature. Many papers in this issue deal with problems where moving boundaries produce parametric excitation of vacuum fluctuations of the field, which could result in several different observable effects, like the modification of the famous Casimir force, or the creation of real quanta from the vacuum. It is worth emphasizing that these phenomena, frequently referred to as nonstationary (or dynamical) Casimir effects, are no longer the province only of pure theorists: some experimental groups have already started long-term work aimed at observing such effects in the laboratory. Of course, many difficult problems remain to be resolved before this dream becomes reality. Several papers here show both important progress in this direction, and possible difficulties still to be tackled. Problems that have been considered include, in particular, decoherence, entanglement, and the roles of geometry and polarization. Other papers deal with fundamental problems like the Unruh effect, the interaction of accelerated relativistic atoms with radiation, vacuum friction, and so on. Solutions of some interesting problems of nonrelativistic quantum mechanics with time-dependent boundary conditions, including applications to Bose-Einstein condensates, can also be found here. Since nonstationary Casimir effects can exist not only for photons but for any other quanta (e.g., phonons in solids or in liquid helium), we believe the approaches and results presented in this collection will find interesting applications in other branches of physics too. One possible example might be the generation of squeezed and other 'nonclassical' states of different fields by time-dependent boundary conditions. Approximately half the contributed papers stem from talks at two recent conferences: the First International Workshop on Problems with Moving Boundaries, organized by Professor J Dittrich in Prague in October 2003, and the International Workshop on the Dynamical Casimir Effect, organized by Professor G Carugno in Padua in June 2004. We wish to thank all the authors and reviewers for their efforts in preparing high quality papers, which we hope will attract the attention of other researchers, and especially of young people, to the fascinating areas covered by this special issue.

  13. Quest for Casimir repulsion between Chern-Simons surfaces

    NASA Astrophysics Data System (ADS)

    Fialkovsky, Ignat; Khusnutdinov, Nail; Vassilevich, Dmitri

    2018-04-01

    In this paper we critically reconsider the Casimir repulsion between surfaces that carry the Chern-Simons interaction (corresponding to the Hall-type conductivity). We present a derivation of the Lifshitz formula valid for arbitrary planar geometries and discuss its properties. This analysis allows us to resolve some contradictions in the previous literature. We compute the Casimir energy for two surfaces that have constant longitudinal and Hall conductivities. The repulsion is possible only if both surfaces have Hall conductivities of the same sign. However, there is a critical value of the longitudinal conductivity above which the repulsion disappears. We also consider a model where both parity odd and parity even terms in the conductivity are produced by the polarization tensor of surface modes. In contrast to the previous publications [L. Chen and S.-L. Wan, Phys. Rev. B 84, 075149 (2011), 10.1103/PhysRevB.84.075149; Phys. Rev. B 85, 115102 (2012), 10.1103/PhysRevB.85.115102], we include the parity anomaly term. This term ensures that the conductivities vanish for infinitely massive surface modes. We find that at least for a single mode, regardless of the sign and value of its mass, there is no Casimir repulsion.

  14. Casimir force-induced instability in freestanding nanotweezers and nanoactuators made of cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Abadian, Naeimeh; Kanjouri, Faramarz; Abadyan, Mohamadreza

    2014-05-01

    The quantum vacuum fluctuation i.e., Casimir attraction can induce mechanical instability in ultra-small devices. Previous researchers have focused on investigating the instability in structures with planar or rectangular cross-section. However, to the best knowledge of the authors, no attention has been paid for modeling this phenomenon in the structures made of nanowires with cylindrical geometry. In this regard, present work is dedicated to simulate the Casimir force-induced instability of freestanding nanoactuator and nanotweezers made of conductive nanowires with circular cross-section. To compute the quantum vacuum fluctuations, two approaches i.e., the proximity force approximation (for small separations) and scattering theory approximation (for large separations), are considered. The Euler-beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive governing equations of the nanostructures. The governing nonlinear equations are solved via three different approaches, i.e., using lumped parameter model, modified variation iteration method (MVIM) and numerical solution. The deflection of the nanowire from zero to the final stable position is simulated as the Casimir force is increased from zero to its critical value. The detachment length and minimum gap, which prevent the instability, are computed for both nanosystems.

  15. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles.

    PubMed

    Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri

    2010-05-19

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  16. Three-body effects in Casimir-Polder repulsion

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Abalo, E. K.; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan

    2015-04-01

    In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. However, it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nanoparticles.

  17. Electronic zero-point fluctuation forces inside circuit components

    PubMed Central

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  18. Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces

    NASA Astrophysics Data System (ADS)

    Rubio López, Adrián E.; Poggi, Pablo M.; Lombardo, Fernando C.; Giannini, Vincenzo

    2018-04-01

    In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR . We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d ), showing the scale at which each magnitude converges to the value of infinite thickness (d →+∞ ) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.

  19. Stabilizing oscillating universes against quantum decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mithani, Audrey T.; Vilenkin, Alexander, E-mail: audrey.todhunter@tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2015-07-01

    We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.

  20. Stabilizing oscillating universes against quantum decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mithani, Audrey T.; Vilenkin, Alexander

    We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.

  1. Gauge Momenta as Casimir Functions of Nonholonomic Systems

    NASA Astrophysics Data System (ADS)

    García-Naranjo, Luis C.; Montaldi, James

    2018-05-01

    We consider nonholonomic systems with symmetry possessing a certain type of first integral which is linear in the velocities. We develop a systematic method for modifying the standard nonholonomic almost Poisson structure that describes the dynamics so that these integrals become Casimir functions after reduction. This explains a number of recent results on Hamiltonization of nonholonomic systems, and has consequences for the study of relative equilibria in such systems.

  2. A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras

    NASA Astrophysics Data System (ADS)

    Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian

    2018-02-01

    We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.

  3. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  4. Quartz Microbalance Study of 400-angstrom Thick Films near the lambda Point

    NASA Technical Reports Server (NTRS)

    Chan, Moses H. W.

    2003-01-01

    In a recent measurement we observed the thinning of an adsorbed helium film induced by the confinement of critical fluctuations a few millikelvin below the lambda point. A capacitor set-up was used to measure this Casimir effect. In this poster we will present our measurement of an adsorbed helium film of 400 angstroms near the lambda point with a quartz microbalance. For films this thick, we must take into account the non-linear dynamics of the shear waves in the fluid. In spite of the added complications, we were able to confirm the thinning of the film due to the Casimir effect and the onset of the superfluid transition. In addition, we observe a sharp anomaly at the bulk lambda point, most likely related to critical dissipation of the first sound. This work is carried out in collaboration with Rafael Garcia, Stephen Jordon and John Lazzaretti. This work is funded by NASA's Office of Biological and Physical Research under grant.

  5. Inertial mass of an elementary particle from the holographic scenario

    NASA Astrophysics Data System (ADS)

    Giné, Jaume

    2017-03-01

    Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.

  6. Algebraic special functions and SO(3,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less

  7. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  8. Casimir energy for two and three superconducting coupled cavities: Numerical calculations

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Esposito, Giampiero; Grilli, M.; Majorana, E.; Pepe, G. P.; Petrarca, S.; Puppo, P.; Rapagnani, P.; Ricci, F.; Rovelli, C.; Ruggi, P.; Saini, N. L.; Stornaiolo, C.; Tafuri, F.

    2017-11-01

    In this paper we study the behavior of the Casimir energy of a "multi-cavity" across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, aiming at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. For this purpose it is foreseen to modulate the Casimir energy of a layered structure composing a multy-cavity coupled system by inducing a transition from the metallic to the superconducting phase. This implies a thorough study of the behavior of the cavity, in which normal metallic layers are alternated with superconducting layers, across the transition. Our study finds that, because of the coupling between the cavities, mainly mediated by the transverse magnetic modes of the radiation field, the variation of energy across the transition can be very large.

  9. Effects of transverse photon exchange in helium Rydberg states - Corrections beyond the Coulomb-Breit interaction

    NASA Technical Reports Server (NTRS)

    Au, C. K.

    1989-01-01

    The Breit correction only accounts for part of the transverse photon exchange correction in the calculation of the energy levels in helium Rydberg states. The remaining leading corrections are identified and each is expressed in an effective potential form. The relevance to the Casimir correction potential in various limits is also discussed.

  10. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving Eproxi. Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2l with a probability that depends, among other factors, on the properties of Eproxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive Eproxi > 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density nd ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T.

  11. Three-stage stochastic pump: Another type of Onsager-Casimir symmetry and results far from equilibrium

    NASA Astrophysics Data System (ADS)

    Rosas, Alexandre; Van den Broeck, Christian; Lindenberg, Katja

    2018-06-01

    The stochastic thermodynamic analysis of a time-periodic single particle pump sequentially exposed to three thermochemical reservoirs is presented. The analysis provides explicit results for flux, thermodynamic force, entropy production, work, and heat. These results apply near equilibrium as well as far from equilibrium. In the linear response regime, a different type of Onsager-Casimir symmetry is uncovered. The Onsager matrix becomes symmetric in the limit of zero dissipation.

  12. Casimir repulsion between metallic objects in vacuum.

    PubMed

    Levin, Michael; McCauley, Alexander P; Rodriguez, Alejandro W; Reid, M T Homer; Johnson, Steven G

    2010-08-27

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  13. Casimir energies and special dimensions in a toy model for branes

    NASA Astrophysics Data System (ADS)

    Cohen, Isaac

    1988-12-01

    We consider a generalization to branes of the old action for the strings without reparamentrization invariance. These actions admit natural supplementary mass-shell conditions. By regularizing the Casimir energies we calculate the special dimensions at which these toy branes show vector massless states in its spectrum. They all turn out to be non-integers. On sabbatical leave from Departamento de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 66961, Caracas 1061A, Venezuela.

  14. BPS Z{sub N} string tensions, sine law and Casimir scaling, and integrable field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneipp, Marco A. C.; International Centre for Theoretical Physics

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G{yields}U(1){sup r}{yields}C{sub G}, with C{sub G} being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, wemore » show that for each of the two vacua the ratio of the tensions of the BPS Z{sub N} strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K{sub ij} and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories.« less

  15. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    NASA Astrophysics Data System (ADS)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-06-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  16. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    NASA Astrophysics Data System (ADS)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-03-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  17. Particle Creation in Oscillating Cavities with Cubic and Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Dinani, H. T.

    2008-04-01

    In the present paper we study the creation of massless scalar particles from the quantum vacuum due to the dynamical Casimir effect by oscillating cavities with cubic and cylindrical geometry. To the first order of the amplitude we derive the expressions for the number of the created particles.

  18. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  19. Casimir rack and pinion as a miniaturized kinetic energy harvester

    NASA Astrophysics Data System (ADS)

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.

  20. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  1. Van der Waals forces in pNRQED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtabovenko, Vladyslav

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  2. Casimir Effect and Black Hole Radiation

    NASA Astrophysics Data System (ADS)

    Rahbardehghan, S.

    2018-03-01

    The gravitational field of a black hole intrinsically creates a potential barrier consisted of two reflecting boundaries; the first one far from the hole and the second one in the vicinity of its horizon. With respect to this fact and assuming the boundaries as good conductors (in view of an observer near the horizon just outside the second boundary), in a series of papers, R.M. Nugayev by considering a conformally coupled massless scalar field and based on the calculations of Candelas and Deutsch (the accelerated-mirror results) has claimed that " ...the existence of the potential barrier is as crucial for Hawking evaporation as the existence of the horizon". In this paper, by taking the same assumptions, through straightforward reasonings, we explicitly show that contrary to this claim, the effects of the first boundary on the black hole radiation are quite negligible. Moreover, the inclusion of the second boundary makes the situation more complicated, because the induced Casimir energy-momentum tensor by this boundary in its vicinity is divergent of order δ ^{-4} ( δ is the distance to the boundary).

  3. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias

    2015-11-01

    In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  4. Quasi-polaritons in Bose-Einstein condensates induced by Casimir-Polder interaction with graphene.

    PubMed

    Terças, H; Ribeiro, S; Mendonça, J T

    2015-06-03

    We consider the mechanical coupling between a two-dimensional Bose-Einstein condensate and a graphene sheet via the vacuum fluctuations of the electromagnetic field which are at the origin of the so-called Casimir-Polder potential. By deriving a self-consistent set of equations governing the dynamics of the condensate and the flexural (out-of-plane) modes of the graphene, we can show the formation of a new type of purely acoustic quasi-particle excitation, a quasi-polariton resulting from the coherent superposition of quanta of flexural and Bogoliubov modes.

  5. Time symmetry breaking in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Gammal, A.

    2017-09-01

    We consider different processes leading to time symmetry breaking in a Bose-Einstein condensate. Our approach provides a global description of time symmetry breaking, based on the equations of a thermal condensate. This includes quenching and expansion of the condensate, the Kibble-Zurek mechanism associated with the creation of vorticity, the dynamical Casimir effect and the formation of time crystals.

  6. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  7. Generalized closed form solutions for feasible dimension limit and pull-in characteristics of nanocantilever under the Influences of van der Waals and Casimir forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Banibrata; Sen, Siddhartha

    2018-04-01

    This paper presents generalized closed form expressions for determining the dimension limit for the basic design parameters as well as the pull-in characteristics of a nanocantilever beam under the influences of van der Waals and Casimir forces. The coupled nonlinear electromechanical problem of electrostatic nanocantilever is formulated in nondimensional form with Galerkin’s approximation considering the effects of these intermolecular forces and fringe field. The resulting integrals and higher order polynomials are solved numerically to derive the closed form expressions for maximum permissible detachment length, minimum feasible gap spacing and critical pull-in limit. The derived expressions are compared and validated as well with several reported literature showing reasonable agreement. The major advantages of the proposed closed form expressions are that, they do not contain any complex mathematical term or operation unlike in reported literature and thus they will serve as convenient tools for the NEMS community in successful design of various electrostatically actuated nanosystems.

  8. Gravitational Casimir-Polder effect

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2017-04-01

    The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  9. Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-03-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.

  10. Crossover from attractive to repulsive Casimir forces and vice versa.

    PubMed

    Schmidt, Felix M; Diehl, H W

    2008-09-05

    Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.

  11. Casimir forces on a bi-anisotropic absorbing magneto-dielectric slab between two parallel conducting plates

    NASA Astrophysics Data System (ADS)

    Amooshahi, Majid; Shoughi, Ali

    2018-05-01

    A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers-Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.

  12. Casimir forces from conductive silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  13. Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces

    PubMed Central

    2015-01-01

    We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale. PMID:26405466

  14. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.

    2007-09-15

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustratemore » our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls.« less

  15. The stochastic energy-Casimir method

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.

    2018-04-01

    In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyao, Tadahiro; Spohn, Herbert

    The retarded van der Waals potential, as first obtained by Casimir and Polder, is usually computed on the basis of nonrelativistic quantum electrodynamics . The Hamiltonian describes two infinitely heavy nuclei, charge e, separated by a distance R and two spinless electrons, charge -e, nonrelativistically coupled to the quantized radiation field. Casimir and Polder used the dipole approximation and small coupling to the Maxwell field. We employ here the full Hamiltonian and determine the asymptotic strength of the leading -R{sup -7} potential, which is valid for all e. Our computation is based on a path integral representation and expands inmore » 1/R, rather than in e.« less

  17. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  18. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality.

    PubMed

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-07

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ∼10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  19. Modifying the Casimir force between indium tin oxide film and Au sphere

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Chang, C.-C.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-01-01

    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide (ITO) film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The random, systematic, and total experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an ITO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in very good agreement with computations disregarding the contribution of free carriers in the dielectric permittivity. According to the hypothetical explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.

  20. Study of Vacuum Energy Physics for Breakthrough Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  1. Supersymmetry Breaking Casimir Warp Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-30

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead ofmore » general relativity.« less

  2. The nonrelativistic limit of (central-extended) Poincaré group and some consequences for quantum actualization

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan S.; Castagnino, M.; Campoamor-Stursberg, R.

    2009-10-01

    The nonrelativistic limit of the centrally extended Poincaré group is considered and their consequences in the modal Hamiltonian interpretation of quantum mechanics are discussed [O. Lombardi and M. Castagnino, Stud. Hist. Philos. Mod. Phys 39, 380 (2008); J. Phys, Conf. Ser. 128, 012014 (2008)]. Through the assumption that in quantum field theory the Casimir operators of the Poincaré group actualize, the nonrelativistic limit of the latter group yields to the actualization of the Casimir operators of the Galilei group, which is in agreement with the actualization rule of previous versions of modal Hamiltonian interpretation [Ardenghi et al., Found. Phys. (submitted)].

  3. Massless rotating fermions inside a cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less

  4. Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.

    2014-01-01

    In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.

