Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Wing, S.
2016-06-01
The region-1 and region-2 boundary has traditionally been identified using data from a single spacecraft crossing the auroral region and measuring the large scale changes in the cross track magnetic field. With data from the AUTUMN, CANMOS, CARISMA, GIMA, DTU MGS, MACCS, McMAC, STEP, THEMIS, and USGS ground magnetometer arrays we applied a state-of-art technique based on spherical elementary current system (SECS) method developed by Amm and Viljanen (1999) in order to calculate maps of region-1 and region-2 current system over the North American and Greenland auroral region. Spherical elementary current (SEC) amplitude (proxy for vertical currents) maps can be inferred at 10 s temporal resolution, ~1.5° geographic latitude (Glat), and 3.5° geographic longitude (Glon) spatial resolution. We compare the location of the region-1 and region-2 boundary obtained by the DMSP spacecraft with the region-1 and region-2 boundary observed in the SEC current amplitudes. We find that the boundaries typically agree within 0.2°±1.3°. These results indicate that the location of the region-1 and region-2 boundary can reasonably be determined from ground magnetometer data. The SECS maps represent a value-added product from the magnetometer database and can be used for contextual interpretation in conjunction with other missions as well as help with our understanding of magnetosphere-ionosphere coupling mechanisms using the ground arrays and the magnetospheric spacecraft data.
Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary✩
Weygand, J.M.; Wing, S.
2017-01-01
The region-1 and region-2 boundary has traditionally been identified using data from a single spacecraft crossing the auroral region and measuring the large scale changes in the cross track magnetic field. With data from the AUTUMN, CANMOS, CARISMA, GIMA, DTU MGS, MACCS, McMAC, STEP, THEMIS, and USGS ground magnetometer arrays we applied a state-of-art technique based on spherical elementary current system (SECS) method developed by Amm and Viljanen (1999) in order to calculate maps of region-1 and region-2 current system over the North American and Greenland auroral region. Spherical elementary current (SEC) amplitude (proxy for vertical currents) maps can be inferred at 10 s temporal resolution, ~1.5° geographic latitude (Glat), and 3.5° geographic longitude (Glon) spatial resolution. We compare the location of the region-1 and region-2 boundary obtained by the DMSP spacecraft with the region-1 and region-2 boundary observed in the SEC current amplitudes. We find that the boundaries typically agree within 0.2° ± 1.3°. These results indicate that the location of the region-1 and region-2 boundary can reasonably be determined from ground magnetometer data. The SECS maps represent a value-added product from the magnetometer database and can be used for contextual interpretation in conjunction with other missions as well as help with our understanding of magnetosphere-ionosphere coupling mechanisms using the ground arrays and the magnetospheric spacecraft data. PMID:29056861
Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary.
Weygand, J M; Wing, S
2016-06-01
The region-1 and region-2 boundary has traditionally been identified using data from a single spacecraft crossing the auroral region and measuring the large scale changes in the cross track magnetic field. With data from the AUTUMN, CANMOS, CARISMA, GIMA, DTU MGS, MACCS, McMAC, STEP, THEMIS, and USGS ground magnetometer arrays we applied a state-of-art technique based on spherical elementary current system (SECS) method developed by Amm and Viljanen (1999) in order to calculate maps of region-1 and region-2 current system over the North American and Greenland auroral region. Spherical elementary current (SEC) amplitude (proxy for vertical currents) maps can be inferred at 10 s temporal resolution, ~1.5° geographic latitude (Glat), and 3.5° geographic longitude (Glon) spatial resolution. We compare the location of the region-1 and region-2 boundary obtained by the DMSP spacecraft with the region-1 and region-2 boundary observed in the SEC current amplitudes. We find that the boundaries typically agree within 0.2° ± 1.3°. These results indicate that the location of the region-1 and region-2 boundary can reasonably be determined from ground magnetometer data. The SECS maps represent a value-added product from the magnetometer database and can be used for contextual interpretation in conjunction with other missions as well as help with our understanding of magnetosphere-ionosphere coupling mechanisms using the ground arrays and the magnetospheric spacecraft data.
Euclidean, Spherical, and Hyperbolic Shadows
ERIC Educational Resources Information Center
Hoban, Ryan
2013-01-01
Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…
Experimental and modeling studies of small molecule chemistry in expanding spherical flames
NASA Astrophysics Data System (ADS)
Santner, Jeffrey
Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.
The dynamics and control of a spherical robot with an internal omniwheel platform
NASA Astrophysics Data System (ADS)
Karavaev, Yury L.; Kilin, Alexander A.
2015-03-01
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okunev, V. D.; Samoilenko, Z. A.; Burkhovetski, V. V.
The growth of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films in magnetron plasma, in special conditions, leads to the appearance of ensembles of micron-sized spherical crystalline clusters with fractal structure, which we consider to be a new form of self-organization in solids. Each ensemble contains 10{sup 5}-10{sup 6} elementary clusters, 100-250 A in diameter. Interaction of the clusters in the ensemble is realized through the interatomic chemical bonds, intrinsic to the manganites. Integration of peripheral areas of interacting clusters results in the formation of common intercluster medium in the ensemble. We argue that the ensembles with fractal structure built into paramagnetic disorderedmore » matrix have ferromagnetic properties. Absence of sharp borders between elementary clusters and the presence of common intercluster medium inside each ensemble permits to rearrange magnetic order and to change the volume of the ferromagnetic phase, providing automatically a high sensitivity of the material to the external field.« less
Effects of space weather on GOCE electrostatic gravity gradiometer measurements
NASA Astrophysics Data System (ADS)
Ince, E. Sinem; Pagiatakis, Spiros D.
2016-12-01
We examine the presence of residual nongravitational signatures in gravitational gradients measured by GOCE electrostatic gravity gradiometer. These signatures are observed over the magnetic poles during geomagnetically active days and can contaminate the trace of the gravitational gradient tensor by up to three to five times the expected noise level of the instrument (˜ 11 mE). We investigate these anomalies in the gradiometer measurements along many satellite tracks and examine possible causes using external datasets, such as interplanetary electric field measurements from the ACE (advanced composition explorer) and WIND spacecraft, and Poynting vector (flux) estimated from equivalent ionospheric currents derived from spherical elementary current systems over North America and Greenland. We show that the variations in the east-west and vertical electrical currents and Poynting vector components at the satellite position are highly correlated with the disturbances observed in the gradiometer measurements. The results presented in this paper reveal that the disturbances are due to intense ionospheric current variations that are enhanced by increased solar activity that causes a very dynamic drag environment. Moreover, successful modelling and removal of a high percentage of these disturbances are possible using external geomagnetic field observations.
NASA Astrophysics Data System (ADS)
Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.
2012-12-01
Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.
Effect of alkali on the structure of cell envelopes of Chlamydia psittaci elementary bodies.
Narita, T; Wyrick, P B; Manire, G P
1976-01-01
Suspensions of isolated cell envelopes of infectious elementary bodies (EB) of Chlamydia psittaci at alkaline pH showed a rapid, extensive decrease in absorbance, accompanied by the release of a cell envelope component in a sedimentable form. This phenomenon was observed both at 0 C and with envelopes which had been previously heated to 100 C. Monovalent and divalent cations effectively inhibited the turbidity loss, whereas ethylenediaminetetraacetate (EDTA) caused an accelerated decrease in turbidity. The turbidity loss observed after incubation of the envelopes at alkaline pH could be reversed to the level of the initial value by dialysis against distilled water containing Mg2+. Thin-section electron photomicrographs of purified EB exposed to alkaline buffer with EDTA revealed the loss of the internal contents of cells, but these cells still maintained their round shapes. The cell surface of treated EB appeared pitted in negatively stained preparations, whereas intact EB had a smooth surface. Electron microscopic studies on negatively stained preparations of the clear supernatant obtained after the treatment of the envelope with alkaline buffer containing EDTA demonstrated the presence of spherical particles, approximately 6 to 7 nm in diameter, and rodlike particles, which appeared to be made up of two or more spherical particles. Images PMID:1375
NASA Astrophysics Data System (ADS)
Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio
2015-02-01
Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.
Aberration of a negative ion beam caused by space charge effect.
Miyamoto, K; Wada, S; Hatayama, A
2010-02-01
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
Elementary Science Literature Review
ERIC Educational Resources Information Center
Gustafson, Brenda; MacDonald, Dougal; d'Entremont, Yvette
2007-01-01
This report presents a literature review of elementary science and design technology education research. The review is intended to provide direction to the elementary science working groups charged with the responsibility to revise the "Alberta Elementary Science Program" (1996) by reflecting current ideas reported in research…
Does the month of birth influence the prevalence of refractive errors?
Czepita, Maciej; Kuprjanowicz, Leszek; Safranow, Krzysztof; Mojsa, Artur; Majdanik, Ewa; Ustianowska, Maria; Czepita, Damian
2015-01-01
The aim of our study was to examine whether the month of birth influences the prevalence of refractive errors. A total of 5,601 schoolchildren were examined (2,688 boys and 2,913 girls, aged 6-18 years, mean age 11.9, SD 3.2 years). The children examined, students of elementary and secondary schools, were Polish and resided in and around Szczecin, Poland. Every examined subject underwent retinoscopy under cycloplegia using 1% tropicamide. Data analysis was performed using the Kruskal-Wallis test followed by the Siegel and Castellan post-hoc test or the Mann-Whitney U-test. P values of < 0.05 were considered statistically significant. Students born in June had significantly higher spherical equivalents than schoolchildren born in May (0.66 ± 1.17 and 0.39 ± 1.17 respectively, p = 0.0058). The Mann-Whitney U-test showed that students born in June had significantly higher spherical equivalents than schoolchildren born in any other month (0.66 ± 1.17 and 0.50 ± 1.17 respectively, p = 0.0033). Besides that, we did not observe any other association between refractive errors and the month of birth. Children born in Poland in June may have a higher spherical equivalent.
ERIC Educational Resources Information Center
Gündogmus, Hatice Degirmenci
2018-01-01
The purpose of the current research is to identify the difficulties which teacher candidates studying elementary school teaching experienced in their past elementary reading and writing education and which cannot be forgotten, and to find out their solution for eliminating these difficulties. The study group of the research is composed of 118…
NASA Astrophysics Data System (ADS)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
NASA Astrophysics Data System (ADS)
Brown, Linda Lou
Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data-warehouse programs; teachers' applications of DIDM to modify lessons for differentiated science instruction, the numbers of years' teachers attended science PD, and teachers' influence on CILs staffing decisions. Yet CILs reported 14% of Texas elementary campuses had limited or no science education programs due to federal policy requirement for reading and mathematics. Three hypothesis components were supported and accepted from research data resulted in two models addressing elementary science, science education PD, and CILs impact for federal policy applications.
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessi, G. T. von; Hole, M. J.; Svensson, J.
2012-01-15
In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less
Surface electric fields for North America during historical geomagnetic storms
Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.
2013-01-01
To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.
Transition probability functions for applications of inelastic electron scattering
Löffler, Stefan; Schattschneider, Peter
2012-01-01
In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709
ERIC Educational Resources Information Center
Morrison-Sandberg, Leslie F.; Kubik, Martha Y.; Johnson, Karen E.
2011-01-01
Elementary schools are an optimal setting to provide obesity prevention interventions, yet little is known about the obesity prevention practices of elementary school nurses. The purpose of this study was to gain insight into current obesity-related school nursing practice in elementary schools in Minnesota, opinions regarding school nurse-led…
Assessing the Effectiveness of New Hampshire Elementary Schools: An Effective Schools Approach
ERIC Educational Resources Information Center
Fortner, Tara
2017-01-01
Despite consistently strong performances among NH 4th graders on the NAEP assessments, large disparities have been observed among NH elementary students on the NECAP assessments based on race and SES. The current study assessed the effectiveness of NH elementary schools, as defined by the effective schools research. Of the 209 elementary schools…
Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A
2018-01-01
Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
ERIC Educational Resources Information Center
Coester, Lee Anne
2010-01-01
This study was designed to gather input from early career elementary teachers with the goal of finding ways to improve elementary mathematics methods courses. Multiple areas were explored including the degree to which respondents' elementary mathematics methods course focused on the NCTM Process Standards, the teachers' current standards-based…
NASA Astrophysics Data System (ADS)
Prados, Antonio; Plata, Carlos A.
2016-12-01
We comment on the paper "Critique and correction of the currently accepted solution of the infinite spherical well in quantum mechanics" by Huang Young-Sea and Thomann Hans-Rudolph, EPL 115, 60001 (2016) .
Generalized spherical and simplicial coordinates
NASA Astrophysics Data System (ADS)
Richter, Wolf-Dieter
2007-12-01
Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.
Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2017-04-01
The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.
ERIC Educational Resources Information Center
Amendum, Steven J.; Conradi, Kristin; Hiebert, Elfrieda
2018-01-01
Prompted by the advent of new standards for increased text complexity in elementary classrooms in the USA, the current integrative review investigates the relationships between the level of text difficulty and elementary students' reading fluency and reading comprehension. After application of content and methodological criteria, a total of 26…
ERIC Educational Resources Information Center
National Center for Education Statistics (ED), Washington, DC.
This document reports preliminary tabulations of public elementary and secondary school revenues and current expenditures for Fiscal Year 1987 (School Year 1986-87). Data shows revenues by local, state, intermediate, and federal sources, and current expenditures by categories of instruction, support services, noninstructional services, and fixed…
Principals' Opinions of Organisational Justice in Elementary Schools in Turkey
ERIC Educational Resources Information Center
Aydin, Inayet; Karaman-Kepenekci, Yasemin
2008-01-01
Purpose--This study aims to present the opinions of public elementary school principals in Turkey about the current organisational justice practices among teachers from the distributive, procedural, interactional, and rectificatory dimensions. Design/methodology/approach--The opinions of 11 public elementary school principals in Ankara about…
Effective Schools: Do Elementary Prescriptions Fit Secondary Schools?
ERIC Educational Resources Information Center
Firestone, William A.; Herriott, Robert E.
Most of the recent research identifying organizational characteristics that seem to make schools unusually effective has been conducted at the elementary level and may not be applicable to secondary schools. Research currently underway suggests that the basic organizational structures of elementary and secondary schools dictate two different…
Preparing Elementary Prospective Teachers to Teach Early Algebra
ERIC Educational Resources Information Center
Hohensee, Charles
2017-01-01
Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Huang, W.; Dudley, M.
1998-01-01
It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector greater than 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = lc with no hollow core) in densities on the order of thousands per sq cm, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p(+)n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p(+)n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.
Excess weight gain in elementary school-aged Hispanic children
USDA-ARS?s Scientific Manuscript database
The current data was collected as part of a 6-year longitudinal study in which elementary schools from a southeast Texas school district were provided with resources to encourage children to make healthier choices. The objective of the current study was to evaluate children’s change in body mass ind...