  5. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    NASA Astrophysics Data System (ADS)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  6. A generalized energy principle for a magnetorotational instability model

    NASA Astrophysics Data System (ADS)

    Tassi, Emanuele; Morrison, Phil; Tronko, Natalia

    2012-03-01

    We study the equilibria of the Magnetorotational Instability system by using the noncanonical Hamiltonian approach [1], since it provides variational principles for equilibria that can be used to assess stability. We show that a reduced system of equations derived in [2] is an infinite-dimensional noncanonical Hamiltonian system. The noncanonical Poisson bracket is identified and shown to obey the Jacobi identity, and families of Casimir invariants are obtained. Explicit sufficient conditions for the energy stability of two classes of equilibria are identified by means of the Energy-Casimir method. Comparison between the stability conditions obtained in the two cases indicates that the presence of an equilibirum magnetic field along the direction of the ignorable coordinate does not introduce destabilizing effects. An analogy is found and physically interpreted between terms of the MRI perturbation energy and terms appearing in the energy principle stability analysis of CRMHD for tokamaks [3].[4pt] [1] P. J. Morrison, Rev. Mod. Phys., 70, 467 (1998).[0pt] [2] K. Julien and E. Knobloch, Phil. Trans. Roy. Soc., 386A,1607 (2010).[0pt] [3] R.D. Hazeltine, et. al, Phys. Fluids 28, 2466 (1985).

  7. Casimir effect within D=3+1 Maxwell-Chern-Simons electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharlanov, O. G.; Zhukovsky, V. Ch.

    2010-01-15

    Within the framework of the (3+1)-dimensional Lorentz-violating extended electrodynamics including the CPT-odd Chern-Simons term, we consider the electromagnetic field between two parallel perfectly conducting plates. We find the one-particle eigenstates of such a field, as well as the implicit expression for the photon energy spectrum. We also show that the tachyon-induced vacuum instability is negligible when the separation between the plates is sufficiently small though finite. In order to find the leading Chern-Simons correction to the vacuum energy, we renormalize and evaluate the sum over all one-particle eigenstate energies using the two different methods, the zeta function technique and themore » transformation of the discrete sum into a complex plane integral via the residue theorem. The resulting correction to the Casimir force, which is attractive and quadratic in the Chern-Simons term, disagrees with the one obtained in [M. Frank and I. Turan, Phys. Rev. D 74, 033016 (2006)], using the misinterpreted equations of motion. Compared with experimental data, our result places a constraint on the absolute value of the Chern-Simons term.« less

  8. Critical Casimir effect in a polymer chain in supercritical solvents.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2009-03-01

    Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.

  9. Casimir effect in the rainbow Einstein's universe

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Mota, H. F.; Muniz, C. R.

    2017-10-01

    In the present paper we investigate the effects caused by the modification of the dispersion relation obtained by solving the Klein-Gordon equation in the closed Einstein's universe in the context of rainbow's gravity models. Thus, we analyse how the quantum vacuum fluctuations of the scalar field are modified when compared with the results obtained in the usual General Relativity scenario. The regularization, and consequently the renormalization, of the vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta functions.

  10. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    NASA Technical Reports Server (NTRS)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  11. Continuous-spin mixed-symmetry fields in AdS(5)

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2018-05-01

    Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.

  12. Constraints on stable equilibria with fluctuation-induced (Casimir) forces.

    PubMed

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  13. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.

    2013-01-01

    Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.

  14. Surface Microparticles in Liquid Helium. Quantum Archimedes' Principle

    NASA Astrophysics Data System (ADS)

    Dyugaev, A. M.; Lebedeva, E. V.

    2017-12-01

    Deviations from Archimedes' principle for spherical molecular hydrogen particles with the radius R 0 at the surface of 4He liquid helium have been investigated. The classical Archimedes' principle holds if R 0 is larger than the helium capillary length L cap ≅ 500 μm. In this case, the elevation of a particle above the liquid is h + R 0. At 30 μm < R 0 < 500 μm, the buoyancy is suppressed by the surface tension and h + R 3 0/ L 2 cap. At R 0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h - R 5/3 c/ R 2/3 0 if R 0 > R c. Here, {R_c} \\cong {( {{\\hbar c}/{ρ g}} )^{1/5}} ≈ 1, where ħ is Planck's constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles ( R 0 < R c), the distance h_ to the surface of the liquid is independent of their size, h_ = R c.

  15. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  16. Casimir effect within D=3+1 Maxwell-Chern-Simons electrodynamics

    NASA Astrophysics Data System (ADS)

    Kharlanov, O. G.; Zhukovsky, V. Ch.

    2010-01-01

    Within the framework of the (3+1)-dimensional Lorentz-violating extended electrodynamics including the CPT-odd Chern-Simons term, we consider the electromagnetic field between two parallel perfectly conducting plates. We find the one-particle eigenstates of such a field, as well as the implicit expression for the photon energy spectrum. We also show that the tachyon-induced vacuum instability is negligible when the separation between the plates is sufficiently small though finite. In order to find the leading Chern-Simons correction to the vacuum energy, we renormalize and evaluate the sum over all one-particle eigenstate energies using the two different methods, the zeta function technique and the transformation of the discrete sum into a complex plane integral via the residue theorem. The resulting correction to the Casimir force, which is attractive and quadratic in the Chern-Simons term, disagrees with the one obtained in [M. Frank and I. Turan, Phys. Rev. DPRVDAQ1550-7998 74, 033016 (2006)10.1103/PhysRevD.74.033016], using the misinterpreted equations of motion. Compared with experimental data, our result places a constraint on the absolute value of the Chern-Simons term.

  17. New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Li Tong; Li Xueqian

    2007-11-15

    Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to resultmore » in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS.« less

  18. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

    NASA Astrophysics Data System (ADS)

    Villar, Paula I.; Soba, Alejandro

    2017-07-01

    We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.

  19. The Casimir effect for parallel plates revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, N. A.; Nemes, M. C.; Wreszinski, Walter F.

    2007-10-15

    The Casimir effect for a massless scalar field with Dirichlet and periodic boundary conditions (bc's) on infinite parallel plates is revisited in the local quantum field theory (lqft) framework introduced by Kay [Phys. Rev. D 20, 3052 (1979)]. The model displays a number of more realistic features than the ones he treated. In addition to local observables, as the energy density, we propose to consider intensive variables, such as the energy per unit area {epsilon}, as fundamental observables. Adopting this view, lqft rejects Dirichlet (the same result may be proved for Neumann or mixed) bc, and accepts periodic bc: inmore » the former case {epsilon} diverges, in the latter it is finite, as is shown by an expression for the local energy density obtained from lqft through the use of the Poisson summation formula. Another way to see this uses methods from the Euler summation formula: in the proof of regularization independence of the energy per unit area, a regularization-dependent surface term arises upon use of Dirichlet bc, but not periodic bc. For the conformally invariant scalar quantum field, this surface term is absent due to the condition of zero trace of the energy momentum tensor, as remarked by De Witt [Phys. Rep. 19, 295 (1975)]. The latter property does not hold in the application to the dark energy problem in cosmology, in which we argue that periodic bc might play a distinguished role.« less

  20. Distance-Dependent Sign Reversal in the Casimir-Lifshitz Torque

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Malyi, Oleksandr I.; Boström, Mathias; Milton, Kimball A.; Brevik, Iver; Persson, Clas

    2018-03-01

    The Casimir-Lifshitz torque between two biaxially polarizable anisotropic planar slabs is shown to exhibit a nontrivial sign reversal in its rotational sense. The critical distance ac between the slabs that marks this reversal is characterized by the frequency ωc˜c /2 ac at which the in-planar polarizabilities along the two principal axes are equal. The two materials seek to align their principal axes of polarizabilities in one direction below ac, while above ac their axes try to align rotated perpendicular relative to their previous minimum energy orientation. The sign reversal disappears in the nonretarded limit. Our perturbative result, derived for the case when the differences in the relative polarizabilities are small, matches excellently with the exact theory for uniaxial materials. We illustrate our results for black phosphorus and phosphorene.

  1. Casimir-Lifshitz interaction between dielectrics of arbitrary geometry: A dielectric contrast perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golestanian, Ramin

    2009-07-15

    The general theory of electromagnetic-fluctuation-induced interactions in dielectric bodies as formulated by Dzyaloshinskii, Lifshitz, and Pitaevskii is rewritten as a perturbation theory in terms of the spatial contrast in (imaginary) frequency dependent dielectric function. The formulation can be used to calculate the Casimir-Lifshitz forces for dielectric objects of arbitrary geometry, as a perturbative expansion in the dielectric contrast, and could thus complement the existing theories that use perturbation in geometrical features. We find that expansion in dielectric contrast recasts the resulting Lifshitz energy into a sum of the different many-body contributions. The limit of validity and convergence properties of themore » perturbation theory is discussed using the example of parallel semi-infinite objects for which the exact result is known.« less

  2. Guyon Canal: The Evolution of Clinical Anatomy

    PubMed Central

    Maroukis, Brianna L.; Ogawa, Takeshi; Rehim, Shady A.; Chung, Kevin C.

    2016-01-01

    The eponym “Guyon canal” refers to the ulnar tunnel at the wrist that was named after the French surgeon Jean Casimir Félix Guyon who first described this space in 1861. After Guyon’s discovery, clinicians have focused their interest on symptoms caused by compression of structures occupying this canal (later named ulnar tunnel syndrome, or Guyon syndrome). However disagreement and confusion persisted over the correct anatomical boundaries and terminology used to describe the ulnar tunnel. Through anatomical investigation and evolving clinical case studies, the current understanding of the anatomy of the ulnar tunnel was established. This article examines the evolution of the anatomical description of the ulnar tunnel and its relevant clinical associations, and casts light on the life and contributions of Jean Casimir Félix Guyon. PMID:25446410

  3. Casimir squared correction to the standard rotator Hamiltonian for the O( n) sigma-model in the delta-regime

    NASA Astrophysics Data System (ADS)

    Niedermayer, F.; Weisz, P.

    2018-05-01

    In a previous paper we found that the isospin susceptibility of the O( n) sigma-model calculated in the standard rotator approximation differs from the next-to-next-to leading order chiral perturbation theory result in terms vanishing like 1 /ℓ, for ℓ = L t /L → ∞ and further showed that this deviation could be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant. Here we confront this expectation with analytic nonperturbative results on the spectrum in 2 dimensions, by Balog and Hegedüs for n = 3 , 4 and by Gromov, Kazakov and Vieira for n = 4, and find good agreement in both cases. We also consider the case of 3 dimensions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br; Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC; Khanna, Faqir C., E-mail: khannaf@uvic.ca

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  5. PREFACE: Quantum Field Theory Under the Influence of External Conditions (QFEXT07)

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Mostepanenko, V. M.

    2008-04-01

    This special issue contains papers reflecting talks presented at the 8th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT07), held on 17 21 September 2007, at Leipzig University. This workshop gathered 108 physicists and mathematicians working on problems which are focused on the following topics: •Casimir and van der Waals forces—progress in theory and new experiments, applications at micro- and nano-scale •Casimir effect—exact results, approximate methods and mathematical problems •Vacuum quantum effects in classical background fields—renormalization issues, singular backgrounds, applications to particle and high energy physics •Vacuum energy and gravity, vacuum energy in supersymmetric and noncommutative theories. This workshop is part of a series started in 1989 and 1992 in Leipzig by Dieter Robaschik, and continued in 1995, 1998 and 2001 in Leipzig by Michael Bordag. In 2003 this Workshop was organized by Kimball A Milton in Oklahoma, in 2005 by Emilio Elizalde in Barcelona and in 2007 it returned to Leipzig. The field of physics after which this series of workshops is named is remarkably broad. It stretches from experimental work on the measurement of dispersion forces between macroscopic bodies to quantum corrections in the presence of classical background fields. The underlying physical idea is that even in its ground state (vacuum) a quantum system responds to changes in its environment. The universality of this idea makes the field of its application so very broad. The most prominent manifestation of vacuum energy is the Casimir effect. This is, in its original formulation, the attraction between conducting planes due to the vacuum fluctuations of the electromagnetic field. In a sense, this is the long-range tail of the more general dispersion forces acting between macroscopic bodies. With the progress in nanotechnology, dispersion forces become of direct practical significance. On a more theoretical side, the vacuum energy manifests itself as quantum corrections to masses of classical background fields like solitons. In astrophysics and cosmology it is discussed as a possible source for dark energy. The growing interest in this field can be judged from the number of citations received each year by the original paper by Casimir. This is shown in figure 1 (below). Although such numbers must be viewed with caution, the increase of citations over the past decade is impressive. The most significant progress in the field during the last few years was made in the following three directions: precision measurements of the Casimir and Casimir Polder force, applications of the Lifshitz theory to real materials, and calculation of dispersion interactions between arbitrarily shaped bodies. With regard to measurements, modern laboratory techniques, such as atomic force microscopes and micromachined oscillators, allow one to obtain experimental data with an error of about a fraction of one percent. The comparison of the experimental data obtained at room temperature with the Lifshitz theory revealed serious problems and gave rise to controversial approaches. Some of these approaches were found to be consistent with data within an accuracy of 1 2%, whereas some others were found to be excluded by the data at a high confidence level. In the calculation of dispersion interactions Figure 1 Figure 1. The number of citations received each year by the original paper by Casimir. between arbitrarily shaped bodies important progress has been made using the representation of the interaction energy in terms of functional determinants or in the equivalent T-matrix approach. These representations allow for a direct numerical computation of the forces for ideal metal and dielectric configurations at any fixed separation. The analytical asymptotic expansions at both large and short separations can also be obtained. The latter, for the first time, demonstrated an analytic correction beyond the proximity force approximation. This has put the comparison of experiment with theory on a solid foundation. We have divided the talks presented at the workshop into seven sections. Section I reflects theoretical progress achieved for arbitrarily shaped bodies. Section II is devoted to problems which arise in the Lifshitz theory in application to real materials. Sections III and IV cover the experimental issues and particle surface interactions including their role in nanostructures. Sections V and VI contain papers on more traditional subjects like quantum effects in background fields and gravitational implications. Section VII covers the role of quantum effects in black holes, cosmology and some questions of a more mathematical character. As any rapidly developing field, quantum field theory under the influence of external conditions gives rise to numerous hot discussions. These discussions took place at the meeting and they are reflected in many contributions to this issue. The Guest Editors have not tried to smooth sharp contradictions between speakers but tried to ensure a fair treatment of all contributions. The referees performed a very important role, helping to improve the presentation significantly in many contributions and to make them more clear for the reader. Our special gratitude goes to the staff of Journal of Physics A: Mathematical and Theoretical whose expertise and patience allowed us to successfully solve all problems arising in the publication process. The organizers of the workshop are grateful to the University of Leipzig for providing an excellent environment, especially to the secretaries of the Institute for Theoretical Physics for their support in administrative tasks. Both the organizers and participants are grateful to the supporting organizations, namely the Deutsche Forschungsgemeinschaft (DFG) (GZ: BO 1112/15-1 and 4851/295/07) and the Naturwissenschaftlich-Theoretisches Zentrum (NTZ) of the University of Leipzig. Thanks to their support it was possible to cover local expenses and partly cover travel costs, and to waive the conference fee for many participants.

  6. 77 FR 63707 - General Pulaski Memorial Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... men from Europe and America alike, Brigadier General Casimir Pulaski battled to extend the principles... standing proudly with its strong ally, a free and independent Poland. On General Pulaski Memorial Day, we...

  7. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  8. Casimir quantum levitation tuned by means of material properties and geometries

    NASA Astrophysics Data System (ADS)

    Dou, Maofeng; Lou, Fei; Boström, Mathias; Brevik, Iver; Persson, Clas

    2014-05-01

    The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition separation. Both the magnitude of the force and the transition distance can be flexibly tailored though modifying the properties of the considered materials, that is, thin film thickness, doping concentration, and porosity. This stable suspension can be used to design new nanodevices with ultralow friction. Moreover, it might be convenient to merge this thin film coating approach with micro- and nanofabrication processes in the future.

  9. Coupled-oscillator theory of dispersion and Casimir-Polder interactions.

    PubMed

    Berman, P R; Ford, G W; Milonni, P W

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r(-4), a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called "remarkable formula" for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  10. Quantum levitation of nanoparticles seen with ultracold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu; Voronin, A. Yu.; Lambrecht, A.

    2013-09-15

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called 'small heating' of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

  11. Observable consequences of zero-point energy

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.

    2017-12-01

    Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.

  12. The Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Minamitsuji, M.

    2008-04-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.

  13. Repulsive vacuum-induced forces on a magnetic particle

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya

    2018-03-01

    We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.

  14. Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.

    PubMed

    Soo, Heino; Dean, David S; Krüger, Matthias

    2017-01-01

    We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.

  15. From spinning conformal blocks to matrix Calogero-Sutherland models

    NASA Astrophysics Data System (ADS)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  16. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength.more » However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.« less

  17. Stability of Internal Space in Kaluza-Klein Theory

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Soda, J.

    1998-12-01

    We extend a model studied by Li and Gott III to investigate a stability of internal space in Kaluza-Klein theory. Our model is a four-dimensional de-Sitter space plus a n-dimensional compactified internal space. We introduce a solution of the semi-classical Einstein equation which shows us the fact that a n-dimensional compactified internal space can be stable by the Casimir effect. The self-consistency of this solution is checked. One may apply this solution to study the issue of the Black Hole singularity.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, F.; Behunin, R. O.; Henkel, C.

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  19. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  20. Maximal Fluctuations of Confined Actomyosin Gels: Dynamics of the Cell Nucleus.