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Huang, Wei; Dudley, Michael
1998-01-01
Given the high density (approx. 10(exp 4)/sq cm) of elementary screw dislocations (Burgers vector = 1c with no hollow core) in commercial SiC wafers and epilayers, all appreciable current (greater than 1 A) SiC power devices will likely contain elementary screw dislocations for the foreseeable future. It is therefore important to ascertain the electrical impact of these defects, particularly in high-field vertical power device topologies where SiC is expected to enable large performance improvements in solid-state high-power systems. This paper compares the DC-measured reverse-breakdown characteristics of low-voltage (less than 250 V) small-area (less than 5 x 10(exp -4)/sq cm) 4H-SiC p(+)n diodes with and without elementary screw dislocations. Compared to screw dislocation-free devices, diodes containing elementary screw dislocations exhibited higher pre-breakdown reverse leakage currents, softer reverse breakdown I-V knees, and highly localized microplasmic breakdown current filaments. The observed localized 4H-SiC breakdown parallels microplasmic breakdowns observed in silicon and other semiconductors, in which space-charge effects limit current conduction through the local microplasma as reverse bias is increased.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Huang, Wei; Dudley, Michael
1999-01-01
Given the high density (approx. 10(exp 4)/sq cm) of elementary screw dislocations (Burgers vector = lc with no hollow core) in commercial SiC wafers and epilayers, all appreciable current (greater than 1 A) SiC power devices will likely contain elementary screw dislocations for the foreseeable future. It is therefore important to ascertain the electrical impact of these defects, particularly in high-field vertical power device topologies where SiC is expected to enable large performance improvements in solid-state high-power systems. This paper compares the DC-measured reverse-breakdown characteristics of low-voltage (less than 250 V) small-area (less than 5 x 10(exp -4) sq cm) 4H-SiC p(+)n diodes with and without elementary screw dislocations. Compared to screw dislocation-free devices, diodes containing elementary screw dislocations exhibited higher pre-breakdown reverse leakage currents, softer reverse breakdown I-V knees, and highly localized microplasmic breakdown current filaments. The observed localized 4H-SiC breakdown parallels microplasmic breakdowns observed in silicon and other semiconductors, in which space-charge effects limit current conduction through the local microplasma as reverse bias is increased.
A Collaborative Approach for Elementary Science
ERIC Educational Resources Information Center
Nelson, George D.; Landel, Carolyn C.
2007-01-01
The authors question whether elementary students will have access to effective science and mathematics instruction within the current structure of elementary schools, in which each classroom teachers is expected to possess the expertise to teach all subjects well. They review research showing that good teachers are the key to student achievement…
Engineering at the Elementary Level
ERIC Educational Resources Information Center
McGrew, Cheryl
2012-01-01
Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…
Theaters in Elementary Schools. AIA School Plant Studies.
ERIC Educational Resources Information Center
Brush, Martha S.
1963-01-01
A national volunteer program for producing a children's theater in elementary schools is severaly limited by the inadequacy of theater facilities in local school systems. A general discussion of the theater program is presented, the current state of theater facilities in elementary schools, difficulties in play production, and possible causes for…
ERIC Educational Resources Information Center
Park, Yongnam
2017-01-01
This study examines the issues pertaining to South Korea's elementary physical education (PE) performance assessment, using an assessment literacy (Hay & Penney, 2013) perspective to propose future directions. Eight elementary teachers currently teaching PE were selected as participants. Data were collected through semi-structured in-depth…
Third Grade Elementary Students' Perception of Science
ERIC Educational Resources Information Center
Demir, Metin
2015-01-01
The current study investigated which dimensions of scientific process are capitalized on by elementary school third graders to explain the concept of science at conceptual level. The study was conducted by using "Basic Qualitative Research", one of the qualitative research approaches with the participation of 225 elementary school third…
ERIC Educational Resources Information Center
Haciomeroglu, Guney
2017-01-01
This current study examined the reciprocal relationship between anxiety and attitude towards mathematics in elementary students. Two instruments (attitudes towards mathematics inventory short form [ATMI-Short Form] and the Revised Fennema-Sherman Mathematics Anxiety Scale [Revised-FSMAS]) were administered to 310 fourth grade elementary students.…
Investigation of Weibull statistics in fracture analysis of cast aluminum
NASA Technical Reports Server (NTRS)
Holland, Frederic A., Jr.; Zaretsky, Erwin V.
1989-01-01
The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.
Experimental Results of OH Regime Investigation in Globus-M Spherical Torus
NASA Astrophysics Data System (ADS)
Golant, Victor; Gusev, Vasily; Levin, Roman; Petrov, Yuriy; Sakharov, Nikolay
2001-10-01
Plasma parameters were measured in novel spherical torus Globus-M in highly shaped plasmas with aspect ratio, A > 1.5, elongation, k < 1.9, triangularity < 0.5. Plasma column was created by direct induction method with the currents up to Ip 0.3 MA in the magnetic field, Bt - 0.08 - 0.5 T. In Globus-M spherical torus plasma column is closely fitted into the vacuum vessel and wall conditioning technology described in [1] was used to achieve good plasma performance. Plasma experiments were focused around achievement of ultimate OH regimes allowed by power supplies. The operational limits of the device were investigated. In the regime with extreme low q(cy1) < 1 and high normalized current > 4, the plasma current of almost 100kA was sustained transiently in low magnetic field 800 Gs. The first results on stability analysis with numerical code are presented. The runaway electrons behavior was studied in spherical tokamak conditions. Influence of plasma current and density ramp-up speeds, MHD events on plasma performance and stability was demonstrated. Magnetic reconstruction was performed with EFIT version adopted for PC simulations. Plans for auxiliary heating and current drive are discussed. 1. V.K. Gusev, …, V.E. Golant, et al., Nucl. Fusion 41, No 7, (2001), to be published
ERIC Educational Resources Information Center
Acre, Andrea M.
2014-01-01
This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of…
ERIC Educational Resources Information Center
McQuarrie, Sarah H.; Sherwin, Ronald G.
2013-01-01
The purpose of this study was to investigate the relationship between actual current assessment practices of elementary music teachers and the assessment topics as published in the literature aimed at those teachers. Specifically, this study sought to: 1) identify the current assessment techniques utilized by elementary music teachers; 2) identify…
ERIC Educational Resources Information Center
Vos, D.; Ellis, S. M.; van der Westhuizen, Philip C.; Mentz, P. J.
2013-01-01
The Organisational Climate Description Questionnaire--Rutgers Elementary (OCDQ--RE) was used to determine the current organizational climate of primary schools in North-West Province, South Africa. This questionnaire evaluates the actions of principals and educators; the current organizational climate in primary schools can be determined from the…
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.
Li, G; Tan, Y; Liu, Y Q
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
Powerful Social Studies Teaching with Poetry and Primary Sources
ERIC Educational Resources Information Center
Sell, Corey Ranshaw; Griffin, Krista
2017-01-01
Given the current marginalization of the social studies within elementary classrooms it is vital that elementary educators seek integrative techniques that promote the social studies. This article explores one such example of integration taught by the authors within an elementary classroom. The three-day lesson taught to fifth-grade students aimed…
An Assessment of Turkish Elementary Teachers in the Context of Education for Sustainable Development
ERIC Educational Resources Information Center
Sagdic, Ali; Sahin, Elvan
2016-01-01
The purpose of the current study is to describe beliefs, perceived barriers and teaching strategy preference of elementary teachers with respect to education for sustainable development. The sample of research survey consisted of 211 elementary teachers who are also participant of projects on environmental education entitled Green Pack and…
ERIC Educational Resources Information Center
Poland, Susan; Colburn, Amanda; Long, David E.
2017-01-01
In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the…
Electron Bernstein waves in spherical torus plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveliev, A. N.
2006-11-30
Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less
High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up
NASA Astrophysics Data System (ADS)
Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration
2014-10-01
We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.
NASA Astrophysics Data System (ADS)
Buldu, Nihal
Preservice elementary teachers' attitudes toward science have been the subject of investigation by science educators for decades. Many of the recent attempts pertaining to preservice elementary teachers by science educators have focused on the effects of science method courses on the attitudes and relationships between attitudes and other variables. The research literature lacks studies that compare attitudes of preservice elementary teachers toward science across two or more nations. The current study investigated the attitudes of preservice elementary teachers toward science in the U.S. and Turkey in order to see if there is a difference between the U.S. and Turkish preservice elementary teachers' attitudes toward science, and to investigate whether variables such as gender and the grade the preservice teachers wish to teach make a difference in preservice elementary teachers' attitudes towards science. The sample consisted of 1144 preservice elementary teachers. Of the 1144 preservice elementary teachers for whom complete information is available, it is known that 371 preservice elementary teachers were from the U.S. and 773 were from Turkey. The attitudes of preservice elementary teachers in the U.S. and Turkey were assessed by the data gathered using Turkish and American Preservice Elementary Teachers Attitude Scale (TAPETAS). This scale is a revised version of the Modified Fennema Sherman Attitude Scale (Doepken, Lawsky, and Padwa, 1999). Results of the current study indicated that both U.S. and Turkish preservice elementary teachers had positive attitudes toward science. However, U.S. preservice elementary teachers had more confidence in science. They found science more useful than their Turkish peers. They had more positive attitudes towards their previous science teachers and were less likely to stereotype science as a male domain. There were not any significant differences between the U.S. preservice elementary teachers due to gender and the grade they wanted to teach. There were significant differences between the Turkish preservice teachers due to gender. Discussion of the findings, implications of the study and recommendations for further research were presented.
NASA Astrophysics Data System (ADS)
Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.
2012-10-01
Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.
Architectural study of the design and operation of advanced force feedback manual controllers
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Kim, Whee-Kuk
1990-01-01
A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof concepts is presented as a feasible test-bed for enhanced performance in a 9-dof system.
Elementary School Teachers' Reasons for Staying in Their Current Schools: A Comparison Study
ERIC Educational Resources Information Center
Adrianzen, Luzmila B.
2012-01-01
This study examines elementary school teachers' reasons for staying in their current schools, specifically, comparing two schools, one from a low-income district and one from a high-income district. The researcher assesses similarities and differences among teacher's perceptions of these factors in these two schools. The researcher…
The Trajectory of Elementary and Middle School Students' Perceptions of the Concept of History
ERIC Educational Resources Information Center
Altun, Adnan
2014-01-01
The current study aims to reveal the trajectory (change) of the perception of the concept of history during elementary and middle school years through students' responses to the question, "What is history in your opinion?" The cross-sectional research design was the preferred method to provide stronger opportunity for the current study…
Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak
NASA Astrophysics Data System (ADS)
He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun
2006-01-01
The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.
Anomaly as Exemplar: The Meanings of Role-Modeling for Men Elementary Teachers.
ERIC Educational Resources Information Center
Allan, Jim
This study looked at male elementary school teachers and the role modeling component of their work in an effort to understand why the profession continues to be dominated by women. The study gathered data through guided collaborative interviews between the Fall of 1989 and December 1991 with 15 men currently employed as elementary teachers in…
ERIC Educational Resources Information Center
Madjar, Nir; Cohen, Veronique; Shoval, Gal
2018-01-01
School transitions are important phases in students' educational experiences. The current study aimed to explore the trajectories of academic and social motivation across the transition from elementary to middle school. Participants (N = 415) were sampled from six elementary schools; 55% transitioned after sixth grade (transition) and 45% remained…
Opinions of Teachers on Using Internet Searching Strategies: An Elementary School Case in Turkey
ERIC Educational Resources Information Center
Kabakci, Isil; Firat, Mehmet; Izmirli, Serkan; Kuzu, Elif Bugra
2010-01-01
The purpose of the current study is to determine opinions of teachers on using internet searching strategies in an elementary school. The study conducted through qualitative method was designed on survey research model. Participants were consisted of 21 teachers at an elementary school in Eskisehir in Turkey. Questionnaires consisting of…
ERIC Educational Resources Information Center
Perera, Thushanthi; Frei, Simone; Frei, Balz; Bobe, Gerd
2015-01-01
A sedentary life style contributes to many chronic diseases and poor educational performance. Since elementary school-aged children spend most wakeful hours in school, classroom teachers are essential for providing physical activity (PA) breaks during school. As first objective, we assessed current PA levels for Oregon public elementary schools…
Funding Lutheran Elementary Schools. Planning for Lutheran Elementary Schools. E09.
ERIC Educational Resources Information Center
Lutheran Church, Missouri Synod, St. Louis, MO.
Part of a 13-volume series designed to help Lutheran communities assess the feasibility of starting a Lutheran elementary school and to assist ongoing schools in current operation, this handbook focuses on financial support for Lutheran schools. It attempts to present a comprehensive description of factors to be considered in funding a Lutheran…
ERIC Educational Resources Information Center
Byker, Erik Jon
2015-01-01
This article reports on a Public Private Partnership (PPP) program in South India that provided information and communication technology (ICT) to rural elementary schools. The article examined the current status of rural, government-run elementary schools in India by reviewing reports like the Annual Status of Education Report (ASER) in India.…
Directory of Public Elementary and Secondary Education Agencies, 2002-03. NCES 2005-315
ERIC Educational Resources Information Center
McDowell, Lena M.; Sietsema, John P.
2005-01-01
This directory provides a current listing of all reported public elementary and secondary education agencies in the United States as well as other US jurisdictions. Also included is the US Department of Defense Dependents Schools and Bureau of Indian Affairs Schools. The directory provides summary tables showing an overview of elementary and…
Suggestions for Teaching the Principles of Continental Drift in the Elementary School
ERIC Educational Resources Information Center
Glenn, William H.
1977-01-01
Provides a brief overview of current geographic ideas regarding continental drift and plate tectonics and suggests techniques for illustrating continental motions to elementary school pupils. (Author/DB)
NASA Astrophysics Data System (ADS)
Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng
2005-06-01
Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.
Observation of instability-induced current redistribution in a spherical-torus plasma.
Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H
2006-09-01
A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.
Teachers' Perceptions on Current Piano Use in the Elementary General Music Classroom
ERIC Educational Resources Information Center
Baker, Valerie A.
2017-01-01
The purpose of this study was to identify teacher opinion of piano use, the amount of piano use, and current purposes for pianos in elementary general music classrooms. A geographically diverse sample of general music teachers (N = 189) completed a piano use survey. The data indicated that teachers felt piano was an important part of elementary…
The Effects of Visual Art Integration on Reading at the Elementary Level. A Review of Literature
ERIC Educational Resources Information Center
McCarty, Kristine A.
2007-01-01
Although visual art is considered a subject deemed by the federal government as part of the core curriculum, many elementary schools do not include this subject into the current core curriculum of studies. This review of literature provides insight through current qualitative and quantitative studies on the effectiveness of including visual art…
ERIC Educational Resources Information Center
Parker, Audra K.
2009-01-01
Transitions can be difficult at any age; however, the move from elementary school to middle school, coupled with the onset of adolescence, is often associated with a myriad of psychological and academic declines. One strategy currently used to "ready" elementary students for middle school is a departmentalized organizational structure. The purpose…
ERIC Educational Resources Information Center
Nouri, Ali; Farsi, Soheila
2018-01-01
The central aim of this study is to evaluate the effectiveness of the recently revised elementary curriculum for arts education in Iran. The study employed an educational criticism method and was conducted in two elementary schools. Data were collected by observation, semi-structured interviews and curriculum documents over a four-month period.…
Spherical aberration correction with threefold symmetric line currents.
Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric
2016-02-01
It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)
NASA Astrophysics Data System (ADS)
Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team
2015-03-01
Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.
MRS3D: 3D Spherical Wavelet Transform on the Sphere
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2011-12-01
Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.
NASA Astrophysics Data System (ADS)
Acre, Andrea M.
This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.
EEG-distributed inverse solutions for a spherical head model
NASA Astrophysics Data System (ADS)
Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.
1998-08-01
The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.
2014-11-01
An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.
NASA Astrophysics Data System (ADS)
Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke
2017-10-01
Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.
2010-03-01
Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.
ERIC Educational Resources Information Center
National Archives and Records Administration, 2015
2015-01-01
The Assistant Secretary for Elementary and Secondary Education adopts final requirements for the School Improvement Grants (SIG) program, authorized under section 1003(g) of title I of the Elementary and Secondary Education Act of 1965, as amended (ESEA). These final requirements make changes to the current SIG program requirements and implement…
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
NASA Astrophysics Data System (ADS)
Tsujii, N.; Takase, Y.; Ejiri, A.; Shinya, T.; Togashi, H.; Yajima, S.; Yamazaki, H.; Moeller, C. P.; Roidl, B.; Sonehara, M.; Takahashi, W.; Toida, K.; Yoshida, Y.
2017-12-01
Non-inductive plasma start-up is a critical issue for spherical tokamaks since there is not enough room to provide neutron shielding for the center solenoid. Start-up using lower hybrid (LH) waves has been studied on the TST-2 spherical tokamak. Because of the low magnetic field of a spherical tokamak, the plasma density needs to be kept at a very low value during the plasma current ramp-up so that the plasma core remains accessible to the LH waves. However, we have found that higher density was required to sustain larger plasma current. The achievable plasma current was limited by the maximum operational toroidal field of TST-2. The existence of an optimum density for LH current drive and its toroidal field dependence is explained through a numerical simulation based on a ray tracing code and a Fokker-Planck solver. In order to access higher density at the same magnetic field, a top-launch antenna was recently installed in addition to the existing outboard-launch antenna. Increase in the density limit was observed when the power was launched from the top antenna, consistently with the numerical predictions.
ERIC Educational Resources Information Center
Baser, Mustafa; Durmus, Soner
2010-01-01
The purpose of this study was to compare the changes in conceptual understanding of Direct Current Electricity (DCE) in virtual (VLE) and real laboratory environment (RLE) among pre-service elementary school teachers. A pre- and post-test experimental design was used with two different groups. One of the groups was randomly assigned to VLE (n =…
Elementary School Teachers' Perception of Desirable Learning Activities: A Singaporean Perspective.
ERIC Educational Resources Information Center
Tan, Ai-girl
2001-01-01
From ratings of children's learning activities by 209 elementary teachers in Singapore, four factors emerged: conventional activities, motivational activities, student-directed activities that foster independence and collaboration, and teacher-directed group activities. Beginning teachers preferred motivational activities. The current environment…
ERIC Educational Resources Information Center
Verdelhan, Michele; Verdelhan, Michel
1978-01-01
Examines the variety of approaches currently found in the teaching of French as a native language in the French elementary school system and in teacher colleges, in the wake of the rise of linguistics. (AM)
Optimized formulas for the gravitational field of a tesseroid
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2013-07-01
Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.
Plasma instability in fast spherical discharge induced by a preionization
NASA Astrophysics Data System (ADS)
Antsiferov, P. S.; Dorokhin, L. A.
2015-04-01
As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.
Current experiments in elementary particle physics. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Armstrong, F.E.; von Przewoski, B.
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Grain-scale modeling and splash parametrization for aeolian sand transport.
Lämmel, Marc; Dzikowski, Kamil; Kroy, Klaus; Oger, Luc; Valance, Alexandre
2017-02-01
The collision of a spherical grain with a granular bed is commonly parametrized by the splash function, which provides the velocity of the rebounding grain and the velocity distribution and number of ejected grains. Starting from elementary geometric considerations and physical principles, like momentum conservation and energy dissipation in inelastic pair collisions, we derive a rebound parametrization for the collision of a spherical grain with a granular bed. Combined with a recently proposed energy-splitting model [Ho et al., Phys. Rev. E 85, 052301 (2012)PLEEE81539-375510.1103/PhysRevE.85.052301] that predicts how the impact energy is distributed among the bed grains, this yields a coarse-grained but complete characterization of the splash as a function of the impact velocity and the impactor-bed grain-size ratio. The predicted mean values of the rebound angle, total and vertical restitution, ejection speed, and number of ejected grains are in excellent agreement with experimental literature data and with our own discrete-element computer simulations. We extract a set of analytical asymptotic relations for shallow impact geometries, which can readily be used in coarse-grained analytical modeling or computer simulations of geophysical particle-laden flows.
Goldilocks and the Three Planets
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K.
2010-12-01
Just after their formation, the atmospheres of Venus, Earth, and Mars are though to have been very similar. Why are they so different today? We are developing a series of presentations that investigates the differences in the atmospheres of Venus, Earth, and Mars, and how these differences arose. These presentations are a combination of planetary images displayed on engaging spherical displays and visual demonstrations. We recently tested and evaluated our first presentation on the Lawrence Hall of Science's six-foot diameter Science on a Sphere. We will briefly summarize this presentation and the evaluation results. The target audience for this initial presentation is elementary school age children. Future presentations will target middle school and high school age students focusing on planetary magnetic fields and the role they play in atmospheric evolution. Our future plans include transferring these presentations onto a portable, table top spherical display system to take into classrooms. Finally, we are also building rigid, three-dimensional wire models of the magnetic fields and Venus, Earth, and Mars for use in the traveling presentations. We will tie the development and debut of these presentations to appropriate topics throughout the Year of the Solar System.
A Research Program of Spherical Tokamak in China
NASA Astrophysics Data System (ADS)
He, Ye-xi
2002-08-01
The mission of this program is to explore the spherical torus plasma with a SUNIST spherical tokamak. Main experiments in the start phase will be involved with breakdown and plasma current set-up with a mode of saving volt-second and without ohmic heating system, equilibrium and instability, current driving, heating and profile modification. The SUNIST is a university-scale conceptual spherical tokamak, with R = 0.3 m, A 1.3, Ip ~ 50 kA, BT < 0.15 T, and PRF = 100 kW. The only peculiarity of SUNIST is that there is a toroidal insulating break along the outer wall of vacuum vessel. The expected that advantages of this arrangement are helpful not only for saving flux swing, but also for having a deep understanding of what will influence the discharge startup and globe performances of plasma under different conditions of strong vessel eddy and ECR power assistance. Of course, the vessel structure of cross seal will be at a great risk of controlling vacuum quality, although we have achieved positive results on simulation test and vacuum vessel test.
Evaluating Computer Technology Integration in a Centralized School System
ERIC Educational Resources Information Center
Eteokleous, N.
2008-01-01
The study evaluated the current situation in Cyprus elementary classrooms regarding computer technology integration in an attempt to identify ways of expanding teachers' and students' experiences with computer technology. It examined how Cypriot elementary teachers use computers, and the factors that influence computer integration in their…
Elementary Teachers' Mathematical Knowledge for Teaching Prerequisite Algebra Concepts
ERIC Educational Resources Information Center
Welder, Rachael M.; Simonsen, Linda M.
2011-01-01
The current study investigated the effects of an undergraduate mathematics content course for pre-service elementary teachers. The participants' content knowledge was quantitatively measured using an instrument comprised of items from the Mathematical Knowledge for Teaching Measures (Hill, Schilling, & Ball, 2004). Using a one-group…
Dynamic Assessment, Potential Giftedness and Mathematics Achievement in Elementary School
ERIC Educational Resources Information Center
Popa, Nicoleta Laura; Pauc, Ramona Loredana
2015-01-01
Dynamic assessment is currently discussed in educational literature as one of the most promising practices in stimulating learning among various groups of students, including gifted and potentially gifted students. The present study investigates effects of dynamic assessment on mathematics achievement among elementary school students, with…
Handwriting Instruction: An Analysis of Perspectives from Three Elementary Teachers
ERIC Educational Resources Information Center
Sharp, Laurie; Brown, Tiffany
2015-01-01
Handwriting is an essential skill for learners, but advancements with technology have greatly altered perceptions towards handwriting and handwriting instruction. This study sought to determine the current state of handwriting through an exploratory analysis of the teaching experiences of three practicing elementary teachers with varying…
Dynamic Physical Education for Elementary School Children.
ERIC Educational Resources Information Center
Dauer, Victor P.; Pangrazi, Robert P.
This guide offers a functional, child-tested physical education program for elementary students. Chapters in the book discuss the following topics: (a) current educational and sociological trends; (b) rationale for the program; (c) guidelines for program planning; (d) organization for effective teaching; (e) basis of movement learning and…
Learning Electricity in Elementary School
ERIC Educational Resources Information Center
Azaiza, Ibtisam; Bar, Varda; Galili, Igal
2006-01-01
The study investigated elementary school pupils' ideas concerning the concept of electricity and the effect of school instruction on the pupil's views. Pupils of different cultural backgrounds were assessed to ascertain their knowledge in four areas: Relation of certain natural phenomena to electricity; Mental models (images) of direct current in…
Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin
2015-01-01
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771
Current experiments in elementary particle physics. Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Wohl, C.G.; Armstrong, B.
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
The Ecological Context of Chronic School Absenteeism in the Elementary Grades
ERIC Educational Resources Information Center
Sugrue, Erin P.; Zuel, Timothy; LaLiberte, Traci
2016-01-01
Chronic school absenteeism among elementary school-age students is gaining attention from researchers and policymakers because of its relationship to long-term negative educational outcomes. Current literature on effective interventions, however, is limited in terms of the number of studies that have found even marginally effective interventions,…
Your Science Classroom: Becoming an Elementary/Middle School Science Teacher
ERIC Educational Resources Information Center
Goldston, M. Jenice; Downey, Laura
2012-01-01
Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…
Lesson Study: Developing a Knowledge Base for Elementary Writing Instruction
ERIC Educational Resources Information Center
McQuitty, Vicki
2011-01-01
Concern about students' writing skills has led to recommendations that elementary teachers receive more professional development in how to teach writing (National Commission on Writing, 2006). However, there is currently little evidence about the knowledge teachers need to teach writing well, and it is therefore difficult for teacher…
Equipping Preservice Elementary Teachers for Data Use in the Classroom
ERIC Educational Resources Information Center
Reeves, Todd D.
2017-01-01
Current preservice teacher education practice related to data use has been deemed inadequate, in that it is unevenly distributed and often superficial. In response, this article describes a course-based classroom assessment data-literacy experience for preservice elementary teachers. Grounded in extant theory and research concerning data literacy…
Elementary School Students' Perceptions of Technology in their Pictorial Representations
ERIC Educational Resources Information Center
Eristi, Suzan Duygu; Kurt, Adile Askim
2011-01-01
The current study aimed to reveal elementary school students' perceptions of technology through their pictorial representations and their written expressions based on their pictorial representations. Content analysis based on the qualitative research method along with art-based inquiry was applied. The "coding system for the concepts revealed…
Coastal Awareness: A Resource Guide for Teachers in Elementary Science.
ERIC Educational Resources Information Center
Rasmussen, Frederick A.
Intended to encourage elementary teachers to explore coastal ecology with their students, this guide presents background material, activity suggestions, and recommended resource materials that could be used in designing a week-long unit on Coastal Awareness. Discussed is how various physical processes such as waves, tides, and currents affect…
Attitudes toward Elementary School Student Retention.
ERIC Educational Resources Information Center
Faerber, Kay; Van Dusseldorp, Ralph
Nonpromotion of elementary school students is a highly controversial and emotional issue, and a vast amount of literature has been devoted to the topic. With the current emphasis on raising academic standards in public schools, more and more educators are viewing "social promotion" with disfavor. This study was conducted to determine current…
A Study on Improving Information Processing Abilities Based on PBL
ERIC Educational Resources Information Center
Kim, Du Gyu; Lee, JaeMu
2014-01-01
This study examined an instruction method for the improvement of information processing abilities in elementary school students. Current elementary students are required to develop information processing abilities to create new knowledge for this digital age. There is, however, a shortage of instruction strategies for these information processing…
Consultation in Bullying Prevention: An Elementary School Case Study
ERIC Educational Resources Information Center
Morrow, Michael T.; Hooker, Steven D.; Cate, Rebecca Lynne
2015-01-01
This manuscript outlines a consultation with a public elementary school that was aimed at assessing and strengthening the school's antibullying programs. We gathered consultation data through interviews and observations and also reviewed existing program evaluation data. We evaluated these data in light of current research on bullying prevention…
Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice
ERIC Educational Resources Information Center
McGatha, Maggie B.
2017-01-01
This paper provides a historical overview of the role and impact of elementary mathematics specialists as well as current implications and opportunities for the field. Furthermore, suggestions are offered for the mathematics education field for ensuring the intersection of practice and research. [For complete proceedings, see ED581294.
ERIC Educational Resources Information Center
Tuval, Smadar; Orr, Emda
2009-01-01
Based on "Social representations theory", this ethnographic research examines the processes by which two Israeli elementary schools represented some children, but not others, as "weak" students and in need of remedial teaching. This approach differs from most current research regarding children with disabilities, which mainly…
Handheld Technology as a Supplemental Tool for Elementary General Music Education
ERIC Educational Resources Information Center
Carlisle, Katie
2014-01-01
This article argues that "The Eclectic Curriculum in American Music Education" warrants consideration within current elementary general music education contexts. One way to consider this foundational text is in terms of how technology can serve as a tool for enriching instructional approaches. While handheld technology use within these…
The Assessment of Hands-On Elementary Science Programs.
ERIC Educational Resources Information Center
Hein, George, Ed.