    PubMed

    Rupprecht, J-F; Singh Vishen, A; Shivashankar, G V; Rao, M; Prost, J

    2018-03-02

    We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in nonequilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus, and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)PNASA60027-842410.1073/pnas.1513189113].

  1. Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Hobrecht, Hendrik; Hucht, Alfred

    2017-02-01

    We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.

  2. Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry

    NASA Astrophysics Data System (ADS)

    Latella, Ivan; Ben-Abdallah, Philippe; Biehs, Svend-Age; Antezza, Mauro; Messina, Riccardo

    2017-05-01

    A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.

  3. Non-Markovianity in atom-surface dispersion forces

    DOE PAGES

    Intravaia, F.; Behunin, R. O.; Henkel, C.; ...

    2016-10-18

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  4. Born again universe

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Rajendran, Surjeet

    2018-02-01

    We present a class of nonsingular, bouncing cosmologies that evade singularity theorems through the use of vorticity in compact extra dimensions. The vorticity combats the focusing of geodesics during the contracting phase. The construction requires fluids that violate the null energy condition (NEC) in the compact dimensions, where they can be provided by known stable NEC violating sources such as Casimir energy. The four dimensional effective theory contains an NEC violating fluid of Kaluza-Klein excitations of the higher dimensional metric. These spacetime metrics could potentially allow dynamical relaxation to solve the cosmological constant problem. These ideas can also be used to support traversable Lorentzian wormholes.

  5. Atomic states in optical traps near a planar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Pelisson, Sophie; Angonin, Marie-Christine

    2011-05-15

    In this paper, we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the modifications to the ordinary Wannier-Stark states in the presence of a surface, and we characterize the energy shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an effective model describing the finite size of the atom in order to regularize the energy corrections. In addition, the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their experimental observability are investigated.

  6. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Linder, Eric V.

    2017-12-01

    Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.

  7. Non-Markovianity in atom-surface dispersion forces

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-10-01

    We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.

  8. A corrected model for static and dynamic electromechanical instability of narrow nanotweezers: Incorporation of size effect, surface layer and finite dimensions

    NASA Astrophysics Data System (ADS)

    Koochi, Ali; Hosseini-Toudeshky, Hossein; Abadyan, Mohamadreza

    2018-03-01

    Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.

  9. Vacuum Fluctuation Force on a Rigid Casimir Cavity in de Sitter and Schwarzschild-De Sitter Space-Time

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    2012-11-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.

  10. A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Ping, Fan

    2015-05-01

    By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).

  11. Bulk renormalization and particle spectrum in codimension-two brane worlds

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2013-04-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  12. Thermal Casimir-Polder forces on a V-type three-level atom

    NASA Astrophysics Data System (ADS)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  13. From optical lattice clocks to the measurement of forces in the Casimir regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Peter; Bureau International des Poids et Mesures, 92312 Sevres Cedex; Lemonde, Pierre

    2007-06-15

    We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 {mu}m). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses ofmore » the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of {approx_equal}10{sup -4} Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by {>=} 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 {mu}m.« less

  14. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-03-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures.

  15. The bilinear-biquadratic model on the complete graph

    NASA Astrophysics Data System (ADS)

    Jakab, Dávid; Szirmai, Gergely; Zimborás, Zoltán

    2018-03-01

    We study the spin-1 bilinear-biquadratic model on the complete graph of N sites, i.e. when each spin is interacting with every other spin with the same strength. Because of its complete permutation invariance, this Hamiltonian can be rewritten as the linear combination of the quadratic Casimir operators of \

  16. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2018-05-01

    Nonequilibrium interfacial thermodynamics is formulated in the presence of surface reactions for the study of diffusiophoresis in isothermal systems. As a consequence of microreversibility and Onsager-Casimir reciprocal relations, diffusiophoresis, i.e., the coupling of the tangential components of the pressure tensor to the concentration gradients of solute species, has a reciprocal effect where the interfacial currents of solutes are coupled to the slip velocity. The presence of surface reactions is shown to modify the diffusiophoretic and reciprocal effects at the fluid-solid interface. The thin-layer approximation is used to describe the solution flowing near a reactive solid interface. Analytic formulas describing the diffusiophoretic and reciprocal effects are deduced in the thin-layer approximation and tested numerically for the Poiseuille flow of a solution between catalytic planar surfaces.

  17. Extended inflation from higher dimensional theories

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  18. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.

  19. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  20. QCD for Postgraduates (1/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-04-26

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  1. 3 CFR 8438 - Proclamation 8438 of October 9, 2009. General Pulaski Memorial Day, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., General Casimir Pulaski displayed heroic leadership and ultimately sacrificed his life in service to our... Savannah while trying to rally his troops under heavy enemy fire. Before laying down his life for the... contributions have expanded our collective knowledge, pushing the boundaries of science, business, and the arts...

  2. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-10-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.

  3. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms.

    PubMed

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-10-12

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L 2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.

  4. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    PubMed Central

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-01-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes. PMID:27731419

  5. Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Qi, Guoyuan; Hu, Jianbing

    2017-12-01

    The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.

  6. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    O'Callahan, Brian T.; Raschke, Markus B.

    2017-02-01

    Spectroscopy and microscopy of the thermal near-field yield valuable insight into the mechanisms of resonant near-field heat transfer and Casimir and Casimir-Polder forces, as well as providing nanoscale spatial resolution for infrared vibrational spectroscopy. A heated scanning probe tip brought close to a sample surface can excite and probe the thermal near-field. Typically, tip temperature control is provided by resistive heating of the tip cantilever. However, this requires specialized tips with limited temperature range and temporal response. By focusing laser radiation onto AFM cantilevers, we achieve heating up to ˜1800 K, with millisecond thermal response time. We demonstrate application to thermal infrared near-field spectroscopy (TINS) by acquiring near-field spectra of the vibrational resonances of silicon carbide, hexagonal boron nitride, and polytetrafluoroethylene. We discuss the thermal response as a function of the incident excitation laser power and model the dominant cooling contributions. Our results provide a basis for laser heating as a viable approach for TINS, nanoscale thermal transport measurements, and thermal desorption nano-spectroscopy.

  7. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r-Matrix Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao

    2017-10-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11

  8. A four-field model for collisionless reconnection: Hamiltonian structure and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tassi, Emanuele; Grasso, Daniela; Pegoraro, Francesco

    2008-11-01

    A 4-field model for magnetic reconnection in collisionless plasmas is investigated both analytically and numerically. The model equations are shown to admit a non-canonical Hamiltonian formulation with four infinite families of Casimir invariants [1]. Numerical simulations show that, consistently with previously investigated models [2,3], in the absence of significant fluctuations along the toroidal direction, reconnection can lead to a macroscopic saturated state exhibiting filamentation on microsocopic scales, or to a secondary Kelvin-Helmholtz-like instability, depending on the value of a parameter measuring the compressibility of the electron fluid. The novel feature exhibited by the four-field model is the coexistence of significant filamentation with a secondary instability when magnetic and velocity perturbations along the toroidal direction are no longer negligible. An interpretation of this phenomenon in terms of Casimir invariants is given.[0pt] [1] E. Tassi et al., Plasma Phys. Contr. Fus., 50, 085014 (2008)[0pt] [2] D. Grasso et al., Phys. Rev. Lett. 86, 5051 (2001)[0pt] [3] D. Del Sarto, F. Califano and F. Pegoraro, Phys. Plasmas 12, 012317 (2005)

  9. Statistical Equilibria of Turbulence on Surfaces of Different Symmetry

    NASA Astrophysics Data System (ADS)

    Qi, Wanming; Marston, Brad

    2012-02-01

    We test the validity of statistical descriptions of freely decaying 2D turbulence by performing direct numerical simulations (DNS) of the Euler equation with hyperviscosity on a square torus and on a sphere. DNS shows, at long times, a dipolar coherent structure in the vorticity field on the torus but a quadrapole on the sphereootnotetextJ. Y-K. Cho and L. Polvani, Phys. Fluids 8, 1531 (1996).. A truncated Miller-Robert-Sommeria theoryootnotetextA. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, 2006). can explain the difference. The theory conserves up to the second-order Casimir, while also respecting conservation laws that reflect the symmetry of the domain. We further show that it is equivalent to the phenomenological minimum-enstrophy principle by generalizing the work by Naso et al.ootnotetextA. Naso, P. H. Chavanis, and B. Dubrulle, Eur. Phys. J. B 77, 284 (2010). to the sphere. To explain finer structures of the coherent states seen in DNS, especially the phenomenon of confinement, we investigate the perturbative inclusion of the higher Casimir constraints.

  10. A conformal truncation framework for infinite-volume dynamics

    DOE PAGES

    Katz, Emanuel; Khandker, Zuhair U.; Walters, Matthew T.

    2016-07-28

    Here, we present a new framework for studying conformal field theories deformed by one or more relevant operators. The original CFT is described in infinite volume using a basis of states with definite momentum, P, and conformal Casimir, C. The relevant deformation is then considered using lightcone quantization, with the resulting Hamiltonian expressed in terms of this CFT basis. Truncating to states with C ≤ C max, one can numerically find the resulting spectrum, as well as other dynamical quantities, such as spectral densities of operators. This method requires the introduction of an appropriate regulator, which can be chosen tomore » preserve the conformal structure of the basis. We check this framework in three dimensions for various perturbative deformations of a free scalar CFT, and for the case of a free O(N) CFT deformed by a mass term and a non-perturbative quartic interaction at large- N. In all cases, the truncation scheme correctly reproduces known analytic results. As a result, we also discuss a general procedure for generating a basis of Casimir eigenstates for a free CFT in any number of dimensions.« less

  11. {ital R}-matrix theory, formal Casimirs and the periodic Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morosi, C.; Pizzocchero, L.

    The nonunitary {ital r}-matrix theory and the associated bi- and triHamiltonian schemes are considered. The language of Poisson pencils and of their formal Casimirs is applied in this framework to characterize the biHamiltonian chains of integrals of motion, pointing out the role of the Schur polynomials in these constructions. This formalism is subsequently applied to the periodic Toda lattice. Some different algebraic settings and Lax formulations proposed in the literature for this system are analyzed in detail, and their full equivalence is exploited. In particular, the equivalence between the loop algebra approach and the method of differential-difference operators is illustrated;more » moreover, two alternative Lax formulations are considered, and appropriate reduction algorithms are found in both cases, allowing us to derive the multiHamiltonian formalism from {ital r}-matrix theory. The systems of integrals for the periodic Toda lattice known after Flaschka and H{acute e}non, and their functional relations, are recovered through systematic application of the previously outlined schemes. {copyright} {ital 1996 American Institute of Physics.}« less

  12. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-means Cluster Analysis.

    PubMed

    Craen, Saskia de; Commandeur, Jacques J F; Frank, Laurence E; Heiser, Willem J

    2006-06-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these populations showed a significant effect of lack of sphericity and group size. This effect was, however, not as large as expected, with still a recovery index of more than 0.5 in the "worst case scenario." An interaction effect between the two data aspects was also found. The decreasing trend in the recovery of clusters for increasing departures from sphericity is different for equal and unequal group sizes.

  13. Field theoretic approach to roughness corrections

    NASA Astrophysics Data System (ADS)

    Wu, Hua Yao; Schaden, Martin

    2012-02-01

    We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.

  14. Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Gruber, T.; Rummel, R.

    2009-04-01

    Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?

  15. A joint resolution proclaiming Casimir Pulaski to be an honorary citizen of the United States posthumously.

    THOMAS, 111th Congress

    Sen. Durbin, Richard J. [D-IL

    2009-03-02

    House - 03/03/2009 Referred to the House Committee on the Judiciary. (All Actions) Notes: For further action, see H.J.RES.26, which became Public Law 111-94 on 11/6/2009. Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  16. 3 CFR 9038 - Proclamation 9038 of October 10, 2013. General Pulaski Memorial Day, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to form an independent cavalry legion, comprised of men from across Europe and America. While leading... States of America A Proclamation Today, we honor the memory of Brigadier General Casimir Pulaski, the... defense of our freedom, and each year on October 11—the anniversary of his death—we honor his sacrifice...

  17. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  18. A Study on the Applications of Quantum Optical Coherence to Nano-Optics

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir Wali

    Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In the third part, we propose a robust protocol to study the entanglement generation in a hybrid structure consisting of two quantum dots in the proximity of a metallic nanoshell. The entanglement arises impulsively due to common coupling to the plasmonic nanostructure, without demanding postselective measurement or mediating the dissipative environment. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the quantum dots and the surface of the shell. The loss of the system is greatly reduced even when the quantum dots are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation.

  19. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  20. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  1. Impact of Primary Spherical Aberration, Spatial Frequency and Stiles Crawford Apodization on Wavefront determined Refractive Error: A Computational Study

    PubMed Central

    Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.

    2013-01-01

    Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093

  2. The efficiency of aspheric intraocular lens according to biometric measurements.

    PubMed

    Whang, Woong-Joo; Piao, Junjie; Yoo, Young-Sik; Joo, Choun-Ki; Yoon, Geunyoung

    2017-01-01

    To analyze internal spherical aberration in pseudophakic eyes that underwent aspheric intraocular lens (IOL) implantation, and to investigate the relationships between biometric data and the effectiveness of aspheric IOL implantation. This retrospective study included 40 eyes of 40 patients who underwent implantation of an IOL having a negative spherical aberration of -0.20 μm (CT ASPHINA 509M; Carl Zeiss Meditec Inc., Germany). The IOLMaster (version 5.0; Carl Zeiss AG, Germany) was used for preoperative biometric measurements (axial length, anterior chamber depth, central corneal power) and the measurement of postoperative anterior chamber depth. The spherical aberrations were measured preoperatively and 3 months postoperatively using the iTrace (Tracey Technologies, Houston, TX, USA) at a pupil diameter of 5.0 mm. We investigated the relationships between preoperative biometric data and postoperative internal spherical aberration, and compared biometric measurements between 2 subgroups stratified according to internal spherical aberration (spherical aberration ≤ -0.06 μm vs. spherical aberration > -0.06 μm). The mean postoperative internal spherical aberration was -0.087 ± 0.063 μm. Preoperative axial length and residual total spherical aberration showed statistically significant correlations with internal spherical aberration (p = 0.041, 0.002). Preoperative axial length, postoperative anterior chamber depth, IOL power, and residual spherical aberration showed significant differences between the 2 subgroups stratified according to internal spherical aberration (p = 0.020, 0.029, 0.048, 0.041 respectively). The corrective effect of an aspheric IOL is influenced by preoperative axial length and postoperative anterior chamber depth. Not only the amount of negative spherical aberration on the IOL surface but also the preoperative axial length should be considered to optimize spherical aberration after aspheric IOL implantation.

  3. FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

    PubMed

    Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  4. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less

  5. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.

    PubMed

    Dietze, Holger H; Cox, Michael J

    2003-02-01

    Soft contact lenses produce a significant level of spherical aberration affecting their power on-eye. A simple model assuming that a thin soft contact lens aligns to the cornea predicts that these effects are similar on-eye and off-eye. The wavefront aberration for 17 eyes and 33 soft contact lenses on-eye was measured with a Shack-Hartmann wavefront sensor. The Zernike coefficients describing the on-eye spherical aberration of the soft contact lens were compared with off-eye ray-tracing results. Paraxial and effective lens power changes were determined. The model predicts the on-eye spherical aberration of soft contact lenses closely. The resulting power change for a +/- 7.00 D spherical soft contact lens is +/- 0.5 D for a 6-mm pupil diameter and +/- 0.1 D for a 3-mm pupil diameter. Power change is negligible for soft contact lenses corrected for off-eye spherical aberration. For thin soft contact lenses, the level of spherical aberration and the consequent power change is similar on-eye and off-eye. Soft contact lenses corrected for spherical aberration in air will be expected to be aberration-free on-eye and produce only negligibly small power changes. For soft contact lenses without aberration correction, for higher levels of ametropia and large pupils, the soft contact lens power should be determined with trial lenses with their power and p value similar to the prescribed lens. The benefit of soft contact lenses corrected for spherical aberration depends on the level of ocular spherical aberration.

  6. The trace anomaly and dynamical vacuum energy in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottola, Emil

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effectivemore » action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.« less

  7. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Vossmerbaeumer, Urs

    2015-05-01

    This review was conducted to compare the physical effect of aspheric IOL implantation on wavefront properties with that of spherical IOL implantation. The peer-reviewed literature was systematically searched in Medline, Embase, Web of Science, Biosis, and the Cochrane Library according to the Cochrane Collaboration method. Inclusion criteria were randomized controlled trials comparing the use of aspheric versus spherical monofocal IOL implantation that assessed visual acuity, contrast sensitivity, or quality of vision. A secondary outcome was ocular wavefront analysis; spherical aberration, higher-order aberrations (HOAs), coma, and trefoil were evaluated. Effects were calculated as standardized mean differences (Hedges g) and were pooled using random-effect models. Thirty-four of 43 studies provided data for wavefront analysis. Aspheric monofocal IOL implantation resulted in less ocular spherical aberration and fewer ocular HOAs than spherical IOLs. This might explain the better contrast sensitivity in patients with aspheric IOLs. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Effects of van der Waals forces and salt ions on the growth of water films on ice and the detachment of CO2 bubbles

    NASA Astrophysics Data System (ADS)

    Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.