This document contains 15 chapters on various topics related to elementary science assessment. A comprehensive description of efforts to introduce alternatives to multiple-choice, paper and pencil tests to assess science learning is provided. The monograph includes an analysis of assessment issues, descriptions of current practice, and suggestions…
ERIC Educational Resources Information Center
Routhier-Martin, Kayli; Roberts, Sherron Killingsworth; Blanch, Norine
2017-01-01
Mindfulness and meditation programs, and their associated benefits for education, can be examined within three related disciplines: psychology, elementary education, and exceptional education. A review of psychology research provides evidence that meditation and mindfulness work to balance the often negative effects of students' social-emotional…
Teaching Experimental Design to Elementary School Pupils in Greece
ERIC Educational Resources Information Center
Karampelas, Konstantinos
2016-01-01
This research is a study about the possibility to promote experimental design skills to elementary school pupils. Experimental design and the experiment process are foundational elements in current approaches to Science Teaching, as they provide learners with profound understanding about knowledge construction and science inquiry. The research was…
Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction
ERIC Educational Resources Information Center
Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun
2014-01-01
In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…
Prospective Elementary Teachers' Aesthetic Experience and Relationships to Mathematics
ERIC Educational Resources Information Center
Chen, Rong-Ji
2017-01-01
Previous research has adopted various approaches to examining teachers' and students' relationships to mathematics. The current study extended this line of research and investigated six prospective elementary school teachers' experiences in mathematics and how they saw themselves as learners of mathematics. One-on-one interviews with the…
The Perceptions of Elementary STEM Schools in Missouri
ERIC Educational Resources Information Center
Alumbaugh, Kelli Michelle
2015-01-01
Science, technology, engineering, and mathematics education, or STEM, is an area that is currently growing in popularity with educators (Becker & Park, 2011). A qualitative study consisting of interviews was conducted and data were gathered from three leaders in professional STEM organizations, four principals from elementary STEM schools, and…
ERIC Educational Resources Information Center
Thanheiser, Eva; Browning, Christine; Edson, Alden J.; Kastberg, Signe; Lo, Jane-Jane
2013-01-01
This survey of the literature summarizes and reflects on research findings regarding elementary preservice teachers' (PSTs') mathematics conceptions and the development thereof. Despite the current focus on teacher education, peer-reviewed journals offer a surprisingly sparse insight in these areas. The limited research that exists…
Canadian Support for Elementary and Secondary Education (1998-1999).
ERIC Educational Resources Information Center
Jefferson, Anne L.
Financial support of elementary and secondary education in Canada has gone from absolute local dependence to local with some government support to local with substantial government support to current total government support with restricted, if any allowed, local support. This has been challenged on constitutional grounds in two provinces, Alberta…
The Impact of the AACTE-Microsoft Grant on Elementary Reading & Writing
ERIC Educational Resources Information Center
Borgia, Laurel; Cheek, Earl H., Jr.
2005-01-01
Accountability for student learning and support of evidence-based instructional approaches are critical responsibilities for teachers. Both are particularly significant with the current reliance on state standards, assessment tests and the No Child Left Behind Act (Shanahan 2002). Every elementary teacher must have research-based resources to help…
The Focal Surface of the JEM-EUSO Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Y.; EUSO Team, ASI, RIKEN; Casolino, M.
The Extreme Universe Space Observatory on JEM/EF (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in the near-ultraviolet wavelength region which will be mounted to the International Space Station. Its goal is to measure time-resolved fluorescence images of extensive air showers in the atmosphere. In this paper we describe in detail the main features and technological aspects of the focal surface of the instrument. The JEM-EUSO focal surface is a spherically curved surface, with an area of about 4.5m{sup 2}. The focal surface detector is made of more thanmore » 5,000 multi-anode photomultipliers (MAPMTs). Current baseline is Hamamatsu R11265-03-M64. The approach to the focal surface detector is highly modular. Photo-Detector-Modules (PDM) are the basic units that drive the mechanical structure and data acquisition. Each PDM consists of 9 Elementary Cells (ECs). The EC, which is the basic unit of the MAPMT support structure and of the front-end electronics, contains 4 units of MAPMTs. In total, about 1,200 ECs or about 150 PDMs are arranged on the whole of the focal surface of JEM-EUSO.« less
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
Nanoparticle interaction potentials constructed by multiscale computation
NASA Astrophysics Data System (ADS)
Lee, Cheng K.; Hua, Chi C.
2010-06-01
The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and macroscopic objects by introducing molecular models coarse-grained at a similar level so that the interactions between these two can be treated in a consistent and faithful way.
NASA Astrophysics Data System (ADS)
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-01
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm-2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-21
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm(-2) CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
ELSA- The European Levitated Spherical Actruator
NASA Astrophysics Data System (ADS)
Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.
2014-08-01
The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.
Intra prediction using face continuity in 360-degree video coding
NASA Astrophysics Data System (ADS)
Hanhart, Philippe; He, Yuwen; Ye, Yan
2017-09-01
This paper presents a new reference sample derivation method for intra prediction in 360-degree video coding. Unlike the conventional reference sample derivation method for 2D video coding, which uses the samples located directly above and on the left of the current block, the proposed method considers the spherical nature of 360-degree video when deriving reference samples located outside the current face to which the block belongs, and derives reference samples that are geometric neighbors on the sphere. The proposed reference sample derivation method was implemented in the Joint Exploration Model 3.0 (JEM-3.0) for the cubemap projection format. Simulation results for the all intra configuration show that, when compared with the conventional reference sample derivation method, the proposed method gives, on average, luma BD-rate reduction of 0.3% in terms of the weighted spherical PSNR (WS-PSNR) and spherical PSNR (SPSNR) metrics.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
NASA Astrophysics Data System (ADS)
Stein, Morton
Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some interesting similarities and differences in how these successful elementary science teachers developed their science knowledge, and identified the following main sources of science learning opportunities: (a) science content courses; (b) methods courses; (c) student teaching; (d) in-service workshops; (e) opportunities to work with colleagues on the design and/or delivery of science units. Based on what was learned from these case studies, a preliminary set of recommendations to improve elementary teacher's science learning opportunities was identified. Two focus groups were held---one with elementary teachers and another with teacher educators---to share these preliminary recommendations and gather feedback and additional suggestions. Informed by the information gathered in these focus groups, a final set of recommendations to improve elementary teacher's preparation to teach science was articulated.
Three-dimensional spherical models of convection in the earth's mantle
NASA Technical Reports Server (NTRS)
Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.
1989-01-01
Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.
Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University
NASA Astrophysics Data System (ADS)
An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok
2011-10-01
A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less
The Effect of High School Literacy Programs on Standardized Test Scores
ERIC Educational Resources Information Center
Brock, Kathryn
2013-01-01
Current National Assessment of Educational Progress results continued their 40-year pattern with two-thirds of U.S. 8th graders not proficient in reading, yet formal reading and literacy instruction ends in elementary school. Lack of reading proficiency can undermine academic progress in high school. Elementary literacy instruction provides…
The Development of Health-Education Curricula in Elementary Schools
ERIC Educational Resources Information Center
Watson, Linda Eva
2013-01-01
This project study addressed the problem of teachers at a local elementary school site attempting to implement a standards-based health initiative with a minimal amount of instructional strategies designed to support the new curriculum. The purpose of the study was to examine current health instruction by gathering teachers' perceptions and lived…
Computer Literacy and Use among Elementary Classroom Teachers.
ERIC Educational Resources Information Center
Bychowski, Deborah K.; Van Dusseldorp, Ralph
The current state of computer literacy and computer use among Anchorage School District elementary classroom teachers was assessed with a sample of four schools. Computer literacy was considered as the general range of skills and understandings needed to utilize a computer in the classroom effectively. A 17-item questionnaire, administered to 82…
ERIC Educational Resources Information Center
Vallera, Farah L.; Bodzin, Alec M.
2016-01-01
Agricultural literacy connects knowledge, skills, and attitudes/beliefs (KSABs) about agriculture to KSABs in environmental education, education for sustainable development, and science education identified in recent reform initiatives. This study conducted a content analysis of 12 current upper-elementary U.S. science textbooks and curriculum…
ERIC Educational Resources Information Center
Boyer, Wanda
2006-01-01
This research examines 480 current event-explanation units using the CAVE technique (Schulman, Castellon, & Seligman, 1989) to note the relationship between positive and negative explanatory style and achievement of prospective early childhood and upper elementary female teachers. This study found a significant positive relationship between…
Technology Utilisation in Elementary Schools in Turkey's Capital: A Case Study
ERIC Educational Resources Information Center
Karaca, Feride; Can, Gulfidan; Yildirim, Soner
2013-01-01
A case study was conducted to explore teachers' current technology use in elementary schools in Ankara, the capital of Turkey. The data were collected through a survey, and participants included 1030 classroom teachers across eight districts. The present study results revealed that significant challenges remain with regard to technology use in the…
Hispanic Cultural Theme Studies for Elementary Schools.
ERIC Educational Resources Information Center
Arata, Luis O.
These materials provide narratives about selected topics of cultural importance in the Hispanic world from the pre-Columbian past until after the Spanish conquest. The materials are designed for enrichment of current programs, and can be used in a variety of areas by elementary school teachers. The topics are treated in a story format so that…
ERIC Educational Resources Information Center
Freiberg, Elizabeth J.
2014-01-01
In response to the continued pressure placed on American public schools to increase academic achievement, some schools have begun to reorganize instructional environments in an effort to improve student outcomes. The current study examined one such elementary school that implemented a departmentalized model of instruction in fourth and fifth-grade…
ERIC Educational Resources Information Center
Rhodes, Judith L. F.; Thomas, Johanna M.; Lemieux, Catherine M.; Cain, Daphne S.; Guin, Cecile C.
2010-01-01
This article reviews literature describing truancy and its correlates, and it analyzes the current research on truancy prevention programs. Few truancy prevention programs exist in elementary school settings. This article describes Truancy Assessment and Service Centers, a theory-driven program providing case management services to children in 85…
ERIC Educational Resources Information Center
Burnett, I. Emett, Jr.; Pankake, Anita M.
Although much of the current school reform movement relies on the basic assumption of effective elementary school administration, insufficient effort has been made to synthesize key concepts found in organizational theory and management studies with relevant effective schools research findings. This paper attempts such a synthesis to help develop…
ERIC Educational Resources Information Center
Mallett, Jan Davis
2014-01-01
Elementary education has theoretical underpinnings based on cognitive psychology. Ideas from cognitive psychologists such as James, Dewey, Piaget, and Vygotsky coalesce to form constructivism (Cooper, 1993; Yager, 2000; Yilmaz, 2011). Among others, the Montessori Method (1912/1964) is an exemplar of constructivism. Currently, public education in…
Investigating Classroom Teaching Competencies of Pre Service Elementary Mathematics Teachers
ERIC Educational Resources Information Center
Gokalp, Murat
2016-01-01
The study has sought answers to two major questions: What is the current situation in Elementary Mathematics Education programs at Faculty of Education in terms of classroom teaching competencies? To what extent do pre service teachers acquire these competencies? The research was conducted on 202 senior pre service teachers studying at the…
ERIC Educational Resources Information Center
Dykeman, Cass
This paper reports on the current state of elementary school student mental health needs assessment and makes recommendations for future school counseling research and practice. The review of the theoretical literature on needs assessment examines several studies by numerous researchers. With one exception, all instruments reviewed were generated…
ERIC Educational Resources Information Center
Brophy, Jere
For this study, professors representing eight disciplines--science, mathematics, political science, music, literature, history, geography, and the visual arts--were asked first to review historical trends and current thinking in their disciplines and then to prepare papers about the ways in which the disciplines should be represented in the…
ERIC Educational Resources Information Center
Sakiz, Gönül
2015-01-01
The purpose of the current study was to investigate the roles that perceived teacher affective support (PTAS), perceived teacher mastery goal orientation (PTMGO), academic emotions, self-efficacy and behavioural engagement play on students' science achievement in elementary school science classrooms. The potential relations of different levels of…
Word Processing in Elementary Schools: Seven Case Studies. Education and Technology Series.
ERIC Educational Resources Information Center
Murray, Jack; And Others
As a result of preliminary observations of word processing in elementary level language the seven case studies presented in this report reveal the effectiveness of current word processing (WP) activities within their respective instructional contexts. Each study is presented separately, detailing the classroom context, tasks and outcomes, program…
Perceived School Climate across the Transition from Elementary to Middle School
ERIC Educational Resources Information Center
Madjar, Nir; Cohen-Malayev, Maya
2016-01-01
The implications of the transition from elementary to middle school are of major concern for educators and researchers worldwide. Previous studies have yielded ambiguous findings; some have indicated negative outcomes of school transition, whereas others have demonstrated null or even positive effects. The aim of the current research was to…
Grants for Elementary & Secondary Education. 2012 Digital Edition
ERIC Educational Resources Information Center
Foundation Center, 2011
2011-01-01
This publication is only available as a downloadable file. See who's giving and getting grants in your field. Strengthen your search for funds with the Foundation Center's digital edition of "Grants for Elementary & Secondary Education." This new "Grant Guide" reveals the scope of current foundation giving in the field. You'll find descriptions of…
Teachers Creating Safe School Environments: Prevention of Elementary Student-to-Student Bullying
ERIC Educational Resources Information Center
Gant Bradley, Heather
2014-01-01
Student-to-student bullying is still a current issue within elementary schools nationwide. Educators are often unaware, improperly trained and/or unwilling to help in student bullying incidences. Without training or willingness, teachers often are driven into silence and inaction, effectively putting the wellbeing of students at risk. The present…
ERIC Educational Resources Information Center
Klehr, Mary
2015-01-01
I am a public elementary teacher currently serving as a school-based supervisor for a Professional Development School (PDS) undergraduate elementary-teacher-education program in Madison, Wisconsin, where our charge is to leverage the intersecting contexts of school, university, and community to prepare skilled and caring teachers for urban…
Legal Requirements. Planning for Lutheran Elementary Schools. E06.
ERIC Educational Resources Information Center
Lutheran Church, Missouri Synod, St. Louis, MO.
Part of a 13-volume series designed to help Lutheran communities assess the feasibility of starting a Lutheran elementary school and to assist ongoing schools in current operation, this volume focuses on legal requirements affecting Lutheran schools. The first part deals with Lutheran schools under law and begins by touching on parental rights and…
Challenging Elementary Learners with Programmable Robots during Free Play and Direct Instruction
ERIC Educational Resources Information Center
McCoy-Parker, Kimberly S.; Paull, Lindsey N.; Rule, Audrey C.; Montgomery, Sarah E.
2017-01-01
Computer programming skills are important to many current careers; teaching robot coding to elementary students can start a positive foundation for technological careers, develop problem-solving skills, and growth mindsets. This study, through a repeated measures design involving students in two classrooms at two widely-separated grade levels…
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Child Nutrition Section.
This selected bibliography provides elementary school educators with a list of books currently in print which provide supplementary resources on food, nutrition and related topics. All books listed were judged factually accurate and suitable for the grade level designated, offering material that would implement, enrich and support elementary…
ERIC Educational Resources Information Center
Lupkowski, Ann E.; Assouline, Susan G.
This book is a guide for parents and teachers of mathematically talented elementary school students. Chapters and sections include: (1) "Overview"; (2) "Historical and Current Perspectives"; (3) "Making Informed Educational Decisions"; (4) "Diagnostic Testing Followed by Prescriptive Instruction: SMPY's DT to PI…
ERIC Educational Resources Information Center
Hall, Colby; Barnes, Marcia A.
2017-01-01
Making inferences during reading is a critical standards-based skill and is important for reading comprehension. This article supports the improvement of reading comprehension for students with learning disabilities (LD) in upper elementary grades by reviewing what is currently known about inference instruction for students with LD and providing…
ERIC Educational Resources Information Center
Wanzek, Jeanne; Petscher, Yaacov; Al Otaiba, Stephanie; Rivas, Brenna; Jones, Francesca; Kent, Shawn; Schatschneider, Christopher; Mehta, Paras
2017-01-01
Research examining effective reading interventions for students with reading difficulties in the upper elementary grades is limited relative to the information available for the early elementary grades. In the current study, we examined the effects of a multicomponent reading intervention for students with reading comprehension difficulties. We…
ERIC Educational Resources Information Center
Rule, Audrey C.; Sallis, Derek A.; Donaldson, J. Ana
2008-01-01
Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Y.K.M.; Strickler, D.J.
The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seenmore » at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.« less
Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.
Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less
Euler potentials of current-free fields expressed in spherical harmonics
NASA Technical Reports Server (NTRS)
Stern, David P.
1994-01-01
Given a magnetic field B = -del(vector differential operator)(sub gamma) with gamma expanded in spherical harmonics, it is shown that analytic Euler potentials may be derived for B if gamma is asymmetrical but contains only the contribution of a single index n. This work generalizes a result for sectorial harmonics with n = m, derived by Willis and Gardiner (1988).
Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, V. V., E-mail: alexvv@triniti.ru; Gasilov, V. A.; Grabovski, E. V.
Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffractionmore » grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.« less
Hanley, Sean; Ringwalt, Chris; Ennett, Susan T.; Vincus, Amy A.; Bowling, J. Michael; Haws, Susan W.; Rohrbach, Louise A.
2010-01-01
Current guidelines for school-based substance use prevention suggest that prevention efforts should begin in elementary grades, before students begin using substances. Previous research suggests, however, that the use of evidence-based curricula in these grades may be low. Using a 2005 survey of public school districts in the U.S. that include elementary grades (n=1563), we assessed the prevalence of elementary curricula use, particularly those designated as evidence-based. We found that although 72% of districts administer a substance use prevention curriculum to their elementary students, only about 35% are using one that is evidence-based and only about 14% are using an evidence-based curriculum more so than any other prevention curriculum. We present prevalence estimates for specific evidence-based curricula and conclude by discussing possible reasons for and implications of our findings. PMID:21038763
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil. PMID:28850622
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Aftab, S M A; Ahmad, K A
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A.
The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It ismore » shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.« less
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
NASA Astrophysics Data System (ADS)
Gritsuk, A. N.
2017-12-01
For the first time, a quasi-spherical current implosion has been experimentally realized on a multimegaampere facility with the peak current of up to 4 MA and a soft X-ray source has been created with high radiation power density on its surface of up to 3 TW/cm2. An increase in the energy density at the centre of the source of soft X-ray radiation (SXR) was experimentally observed upon compression of quasi-spherical arrays with the linear-mass profiling. In this case, the average power density on the surface of the SXR source is three times higher than for implosions of cylindrical arrays of the same mass and close values of the discharge current. Obtained experimental data are compared with the results of modelling the current implosion of multi-wire arrays performed with the help of a three-dimensional radiation-magneto-hydrodynamic code.
Compression dynamics of quasi-spherical wire arrays with different linear mass profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less
Federal Expenditures on Elementary-Age Children in 2008 (Ages 6 through 11)
ERIC Educational Resources Information Center
Vericker, Tracy C.; Macomber, Jennifer; Isaacs, Julia; Kent, Adam; Bringewatt, Elizabeth H.
2010-01-01
This report provides a first-time analysis of the nation's current investments in elementary-age children, defined as children ages 6 through 11. The authors consider over 100 federal programs through which the federal government allocates money to children, and subsequently estimate the amount spent on six- to eleven-year-old children. This…
Tier 2 Reading Interventions, K-2nd Grade Practices and Processes
ERIC Educational Resources Information Center
Allison, Tamara Alice
2016-01-01
Due to variation that exists in providing Tier 2 reading intervention instruction, the purpose of the study was to identify processes and instructional strategies currently being utilized by K-2 teachers of the Gallup, New Mexico elementary schools. 17 teachers from 9 of the 10 elementary schools participated in the study. A survey instrument was…
ERIC Educational Resources Information Center
Cotabish, Alicia; Dailey, Deborah; Hughes, Gail D.; Robinson, Ann
2011-01-01
In order to increase the quality and quantity of science instruction, elementary teachers must receive professional development in science learning processes. The current study was part of a larger randomized field study of teacher and student learning in science. In two districts in a southern state, researchers randomly assigned teacher…
Elementary Physical Education Teachers' Experiences in Teaching English Language Learners
ERIC Educational Resources Information Center
Sato, Takahiro; Hodge, Samuel R.
2016-01-01
The purpose of the current study was to describe and explain the views on teaching English Language Learners (ELLs) held by six elementary physical education (PE) teachers in the Midwest region of the United States. Situated in positioning theory, the research approach was descriptive-qualitative. The primary sources of data were face-to-face…
ERIC Educational Resources Information Center
Menon, Maria E.; Christou, Constantinos
2002-01-01
Factor analysis of data from 66 inservice and 79 preservice elementary teachers in Cyprus revealed that future teachers had lower satisfaction with the headmaster's role, school organization, and school climate. Satisfaction with teacher incentives and work conditions was lower for inservice teachers. (Contains 20 references.) (SK)
ERIC Educational Resources Information Center
Wang, Cixin; Couch, Lauren; Rodriguez, Geovanna Rosas; Lee, Catherine
2015-01-01
The current study evaluated the effectiveness of the Bullying Literature Project on social-emotional and behavioral outcomes among elementary school students. The Bullying Literature Project is a five-session classroom-wide intervention that uses children's literature as a springboard to promote adaptive social-cognitive process, teach social…
The Path to Presidency: Tips for Teaching Elementary Students about the Election Process
ERIC Educational Resources Information Center
Conrad, Marika
2016-01-01
Teaching about presidential elections at the elementary level can seem a bit daunting at times. Students are quick to share their strong opinions on the current candidates running for office. These opinions often involve repeating feelings and phrases shared by parents around the dinner table the night before. For the average seven- or…
Starting Early with Study Skills: A Week-By-Week Guide for Elementary Students.
ERIC Educational Resources Information Center
Irvin, Judith L.; Rose, Elaine O.
On the premise that even young students can learn to study effectively, this book provides a framework and activities for the systematic teaching of study skills during the elementary grades. The book is consistent with current research and theory about learning and remembering; concepts such as schema and metacognition pervade the suggested…
SPEAKING, WRITING, AND LISTENING IN THE ST. PAUL ELEMENTARY SCHOOLS.
ERIC Educational Resources Information Center
AMBROSE, HELEN; AND OTHERS
DESIGNED AS A RESOURCE FOR ELEMENTARY SCHOOL TEACHERS TO USE IN HELPING CHILDREN THINK CLEARLY AND COMMUNICATE EFFECTIVELY, THE ST. PAUL CURRICULUM GUIDE IS DIVIDED INTO THREE SECTIONS--SPEAKING, LISTENING, AND WRITING. AN OVERVIEW OF EACH SECTION DESCRIBES CURRENT THINKING IN THE FIELD AND GENERAL SKILLS WHICH NEED TO BE ACQUIRED BY STUDENTS.…
ERIC Educational Resources Information Center
Kosko Karl W.; Singh, Rashmi
2018-01-01
Multiplicative reasoning is a key concept in elementary school mathematics. Item statistics reported by the National Assessment of Educational Progress (NAEP) assessment provide the best current indicator for how well elementary students across the U.S. understand this, and other concepts. However, beyond expert reviews and statistical analysis,…
ERIC Educational Resources Information Center
Torelli, Jessica N.; Lloyd, Blair P.; Diekman, Claire A.; Wehby, Joseph H.
2017-01-01
In elementary school classrooms, students commonly recruit teacher attention at inappropriately high rates or at inappropriate times. Multiple schedule interventions have been used to teach stimulus control by signaling to students when reinforcement is and is not available contingent on an appropriate response. The purpose of the current study…
ERIC Educational Resources Information Center
Segool, Natasha Katherine
2009-01-01
The current study explored differences in test anxiety on high-stakes standardized achievement testing and classroom testing among elementary school children. This is the first study to directly examine differences in student test anxiety across two testing conditions with different stakes among young children. Three hundred and thirty-five…
The Technology Leadership Competencies of Elementary and Secondary School Directors
ERIC Educational Resources Information Center
Yorulmaz, Alper; Can, Süleyman
2016-01-01
The aim of this study was to investigate the elementary and secondary school directors' technology leadership competencies in relation to some demographic features such as age, length of service and the state of whether taking in-service technology training. The universe of the current study employing descriptive survey model was comprised of 129…
"If We're Ever in Trouble They're Always There": A Qualitative Study of Teacher-Student Caring
ERIC Educational Resources Information Center
Jeffrey, Aaron J.; Auger, Richard W.; Pepperell, Jennifer L.
2013-01-01
In the current elementary school environment of increased academic and administrative demands on schools and teachers, it has become increasingly challenging to maintain the personal teacher-student relationships that form the basis for learning. In this qualitative study, we conducted focus groups with 17 elementary students and 6 elementary…
Identifying and Working with Elementary Asperger's Students in Rural America
ERIC Educational Resources Information Center
Allen, Barton; Loiacono, Vito; Vacca, James S.
2010-01-01
Currently, somewhere in a rural American school sits an elementary-aged student who has been labeled by a teacher and his/her peers as the "Little Professor" according to the Asperger's Syndrome Coalition of the United States. The onset of Asperger's Syndrome is recognized and occurs later than what is typical of autism. A significant…
ERIC Educational Resources Information Center
Brownlee, Joanne; Scholes, Laura; Farrell, Ann; Davis, Julie; Cook, Donna
2012-01-01
Leadership in elementary education is currently recognized as a political imperative in Papua New Guinea (PNG), as the nation develops strategies towards equitable access to schooling. One recent initiative aimed at building educational leadership was an intensive Australian Leadership Award Fellowship (ALAF) program funded by AusAID, involving a…
ERIC Educational Resources Information Center
Wu, ChienHsing; Liu, Chia-Fang
2015-01-01
Literature has paid limited attention to the preference of instructors to adopt e-teaching/learning system (ET/LS) by considering the cognitive styles. The current study proposes a research model to describe the effects of technology acceptance behavior and innovation diffusion behavior on ET/LS adoption for elementary school instructors. A…
ERIC Educational Resources Information Center
Leadbeater, Bonnie; Sukhawathanakul, Paweena
2011-01-01
Past research demonstrates the promise of multicomponent programs in reducing peer victimization and bullying in older elementary and middle school children, however little research focuses on young children. The current study examines the effectiveness of the WITS Primary program on trajectories of victimization and social responsibility in…
Screen Design Principles of Computer-Aided Instructional Software for Elementary School Students
ERIC Educational Resources Information Center
Berrin, Atiker; Turan, Bülent Onur
2017-01-01
This study aims to present primary school students' views about current educational software interfaces, and to propose principles for educational software screens. The study was carried out with a general screening model. Sample group of the study consisted of sixth grade students in Sehit Ögretmen Hasan Akan Elementary School. In this context,…
The Effects of Clustering and Curriculum on the Development of Gifted Learners' Math Achievement
ERIC Educational Resources Information Center
Pierce, Rebecca L.; Cassady, Jerrell C.; Adams, Cheryll M.; Speirs Neumeister, Kristie L.; Dixon, Felicia A.; Cross, Tracy L.
2011-01-01
There is a paucity of empirical studies dealing with benefits of gifted programming in mathematics for elementary students. The current study reports on the impact of using cluster grouping and specific curriculum to support gifted learners' math achievement in urban elementary schools. Although the results of Year 3 provide the most compelling…
ERIC Educational Resources Information Center
Clarke, Sharon
The goal of this practicum was to have building-based special education personnel support classroom teachers so that mildly disabled elementary students in an inner city school could be included in the classroom successfully. Through inservice education sessions, the staff were provided with current information on facilitating the inclusion of…
Perceived Norms and Social Values to Capture School Culture in Elementary and Middle School
ERIC Educational Resources Information Center
Galvan, Adriana; Spatzier, Agnieszka; Juvonen, Jaana
2011-01-01
The current study was designed to gain insights into shifting school culture by examining perceived peer group norms and social values across elementary and middle school grades. Perceived norms were assessed by asking participants (N = 605) to estimate how many grade mates were academically engaged, disengaged, and antisocial. To capture social…
ERIC Educational Resources Information Center
Duncan, Greg, Ed.
Proceedings of a 1993 colloquium on the training of elementary school language teachers include a number of presentations and summaries of discussion. Papers include: "Framework for Discussion" (Carol Ann Pesola); "What Are the Current Trends in U.S. Teacher Preparation?" (Janet Towslee); "Why Foreign Language Standards?:…
The Development of a Mathematics Self-Report Inventory for Turkish Elementary Students
ERIC Educational Resources Information Center
Akin, Ayça; Güzeller, Cem Oktay; Evcan, Sinem Sezer
2016-01-01
The purpose of the current study is to develop a mathematics self-report inventory (MSRI) to measure Turkish elementary students' mathematics expectancy beliefs and task values based on the expectancy-value theory of achievement motivation. In Study-1 (n = 1,315), exploratory factor analysis (EFA) and reliability analysis are used to evaluate the…
Views of Students, Parents, and Teachers on Homework in Elementary School
ERIC Educational Resources Information Center
Davidovitch, Nitza; Yavich, Roman
2017-01-01
The current study seeks to examine the perception of the three main populations that have a part in the educational and pedagogic domain: teachers, parents, and elementary school students, while comparing between religious and secular schools. The major hypothesis of the study is that teachers, parents, and students do not have congruent views on…
ERIC Educational Resources Information Center
Gold, Bernadette; Holodynski, Manfred
2015-01-01
The current study describes the development and construct validation of a situational judgment test for assessing the strategic knowledge of classroom management in elementary schools. Classroom scenarios and accompanying courses of action were constructed, of which 17 experts confirmed the content validity. A pilot study and a cross-validation…
ERIC Educational Resources Information Center
Kwon, Kyongboon; Kim, Elizabeth Moorman; Sheridan, Susan M.