    2016-02-01

    We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.

  9. Chameleon vector bosons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ann E.; Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias, C-XVI Universidad Autonoma de Madrid Cantoblanco, Madrid 28049; Walsh, Jonathan

    2008-05-01

    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 {mu}m, there remains an experimental window for a long-rangemore » chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.« less

  10. Antimatter Production at a Potential Boundary

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Current antiproton production techniques rely on high-energy collisions between beam particles and target nuclei to produce particle and antiparticle pairs, but inherently low production and capture efficiencies render these techniques impractical for the cost-effective production of antimatter for space propulsion and other commercial applications. Based on Dirac's theory of the vacuum field, a new antimatter production concept is proposed in which particle-antiparticle pairs are created at the boundary of a steep potential step formed by the suppression of the local vacuum fields. Current antimatter production techniques are reviewed, followed by a description of Dirac's relativistic quantum theory of the vacuum state and corresponding solutions for particle tunneling and reflection from a potential barrier. The use of the Casimir effect to suppress local vacuum fields is presented as a possible technique for generating the sharp potential gradients required for particle-antiparticle pair creation.

  11. 25th Birthday Cern- Amphi

    ScienceCinema

    None

    2017-12-09

    Cérémonie du 25ème anniversaire du Cern avec 2 orateurs: le Prof.Weisskopf parle de la signification et le rôle du Cern et le Prof.Casimir(?) fait un exposé sur les rélations entre la science pure et la science appliquée et la "big science" (science légère)

  12. Knowledge Management to Exploit Agrarian Resources as Part of Late-Eighteenth-Century Cultures of Innovation: Friedrich Casimir Medicus and Franz Von Paula Schrank

    ERIC Educational Resources Information Center

    Popplow, Marcus

    2012-01-01

    This essay contributes to a recent strain of research that questions clear-cut dichotomies between "scientists" and "artisans" in the early modern period. With a focus on the exploitation of agrarian resources, it argues for the appreciation of a more complex panorama of intersecting knowledge systems spanning from botany as…

  13. {open_quotes}Bubble fusion{close_quotes}: Preliminary estimates of spherical micro-implosions in cavitating liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1995-02-01

    Liquids irradiated with intense ultrasonic waves can generate small cavities or bubbles. Upon nonlinear expansion to a state of disequilibrium, wherein the externally imposed hydrostatic pressure far exceeds that of entrapped non-condensable gas, these bubbles undergo a rapid and violent collapse. This collapse, if symmetric, can generate high pressures and temperatures through a number of possible mechanisms. The simplest and oldest explanation suggests a focusing of the kinetic energy of all the surrounding liquid onto the collapsing bubble and the subsequent heating of entrapped gases under either adiabatic or isothermal conditions. Although induced by externally imposed millisecond pressure oscillations, thesemore » collapses can occur on sub-microsecond timescales and are accompanied by picosecond light emissions; this combination of sound and light is called sonoluminescence. Recent explanations of observed high temperatures and picosecond radiation pulses accompanying such collapses are based on the interaction of multiple shock waves that are launched off the inward cavity wall. Other potential explanations invoke dipole emissions induced by intermolecular collisions or the release of Casimir energy when a dielectric hole is filled. Conjectures have been made that the processes responsible for sonoluminescence may be extended to generated conditions where thermonuclear fusion might occur. Such an achievement would extend scientific interest in sonoluminescence out of a purely chemical context to include the study of matter subjected to more extreme conditions. The main goal of this {open_quotes}scoping{close_quotes} study is to understand better conditions where deuterium-tritium fusion might be observed in conjunction with micro-implosions in cavitating liquids; prognoses of fusion application at this point are unintended.« less

  14. Geometrically Induced Interactions and Bifurcations

    NASA Astrophysics Data System (ADS)

    Binder, Bernd

    2010-01-01

    In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.

  15. The Casimir effect

    NASA Astrophysics Data System (ADS)

    Lang, Andrew Stuart

    1998-12-01

    This thesis contains several quantum field theoretic calculations using both the massless scalar field and the electromagnetic field. The main result being the calculation of the expectation of the energy density in the vacuum region for the geometry in which half of space is filled by a non- dispersive dielectric of constant susceptibility and the other half of space is vacuum. As we approach the surface of the dielectric the expectation of the energy density is found to diverge. In the final Chapter of this dissertation we prove that, under physically reasonable conditions, the quantum field theory representations for certain current models of dispersive dielectrics remain the same as that for the free electromagnetic field in vacuum. This is good news for the theories discussed.

  16. Quantum vacuum interaction between two cosmic strings revisited

    NASA Astrophysics Data System (ADS)

    Muñoz-Castañeda, J. M.; Bordag, M.

    2014-03-01

    We reconsider the quantum vacuum interaction energy between two straight parallel cosmic strings. This problem was discussed several times in an approach treating both strings perturbatively and treating only one perturbatively. Here we point out that a simplifying assumption made by Bordag [Ann. Phys. (Berlin) 47, 93 (1990).] can be justified and show that, despite the global character of the background, the perturbative approach delivers a correct result. We consider the applicability of the scattering methods, developed in the past decade for the Casimir effect, for the cosmic string and find it not applicable. We calculate the scattering T-operator on one string. Finally, we consider the vacuum interaction of two strings when each carries a two-dimensional delta function potential.

  17. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the climatic differences to the SPH experiment become very small. Finally, the impact of assumed snow grain shape on the radiative effects of absorbing aerosols in snow is discussed.

  18. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    ERIC Educational Resources Information Center

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  19. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  20. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  1. Spherical solitons in Earth'S mesosphere plasma

    NASA Astrophysics Data System (ADS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth's mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev-Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  2. Spherical solitons in Earth’S mesosphere plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annou, K., E-mail: kannou@cdta.dz; Annou, R.

    2016-01-15

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  3. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE PAGES

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; ...

    2017-09-19

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  4. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  5. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  6. Stiff self-interacting strings at high temperature QCD

    NASA Astrophysics Data System (ADS)

    S Bakry, A.; Chen, X.; Deliyergiyev, M.; Galal, A.; Khalaf, A.; M Pengming, P.

    2018-03-01

    We investigate the implications of Nambu-Goto (NG), Lüscher Weisz (LW) and Polyakov-Kleinert (PK) effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3) Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO) contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.

  7. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  8. The underdamped Brownian duet and stochastic linear irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Van den Broeck, Christian

    2017-10-01

    Building on our earlier work [Proesmans et al., Phys. Rev. X 6, 041010 (2016)], we introduce the underdamped Brownian duet as a prototype model of a dissipative system or of a work-to-work engine. Several recent advances from the theory of stochastic thermodynamics are illustrated with explicit analytic calculations and corresponding Langevin simulations. In particular, we discuss the Onsager-Casimir symmetry, the trade-off relations between power, efficiency and dissipation, and stochastic efficiency.

  9. Coma of modified Gregorian and Cassegrainian mirror systems

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    The equivalence of the classical Newtonian, Cassegrainian, and Gregorian mirror systems with respect to the first two Seidel aberrations is rederived by means of a simple congruence. The effects of arbitrary small modifications of the two mirror systems are then studied and general formulas are derived for the effects of such modifications on the spherical aberration and coma. Spherical aberration is corrected to the third order if the amount of glass removed from one surface is replaced at the corresponding zone of the other surface. Modifications in which one surface is made spherical while the other is adjusted to eliminate spherical aberration result in large increases of coma for systems having the usual amplifying ratios.

  10. A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor

    NASA Astrophysics Data System (ADS)

    Inan, Nader A.

    The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg-Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.

  11. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic quantity, it has the distinct advantage of the many-body effect inclusion seamlessly. We find the result that for the nontrivial susceptibility and polarizability values of the sheet and micro-particle, respectively, there is crossover between attractive and repulsive behavior. The transition depends only on these response functions apart from the ratio of the film thickness and the micro-particle separation (D/d) and temperature. Furthermore, there is a longitudinal electric field induced topological insulator (TI) to spin-valley-polarized metal (SVPM) transition in silicene, which is also referred to as the topological phase transition (TPT). The low-energy SVP carriers at TPT possess gapless (massless) and gapped (massive) energy spectra close to the two nodal points in the Brillouin zone with maximum spin-polarization. We find that the magnitude of the CPF at a given ratio of the film thickness and the separation between the micro-particle and the film are greater at TPT than at the TI and trivial insulator phases.

  12. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  13. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemchinsky, V.; Khrabry, A.

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  14. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE PAGES

    Nemchinsky, V.; Khrabry, A.

    2018-02-01

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  15. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  16. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  17. Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf

    2017-04-01

    Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.

  18. Equivalent equations of motion for gravity and entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel

    We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.

  19. Casimir Repulsion between Metallic Objects in Vacuum

    DTIC Science & Technology

    2010-08-27

    levitation , as the particle is unstable to displacements away from the symmetry axis. DOI: 10.1103/PhysRevLett.105.090403 PACS numbers: 03.70.+k, 03.65.w...force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime...ever be repulsive? In this Letter, we answer this question in the affirmative by showing that a small elongated metal particle centered above a thin

  20. Equivalent equations of motion for gravity and entropy

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2017-02-01

    We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.

  1. Quasi-critical fluctuations: a novel state of matter?

    PubMed

    Bertel, Erminald

    2013-05-01

    Quasi-critical fluctuations occur close to critical points or close to continuous phase transitions. In three-dimensional systems, precision tuning is required to access the fluctuation regime. Lowering the dimensionality enhances the parameter space for quasi-critical fluctuations considerably. This enables one to make use of novel properties emerging in fluctuating systems, such as giant susceptibilities, Casimir forces or novel quasi-particle interactions. Examples are discussed ranging from simple metal-adsorbate systems to unconventional superconductivity in iron-based superconductors.

  2. String tensions in deformed Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  3. 100th anniversary of the birth of E M Lifshitz (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 March 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905

  4. Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: Incandescence and luminescence in arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Polimeridis, Athanasios G.; Reid, M. T. H.; Jin, Weiliang; Johnson, Steven G.; White, Jacob K.; Rodriguez, Alejandro W.

    2015-10-01

    We describe a fluctuating volume-current formulation of electromagnetic fluctuations that extends our recent work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Phys. Rev. B 88, 054305 (2013), 10.1103/PhysRevB.88.054305] to situations involving incandescence and luminescence problems, including thermal radiation, heat transfer, Casimir forces, spontaneous emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike previous scattering formulations based on field and/or surface unknowns, our work exploits powerful techniques from the volume-integral equation (VIE) method, in which electromagnetic scattering is described in terms of volumetric, current unknowns throughout the bodies. The resulting trace formulas (boxed equations) involve products of well-studied VIE matrices and describe power and momentum transfer between objects with spatially varying material properties and fluctuation characteristics. We demonstrate that thanks to the low-rank properties of the associated matrices, these formulas are susceptible to fast-trace computations based on iterative methods, making practical calculations tractable. We apply our techniques to study thermal radiation, heat transfer, and fluorescence in complicated geometries, checking our method against established techniques best suited for homogeneous bodies as well as applying it to obtain predictions of radiation from complex bodies with spatially varying permittivities and/or temperature profiles.

  5. An efficient and general numerical method to compute steady uniform vortices

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2011-07-01

    Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.

  6. Modeling mantle convection in the spherical annulus

    NASA Astrophysics Data System (ADS)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  7. The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams

    NASA Astrophysics Data System (ADS)

    Luo, Yamei; Lü, Baida

    2009-06-01

    The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.

  8. Planning for Coupling Effects in Bitoric Mixed Astigmatism Ablative Treatments.

    PubMed

    Alpins, Noel; Ong, James K Y; Stamatelatos, George

    2017-08-01

    To demonstrate how to determine the historical coupling adjustments of bitoric mixed astigmatism ablative treatments and how to use these historical coupling adjustments to adjust future bitoric treatments. The individual coupling adjustments of the myopic and hyperopic cylindrical components of a bitoric treatment were derived empirically from a retrospective study where the theoretical combined treatment effect on spherical equivalent was compared to the actual change in refractive spherical equivalent. The coupling adjustments that provided the best fit in both mean and standard deviation were determined to be the historical coupling adjustments. Theoretical treatments that incorporated the historical coupling adjustments were then calculated. The actual distribution of postoperative spherical equivalent errors was compared to the theoretically adjusted distribution. The study group comprised 242 eyes and included 118 virgin right eyes and 124 virgin left eyes of 155 individuals. For the laser used, the myopic coupling adjustment was -0.02 and the hyperopic coupling adjustment was 0.30, as derived by global nonlinear optimization. This implies that almost no adjustment of the myopic component of the bitoric treatment is necessary, but that the hyperopic component of the bitoric treatment generates a large amount of unintended spherical shift. The theoretically adjusted treatments targeted zero mean spherical equivalent error, as intended, and the distribution of the theoretical spherical equivalent errors had the same spread as the distribution of actual postoperative spherical equivalent errors. Bitoric mixed astigmatism ablative treatments may display non-trivial coupling effects. Historical coupling adjustments should be taken into consideration when planning mixed astigmatism treatments to improve surgical outcomes. [J Refract Surg. 2017;33(8):545-551.]. Copyright 2017, SLACK Incorporated.

  9. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE PAGES

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (α RΡ² 2/μ² ²)¹ /³ R (where α R, Ρmore » 2 and μ 2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration α R. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Y n and Y n+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  10. Dynamic Pressure Distribution due to Horizontal Acceleration in Spherical LNG Tank with Cylindrical Central Part

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun; Shin, Sang-Hoon

    2017-11-01

    Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.

  11. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  12. Spherical bearing. [to reduce vibration effects

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A. (Inventor)

    1978-01-01

    A spherical bearing including an inner ball with an opening for receiving a shaft and a spherical outer surface is described. Features of the bearing include: (1) a circular outer race including a plurality of circumferentially spaced sections extending around the inner ball for snugly receiving the inner ball; and (2) a groove extending circumferentially around the race producing a thin wall portion which permits the opposed side portions to flex relative to the ball for maximizing the physical contact between the inner surface of the race and the spherical outer surface of the ball.

  13. A simple model for studying rotation errors of gimbal mount axes in laser tracking system based on spherical mirror as a reflection unit

    NASA Astrophysics Data System (ADS)

    Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang

    2018-01-01

    This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.

  14. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge

    PubMed Central

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil. PMID:28850622

  15. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    PubMed

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  16. Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2006-01-01

    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.

  17. Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW)

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Chrafih, Y.; M’Zred, S.; Janati, S.; Zorkani, I.; Jorio, A.; Mmadi, A.

    2018-03-01

    The polarizability and the binding energy is estimated for a shallow donor confined to move in inhomogeneous quantum dots (CdS/HgS/CdS). In this work, the Hass variational method within the effective mass approximation in used in the case of an infinitely deep well. The polarizability and the binding energy depend on the inner and the outer radius of the QDQW, also it depends strongly on the donor position. It’s found that the stark effect is more important when the impurity is located at the center of the (QDQW) and becomes less important when the donor moves toward the extremities of the spherical layer. When the electric field increases, the binding energy and the polarizability decreases. Its effects is more pronounced when the impurity is placed on the center of the spherical layer and decrease when the donor move toward extremities of this spherical layer. We have demonstrated the existence of a critical value {≤ft( {{{{R_1}} \\over {{R_2}}}} \\right)cri} which can be used to distinguish the tree dimension confinement from the spherical surface confinement and it’s may be important for the nanofabrication techniques.

  18. Super-integrable Calogero-type systems admit maximal number of Poisson structures

    NASA Astrophysics Data System (ADS)

    Gonera, C.; Nutku, Y.

    2001-07-01

    We present a general scheme for constructing the Poisson structure of super-integrable dynamical systems of which the rational Calogero-Moser system is the most interesting one. This dynamical system is 2 N-dimensional with 2 N-1 first integrals and our construction yields 2 N-1 degenerate Poisson tensors that each admit 2( N-1) Casimirs. Our results are quite generally applicable to all super-integrable systems and form an alternative to the traditional bi-Hamiltonian approach.

  19. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  20. Quantum Gravitational Force Between Polarizable Objects.

    PubMed

    Ford, L H; Hertzberg, Mark P; Karouby, J

    2016-04-15

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V(r)=-3987ℏcG^{2}α_{1S}α_{2S}/(4πr^{11}), where α_{1S}, α_{2S} are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.

  1. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities.

    PubMed

    Iwamatsu, Masao

    2016-09-20

    The free-energy barrier of filling a spherical cavity having an inner wall of various wettabilities is studied. The morphology and free energy of a lens-shaped droplet are determined from the minimum of the free energy. The effect of line tension on the free energy is also studied. Then, the equilibrium contact angle of the droplet is determined from the generalized Young's equation. By increasing the droplet volume within the spherical cavity, the droplet morphology changes from spherical with an equilibrium contact angle of 180° to a lens with a convex meniscus, where the morphological complete drying transition occurs. By further increasing the droplet volume, the meniscus changes from convex to concave. Then, the lens-shaped droplet with concave meniscus spreads over the whole inner wall, resulting in an equilibrium contact angle of 0° to leave a spherical bubble, where the morphological complete wetting transition occurs. Finally, the whole cavity is filled with liquid. The free energy shows a barrier from complete drying to complete wetting as a function of droplet volume, which corresponds to the energy barrier between the Cassie and Wenzel states of the superhydrophobic surface with spherical cavities. The free-energy maximum occurs when the meniscus of the droplet becomes flat, and it is given by an analytic formula. The effect of line tension is expressed by the scaled line tension, and this effect is largest at the free-energy maximum. The positive line tension increases the free-energy maximum, which thus increases the stability of the Cassie superhydrophobic state, whereas the negative line tension destabilizes the superhydrophobic state.

  2. Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings.

    PubMed

    Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D

    2009-08-03

    Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).

  3. Approximation method for a spherical bound system in the quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.

    2010-08-15

    A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.

  4. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  5. Spherical: an iterative workflow for assembling metagenomic datasets.

    PubMed

    Hitch, Thomas C A; Creevey, Christopher J

    2018-01-24

    The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .

  6. Effects of external magnetic fields and Rashba spin-orbit coupling on spin conductance in graphene

    NASA Astrophysics Data System (ADS)

    Shirkani, H.; Amiri, F.; Golshan, M. M.

    2013-12-01

    The present article is concerned with spin conductance in graphene (SCG) when both the application of an external magnetic field and Rashba spin-orbit coupling (RSOC) are taken into account. Introducing a Casimir operator, we analyze the structure of total Hamiltonian and demonstrate how the matrix elements along with the summations involved in the suitably adopted Kubo’s formula, may be analytically calculated. From the results so-obtained one finds that, in addition to discrete and symmetric behavior of SCG against the external field, it exhibits large peaks as high as six times that in ordinary two dimensional electron gases. Moreover, it is shown that for any Fermi energy the SCG asymptotically approaches a value three times larger than the standard unit of (e/4π), for large magnetic fields. Effects of the magnetic field, RSOC and Fermi energy on the characteristics of SCG are also discussed. The material presented in this article thus provides novel means of controlling the SCG by external agents.

  7. Vitamine--vitamin. The early years of discovery.

    PubMed

    Rosenfeld, L

    1997-04-01

    In 1905, Cornelius Adrianus Pekelharing found that animals fed purified proteins, carbohydrates, fats, inorganic salts, and water would thrive only if small amounts of milk were added to the diet. He concluded that the milk contained some unrecognized substance that in very small quantities was necessary for normal growth and maintenance. In 1911, Casimir Funk isolated a concentrate from rice polishings that cured polyneuritis in pigeons. He named the concentrate "vitamine" because it appeared to be vital to life and because it was probably an amine. Although the concentrate and other "accessory food substances" were not amines, the name stuck, but the final "e" was dropped. In 1913 two groups discovered a "fat-soluble" accessory food substance. Initially believed to be a single vitamin, two separate factors were involved. One, effective against xerophthalmia, was named vitamin A; the other, effective against rickets, was named vitamin D. The factor that prevented scurvy was isolated in 1928. Known as "water-soluble C," it was renamed ascorbic acid.

  8. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  9. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    NASA Astrophysics Data System (ADS)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  10. Vortex Loops at the Superfluid Lambda Transition: An Exact Theory?

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    2003-01-01

    A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T < Tc will be compared with similar perturbative RG calculations in the normal phase T > Tc; the two calculations are found to match very nicely right at Tc.

  11. Gravitational vacuum energy in our recently accelerating universe

    NASA Astrophysics Data System (ADS)

    Bludman, Sidney

    2009-04-01

    We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.

  12. Wormholes or gravastars?

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2013-09-01

    The one loop effective action in a Schwarzschild background is here used to compute the Zero Point Energy (ZPE) which is compared to the same one generated by an existing gravastar. We find that only when we set up a difference between ZPE in these different background we can have an indication on which configuration is favored. Such a ZPE difference represents the Casimir energy. Such an energy, being negative, can be considered as a part of the Dark Energy necessary for the topology change. It is also shown that the expression of the ZPE is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure to remove the infinities together with a renormalization group equation is introduced. We find that the final configuration is dependent on the ratio between the radius of the wormhole augmented by the "brick wall" and the radius of the gravastar.

  13. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE PAGES

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...

    2017-06-27

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  14. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    NASA Astrophysics Data System (ADS)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  15. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  16. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    PubMed

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  17. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  18. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  19. The effect of ice crystal shape on aircraft contrails

    NASA Astrophysics Data System (ADS)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in ice crystal number, N(t), is not significant compared with the level of uncertainty. In young contrails, the difference between spherical and non-spherical shapes in N(t) is less than 7% for relatively large ice particles and 23% for relatively small ice particles. The ice mass, M(t), is not significantly affected by the crystal shapes, with less than 8% difference. However, the ice surface area, S(t), is the ice metric more sensitive to crystal shape, with a maximum difference of 68%. It increases at late time, though it is mainly governed by geometrical rather than dynamical effects. The small sensitivity to shape effects in the ice contrail metrics when radiation is not included suggests that the spherical shape will provide a reasonable representation for all shapes found in the in-situ studies. The radiation is included at late time, when the lasting effects of contrails are more critical. The inclusion of coupled radiation increases the level of dispersion in the results and hence increases slightly the differences due to shape effects. The small difference is also observed in the infrared heating rates of contrails.

  20. Diffraction peak profiles of surface relaxed spherical nanocrystals

    NASA Astrophysics Data System (ADS)

    Perez-Demydenko, C.; Scardi, P.

    2017-09-01

    A model is proposed for surface relaxation of spherical nanocrystals. Besides reproducing the primary effect of changing the average unit cell parameter, the model accounts for the inhomogeneous atomic displacement caused by surface relaxation and its effect on the diffraction line profiles. Based on three parameters with clear physical meanings - extension of the sub-coordination effect, maximum radial displacement due to sub-coordination, and effective hydrostatic pressure - the model also considers elastic anisotropy and provides parametric expressions of the diffraction line profiles directly applicable in data analysis. The model was tested on spherical nanocrystals of several fcc metals, matching atomic positions with those provided by Molecular Dynamics (MD) simulations based on embedded atom potentials. Agreement was also verified between powder diffraction patterns generated by the Debye scattering equation, using atomic positions from MD and the proposed model.

  1. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  2. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  3. Electromagnetic Scattering by Spheroidal Volumes of Discrete Random Medium

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    We use the superposition T-matrix method to compare the far-field scattering matrices generated by spheroidal and spherical volumes of discrete random medium having the same volume and populated by identical spherical particles. Our results fully confirm the robustness of the previously identified coherent and diffuse scattering regimes and associated optical phenomena exhibited by spherical particulate volumes and support their explanation in terms of the interference phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equations. We also show that increasing non-sphericity of particulate volumes causes discernible (albeit less pronounced) optical effects in forward and backscattering directions and explain them in terms of the same interference/multiple-scattering phenomenon.

  4. Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.

    In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less

  5. The forces on a single interacting Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Thu, Nguyen Van

    2018-04-01

    Using double parabola approximation for a single Bose-Einstein condensate confined between double slabs we proved that in grand canonical ensemble (GCE) the ground state with Robin boundary condition (BC) is favored, whereas in canonical ensemble (CE) our system undergoes from ground state with Robin BC to the one with Dirichlet BC in small-L region and vice versa for large-L region and phase transition in space of the ground state is the first order. The surface tension force and Casimir force are also considered in both CE and GCE in detail.

  6. Scalar field vacuum expectation value induced by gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, Diego; Messina, Riccardo; Maia Neto, Paulo

    We develop the scattering approach for the dispersive force on a ground state atom on top of a corrugated surface. We present explicit results to first order in the corrugation amplitude. A variety of analytical results are derived in different limiting cases, including the van der Waals and Casimir-Polder regimes. We compute numerically the exact first-order dispersive potential for arbitrary separation distances and corrugation wavelengths, for a Rubidium atom on top of a silicon or gold corrugated surface. We consider in detail the correction to the proximity force approximation, and present a very simple approximation algorithm for computing the potential.

  8. A Possible Solution to the Smallness Problem of Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /SLAC; Gu, Je-An

    2005-07-08

    The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.

  9. Crossing symmetry in alpha space

    NASA Astrophysics Data System (ADS)

    Hogervorst, Matthijs; van Rees, Balt C.

    2017-11-01

    We initiate the study of the conformal bootstrap using Sturm-Liouville theory, specializing to four-point functions in one-dimensional CFTs. We do so by decomposing conformal correlators using a basis of eigenfunctions of the Casimir which are labeled by a complex number α. This leads to a systematic method for computing conformal block decompositions. Analyzing bootstrap equations in alpha space turns crossing symmetry into an eigenvalue problem for an integral operator K. The operator K is closely related to the Wilson transform, and some of its eigenfunctions can be found in closed form.

  10. Harmony of spinning conformal blocks

    NASA Astrophysics Data System (ADS)

    Schomerus, Volker; Sobko, Evgeny; Isachenkov, Mikhail

    2017-03-01

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  11. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  12. Quantum superintegrable system with a novel chain structure of quadratic algebras

    NASA Astrophysics Data System (ADS)

    Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong

    2018-06-01

    We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.

  13. How Spherical Is a Cube (Gravitationally)?

    NASA Astrophysics Data System (ADS)

    Sanny, Jeff; Smith, David

    2015-02-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center.1,2 By integrating over ring elements of a spherical shell, we show that the gravitational force on a point mass outside the shell is the same as that of a particle with the same mass as the shell at its center. This derivation works for objects with spherical symmetry while depending on the fact that the gravitational force between two point masses varies inversely as the square of their separation.3 If these conditions are not met, then the problem becomes more difficult. In this paper, we remove the condition of spherical symmetry and examine the gravitational force between two uniform cubes.

  14. Hydrogels in endovascular embolization. I. Spherical particles of poly(2-hydroxyethyl methacrylate) and their medico-biological properties.

    PubMed

    Horák, D; Svec, F; Kálal, J; Gumargalieva, K; Adamyan, A; Skuba, N; Titova, M; Trostenyuk, N

    1986-05-01

    Spherical macroporous particles based on poly(2-hydroxyethyl methacrylate) with defined porosity, swelling and morphology have been developed, and are suitable for endovascular occlusion of various organs. Unlike cylindrical particles, spherical particles are specifically suited for transcatheteral introduction. The method chosen for the preparation of such particles was suspension radical polymerization, where the monomers were dissolved in a mixture of higher-boiling alcohols, and the solution dispersed in water. Physicochemical and medico-biological properties of spherical particles were examined. The residual amounts of monomers and other low-molecular compounds were checked; haematological analyses showed that the value 10(-5) g/g of the polymer was not toxic and contributed to an irreversible aggregation of thrombocytes. The occlusion effect in the vascular lumen was stable. The histomorphological results fully demonstrated the perfect biocompatibility of artificial spherical emboli. The latter met the requirements of application to clinical practice.

  15. Reverse depletion effects and the determination of ligand density on some spherical bioparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxiang; Liu, Yanhui, E-mail: ionazati@itp.ac.cn; Fan, Yangtao

    In cell environments crowded with macromolecules, the depletion effects act and assist in the assembly of a wide range of cellular structures, from the cytoskeleton to the chromatin loop, which are well accepted. But a recent quantum dot experiment indicated that the dimensions of the receptor–ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. In this article, a continuum elastic model is constructed to resolve the competition between the dimension of the receptor–ligand complex and depletion effects in the endocytosis of a spherical virus-like bioparticle. Our results show that the depletion effects do not alwaysmore » assist endocytosis of a spherical virus-like bioparticle; while the dimension of the ligand–receptor complex is larger than the size of a small bioparticle in cell environments, the depletion effects do not work and reverse effects appear. The ligand density covered on the virus can be identified quantitatively.« less

  16. Testing large flats with computer generated holograms

    NASA Astrophysics Data System (ADS)

    Pariani, Giorgio; Tresoldi, Daniela; Spanò, Paolo; Bianco, Andrea

    2012-09-01

    We describe the optical test of a large flat based on a spherical mirror and a dedicated CGH. The spherical mirror, which can be accurately manufactured and tested in absolute way, allows to obtain a quasi collimated light beam, and the hologram performs the residual wavefront correction. Alignment tools for the spherical mirror and the hologram itself are encoded in the CGH. Sensitivity to fabrication errors and alignment has been evaluated. Tests to verify the effectiveness of our approach are now under execution.

  17. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  18. Visual acuity with simulated and real astigmatic defocus.

    PubMed

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-05-01

    To compare the effects of "simulated" and "real" spherical and astigmatic defocus on visual acuity (VA). VA was determined with letter charts that were blurred by calculated spherical or astigmatic defocus (simulated defocus) or were seen through spherical or astigmatic trial lenses (real defocus). Defocus was simulated using ZEMAX and the Liou-Brennan eye model. Nine subjects participated [mean age, 27.2 ± 1.8 years; logarithm of the minimum angle of resolution (logMAR), -0.1]. Three different experiments were conducted in which VA was reduced by 20% (logMAR 0.0), 50% (logMAR 0.2), or 75% (logMAR 0.5) by either (1) imposing positive spherical defocus, (2) imposing positive and negative astigmatic defocus in three axes (0, 45, and 90°), and (3) imposing cross-cylinder defocus in the same three axes as in (2). Experiment (1): there were only minor differences in VA with simulated and real positive spherical defocus. Experiment (2): simulated astigmatic defocus reduced VA twice as much as real astigmatic defocus in all tested axes (p < 0.01 in all cases). Experiment (3): simulated cross-cylinder defocus reduced VA much more than real cross-cylinder defocus (p < 0.01 in all cases), similarly for all three tested axes. The visual system appears more tolerant against "real" spherical, astigmatic, and cross-cylinder defocus than against "simulated" blur. Possible reasons could be (1) limitations in the modeling procedures to simulate defocus, (2) higher ocular aberrations, and (3) fluctuations of accommodation. However, the two optical explanations (2) and (3) cannot account for the magnitude of the effect, and (1) was carefully analyzed. It is proposed that something may be special about the visual processing of real astigmatic and cross-cylinder defocus-because they have less effect on VA than simulations predict.

  19. Shape effects of filaments versus spherical particles in flow and drug delivery

    PubMed Central

    GENG, YAN; DALHAIMER, PAUL; CAI, SHENSHEN; TSAI, RICHARD; TEWARI, MANORAMA; MINKO, TAMARA; DISCHER, DENNIS E.

    2009-01-01

    Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection. This is about ten times longer than their spherical counterparts and is more persistent than any known synthetic nanoparticle. Under fluid flow conditions, spheres and short filomicelles are taken up by cells more readily than longer filaments because the latter are extended by the flow. Preliminary results further demonstrate that filomicelles can effectively deliver the anticancer drug paclitaxel and shrink human-derived tumours in mice. Although these findings show that long-circulating vehicles need not be nanospheres, they also lend insight into possible shape effects of natural filamentous viruses. PMID:18654271

  20. Shape effects of filaments versus spherical particles in flow and drug delivery

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Dalhaimer, Paul; Cai, Shenshen; Tsai, Richard; Tewari, Manorama; Minko, Tamara; Discher, Dennis E.

    2007-04-01

    Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection. This is about ten times longer than their spherical counterparts and is more persistent than any known synthetic nanoparticle. Under fluid flow conditions, spheres and short filomicelles are taken up by cells more readily than longer filaments because the latter are extended by the flow. Preliminary results further demonstrate that filomicelles can effectively deliver the anticancer drug paclitaxel and shrink human-derived tumours in mice. Although these findings show that long-circulating vehicles need not be nanospheres, they also lend insight into possible shape effects of natural filamentous viruses.

  1. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.

  2. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741

  3. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less

  4. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  5. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  6. The latitude dependence of the variance of zonally averaged quantities. [in polar meteorology with attention to geometrical effects of earth

    NASA Technical Reports Server (NTRS)

    North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.

    1982-01-01

    Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.

  7. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  9. Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.

    2017-12-01

    Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.

  10. Solution of Eshelby's inclusion problem with a bounded domain and Eshelby's tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory

    NASA Astrophysics Data System (ADS)

    Gao, X.-L.; Ma, H. M.

    2010-05-01

    A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.

  11. Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH) 2 as cathode materials for Ni-metal hydride batteries

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang

    In this paper we compare the behavior of non-spherical and spherical β-Ni(OH) 2 as cathode materials for Ni-MH batteries in an attempt to explore the effect of microstructure and surface properties of β-Ni(OH) 2 on their electrochemical performances. Non-spherical β-Ni(OH) 2 powders with a high-density are synthesized using a simple polyacrylamide (PAM) assisted two-step drying method. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) testing, laser particle size analysis, and tap-density testing are used to characterize the physical properties of the synthesized products. Electrochemical characterization, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and a charge/discharge test, is also performed. The results show that the non-spherical β-Ni(OH) 2 materials exhibit an irregular tabular shape and a dense solid structure, which contains many overlapped sheet nano crystalline grains, and have a high density of structural disorder and a large specific surface area. Compared with the spherical β-Ni(OH) 2, the non-spherical β-Ni(OH) 2 materials have an enhanced discharge capacity, higher discharge potential plateau and superior cycle stability. This performance improvement can be attributable to a higher proton diffusion coefficient (4.26 × 10 -9 cm 2 s -1), better reaction reversibility, and lower electrochemical impedance of the synthesized material.