2014-01-01
Background: Positive attitudes toward school have been suggested as a meaningful indicator of school engagement among elementary children. The current study was guided by a social cognitive developmental perspective which suggests that social cognitions, including beliefs, play an important role in children's adjustment outcomes. Objective: The…
The Level of Quality of Work Life to Predict Work Alienation
ERIC Educational Resources Information Center
Erdem, Mustafa
2014-01-01
The current research aims to determine the level of elementary school teachers' quality of work life (QWL) to predict work alienation. The study was designed using the relational survey model. The research population consisted of 1096 teachers employed at 25 elementary schools within the city of Van in the academic year 2010- 2011, and 346…
ERIC Educational Resources Information Center
Chang, Chih-Wei; Chen, Gwo-Dong
2010-01-01
Elementary school is the critical stage during which the development of listening comprehension and oral abilities in language acquisition occur, especially with a foreign language. However, the current foreign language instructors often adopt one-way teaching, and the learning environment lacks any interactive instructional media with which to…
ERIC Educational Resources Information Center
Kaye, Elizabeth A., Ed.; Makos, Jeffrey J., Ed.
2010-01-01
This annual volume offers the most complete and current listings of the requirements for certification of a wide range of educational professionals at the elementary and secondary levels. "Requirements for Certification" is a valuable resource, making much-needed knowledge available in one straightforward volume. Appended are: (1) How to…
ERIC Educational Resources Information Center
Kaye, Elizabeth A., Ed.
2011-01-01
This annual volume offers the most complete and current listings of the requirements for certification of a wide range of educational professionals at the elementary and secondary levels. "Requirements for Certification" is a valuable resource, making much-needed knowledge available in one straightforward volume. [For "Requirements…
ERIC Educational Resources Information Center
Kaye, Elizabeth A., Ed.
2012-01-01
This annual volume offers the most complete and current listings of the requirements for certification of a wide range of educational professionals at the elementary and secondary levels. "Requirements for Certification" is a valuable resource, making much-needed knowledge available in one straightforward volume. [For "Requirements for…
ERIC Educational Resources Information Center
Peralta, Louisa R.; Dudley, Dean A.; Cotton, Wayne G.
2016-01-01
Background: School-based programs represent an ideal setting to enhance healthy eating, as most children attend school regularly and consume at least one meal and a number of snacks at school each day. However, current research reports that elementary school teachers often display low levels of nutritional knowledge, self-efficacy, and skills to…
Elementary School Computer Access, Socioeconomic Status, Ethnicity, and Grade 5 Student Achievement
ERIC Educational Resources Information Center
Barrett, Julie Ann
2013-01-01
Purpose: The purpose of this study was to describe the current school computer access rates of elementary school students and to determine the extent to which school computer access relates to academic achievement among Grade 5 students in the state of Texas. Specifically, the relationship of school computer access to student passing rates on the…
Attitudes and Beliefs of Upper Elementary Teachers Regarding the Teaching of Cursive Handwriting
ERIC Educational Resources Information Center
Myers, Dorothy
2013-01-01
This study surveyed current third-, fourth- and fifth-grade teachers in two small school districts in the southeast. One school district has initiated a technology initiative in its elementary schools. The other school district involved in the study incorporates technology but does not have a specified technology initiative. This dissertation was…
ERIC Educational Resources Information Center
Kilgus, Stephen P.; Chafouleas, Sandra M.; Riley-Tillman, T. Chris
2013-01-01
The purpose of the current investigation was to develop and provide initial validation of the "Social and Academic Behavior Risk Screener" (SABRS). Research was conducted in southeast elementary schools with 54 teacher and 243 student participants. An initial item pool was created through review of developmental research on the…
Bashirian, Saeed; Shirahmadi, Samaneh; Seyedzadeh-Sabounchi, Shabnam; Soltanian, Ali Reza; Karimi-Shahanjarini, Akram; Vahdatinia, Farshid
2018-01-10
Dental caries among Iranian elementary school children aged 6-12 years continue to rise. To estimate treatment needs and guide health initiatives, current epidemiologic data are required. Such data are currently unavailable for dental health. The purpose of this study was to assess caries experience, dental plaque, and associated factors in elementary school-aged children from Iran. In this cross-sectional study, 988 elementary school children aged 7-12 years were selected by multistage cluster sampling. Dental caries was studied using the WHO criteria, dental plaque was examined according to O'Leary index. Data on parental education and occupation, living district, dental pain within the past year, and tooth brushing habits under parental supervision were collected through interviews based on questionnaire. The data were analyzed with descriptive statistics and logistic and linear regression. The mean (SD) age of the elementary school children was 9.64 (1.73) years. The highest dmft was seen in elementary school children aged 7-8 years 6.53 (4.37) and the highest DMFT and dental plaque was in 12 year olds recorded as 1.17 (1.77) and 51.97 (25.86), respectively. The proportion of decayed teeth in 7 years old elementary school based on dmft index was 80.36%, moreover, the proportion in 12 years old elementary school was 40.17% based on the DMFT index. Age, gender, and dental pain within the past year were significantly associated with DMFT and dmft. The odds of developing dental caries (DMFT) was 1.70 times higher in girls than in boys (p < 0.001) and 1.72 times higher in the students that reported dental pain frequently than in those who did not (p = 0.005). The chance of developing dental caries (dmft) was 0.47 times lower in girls than boys (p < 0.001). Age was significantly correlated with dental plaque such that Plaque Index increased by 2.44 times per one year increase in age (p < 0.001). Results indicated that dental caries experience and plaque formation among elementary school children in Hamadan were high and they were influenced by their sociodemographic factors. The associations found can be used as a helpful guide for planning accurate preventive programs for elementary school children in this region.
NASA Astrophysics Data System (ADS)
Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi
2017-09-01
The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.
Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field
ERIC Educational Resources Information Center
Zabunov, Svetoslav S.
2013-01-01
The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…
Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.
2017-12-01
Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.
Wang, Shuo; Jeon, Oju; Shankles, Peter G.; ...
2016-02-03
Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.
Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals
NASA Astrophysics Data System (ADS)
Lu, Ming; Zhang, Xiao-Xiao
2018-05-01
We solve the Weyl electron scattered by a spherical step potential barrier. Tuning the incident energy and the potential radius, one can enter both quasiclassical and quantum regimes. Transport features related to far-field currents and integrated cross sections are studied to reveal the preferred forward scattering. In the quasiclassical regime, a strong focusing effect along the incident spherical axis is found in addition to optical caustic patterns. In the quantum regime, at energies of successive angular momentum resonances, a polar aggregation of electron density is found inside the potential. The findings will be useful in transport studies and electronic lens applications in Weyl systems.
Charging of nonspherical macroparticles in a plasma
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2016-03-01
The current theories of macroparticle charging in a plasma are limited to spheres, and are unsuitable for the multitude of nonspherical objects existing in astrophysical, atmospheric, laboratory, and fusion plasmas. This paper extends the most widely used spherical charging theory, orbit motion limited theory, to spheroids and, as such, provides a comprehensive study of the charging of nonspherical objects in a plasma. The spherical charging theory is shown to be a reasonable approximation for a considerable range of spheroids. However, the electric potential of highly elongated spheroids can be almost twice the spherical value. Furthermore, the total charge on the spheroids increases by a significantly larger factor than their potential.
CHI during an ohmic discharge in HIT-II
NASA Astrophysics Data System (ADS)
Mueller, Dennis; Nelson, Brian A.; Redd, Aaron J.; Hamp, William T.
2004-11-01
Coaxial Helicity Injection (CHI) has been used on the National Spherical Torus Experiment (NSTX), the Helicity Injected Torus (HIT) and HIT-II to initiate plasma and to drive up to 400 kA of toroidal current. The primary goal of the CHI systems is to provide a start-up plasma with substantial toroidal current that can be heated and sustained with other methods. We have investigated the use of CHI systems to add current to an established, inductively driven plasma. This may be an attractive method to add edge current that may modify the stability characteristics of the discharge or modify the particle and energy transport in a spherical torus. For example, divertor biasing experiments have been successful in modifying particle and energy transport in the scrape-off layer of tokamaks. Use of IGBT power supplies to modulate the injector current makes analysis of current penetration feasible by comparisons of before and after CHI using EFIT analysis of the data.
Alternate forms of the associated Legendre functions for use in geomagnetic modeling.
Alldredge, L.R.; Benton, E.R.
1986-01-01
An inconvenience attending traditional use of associated Legendre functions in global modeling is that the functions are not separable with respect to the 2 indices (order and degree). In 1973 Merilees suggested a way to avoid the problem by showing that associated Legendre functions of order m and degree m+k can be expressed in terms of elementary functions. This note calls attention to some possible gains in time savings and accuracy in geomagnetic modeling based upon this form. For this purpose, expansions of associated Legendre polynomials in terms of sines and cosines of multiple angles are displayed up to degree and order 10. Examples are also given explaining how some surface spherical harmonics can be transformed into true Fourier series for selected polar great circle paths. -from Authors
NASA Technical Reports Server (NTRS)
1976-01-01
Visual photometric function data for Saturn's rings were analyzed in terms of elementary anisotropic scattering radiative transfer models which involve the Henyey-Greenstein function. Limits were placed on the combinations of single scattering albedo, and backscattering directivity, which are permitted by observation. Particles with lunar-like scattering properties were excluded by the analysis. Results are consistent with the ring particles being more-or-less pure, and spherical, conglomerates of H2O frost. Multicolor (5500 A-7600 A), narrow band (100 A), area scanning photometry was used to study the wavelength variation in the optical appearance of Uranus. Limb brightening was detected in two CH4 bands, i.e. 6190A and 7300A. Spectrophotometric observations and analysis of the asteroids and Raman spectroscopy of the atmosphere of Uranus are also briefly discussed.
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
ERIC Educational Resources Information Center
Cornman, Stephen Q.; Zhou, Lei
2016-01-01
This "First Look" contains national and state totals of revenues and expenditures for public elementary and secondary education for school year 2013-14. This "First Look" includes revenues by source and expenditures by function and object, including current expenditures per pupil and instructional expenditures per pupil. This…
ERIC Educational Resources Information Center
Alqallaf, Nadeyah
2016-01-01
The purpose of this study was to examine Kuwaiti mathematical elementary teachers' perceptions about their ability to integrate M-learning (mobile learning) into their current teaching practices and the major barriers hindering teachers' ability to create an M-learning environment. Furthermore, this study sought to understand teachers' perceptions…
ERIC Educational Resources Information Center
Britton, Steven M.
The purpose of this study was to explore what options exist for a school district that has chosen to implement or reinforce an elementary technology education program. The option selected was a mobile technology education laboratory. A mobile laboratory can offer the advantages of financial flexibility, currentness, ability to serve a large…
ERIC Educational Resources Information Center
Jaipal-Jamani, Kamini; Angeli, Charoula
2017-01-01
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…
ERIC Educational Resources Information Center
Santiago, Catherine DeCarlo; Raviv, Tali; Ros, Anna Maria; Brewer, Stephanie K.; Distel, Laura M. L.; Torres, Stephanie A.; Fuller, Anne K.; Lewis, Krystal M.; Coyne, Claire A.; Cicchetti, Colleen; Langley, Audra K.
2018-01-01
The current study provides the first replication trial of Bounce Back, a school-based intervention for elementary students exposed to trauma, in a different school district and geographical area. Participants in this study were 52 1st through 4th graders (M[subscript age] = 7.76 years; 65% male) who were predominately Latino (82%). Schools were…
ERIC Educational Resources Information Center
De Smedt, Fien; Van Keer, Hilde; Merchie, Emmelien
2016-01-01
In Flanders, there are neither Flemish assessments nor teacher surveys to provide insights into the current practice and outcomes of writing instruction. In the present study, we provide a-state-of-the-art study of the practice of writing instruction in Flemish late elementary education by investigating: (a) how writing is taught, (b) how teachers…
A Study of Late Funding of Elementary and Secondary Education Programs. Final Report.
ERIC Educational Resources Information Center
Peat, Marwick, Mitchell and Co., Washington, DC.
This publication presents findings of a nationwide study of the impact of late or uncertain funding on elementary secondary educational programs funded by the U.S. Office of Education (USOE). Emphasis of the report is on detailed documentation of the problems created by current funding flow patterns to state and local education agencies. In phase…
ERIC Educational Resources Information Center
Saunders, Christina Henry
2017-01-01
The present study identifies reading instructional practices used in upper elementary classrooms during the age of high-stakes test accountability and compares reading practices among schools of varying accreditation status and socio-economic status (SES). The current study partially replicates and extends a study conducted by Baumann, Hoffman,…
ERIC Educational Resources Information Center
Gross, Karen Golda
2012-01-01
Substantial empirical data indicates that elementary school teachers are disturbed by student behavior problems in a classroom. The current study was conducted in order to determine which behaviors teachers report to be most disturbing, whether there are any teacher gender differences, and what teachers report as being most effective in handling…
ERIC Educational Resources Information Center
Fragouli, Stiliani; Rokka, Aggeliki
2017-01-01
In this study we introduce an infusion model to "inject" ammonites and ammonite fossils in current subjects of Greek primary curriculum. Paleontology and mainly fossils attract more and more elementary students and teachers, yet in Greece this trend is solely about dinosaurs, despite the fact that the most common Greek fossils are not…
ERIC Educational Resources Information Center
Scholte, Ron H. J.; Haselager, Gerbert J. T.; van Aken, Marcel A. G.; van Lieshout, Cornelis F. M.
Noting that a child's peer competence and sociometric status not only are important indices of the child's current social functioning, but may also predict adolescent adaptation, this study examined the antecedents in peer competence and sociometric status in early and late elementary school years of five peer reputation dimensions. These five…
ERIC Educational Resources Information Center
Daly, Beth; Suggs, Suzanne
2010-01-01
An increasing amount of research has emerged in recent years regarding the benefits that household pets have for individuals, much of which focuses on child-pet relationships. A number of studies have explored the role of pets in elementary classroom settings and what advantages their presence might have. Current curricula aimed at promoting…
ERIC Educational Resources Information Center
Keller, Peggy S.; Smith, Olivia A.; Gilbert, Lauren R.; Bi, Shuang; Haak, Eric A.; Buckhalt, Joseph A.