  12. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  13. Structure of the effective potential for a spherical wormhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montelongo Garcia, N.; Zannias, T.

    2008-09-15

    The structure of the effective potential V describing causal geodesics near the throat of an arbitrary spherical wormhole is analyzed. Einstein's equations relative to a set of regular coordinates covering a vicinity of the throat imply that any spherical wormhole can be constructed from solutions of an effective initial value problem with the throat serving as an initial value surface. The initial data involve matter variables, the area A(0) of the throat, and the gradient {lambda}(0) of the redshift factor on the throat. Whenever {lambda}(0)=0, the effective potential V has a critical point on the throat. Conditions upon the datamore » are derived ensuring that the critical point is a local minimum (respectively maximum). For particular families of quasi-Schwarzschild wormholes, V exhibits a local minimum on the throat independently upon the energy E and angular momentum L{sup 2} of the test particles and thus such wormholes admit stable circular timelike and null geodesics on the throat. For families of Chaplygin wormholes, we show that such geodesics are unstable. Based on a suitable power series representation of the metric, properties of V away from the throat are obtained that are useful for the analysis of accretion disks and radiation processes near the throat of any spherical wormhole.« less

  14. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  15. Strongly localized image states of spherical graphitic particles.

    PubMed

    Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula

    2014-01-01

    We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  16. Lenticular accommodation in relation to ametropia: the chick model.

    PubMed

    Choh, Vivian; Sivak, Jacob G

    2005-03-04

    Our goal was to determine whether experimentally induced ametropias have an effect on lenticular accommodation and spherical aberration. Form-deprivation myopia and hyperopia were induced in one eye of hatchling chicks by application of a translucent goggle and +15 D lens, respectively. After 7 days, eyes were enucleated and lenses were optically scanned prior to accommodation, during accommodation, and after accommodation. Accommodation was induced by electrical stimulation of the ciliary nerve. Lenticular focal lengths for form-deprived eyes were significantly shorter than for their controls and accommodation-associated changes in focal length were significantly smaller in myopic eyes compared to their controls. For eyes imposed with +15 D blur, focal lengths were longer than those for their controls and accommodative changes were greater. Spherical aberration of the lens increased with accommodation in both form-deprived and lens-treated birds, but induction of ametropia had no effect on lenticular spherical aberration in general. Nonmonotonicity from lenticular spherical aberration increased during accommodation but effects of refractive error were equivocal. The crystalline lens contributes to refractive error changes of the eye both in the case of myopia and hyperopia. These changes are likely attributable to global changes in the size and shape of the eye.

  17. Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2009-03-28

    Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.

  18. Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM).

    PubMed

    Haverkamp, Nicolas; Beauducel, André

    2017-01-01

    We investigated the effects of violations of the sphericity assumption on Type I error rates for different methodical approaches of repeated measures analysis using a simulation approach. In contrast to previous simulation studies on this topic, up to nine measurement occasions were considered. Effects of the level of inter-correlations between measurement occasions on Type I error rates were considered for the first time. Two populations with non-violation of the sphericity assumption, one with uncorrelated measurement occasions and one with moderately correlated measurement occasions, were generated. One population with violation of the sphericity assumption combines uncorrelated with highly correlated measurement occasions. A second population with violation of the sphericity assumption combines moderately correlated and highly correlated measurement occasions. From these four populations without any between-group effect or within-subject effect 5,000 random samples were drawn. Finally, the mean Type I error rates for Multilevel linear models (MLM) with an unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS) and for repeated measures analysis of variance (rANOVA) models (without correction, with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To examine the effect of both the sample size and the number of measurement occasions, sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is violated, the sample size is rather small and the number of measurement occasions is large. For MLM-UN, the results illustrate a massive progressive bias for small sample sizes ( n = 20) and m = 6 or more measurement occasions. This effect could not be found in previous simulation studies with a smaller number of measurement occasions. The proportionality of bias and number of measurement occasions should be considered when MLM-UN is used. The good news is that this proportionality can be compensated by means of large sample sizes. Accordingly, MLM-UN can be recommended even for small sample sizes for about three measurement occasions and for large sample sizes for about nine measurement occasions.

  19. Fast calculation of low altitude disturbing gravity for ballistics

    NASA Astrophysics Data System (ADS)

    Wang, Jianqiang; Wang, Fanghao; Tian, Shasha

    2018-03-01

    Fast calculation of disturbing gravity is a key technology in ballistics while spherical cap harmonic(SCH) theory can be used to solve this problem. By using adjusted spherical cap harmonic(ASCH) methods, the spherical cap coordinates are projected into a global coordinates, then the non-integer associated Legendre functions(ALF) of SCH are replaced by integer ALF of spherical harmonics(SH). This new method is called virtual spherical harmonics(VSH) and some numerical experiment were done to test the effect of VSH. The results of earth's gravity model were set as the theoretical observation, and the model of regional gravity field was constructed by the new method. Simulation results show that the approximated errors are less than 5mGal in the low altitude range of the central region. In addition, numerical experiments were conducted to compare the calculation speed of SH model, SCH model and VSH model, and the results show that the calculation speed of the VSH model is raised one order magnitude in a small scope.

  20. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  1. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less

  2. Electromagnetic retroreflection augmented by spherical and conical metasurfaces

    NASA Astrophysics Data System (ADS)

    Shang, Yuping; Shen, Zhongxiang

    2017-11-01

    The focus of this paper is on phase gradient metasurfaces conformal to spherical and conical bodies of revolution, with an aim of engineering retroreflections and therefore augmenting backscattering cross-sections of those three-dimensional geometries under the illumination of a plane electromagnetic wave. Based on the conducting sphere and cone, the effect of the geometric revolution property on the selection of the unit inclusion of metasurfaces is considered. The procedure for using the selected unit inclusion to implement the proper reflection phase gradient onto the illuminated surfaces of those objects is formulated in detail. Retroreflections resembling conducting plates under normal incidence are observed for both the conducting sphere and cone coated with conformal metasurfaces. As a result, the redirection-induced retroreflection effectively contributes to the backscattering cross-section enhancement. A good agreement between full-wave simulations and measurements demonstrates the validity and effectiveness of backscattering cross-section enhancement using spherical and conical metasurfaces.

  3. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.

    PubMed

    Li, Hao; Chen, Guang; Das, Siddhartha

    2016-11-01

    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantum mechanics on Laakso spaces

    NASA Astrophysics Data System (ADS)

    Kauffman, Christopher J.; Kesler, Robert M.; Parshall, Amanda G.; Stamey, Evelyn A.; Steinhurst, Benjamin A.

    2012-04-01

    We first review the spectrum of the Laplacian operator on a general Laakso space before considering modified Hamiltonians for the infinite square well, parabola, and Coulomb potentials. Additionally, we compute the spectrum for the Laplacian and its multiplicities when certain regions of a Laakso space are compressed or stretched and calculate the Casimir force experienced by two uncharged conducting plates by imposing physically relevant boundary conditions and then analytically regularizing the resulting zeta function. Lastly, we derive a general formula for the spectral zeta function and its derivative for Laakso spaces with strict self-similar structure before listing explicit spectral values for some special cases

  6. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  7. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  8. Learning the spherical harmonic features for 3-D face recognition.

    PubMed

    Liu, Peijiang; Wang, Yunhong; Huang, Di; Zhang, Zhaoxiang; Chen, Liming

    2013-03-01

    In this paper, a competitive method for 3-D face recognition (FR) using spherical harmonic features (SHF) is proposed. With this solution, 3-D face models are characterized by the energies contained in spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and fine surface details of a 3-D facial surface. This is in clear contrast to most 3-D FR techniques which are either holistic or feature based, using local features extracted from distinctive points. First, 3-D face models are represented in a canonical representation, namely, spherical depth map, by which SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors. Experiments have been carried out on three public 3-D face datasets, SHREC2007, FRGC v2.0, and Bosphorus, with increasing difficulties in terms of facial expression, pose, and occlusion, and which demonstrate the effectiveness of the proposed method.

  9. Faint Object Spectrograph (FOS) early performance

    NASA Technical Reports Server (NTRS)

    Harms, Richard; Fitch, John

    1991-01-01

    The on-orbit performance of the HST + FOS instrument is described and illustrated with examples of initial scientific results. The effects of the spherical aberration from the misfiguring of the HST primary mirror upon isolated point sources and in complex fields such as the nuclei of galaxies are analyzed. Possible means for eliminating the effects of spherical aberration are studied. Concepts include using image enhancement software to extract maximum spatial and spectral information from the existing data as well as several options to repair or compensate for the HST's optical performance. In particular, it may be possible to install corrective optics into the HST which will eliminate the spherical aberration for the FOS and some of the other instruments. The more promising ideas and calculations of the expected improvements in performance are briefly described.

  10. In-flight performance of the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.

    1991-01-01

    An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.

  11. Spherical and cylindrical particle resonator as a cloak system

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.

    2018-05-01

    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.

  12. Rough surfaces: Is the dark stuff just shadow?. ;Who knows what evil lurks in the hearts of men? The shadow knows!;☆

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.

    2017-06-01

    Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.

  13. Rough Surfaces: Is the Dark Stuff Just Shadow?: "Who knows what evil lurks in the hearts of men? The shadow knows!"

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.

    2016-01-01

    Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.

  14. Biomechanical evaluation of a spherical lumbar interbody device at varying levels of subsidence.

    PubMed

    Rundell, Steven A; Isaza, Jorge E; Kurtz, Steven M

    2011-01-01

    Ulf Fernström implanted stainless steel ball bearings following discectomy, or for painful disc disease, and termed this procedure disc arthroplasty. Today, spherical interbody spacers are clinically available, but there is a paucity of associated biomechanical testing. The primary objective of the current study was to evaluate the biomechanics of a spherical interbody implant. It was hypothesized that implantation of a spherical interbody implant, with combined subsidence into the vertebral bodies, would result in similar ranges of motion (RoM) and facet contact forces (FCFs) when compared with an intact condition. A secondary objective of this study was to determine the effect of using a polyetheretherketone (PEEK) versus a cobalt chrome (CoCr) implant on vertebral body strains. We hypothesized that the material selection would have a negligible effect on vertebral body strains since both materials have elastic moduli substantially greater than the annulus. A finite element model of L3-L4 was created and validated by use of ROM, disc pressure, and bony strain from previously published data. Virtual implantation of a spherical interbody device was performed with 0, 2, and 4 mm of subsidence. The model was exercised in compression, flexion, extension, axial rotation, and lateral bending. The ROM, vertebral body effective (von Mises) strain, and FCFs were reported. Implantation of a PEEK implant resulted in slightly lower strain maxima when compared with a CoCr implant. For both materials, the peak strain experienced by the underlying bone was reduced with increasing subsidence. All levels of subsidence resulted in ROM and FCFs similar to the intact model. The results suggest that a simple spherical implant design is able to maintain segmental ROM and provide minimal differences in FCFs. Large areas of von Mises strain maxima were generated in the bone adjacent to the implant regardless of whether the implant was PEEK or CoCr.

  15. Effect of multiple spin species on spherical shell neutron transmission analysis

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1972-01-01

    A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.

  16. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1976-01-01

    Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.

  17. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling.

    PubMed

    Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi

    2017-07-24

    In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.

  18. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity frommore » general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.« less

  19. Quantifying surface roughness effects on phonon transport in silicon nanowires.

    PubMed

    Lim, Jongwoo; Hippalgaonkar, Kedar; Andrews, Sean C; Majumdar, Arun; Yang, Peidong

    2012-05-09

    Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.

  20. Fluctuation spectra and force generation in nonequilibrium systems.

    PubMed

    Lee, Alpha A; Vella, Dominic; Wettlaufer, John S

    2017-08-29

    Many biological systems are appropriately viewed as passive inclusions immersed in an active bath: from proteins on active membranes to microscopic swimmers confined by boundaries. The nonequilibrium forces exerted by the active bath on the inclusions or boundaries often regulate function, and such forces may also be exploited in artificial active materials. Nonetheless, the general phenomenology of these active forces remains elusive. We show that the fluctuation spectrum of the active medium, the partitioning of energy as a function of wavenumber, controls the phenomenology of force generation. We find that, for a narrow, unimodal spectrum, the force exerted by a nonequilibrium system on two embedded walls depends on the width and the position of the peak in the fluctuation spectrum, and oscillates between repulsion and attraction as a function of wall separation. We examine two apparently disparate examples: the Maritime Casimir effect and recent simulations of active Brownian particles. A key implication of our work is that important nonequilibrium interactions are encoded within the fluctuation spectrum. In this sense, the noise becomes the signal.

  1. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  2. Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold nanoparticles.

    PubMed

    Kim, Dong-Kwan; Hwang, Yoon Jo; Yoon, Cheolho; Yoon, Hye-On; Chang, Ki Soo; Lee, Gaehang; Lee, Seungwoo; Yi, Gi-Ra

    2015-08-28

    The theoretical extinction coefficients of gold nanoparticles (AuNPs) have been mainly verified by the analytical solving of the Maxwell equation for an ideal sphere, which was firstly founded by Mie (generally referred to as Mie theory). However, in principle, it has not been directly feasible with experimental verification especially for relatively large AuNPs (i.e., >40 nm), as conventionally proposed synthetic methods have inevitably resulted in a polygonal shaped, non-ideal Au nanosphere. Here, mono-crystalline, ultra-smooth, and highly spherical AuNPs of 40-100 nm were prepared by the procedure reported in our recent work (ACS Nano, 2013, 7, 11064). The extinction coefficients of the ideally spherical AuNPs of 40-100 nm were empirically extracted using the Beer-Lambert law, and were then compared with the theoretical limits obtained by the analytical and numerical methods. The obtained extinction coefficients of the ideally spherical AuNPs herein agree much more closely with the theoretical limits, compared with those of the faceted or polygonal shaped AuNPs. In addition, in order to further elucidate the importance of being spherical, we systematically compared our ideally spherical AuNPs with the polygonal counterparts; effectively addressing the role of the surface morphology on the spectral responses in both theoretical and experimental manners.

  3. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  4. Spherical cows in dark matter indirect detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R., E-mail: nicolas.bernal@uan.edu.co, E-mail: lnecib@mit.edu, E-mail: tslatyer@mit.edu

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated wellmore » outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.« less

  5. Spherical cows in dark matter indirect detection

    NASA Astrophysics Data System (ADS)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  6. Assessment of the ecological impacts of macroroughness elements in stream flows

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Oldroyd, Holly J.; Perona, Paolo

    2017-04-01

    The environmental suitability of flow release rules is often assessed for different fish species by modeling (e.g., CASiMir and PHABSIM) Weighted Usable Area (WUA) curves. However, these models are not able to resolve the hydrodynamic at small scales, e.g. that induced by the presence of macroroughness (e.g., single stones), which yet determine relatively large wakes that may contribute significantly in terms of habitat suitability. The presence of stones generates sheltered zones (i.e., the wake), which are typically temporary stationary points for many fish species. By resting in these low velocity regions, fishes minimize energy expenditure, and can quickly move to nearby fast water to feed (Hayes and Jowett, 1994). Following the analytical model proposed by Negretti et al., (2006), we developed an analytical solution for the wake area behind the macroroughness elements. The total wake area in the river reach being monitored is a function of the streamflow, Q, and it is an actual Usable Area for fishes that can be used to correct the one computed by classic software such as PHABSIM or CASIMIR at each flow rate. By quantifying these wake areas we can therefore assess how the physical properties and number of such zones change in response to the changing hydrologic regime. In order to validate the concept, we selected a 400 meter reach from the Aare river in the center of Switzerland. The statistical distribution of macroroughness elements is obtained by taking orthorectified aerial photographs by drone surveys during low flow conditions. Then, the distribution of the wakes is obtained analytically as a derived distribution. This methodology allows to save computational costs and the time for detailed field surveys.

  7. Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3

    NASA Astrophysics Data System (ADS)

    Adhikari, C. M.; Debierre, V.; Jentschura, U. D.

    2017-09-01

    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.

  8. The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids.

    PubMed

    Baaske, Philipp; Bataller, Henri; Braibanti, Marco; Carpineti, Marina; Cerbino, Roberto; Croccolo, Fabrizio; Donev, Aleksandar; Köhler, Werner; Ortiz de Zárate, José M; Vailati, Alberto

    2016-12-01

    Diffusion and thermal diffusion processes in a liquid mixture are accompanied by long-range non-equilibrium fluctuations, whose amplitude is orders of magnitude larger than that of equilibrium fluctuations. The mean-square amplitude of the non-equilibrium fluctuations presents a scale-free power law behavior q -4 as a function of the wave vector q, but the divergence of the amplitude of the fluctuations at small wave vectors is prevented by the presence of gravity. In microgravity conditions the non-equilibrium fluctuations are fully developed and span all the available length scales up to the macroscopic size of the systems in the direction parallel to the applied gradient. Available theoretical models are based on linearized hydrodynamics and provide an adequate description of the statics and dynamics of the fluctuations in the presence of small temperature/concentration gradients and under stationary or quasi-stationary conditions. We describe a project aimed at the investigation of Non-EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX). The focus of the project is on the investigation in micro-gravity conditions of the non-equilibrium fluctuations in complex liquids, trying to tackle several challenging problems that emerged during the latest years, such as the theoretical predictions of Casimir-like forces induced by non-equilibrium fluctuations; the understanding of the non-equilibrium fluctuations in multi-component mixtures including a polymer, both in relation to the transport coefficients and to their behavior close to a glass transition; the understanding of the non-equilibrium fluctuations in concentrated colloidal suspensions, a problem closely related with the detection of Casimir forces; and the investigation of the development of fluctuations during transient diffusion. We envision to parallel these experiments with state-of-the-art multi-scale simulations.

  9. Mechanical collapse of confined fluid membrane vesicles.

    PubMed

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  10. Spherical nanoindentation stress-strain analysis, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Turner, David; Miller, Calvin

    Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in themore » form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.« less

  11. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    NASA Astrophysics Data System (ADS)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  12. Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems

    NASA Astrophysics Data System (ADS)

    Pham, Duc Chinh

    2018-02-01

    Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.

  13. Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, N.; Song, S.G.; Gray, G.T., III

    1996-05-01

    Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less

  14. Atomic oxygen effects on metals

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T.

    1987-01-01

    The effect of specimen geometry on the attack of metals by atomic oxygen is addressed. This is done by extending the coupled-currents approach in metal oxidation to spherical and cylindrical geometries. Kinetic laws are derived for the rates of oxidation of samples having these geometries. It is found that the burn-up time for spherical particles of a given diameter can be as much as a factor of 3 shorter than the time required to completely oxidize a planar sample of the same thickness.

  15. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.

  16. Characteristics of laser beam focusing with single spherical mirrors during laser treatment

    NASA Astrophysics Data System (ADS)

    Borkin, A. G.; Drobyazko, S. V.; Kosheleva, G. A.; Pavlovich, Yu. V.; Senatorov, Yu. M.; Fromm, V. A.; Kurchatov, I. V.

    1988-04-01

    Focusing of a laser beam with a single spherical mirror is analyzed, such a mirror being combined with a rotatable annular plane mirror in a coaxial configuration. Its focal length must be sufficiently large to ensure adequately high power density and to avoid shielding. When the distance from mirror to laser cavity is too large, then the laser beam may degenerate into a nonannular one and its focusing without loss may become unattainable. Tilting the spherical mirror will make this possible, even when the laser beam is not annular, if astigmatism as well as spherical aberration are minimized. Such a focusing mirror made of metal is theoretically shown to be much more effective than a focusing lens made of KC1 crystal; this has been confirmed experimentally in a CO sub 2 laser facility for perforation of tubular seperator meshes.

  17. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  18. Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1983-01-01

    The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.

  19. The glass spherical hollow orbital implant: a prospective study.

    PubMed

    Stephen, B E

    1999-06-01

    Various types of orbital implants are in use in the rehabilitation of anophthalmic patients. The latest is the expensive hydroxyapatite implant. The study objective was to evaluate the effectiveness of low cost glass spherical hollow implants, as primary and secondary implants. St Michaels and Frazer Private Hospitals, Colombo. 65 patients had glass sphere orbital implants between 1987 and 1995; 51 primary (evisceration 46, enucleation 5) and 14 secondary (evisceration 2, enucleation 12). At 9 to 12 months follow up, patients were evaluated for mobility of implant, prosthesis mobility, lid sulcus deformity, cosmetic results and complications. Primary glass spherical hollow implants provide excellent mobility of the implant (92%), cosmesis (88%), prosthesis mobility (67%), with a low rate of complications (9.5%). Results of primary implant was superior to that of secondary (p < 0.001). Excellent results were obtained with spherical glass spheres as primary implants following evisceration.

  20. Light propagation in linearly perturbed ΛLTB models

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-11-01

    We apply a generic formalism of light propagation to linearly perturbed spherically symmetric dust models including a cosmological constant. For a comoving observer on the central worldline, we derive the equation of geodesic deviation and perform a suitable spherical harmonic decomposition. This allows to map the abstract gauge-invariant perturbation variables to well-known quantities from weak gravitational lensing like convergence or cosmic shear. The resulting set of differential equations can effectively be solved by a Green's function approach leading to line-of-sight integrals sourced by the perturbation variables on the backward lightcone. The resulting spherical harmonic coefficients of the lensing observables are presented and the shear field is decomposed into its E- and B-modes. Results of this work are an essential tool to add information from linear structure formation to the analysis of spherically symmetric dust models with the purpose of testing the Copernican Principle with multiple cosmological probes.

  1. Effects of compressibility on the temperature jump at the interface of layered, spherical-shell convection

    NASA Technical Reports Server (NTRS)

    Yen, David A.; Zhang, Shuxia; Langenberger, Sherri E.

    1988-01-01

    Large temperature jumps at the interface of layered convection are important to the argument used against the likelihood of separate circulations in the upper and lower mantles. This problem was studied within the framework of a compressible, constant viscosity spherical-shell model. Both mechanical and thermal coupling configurations are considered. Although the temperature jumps are reduced by compressibility, their magnitudes remain quite large, in the case of mechanical coupling. For thermal coupling, the temperature jumps become smaller but still are substantial, between 500 to 1000 C. In layered spherical-shell convection, flows in the lower mantle are several times greater than the surface velocities.

  2. Spherical powder for retaining thermosetting acrylic resin veneers.

    PubMed

    Tanaka, T; Atsuta, M; Uchiyama, Y; Nakabayashi, N; Masuhara, E

    1978-03-01

    1. Nine different sizes of spherical powder were prepared, and their effectiveness as retentive devices was evaluated against those available commercially. 2. Smaller-diameter spherical powder (No. 5) gave the best results of all retaining devices tested. 3. The physical properties of the resins play an important role in the retentive strength with No. 5 retention beads. The retentive strength was reduced when brittle resin was used. 4. The retentive strength of the resin veneer was greatly affected by the angle of stress at the incisal resin. The retentive strength increased as the angle between the longitudinal axis of the specimen and the direction of stress decreased.

  3. Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.

  4. Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Lu, Ming; Zhang, Xiao-Xiao

    2018-05-01

    We solve the Weyl electron scattered by a spherical step potential barrier. Tuning the incident energy and the potential radius, one can enter both quasiclassical and quantum regimes. Transport features related to far-field currents and integrated cross sections are studied to reveal the preferred forward scattering. In the quasiclassical regime, a strong focusing effect along the incident spherical axis is found in addition to optical caustic patterns. In the quantum regime, at energies of successive angular momentum resonances, a polar aggregation of electron density is found inside the potential. The findings will be useful in transport studies and electronic lens applications in Weyl systems.

  5. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus).

    PubMed

    Choi, Jin Soo; Jung, Youn-Joo; Hong, Nam-Hui; Hong, Sang Hee; Park, June-Woo

    2018-04-01

    The increasing global contamination of plastics in marine environments is raising public concerns about the potential hazards of microplastics to environmental and human health. Microplastics formed by the breakdown of larger plastics are typically irregular in shape. The objective of this study was to compare the effects of spherical or irregular shapes of microplastics on changes in organ distribution, swimming behaviors, gene expression, and enzyme activities in sheepshead minnow (Cyprinodon variegatus). Both types of microplastics accumulated in the digestive system, causing intestinal distention. However, when compared to spherical microplastics, irregular microplastics decreased swimming behavior (i.e., total distance travelled and maximum velocity) of sheepshead minnow. Both microplastics generated cellular reactive oxygen species (ROS), while ROS-related molecular changes (i.e., transcriptional and enzymatic characteristics) differed. This study provides toxicological insights into the impacts of environmentally relevant (fragmented) microplastics on fish and improves our understanding of the environmental effects of microplastics in the ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    NASA Astrophysics Data System (ADS)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  7. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  8. Droplet Combustion and Soot Formation in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1994-01-01

    One of the most complex processes involved in the combustion ot liquid fuels is the formation of soot. A well characterized flow field and simplified flame structure can improve considerably the understanding of soot formation processes. The simplest flame shape to analyze for a droplet is spherical with its associated one-dimensional flow field. It is a fundamental limit and the oldest and most often analyzed configuration of droplet combustion. Spherical symmetry in the droplet burning process will arise when there is no relative motion between the droplet and ambience or uneven heating around the droplet periphery, and buoyancy effects are negligible. The flame and droplet are then concentric with each other and there is no liquid circulation within the droplet. An understanding of the effect of soot on droplet combustion should therefore benefit from this simplified configuration. Soot formed during spherically symmetric droplet combustion, however, has only recently drawn attention and it appears to be one of the few aspects associated with droplet combustion which have not yet been thoroughly investigated. For this review, the broad subject of droplet combustion is narrowed considerably by restricting attention specifically to soot combined with spherically symmetric droplet burning processes that are promoted.

  9. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  10. Shape effects on time-scale divergence at athermal jamming transition of frictionless non-spherical particles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2017-10-01

    The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.

  11. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  12. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  13. Drift kinetic effects on plasma response in high beta spherical tokamak experiments

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan

    2018-01-01

    The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.

  14. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE PAGES

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...

    2017-09-21

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  15. Thermodynamics of photons on fractals.

    PubMed

    Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  16. Cosmological Constant as a Manifestation of the Hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Gu, Je-An

    2007-12-21

    There has been the suggestion that the cosmological constant as implied by the dark energy is related to the well-known hierarchy between the Planck scale, M{sub PI}, and the Standard Model scale, M{sub SM}. Here we further propose that the same framework that addresses this hierarchy problem must also address the smallness problem of the cosmological constant. Specifically, we investigate the minimal supersymmetric (SUSY) extension of the Randall-Sundrum model where SUSY-breaking is induced on the TeV brane and transmitted into the bulk. We show that the Casimir energy density of the system indeed conforms with the observed dark energy scale.

  17. Thread bonds in molecules

    NASA Astrophysics Data System (ADS)

    Ivlev, B.

    2017-07-01

    Unusual chemical bonds are proposed. Each bond is characterized by the thread of a small radius, 10-11 cm, extended between two nuclei in a molecule. An analogue of a potential well, of the depth of MeV scale, is formed within the thread. This occurs due to the local reduction of zero point electromagnetic energy. This is similar to formation of the Casimir well. The electron-photon interaction only is not sufficient for formation of thread state. The mechanism of electron mass generation is involved in the close vicinity, 10-16 cm, of the thread. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  18. Noncontact rack-pinion-rack device as a differential vibration sensor.

    PubMed

    Miri, MirFaez; Nasiri, Mojtaba

    2010-07-01

    We study a nanoscale system composed of one corrugated cylinder (pinion) placed between two corrugated plates (racks). The pinion and racks have no mechanical contact, but are coupled via the lateral Casimir force-one of the most spectacular consequences of quantum fluctuations of the electromagnetic field. The noncontact design of the device could help with the noteworthy wear problem in nanoscale mechanical systems. We consider the case where both racks undergo harmonic lateral motion. We assume that the amplitude, frequency, and phase of one of the racks are known. We show that probing the pinion motion, one can determine the vibration characteristics of the other rack.

  19. Spontaneous spherical symmetry breaking in atomic confinement

    NASA Astrophysics Data System (ADS)

    Sveshnikov, Konstantin; Tolokonnikov, Andrey

    2017-07-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

  20. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    PubMed

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  1. Investigating relationships between left atrial volume, symmetry, and sphericity

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Nedios, Sotiris; Hindricks, Gerhard; Bollmann, Andreas

    2016-03-01

    Catheter ablation is a safe and effective therapy for drug-refractory patients symptomatic of atrial fibrillation (AF), with up to 80% of patients experiencing long-term arrhythmia-free survival. However, up to 20-40% of patients require more than one procedure in order to become arrhythmia-free. Therefore, appropriate patient selection is paramount to the effective implementation and long-term success of ablation therapy for patients with atrial fibrillation (AF). In this study, as a precursor to evaluating clinical significance of specific LA shape metrics as pre-procedural predictors of AF recurrence following ablative pulmonary vein isolation therapy, we report on a computational geometric analysis in a pilot cohort evaluating relationships between various patient-specific metrics of LA shape which might have such predictive value. This study specifically is focused on establishing the relationship between LA volume and sphericity, using a novel methodology for computing atrial sphericity based on regional shape.

  2. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    NASA Astrophysics Data System (ADS)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  3. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Vossmerbaeumer, Urs

    2013-11-01

    To provide a summary of the impact on vision of an aspheric intraocular lens (IOL) compared with a spherical IOL in cataract surgery. Systematic review with meta-analysis. Patients from published randomized controlled trials (RCTs) of cataract surgery with aspheric compared with spherical monofocal IOL implantation. We systematically searched the peer-reviewed literature in MEDLINE, EMBASE, Web of Science, BIOSIS, and the Cochrane Library according to the Cochrane Collaboration method to identify relevant RCTs. The inclusion criteria were RCTs on cataract surgery comparing the use of aspheric versus spherical IOL implantation that assessed visual acuity, contrast sensitivity, or quality of vision. The effects were calculated as mean differences or standardized mean differences (Hedges' g) and pooled using random-effect models. Best-corrected visual acuity (BCVA), contrast sensitivity, and subjective perception of the quality of vision. Forty-three studies provided data and were included, comprising 2076 eyes implanted with aspheric IOLs and 2034 eyes implanted with spherical IOLs. The BCVA showed a significant difference for aspheric IOLs (-0.01 logarithm of the minimum angle of resolution; 95% confidence interval [CI], -0.02 to -0.00). For contrast sensitivity, a significant advantage for aspheric IOLs was found under photopic and mesopic light conditions (photopic: Hedges' g 0.42, 95% CI 0.24-0.61 (3 cycles per degree [cpd]) to 0.53, 95% CI 0.33-0.73 (12 cpd); mesopic: Hedges' g 0.49, 95% CI 0.23-0.75 (1.5 cpd) to 0.76, 95% CI 0.52-1.00 (18 cpd)). Questionnaires targeting the subjective perception of quality of vision yielded less conclusive results. Overall, a patient may achieve better contrast sensitivity with an aspheric IOL than with a spherical IOL, especially under dim light. There was no clinically relevant difference in BCVA between aspheric and spherical IOL implantation. The findings on the subjective perception of visual quality were heterogeneous with no clear result favoring either option. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  4. An analysis of the wounding factors of four different shapes of fragments.

    PubMed

    Ma, Y Y; Feng, T S; Fu, R X; Li, M

    1988-01-01

    The wounding characteristics to a biological target of four typical shapes of fragments (square, triangular, cylindrical, and spherical) with masses of less than 1 gram and velocities between 460 and 1,500 m/s are studied in this paper. The following conclusions about the effects of the wounding factors, such as energy transfer, velocity, mass, and shape of fragment are presented: 1) For given target characteristics, the important wounding factors of fragments are impact velocity, mass, and shape, and of these velocity is the most important. 2) Besides direct effects, the fragment velocity has great influence on far-reaching, indirect wounding effects. When velocity increases, it not only increases the size of direct wound, but also the rate of indirect bone fracture. 3) The rate of energy transfer is affected by fragment shape, and it is also a decreasing function of mass. 4) Under the same conditions there are differences in wounding effectiveness among the four fragment shapes, the triangular with a comparatively high wounding effectiveness, followed by the square, cylindrical, and spherical. The types of wound channels are also different, the cylindrical and spherical making a "through" type, the square and triangular making a "blind-tube" type.

  5. Spherical self-organizing map using efficient indexed geodesic data structure.

    PubMed

    Wu, Yingxin; Takatsuka, Masahiro

    2006-01-01

    The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.

  6. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †

    PubMed Central

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-01-01

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624

  7. Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

  8. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.

    PubMed

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-06-12

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  9. Goos-Hänchen effect on Si thin films with spherical and cylindrical pores

    NASA Astrophysics Data System (ADS)

    Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel

    2018-02-01

    We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.

  10. Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor.

    PubMed

    Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A

    2012-10-01

    A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).

  11. The effects of atmospheric refraction on the accuracy of laser ranging systems

    NASA Technical Reports Server (NTRS)

    Zanter, D. L.; Gardner, C. S.; Rao, N. N.

    1976-01-01

    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric.

  12. Spherical quartz crystals investigated with synchrotron radiation

    DOE PAGES

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...

    2015-10-27

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less

  13. Hydrogels in endovascular embolization. II. Clinical use of spherical particles.

    PubMed

    Horák, D; Svec, F; Kálal, J; Adamyan, A A; Volynskii, Y D; Voronkova, O S; Kokov, L S; Gumargalieva, K Z

    1986-11-01

    In this study we report the results of clinical experiments, obtained with spherical particles made from poly(2-hydroxyethyl methacrylate) used in the embolization of arteriovenous anastomoses, in the suppression of pulmonary haemorrhage and haemoptysis and in the occlusion of some other arteries. So far we have used these particles in the treatment of 187 patients. It must be stressed that the advantage of spherical particles consists in the simplicity of their introduction into the blood vessel through a catheter, while in the blood vessel itself the particle swells in blood still more, when compared with the particle size in saline. This results in an immediate and permanent haemostatic effect. No revascularization occurs.