2015-01-01
Adequate sleep is essential for child learning. However, school systems may inadvertently be promoting sleep deprivation through early school start times. The current study examines the potential implications of early school start times for standardized test scores in public elementary schools in Kentucky. Associations between early school start…
ERIC Educational Resources Information Center
Steaffens, Susan
2011-01-01
As the current president of National Association of Elementary School Principals (NAESP), Barbara Chester has the responsibility of representing the organization's members in their efforts as advocates for children. Principal Chester's answers to the interview questions reflect the challenges facing schools and the role that principals need to…
A no-hair theorem for stars in Horndeski theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehébel, A.; Babichev, E.; Charmousis, C., E-mail: antoine.lehebel@th.u-psud.fr, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr
We consider a generic scalar-tensor theory involving a shift-symmetric scalar field and minimally coupled matter fields. We prove that the Noether current associated with shift-symmetry vanishes in regular, spherically symmetric and static spacetimes. We use this fact to prove the absence of scalar hair for spherically symmetric and static stars in Horndeski and beyond theories. We carefully detail the validity of this no-hair theorem.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Jiang, Y Z; Tan, Y; Gao, Z; Wang, L
2014-11-01
The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.
Elementary Particle Spectroscopy in Regular Solid Rewrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology andmore » neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each other fuse into atomic honeycombs of periodic table signature.« less
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Huang, Wei; Dudley, Michael; Fazi, Christian
1998-01-01
It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vectors greater than or equal to 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = 1c with no hollow core) in densities on the order of thousands per sq cm, nearly 100-fold micropipe densities. While not nearly as detrimental to SiC device performance as micropipes, it has recently been demonstrated that elementary screw dislocations somewhat degrade the reverse leakage and breakdown properties of 4H-SiC p(+)n diodes. Diodes containing elementary screw dislocations exhibited a 5% to 35% reduction in breakdown voltage, higher pre-breakdown reverse leakage current, softer reverse breakdown I-V knee, and microplasmic breakdown current filaments that were non-catastrophic as measured under high series resistance biasing. This paper details continuing experimental and theoretical investigations into the electrical properties of 4H-SiC elementary screw dislocations. The nonuniform breakdown behavior of 4H-SiC p'n junctions containing elementary screw dislocations exhibits interesting physical parallels with nonuniform breakdown phenomena previously observed in other semiconductor materials. Based upon experimentally observed dislocation-assisted breakdown, a re-assessment of well-known physical models relating power device reliability to junction breakdown has been undertaken for 4H-SiC. The potential impact of these elementary screw dislocation defects on the performance and reliability of various 4H-SiC device technologies being developed for high-power applications will be discussed.
Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots
NASA Astrophysics Data System (ADS)
Sarma, Runjun; Mohanta, Dambarudhar
2014-02-01
We report on the quantum dot (QD)-induced ion channels across a soya-derived lecithin bilayer supported on a laser drilled of ~100 μm aperture of cellulose acetate substrate that separates two electrolytic chambers. Adequate current bursts were observed when the bilayer was subjected to a gating voltage. The voltage-dependent current fluctuation, across the bilayer, was attributed to the insertion of ~20 nm sized water-soluble CdSe QDs, forming nanopores due to their spontaneous aggregation. Apart from a closed state, the first observable conductance levels were found as 6.3 and 11 nS, as for the respective biasing voltages of -10 and -20 mV. The highest observable conductance states, at corresponding voltages were ~14.3 and 21.1 nS. Considering two simplified models, we predict that the non-spherical pores (dnspore) can be a better approximation over spherical nanopores (dspore) for exhibiting a definite conductance level. At times, even dnspore ≤ 4dspore and that the non-spherical nanopores were associated with a smaller No. of QDs than the case for spherical nanopores, for a definite conductance state. It seems like the current events are partly stochastic, possibly due to thermal effects on the aggregated QDs that would form nanopores. The dwell time of the states was predicted in the range of 384-411 μs. The ion channel mechanism in natural phospholipid bilayers over artificial ones will provide a closer account to understand ion transport mechanism in live cells and signaling activity including labelling with fluorescent QDs.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Solenoid-free plasma start-up in spherical tokamaks
NASA Astrophysics Data System (ADS)
Raman, R.; Shevchenko, V. F.
2014-10-01
The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.
Certain problems in the current theory of gravitation
NASA Astrophysics Data System (ADS)
Markov, M. A.
1984-04-01
A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.
ERIC Educational Resources Information Center
Vladika, Mary Jo
2010-01-01
Research indicates that the school principal is the key to school improvement and student learning. The leadership demonstrated by the principal is essential to a school's success. Currently, because there is a shortage of qualified candidates, many school districts find themselves in a quandary when faced with a principal vacancy to fill. The…
The Relative Value of Growth in Math Fact Skills across Late Elementary and Middle School
ERIC Educational Resources Information Center
Nelson, Peter M.; Parker, David C.; Zaslofsky, Anne F.
2016-01-01
The purpose of the current study was to evaluate the importance of growth in math fact skills within the context of overall math proficiency. Data for 1,493 elementary and middle school students were included for analysis. Regression models were fit to examine the relative value of math fact fluency growth, prior state test performance, and a fall…
ERIC Educational Resources Information Center
Aljughaiman, Abdullah M.; Ayoub, Alaa Eldin A.
2012-01-01
The current study investigated the effects of a school enrichment program on the analytical, creative, and practical abilities of elementary gifted students. Forty-two students (N = 42) from the fifth and sixth grade of the Al-Shawkany School in Saudi Arabia were randomly chosen to participate in the study according to two criteria: (a) being…
ERIC Educational Resources Information Center
Chien, Chin-Wen
2018-01-01
Elementary school English teachers in Taiwan are required to have a formal professional dialogue regularly and engage in purposeful discussions about the curriculum and classroom practice (Ministry of Education. [1998]. "Small-Size Class Plan." http://163.19.62.3/smlass/E983A8E8A888E58A%83.htm). This study used a questionnaire to…
ERIC Educational Resources Information Center
Ruddell, Natalie
2017-01-01
Purpose: The purpose of this phenomenological study was to describe the perceptions of current and former Leading Edge Certified (LEC) elementary school teachers regarding instructional technology practices that facilitate students' development of critical thinking, collaboration, communication, and creativity (4Cs) in one-to-one computer…
ERIC Educational Resources Information Center
Harbusch, Karin; Itsova, Gergana; Koch, Ulrich; Kuhner, Christine
2009-01-01
We built a natural language processing (NLP) system implementing a "virtual writing conference" for elementary-school children, with German as the target language. Currently, state-of-the-art computer support for writing tasks is restricted to multiple-choice questions or quizzes because automatic parsing of the often ambiguous and fragmentary…
ERIC Educational Resources Information Center
Webb, Dan O.
2014-01-01
This study examined the difference between 2012 CRCT math sores based on principal leadership styles and teacher morale, as well as the relationship between teacher morale and 2012 CRCT math scores at each of the 12 elementary schools within a Northwest Georgia county school district. There is a gap in current research regarding the importance of…
NASA Astrophysics Data System (ADS)
He, Yexi; Li, Xiaoyan; Gao, Zhe
2005-02-01
Strong inductive coupling between the heating field and equilibrium field is confirmed to be responsible for the poor plasma equilibrium in initial discharges on the SUNIST spherical tokamak. A modification project for the power supply system of equilibrium field coils is successfully performed to increase the duration time of plasma current flattop from much less than 1ms to about 2 ms.
Computation of elementary modes: a unifying framework and the new binary approach
Gagneur, Julien; Klamt, Steffen
2004-01-01
Background Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. Results We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. Conclusions The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks. PMID:15527509
Mercury's Crustal Magnetic Field from MESSENGER Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Johnson, C.
2017-12-01
We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.
Spherical: an iterative workflow for assembling metagenomic datasets.
Hitch, Thomas C A; Creevey, Christopher J
2018-01-24
The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome. We propose a simple but effective approach, implemented in Python, to address this problem. Based on an iterative methodology, our workflow (called Spherical) carries out successive rounds of assemblies with the sequencing reads not yet utilised. This approach also allows the user to reduce the resources required for very large datasets, by assembling random subsets of the whole in a "divide and conquer" manner. We demonstrate the accuracy of Spherical using simulated data based on completely sequenced genomes and the effectiveness of the workflow at retrieving lost information for taxa in three published metagenomics studies of varying sizes. Our results show that Spherical increased the amount of reads utilized in the assembly by up to 109% compared to the base assembly. The additional contigs assembled by the Spherical workflow resulted in a significant (P < 0.05) changes in the predicted taxonomic profile of all datasets analysed. Spherical is implemented in Python 2.7 and freely available for use under the MIT license. Source code and documentation is hosted publically at: https://github.com/thh32/Spherical .
Daniels, Lia M; Frenzel, Anne C; Stupnisky, Robert H; Stewart, Tara L; Perry, Raymond P
2013-09-01
The literature documents fewer classroom mastery goal structures in secondary school compared to elementary. However, little is known about how personal achievement goals may influence classroom goal structures. This is especially true at the level of pre-service teachers. Our objective was to investigate if pre-service teachers' personal goals predicted their intended classroom goal structures. Participants were 125 elementary and 175 secondary school pre-service teachers from two Western Canadian universities. Structural equation modelling was used to examine if the structural relationships and latent means of personal and intended classroom goal structures differed for elementary and secondary school pre-service teachers. The results revealed that personal goals predicted the goal structures that pre-service teachers intended to establish; however, the relationships and means differed between elementary and secondary school pre-service teachers. Specifically, personal mastery-approach goals positively predicted classroom mastery goals much more strongly at the elementary than the secondary level. Furthermore, elementary pre-service teachers had significantly higher latent mean scores on personal mastery-approach goals than their secondary counterparts. It seems possible that the currently documented differences between classroom goal structures noted for elementary compared to secondary school may be based on the personal goals endorsed as pre-service teachers. The results are further discussed in terms of alignment with research on practising teachers' personal and classroom goals and implications for teacher education. © 2012 The British Psychological Society.
Spherical aberration correction with an in-lens N-fold symmetric line currents model.
Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji
2018-04-01
In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
ERIC Educational Resources Information Center
An, Song A.; Tillman, Daniel A.
2015-01-01
The purpose of the current research was to examine the effects of a sequence of classroom activities that integrated mathematics content with music elements aimed at providing teachers an alternative approach for teaching mathematics. Two classes of third grade students (n = 56) from an elementary school in the west coast of the United States…
ERIC Educational Resources Information Center
DENEMARK, GEORGE W.; METZOW, MARION
TRENDS IN EARLY CHILDHOOD AND ELEMENTARY SCHOOL CURRICULUM, SCHOOL ORGANIZATION, TEACHING METHODS AND MATERIALS, STAFF UTILIZATION, AND SCHOOL-COMMUNITY RELATIONSHIPS REFLECT THE NATION'S GROWING CONCERN FOR EDUCATION AND, PARTICULARLY, FOR THE EDUCATION OF DISADVANTAGED LEARNERS. NOW, INSTEAD OF THE TRADITIONAL EMPHASIS UPON THE STANDARD…
ERIC Educational Resources Information Center
Wegmann, Kate M.; Thompson, Aaron M.; Bowen, Natasha K.
2011-01-01
The purpose of the current study was to test the factor structure and scale quality of data provided by caregivers about the home environment and child behavior at home using the Elementary School Success Profile (ESSP) for Families. The ESSP for Families is one component of the ESSP, an online social-environmental assessment that also collects…
ERIC Educational Resources Information Center
Gotti, Maurizio
1987-01-01
Discusses two current problems with foreign language study in Italy: (1) Students are frequently unable to study English, the most popular language, because of a lack of qualified English teachers; and (2) Students sometimes cannot continue studying in junior high school the language they began in elementary school. (CFM)
Catalog of Air Force Weather Technical Documents, 1941-2006
2006-05-19
radiosondes in current use in USA. Elementary discussion of statistical terms and concepts used for expressing accuracy or error is discussed. AWS TR 105...Techniques, Appendix B: Vorticity—An Elementary Discussion of the Concept, August 1956, 27pp. Formerly AWSM 105– 50/1A. Provides the necessary back...steps involved in ordinary multiple linear regression. Conditional probability is calculated using transnormalized variables in the multivariate normal
NASA Astrophysics Data System (ADS)
Yang, Yigang; Saslow, Wayne M.
1998-12-01
A recent theoretical study of slow, steady discharge for a lead-acid cell carrying current I, with planar electrodes, predicts a nonzero bulk charge distribution with an associated voltage profile within the electrolyte that is quadratic in space. A second theoretical study finds that the Ohmic voltage resistance R=ΔV/I across the electrolyte differs from the Joule heating resistance RJ=P/I2. The very different diffusion constants of the charge-carrying ions H+ and HSO4- is responsible for the quadratic voltage profile. The presence of changing chemical energies is responsible for the different resistances. In the present work we study this same chemical system for the cylindrical and spherical geometries, with Pb at inner radius a and PbO2 at outer radius b. For the cylindrical case, the voltage varies with radius as the sum of a logarithm and a quadratic. For the spherical case, the voltage varies with the radius as a sum of an inverse r and a quadratic. For both cases, the quadratic is the signature of a uniform nonzero bulk charge distribution. For both cases, R≠RJ. For large enough b/a, in both the spherical and cylindrical cases, we find that R<0; current flows from lower to higher electrical potential. This does not violate energy conservation when chemical as well as electrical energies are included.
NASA Astrophysics Data System (ADS)
Romanovsky, M. Yu; Ebeling, W.; Schimansky-Geier, L.
2005-01-01
The problem of electric and magnetic microfields inside finite spherical systems of stochastically moving ions and outside them is studied. The first possible field of applications is high temperature ion clusters created by laser fields [1]. Other possible applications are nearly spherical liquid systems at room-temperature containing electrolytes. Looking for biological applications we may also think about a cell which is a complicated electrolytic system or even a brain which is a still more complicated system of electrolytic currents. The essential model assumption is the random character of charges motion. We assume in our basic model that we have a finite nearly spherical system of randomly moving charges. Even taking into account that this is at best a caricature of any real system, it might be of interest as a limiting case, which admits a full theoretical treatment. For symmetry reasons, a random configuration of moving charges cannot generate a macroscopic magnetic field, but there will be microscopic fluctuating magnetic fields. Distributions for electric and magnetic microfields inside and outside such space- limited systems are calculated. Spherical systems of randomly distributed moving charges are investigated. Starting from earlier results for infinitely large systems, which lead to Holtsmark- type distributions, we show that the fluctuations in finite charge distributions are larger (in comparison to infinite systems of the same charge density).
The Helicity Injected Torus Program
NASA Astrophysics Data System (ADS)
Jarboe, T. R.; Nelson, B. A.; Jewell, P. D.; Liptac, J. E.; McCollam, K. J.; Raman, R.; Redd, A. J.; Rogers, J. A.; Sieck, P. E.; Shumlak, U.; Smith, R. J.; Nagata, M.; Uyama, T.