  14. An "adiabatic-hindered-rotor" treatment allows para-H(2) to be treated as if it were spherical.

    PubMed

    Li, Hui; Roy, Pierre-Nicholas; Le Roy, Robert J

    2010-09-14

    In para-H(2)-{molecule} interactions, the common assumption that para-H(2) may be treated as a spherical particle is often substantially in error. For example, quantum mechanical eigenvalues on a full four-dimensional (4D) potential energy surface for para H(2)-{linear molecule} species often differ substantially from those calculated from the corresponding two-dimensional (2D) surface obtained by performing a simple spherical average over the relative orientations of the H(2) moiety. However, use of an "adiabatic-hindered-rotor" approximation can yield an effective 2D surface whose spectroscopic properties are an order of magnitude closer to those yielded by a full 4D treatment.

  15. Intensity compensation for on-line detection of defects on fruit

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Tao, Yang

    1997-10-01

    A machine-vision sorting system was developed that utilizes the difference in light reflectance of fruit surfaces to distinguish the defective and good apples. To accommodate to the spherical reflectance characteristics of fruit with curved surface like apple, a spherical transform algorithm was developed that converts the original image to a non-radiant image without losing defective segments on the fruit. To prevent high-quality dark-colored fruit form being classified into the defective class and increase the defect detection rate for light-colored fruit, an intensity compensation method using maximum propagation was used. Experimental results demonstrated the effectiveness of the method based on maximum propagation and spherical transform for on-line detection of defects on apples.

  16. Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear.

    PubMed

    Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H

    2009-06-05

    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.

  17. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  18. Thermal transport in Si and Ge nanostructures in the `confinement' regime

    NASA Astrophysics Data System (ADS)

    Kwon, Soonshin; Wingert, Matthew C.; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-01

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  19. Thermal transport in Si and Ge nanostructures in the 'confinement' regime.

    PubMed

    Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-21

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  20. Photoacoustic Effect Generated from an Expanding Spherical Source

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Diebold, Gerald J.

    2018-02-01

    Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.

  1. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  2. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  3. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    PubMed Central

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  4. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    PubMed

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  5. Role of preoperative cycloplegic refraction in LASIK treatment of hyperopia.

    PubMed

    Frings, Andreas; Steinberg, Johannes; Druchkiv, Vasyl; Linke, Stephan J; Katz, Toam

    2016-07-01

    Previous studies have suggested that, to improve refractive predictability in hyperopic LASIK treatments, preoperative cycloplegic or manifest refraction, or a combination of both, could be used in the laser nomogram. We set out to investigate (1) the prevalence of a high difference between manifest and cycloplegic spherical equivalent in hyperopic eyes preoperatively, and (2) the related predictability of postoperative keratometry. Retrospective cross-sectional data analysis of consecutive treated 186 eyes from 186 consecutive hyperopic patients (mean age 42 [±12] years) were analyzed. Excimer ablation for all eyes was performed using a mechanical microkeratome (SBK, Moria, France) and an Allegretto excimer laser platform. Two groups were defined according to the difference between manifest and cycloplegic spherical equivalent which was defined as ≥1.00 diopter (D); the data was analyzed according to refractive outcome in terms of refractive predictability, efficacy, and safety. In 24 eyes (13 %), a preoperative difference of ≥1.00D between manifest spherical equivalent and cycloplegic spherical equivalent (= MCD) occurred. With increasing preoperative MCD, the postoperative achieved spherical equivalent showed hyperopic regression after 3 months. There was no statistically significant effect of age (accommodation) or optical zone size on the achieved spherical equivalent. A difference of ≥1.00D occurs in about 13 % of hyperopia cases. We suggest that hyperopic correction should be based on the manifest spherical equivalent in eyes with preoperative MCD <1.00D. If the preoperative MCD is ≥1.00D, treatment may produce manifest undercorrection, and therefore we advise that the patient should be warrned about lower predictability, and suggest basing conclusions on the arithmetic mean calculated from the preoperative manifest and cycloplegic spheres.

  6. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  7. Cylindrical and spherical Akhmediev breather and freak waves in ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.; El-Awady, E. I.

    2018-01-01

    The properties of cylindrical and spherical ion-acoustic breathers Akhmediev breather and freak waves in strongly coupled ultracold neutral plasmas (UNPs), whose constituents are inertial strongly coupled ions and weakly coupled Maxwellian electrons, are investigated numerically. Using the derivative expansion method, the basic set of fluid equations is reduced to a nonplanar (cylindrical and spherical)/modified nonlinear Schrödinger equation (mNLSE). The analytical solutions of the mNLSE were not possible until now, so their numerical solutions are obtained using the finite difference scheme with the help of the Dirichlet boundary conditions. Moreover, the criteria for the existence and propagation of breathers are discussed in detail. The geometrical effects due to the cylindrical and spherical geometries on the breather profile are studied numerically. It is found that the propagation of the ion-acoustic breathers in one-dimensional planar and nonplanar geometries is very different. Finally, our results may help to manipulate matter breathers experimentally in UNPs.

  8. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.

    This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  9. Comparison of real and computer-simulated outcomes of LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Cano, Daniel; Barbero, Sergio; Marcos, Susana

    2004-06-01

    Computer simulations of alternative LASIK ablation patterns were performed for corneal elevation maps of 13 real myopic corneas (range of myopia, -2.0 to -11.5 D). The computationally simulated ablation patterns were designed with biconic surfaces (standard Munnerlyn pattern, parabolic pattern, and biconic pattern) or with aberrometry measurements (customized pattern). Simulated results were compared with real postoperative outcomes. Standard LASIK refractive surgery for myopia increased corneal asphericity and spherical aberration. Computations with the theoretical Munnerlyn ablation pattern did not increase the corneal asphericity and spherical aberration. The theoretical parabolic pattern induced a slight increase of asphericity and spherical aberration, explaining only 40% of the clinically found increase. The theoretical biconic pattern controlled corneal spherical aberration. Computations showed that the theoretical customized pattern can correct high-order asymmetric aberrations. Simulations of changes in efficiency due to reflection and nonnormal incidence of the laser light showed a further increase in corneal asphericity. Consideration of these effects with a parabolic pattern accounts for 70% of the clinical increase in asphericity.

  10. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  11. Ion-acoustic solitons do not exist in cylindrical and spherical geometries

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2017-09-01

    We investigate the time evolution of one-dimensional, compressive, ion acoustic solitary waves for planar, cylindrical, and spherical geometries in a plasma of cold fluid ions and Boltzmann electrons. For cylindrical and spherical geometries, we show that inward (outward) going solitary waves cannot be localized (i.e., always have a tail) since the effect of a unipolar velocity perturbation is to shift ions inward (outward) to smaller (larger) radii, thereby increasing (decreasing) the local ion density. That is, there are no quasi-particle soliton states in the cylindrical and spherical cases. These results are confirmed and expanded using a plasma simulation for the cylindrical case. We initialize the system with an inward propagating planar soliton. We find supersonic solitary waves which increase in speed as they near the origin, while the wave amplitude increases as r-1/2. All solitary waves develop the predicted tail, but for larger amplitudes, the tail is unstable and evolves into an acoustic wave train.

  12. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  13. Analysis of Multi-Layered Materials Under High Velocity Impact Using CTH

    DTIC Science & Technology

    2008-03-01

    of state . The other relationship deals with the deviatoric stress and is taken care of by the constitutive equations which are discussed in the next...models in CTH decompose the total stress tensor into the spherical and deviatoric parts. The spherical part of the stress tensor is the equation of state ...investigate the effects of wave propagation. Waves in rods are considered to create a state of

  14. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    NASA Astrophysics Data System (ADS)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  15. [The influence of mutual arrangement of the electric dipole and the spatial nonuniformity of brain electrical conductivity on the solution of the direct task of electroencephalography using the method of finite elements].

    PubMed

    Stavtsev, A Iu; Ushakov, V L

    2010-01-01

    The results of comparing the solutions of the direct task of electroencephalography on a spherical model and a spherical model with one nonuniformity are discussed. The nonuniformity was simulated by two parabolas situated on the same axis of symmetry and crossing the boundary of the gray and white matters. The region between the larger and the smaller parabolas had the physical characteristics of the gray matter, and the region inside the smaller parabola had the characteristics of the cerebrospinal fluid. The task was to find a combination of the parameters (the distance between the dipole and the nonuniformity, the angle of rotation of the dipole relative to the nonuniformity, the sizes of the dipole and the nonuniformity, etc.) that provides the maximum effect of the difference of potentials on the outer surface of the scalp in the spherical model with one nonuniformity and the spherical model. The influence of the points of ground location on the value of the effect was analyzed (ground only at the right ear and ground at both ears). The data obtained show that a maximum difference of potentials is reached at the positions of dipoles close to tangential relative to the scalp surface.

  16. Aberration analysis and calculation in system of Gaussian beam illuminates lenslet array

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Zhou, Ping; Su, Tianquan; Feng, Yun; Zhao, Yuejin

    2014-09-01

    Low order aberration was founded when focused Gaussian beam imaging at Kodak KAI -16000 image detector, which is integrated with lenslet array. Effect of focused Gaussian beam and numerical simulation calculation of the aberration were presented in this paper. First, we set up a model of optical imaging system based on previous experiment. Focused Gaussian beam passed through a pinhole and was received by Kodak KAI -16000 image detector whose microlenses of lenslet array were exactly focused on sensor surface. Then, we illustrated the characteristics of focused Gaussian beam and the effect of relative space position relations between waist of Gaussian beam and front spherical surface of microlenses to the aberration. Finally, we analyzed the main element of low order aberration and calculated the spherical aberration caused by lenslet array according to the results of above two steps. Our theoretical calculations shown that , the numerical simulation had a good agreement with the experimental result. Our research results proved that spherical aberration was the main element and made up about 93.44% of the 48 nm error, which was demonstrated in previous experiment. The spherical aberration is inversely proportional to the value of divergence distance between microlens and waist, and directly proportional to the value of the Gaussian beam waist radius.

  17. Determination Plastic Properties of a Material by Spherical Indentation Base on the Representative Stress Approach

    NASA Astrophysics Data System (ADS)

    Budiarsa, I. N.; Gde Antara, I. N.; Dharma, Agus; Karnata, I. N.

    2018-04-01

    Under an indentation, the material undergoes a complex deformation. One of the most effective ways to analyse indentation has been the representative method. The concept coupled with finite element (FE) modelling has been used successfully in analysing sharp indenters. It is of great importance to extend this method to spherical indentation and associated hardness system. One particular case is the Rockwell B test, where the hardness is determined by two points on the P-h curve of a spherical indenter. In this case, an established link between materials parameters and P-h curves can naturally lead to direct hardness estimation from the materials parameters (e.g. yield stress (y) and work hardening coefficients (n)). This could provide a useful tool for both research and industrial applications. Two method to predict p-h curve in spherical indentation has been established. One is use method using C1-C2 polynomial equation approach and another one by depth approach. Both approach has been successfully. An effective method in representing the P-h curves using a normalized representative stress concept was established. The concept and methodology developed is used to predict hardness (HRB) values of materials through direct analysis and validated with experimental data on selected samples of steel.

  18. Refractive errors and refractive development in premature infants.

    PubMed

    Ozdemir, O; Tunay, Z Ozen; Acar, D Erginturk; Acar, U

    2015-12-01

    To examine refractive errors and refractive development in premature infants. Premature infants in the retinopathy of prematurity (ROP) screening program were recruited and examined longitudinally between 28 and 58 weeks postmenstrual age. For performing cycloplegic retinoscopy, 1% tropicamide was administered, two drops with a 10-minute interval, in order to paralyze accommodation and to achieve cycloplegia. Birth weight, gestational age, gender and acute ROP disease were recorded. The relationship between spherical equivalent, astigmatism and postmenstrual age was evaluated. A total of 798 readings were obtained from 258 infants (131 females, 127 males) between 28 and 58 weeks postmenstrual age. The median number of examinations was 3 (minimum 1, maximum 7). In the comparisons of birth weight, gestational age, spherical equivalent and astigmatism between genders, there were no statistically significant differences (P>0.05). Gestational age (regression analysis, r(2)=0.30, P<0.01) and birth weight (regression analysis, r(2)=0.22, P<0.01) had a significant effect on refractive error development. Preterm babies with lower birth weight and those born more prematurely had lower spherical equivalent. The spherical equivalent of the eyes correlated significantly with the postmenstrual age of the infants (r=0.512, P<0.01). Infants with low gestational age and low birth weight also had low spherical equivalent. Moreover, spherical equivalent correlated with increasing postmenstrual age. However, astigmatism did not correlate with postmenstrual age and did not associate with gestational age or birth weight. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  20. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.

    2016-10-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  1. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles.

    PubMed

    Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M

    2016-12-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  2. Lattice Rotation Patterns and Strain Gradient Effects in Face-Centered-Cubic Single Crystals Under Spherical Indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y. F.; Larson, B. C.; Lee, J. H.

    Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less

  3. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates

    PubMed Central

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-01-01

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg2Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg2Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg2Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg2Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed. PMID:28773180

  4. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg₂Sn Precipitates.

    PubMed

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-07-18

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg₂Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg₂Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg₂Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg₂Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed.

  5. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  6. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  7. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  8. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  9. The bottom of the universe: Flat earth science in the Age of Encounter.

    PubMed

    Allegro, James J

    2017-03-01

    This essay challenges the dominance of the spherical earth model in fifteenth- and early-sixteenth-century Western European thought. It examines parallel strains of Latin and vernacular writing that cast doubt on the existence of the southern hemisphere. Three factors shaped the alternate accounts of the earth as a plane and disk put forward by these sources: (1) the unsettling effects of maritime expansion on scientific thought; (2) the revival of interest in early Christian criticism of the spherical earth; and (3) a rigid empirical stance toward entities too large to observe in their entirety, including the earth. Criticism of the spherical earth model faded in the decades after Magellan's crew returned from circuiting the earth in 1522.

  10. Far-infrared response of spherical quantum dots: Dielectric effects and the generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Movilla, J. L.; Planelles, J.

    2007-05-01

    The influence of the dielectric environment on the far-infrared (FIR) absorption spectra of two-electron spherical quantum dots is theoretically studied. Effective mass and envelope function approaches with realistic steplike confining potentials are used. Special attention is paid to absorptions that are induced by the electron-electron interaction. High confining barriers make the FIR absorption coefficients almost independent of the quantum dot dielectric environment. Low barrier heights and strong dielectric mismatches preserve the strong fundamental (Kohn) mode but yield the cancellation of excited absorptions, thus monitoring dielectrically induced phase transitions from volume to surface states.

  11. Spectra of confined positronium

    NASA Astrophysics Data System (ADS)

    Munjal, D.; Silotia, P.; Prasad, V.

    2017-12-01

    Positronium is studied under the effect of spherically confined plasma environment. Exponentially Cosine Screened Coulomb potential (ECSC) has been used to include the dense plasma screening effect on positronium. Time independent Schrodinger equation is solved numerically. Various physical parameters such as energy eigenvalues, radial matrix elements, oscillator strengths, and polarizability are well explored as a function of confinement parameters. Oscillator strength gets drastically modified under confinement. We have also obtained the results for Ps confined under spherically confined Debye potential and compared with results of ECSC potential. Also incidental degeneracy for different values of confinement parameters has been reported for the first time for positronium.

  12. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  13. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  14. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  15. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  16. Theoretical and experimental analysis of the electromechanical behavior of a compact spherical loudspeaker array for directivity control.

    PubMed

    Pasqual, Alexander Mattioli; Herzog, Philippe; Arruda, José Roberto de França

    2010-12-01

    Sound directivity control is made possible by a compact array of independent loudspeakers operating at the same frequency range. The drivers are usually distributed over a sphere-like frame according to a Platonic solid geometry to obtain a highly symmetrical configuration. The radiation pattern of spherical loudspeaker arrays has been predicted from the surface velocity pattern by approximating the drivers membranes as rigid vibrating spherical caps, although a rigorous assessment of this model has not been provided so far. Many aspects concerning compact array electromechanics remain unclear, such as the effects on the acoustical performance of the drivers interaction inside the array cavity, or the fact that voltages rather than velocities are controlled in practice. This work presents a detailed investigation of the electromechanical behavior of spherical loudspeaker arrays. Simulation results are shown to agree with laser vibrometer measurements and experimental sound power data obtained for a 12-driver spherical array prototype at low frequencies, whereas the non-rigid body motion and the first cavity eigenfrequency yield a discrepancy between theoretical and experimental results at high frequencies. Finally, although the internal acoustic coupling affects the drivers vibration in the low-frequency range, it does not play an important role on the radiated sound power.

  17. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  18. On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørgen

    2011-05-01

    It is well known that the Kerr-NUT-AdS-dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr-NUT-AdS-dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing-Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.

  19. The Kirillov picture for the Wigner particle

    NASA Astrophysics Data System (ADS)

    Gracia-Bondía, J. M.; Lizzi, F.; Várilly, J. C.; Vitale, P.

    2018-06-01

    We discuss the Kirillov method for massless Wigner particles, usually (mis)named ‘continuous spin’ or ‘infinite spin’ particles. These appear in Wigner’s classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described. In memory of E C G Sudarshan.

  20. Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2017-10-01

    We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.

Top