1999-11-01
The Helicity Injected Torus--II (HIT--II) spherical torus is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. HIT--II has a major radius R = 0.3, minor radius a = 0.2, aspect ratio A = R/a = 1.5, with an on axis magnetic field of up to Bo = 0.67 T. HIT--II provides equilibrium control, CHI flux boundary conditions, and transformer action using 28 poloidal field coils, using active flux feedback control. HIT--II has driven up to 200 kA of plasma current, using either CHI or transformer drive. An overview and recent results of the HIT--II program will be presented. The development of a locked-electron current drive model for HIT and HIT--II has led to the design of a constant inductive helicity injection method for spherical torii. This method is incorporated in the design of the Helicity Injected Torus -- Steady Inductive (HIT-- SI)(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 experiment. HIT--SI can form a high-beta spheromak, a low aspect ratio RFP, or a spherical tokamak in a steady-state manner without using electrodes. The HIT--SI design and methodology will be presented.
Eddy-Current Inspection of Ball Bearings
NASA Technical Reports Server (NTRS)
Bankston, B.
1985-01-01
Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...
2011-10-06
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less
Design of spherical electron gun for ultra high frequency, CW power inductive output tube
NASA Astrophysics Data System (ADS)
Kaushik, Meenu; Joshi, L. M.
2016-03-01
Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.
Design of spherical electron gun for ultra high frequency, CW power inductive output tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com; Academy of Scientific and Innovative Research
Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gunmore » has been carried out in CST and TRAK codes.« less
Effect of Stochastic Charge Fluctuations on Dust Dynamics
NASA Astrophysics Data System (ADS)
Matthews, Lorin; Shotorban, Babak; Hyde, Truell
2017-10-01
The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.
Near-limit flame structures at low Lewis number
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1990-01-01
The characteristics of premixed gas flames in mixtures with low Lewis numbers near flammability limits were studied experimentally using a low-gravity environment to reduce buoyant convection. The behavior of such flames was found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. Experimental observations are found to be in qualitative agreement with elementary analytical models based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and volumetric heat losses due to gas and/or soot radiation.
NASA Astrophysics Data System (ADS)
Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.
2018-05-01
Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.
Numerical modeling of a spherical buoy moored by a cable in three dimensions
NASA Astrophysics Data System (ADS)
Zhu, Xiangqian; Yoo, Wan-Suk
2016-05-01
Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.
Freites, J Alfredo; Schow, Eric V; White, Stephen H; Tobias, Douglas J
2012-06-06
Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Development of rotating magnetic field coil system in the HIST spherical torus device
NASA Astrophysics Data System (ADS)
Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.
2007-11-01
Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).
A source with a 10{sup 13} DT neutron yield on the basis of a spherical plasma focus chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavyalov, N. V.; Maslov, V. V.; Rumyantsev, V. G., E-mail: rumyantsev@expd.vniief.ru
2013-03-15
Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of {approx}1.5 MA, neutron pulses with a full width at half-maximum of 75-80 ns and an integral yield of {approx}1.3 Multiplication-Sign 10{sup 13} DT neutrons have been recorded.
Characteristic microwave-background distortions from collapsing spherical domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Notzold, Dirk
1990-01-01
The redshift distortion induced by collapsing spherical domain walls is calculated. The most frequent microwave background distortions are found to occur at large angles in the form of blue disks. This is the angular region currently measured by the COBE satellite. COBE could therefore detect signals predicted here for domain walls with surface energy density of the order of MeV. Such values for sigma are proposed in the late-time phase-transition scenario of Hill et al. (1989).
The reduction, verification and interpretation of MAGSAT magnetic data over Canada
NASA Technical Reports Server (NTRS)
Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.
1982-01-01
Consideration is being given to representing the magnetic field in the area 40 deg N to 83 deg N by means of functions in spherical coordinates. A solution to Laplace's equation for the magnetic potential over a restricted area was found, and programming and testing are currently being carried out. Magnetic anomaly modelling is proceeding. The program SPHERE, which was adapted to function correctly on the Cyber computer, is now operational, for deriving gravity and magnetic models in a spherical coordinate system.
Atomic oxygen effects on metals
NASA Technical Reports Server (NTRS)
Fromhold, Albert T.
1987-01-01
The effect of specimen geometry on the attack of metals by atomic oxygen is addressed. This is done by extending the coupled-currents approach in metal oxidation to spherical and cylindrical geometries. Kinetic laws are derived for the rates of oxidation of samples having these geometries. It is found that the burn-up time for spherical particles of a given diameter can be as much as a factor of 3 shorter than the time required to completely oxidize a planar sample of the same thickness.
NASA Technical Reports Server (NTRS)
Klenzing, Jeffrey H.; Rowland, Douglas E.
2012-01-01
A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...
2017-06-27
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
NASA Astrophysics Data System (ADS)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.
2017-09-01
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
A narrative study of novice elementary teachers' perceptions of science instruction
NASA Astrophysics Data System (ADS)
Harrell, Roberta
It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).
A power-balance model for local helicity injection startup in a spherical tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus G.
A 0D circuit model for predicting I p( t) in Local Helicity Injection (LHI) discharges is developed. Analytic formulas for estimating the surface flux of finite-A plasmas developed are modified and expanded to treat highly shaped, ultralow-A tokamak geometry using a database of representative equilibria. Model predictions are compared to sample LHI discharges in the A ~ 1 Pegasus spherical tokamak, and are found to agree within 15% of experimental I p( t). High performance LHI discharges are found to follow the Taylor relaxation current limit for approximately the first half of the current ramp, or I p ≲ 75more » kA. The second half of the current ramp follows a limit imposed by power-balance as plasmas expand from high- A to ultralow- A. Here, this shape evolution generates a significant drop in external plasma inductance, effectively using the plasma’s initially high inductance to drive the current ramp and provide > 70% of the current drive V-s. Projections using this model indicate the relative influences of higher helicity input rate and injector current on the attainable total plasma current.« less
Poli, F. M.; Andre, R. G.; Bertelli, N.; ...
2015-10-30
One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less
A power-balance model for local helicity injection startup in a spherical tokamak
Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus G.; ...
2018-05-15
A 0D circuit model for predicting I p( t) in Local Helicity Injection (LHI) discharges is developed. Analytic formulas for estimating the surface flux of finite-A plasmas developed are modified and expanded to treat highly shaped, ultralow-A tokamak geometry using a database of representative equilibria. Model predictions are compared to sample LHI discharges in the A ~ 1 Pegasus spherical tokamak, and are found to agree within 15% of experimental I p( t). High performance LHI discharges are found to follow the Taylor relaxation current limit for approximately the first half of the current ramp, or I p ≲ 75more » kA. The second half of the current ramp follows a limit imposed by power-balance as plasmas expand from high- A to ultralow- A. Here, this shape evolution generates a significant drop in external plasma inductance, effectively using the plasma’s initially high inductance to drive the current ramp and provide > 70% of the current drive V-s. Projections using this model indicate the relative influences of higher helicity input rate and injector current on the attainable total plasma current.« less
Electron density and plasma dynamics of a spherical theta pinch
NASA Astrophysics Data System (ADS)
Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.
2012-03-01
A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.
NASA Astrophysics Data System (ADS)
An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.
2017-01-01
An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.
Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry
NASA Astrophysics Data System (ADS)
Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.
2004-02-01
This article outlines a successful community service project that involved members of our undergraduate chemistry club and area elementary schools. Elementary school students from various science classes throughout the region collected drinking water samples and mailed them to the university for analysis. Chemistry club members analyzed the water samples for possible lead contamination using anodic stripping voltammetry. The results and experimental data were returned to the science teachers for use in a variety of class projects. Chemistry club members presented their work during our annual Environmental Chemistry Conference. All participating science classes were invited to the conference. Over the years, participation in this project has steadily increased to its current enrollment of 28 science classes throughout the region.
A generic set of HF antennas for use with spherical model expansions
NASA Astrophysics Data System (ADS)
Katal, Nedim
1990-03-01
An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
Recent Progress on Spherical Torus Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki; Kaita, Robert
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configurationmore » can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.« less
Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity
NASA Technical Reports Server (NTRS)
Yuan, Z. -G.; Hegde, U.; Faeth, G. M.
2001-01-01
It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.
Understanding the shape of the Earth and measuring its size
NASA Astrophysics Data System (ADS)
Baltatzis, Evangelos; Galanaki, Angeliki
2016-04-01
Most elementary students have problems and misconceptions regarding the shape of the Earth. Teachers often contribute to this confusion telling the students that the Earth is almost spherical, but not explaining to them, how the Earth can be spherical while it appears. It would be helpful for students to understand how humanity came with the idea of the spherical Earth (to be precise the Earth is ellipsoid). Historically, most cultures describe the Earth as flat. That changes with the ancient Greek culture. We don't know exactly how the Greeks first understood the spherical shape of the Earth, but some Greek philosophers give some arguments why the Earth must be a sphere. We can discuss these arguments and observations with the students. First, if someone travels in the south, he can see the southern constellations rise higher above the horizon. We can give students pictures of the night sky in southern regions and compare them with observations of ''their'' night sky. Second, in the lunar eclipse we can see the round shadow of the Earth. Third, whenever a ship is on the horizon, his low part is invisible . This is known as "hull-down". Moreover, the low part of mountains is invisible from the sea, due to the curvature of the Earth. It is always better to make these observations in real life but it can also be done via videos and pictures. The realization of the spherical shape of the Earth was sine qua non for the first good measurement of its size. In the second part of the project, following the ancient mathematician Eratosthenes's steps, students can measure the size of the Earth, , find pleasure in doing experimental work and realize how important mathematics is in everyday life. Two sticks, situated a long distance away from each other, can give us approximately the circumference , the radius and the diameter of the Earth. Eratosthenes used geometry combined to the knowledge of ancient Greek culture that the Earth is spherical (360°). He knew the distance between two cities in the same meridian arc., namely Alexandria and Syene. In Syene the sun is directly overhead, at noon, during the summer solstice. On solstice, in Alexandria, he measured the angle of elevation of the sun using the shadow of a vertical long stick. This angle is 7°12' and it is the central angle of the arc Alexandria-Syene, approximately 1/50 of 360°. Then with a multiplication (the distance of Alexandria-Syene times 50) he calculated the circumference of the Earth. Inspired by Eratosthenes' method, students can use a similar experiment to measure the size of the planet, using (at the same time) two different sticks in two different cities in the same meridian. This entails that two different schools or groups need to cooperate, in order to measure and compare the angle between the sun and the stick and hence, calculate the circumference of the Earth.
The Focal Surface of the JEM-EUSO Telescope
NASA Technical Reports Server (NTRS)
Kawasaki, Yoshiya
2007-01-01
Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system
Plüisch, Claudia Simone; Wittemann, Alexander
2013-12-01
Anisometric polymer colloids are likely to behave differently when compared with centrosymmetric particles. Their study may not only shine new light on the organization of matter; they may also serve as building units with specific symmetries and complexity to build new materials from them. Polymer colloids of well-defined complex geometries can be obtained by packing a limited number of spherical polymer particles into clusters with defined configurations. Such supracolloidal architectures can be fabricated at larger scales using narrowly dispersed emulsion droplets as templates. Assemblies built from at least two different types of particles as elementary building units open perspectives in selective targeting of colloids with specific properties, aiming for mesoscale building blocks with tailor-made morphologies and multifunctionality. Polymer colloids with defined geometries are also ideal to study shape-dependent properties such as the diffusion of complex particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Time-Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations
NASA Astrophysics Data System (ADS)
Vo Van, Thuan
2017-12-01
Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time-space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space-time curvatures. Interpretation of some important issues of quantum mechanical reality is carried out in comparison with the 5D space-time-matter theory. A solution of lepton mass hierarchy is proposed by extending to higher dimensional curvatures of time-like hyper-spherical surfaces than one of the cylindrical dynamical geometry. In a result, the reasonable charged lepton mass ratios have been calculated, which would be tested experimentally.
Coherent quantum depletion of an interacting atom condensate
Kira, M.
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Influence of passive smoking on learning in elementary school.
Jorge, Juliana Gomes; Botelho, Clóvis; Silva, Ageo Mário Cândido; Moi, Gisele Pedroso
2016-01-01
To analyze the association between household smoking and the development of learning in elementary schoolchildren. Cross-sectional study with 785 students from the 2nd to the 5th year of elementary school. Students were evaluated by the School Literacy Screening Protocol to identify the presence of learning disabilities. Mothers/guardians were interviewed at home through a validated questionnaire. Descriptive and bivariate analysis, as well as multivariate Poisson regression, were performed. In the final model, the variables associated with learning difficulties were current smoking at the household in the presence of the child (PR=6.10, 95% CI: 4.56 to 8.16), maternal passive smoking during pregnancy (PR=1.46, 95% CI: 1.07 to 2.01), students attending the 2nd and 3rd years of Elementary School (PR=1.44, 95% CI: 1.10 to 1.90), and being children of mothers with only elementary level education (PR=1.36, 95% CI: 1.04 to 1.79). The study demonstrated an association between passive exposure to tobacco smoke and learning difficulties at school. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Montessori Elementary Philosophy Reflects Current Motivation Theories
ERIC Educational Resources Information Center
Murray, Angela
2011-01-01
Montessori's theories, developed more than 100 years ago, certainly resonate with current psychological research on improving education. Autonomy, interest, competence, and relatedness form the foundation for three contemporary efforts to organize the vast literature on motivation into a parsimonious theory. These four elements also comprise…
Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design
Meyer, Randall A.; Green, Jordan J.
2015-01-01
Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390
NASA Astrophysics Data System (ADS)
Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.
2016-01-01
Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.
A Counter-Intuitive Strategy: Reduce Student Stress by Teaching Current Events
ERIC Educational Resources Information Center
Passe, Jeff
2008-01-01
Should elementary school students be introduced to disturbing current events topics? A common response would be to protect the innocence of young children, allowing them to live their lives relatively free of the troubles that beset the world. But closer examination reveals that the study of current events actually helps to reduce fear and worry.…
Magnetic Fields at the Center of Coils
ERIC Educational Resources Information Center
Binder, Philippe; Hui, Kaleonui; Goldman, Jesse
2014-01-01
In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…
Goekoop, Rutger; Goekoop, Jaap G
2014-01-01
The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "Depression", "Mania", "Anxiety", "Psychosis", "Retardation", and "Behavioral Disorganization". Network metrics were used to quantify the continuities between the elementary syndromes. We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a 'Psychopathology Web'. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.
Development and Implementation of an Integrated Science Course for Elementary Eduation Majors
NASA Astrophysics Data System (ADS)
Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.
1997-02-01
Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.
The relationship between heavy metal and rap music and adolescent turmoil: real or artifact?
Took, K J; Weiss, D S
1994-01-01
Adolescents and their parents were surveyed to investigate the association between heavy metal and rap music and adolescent psychosocial turmoil. Subjects were asked about current and past psychosocial functioning, as well as their music preferences. Adolescents who preferred heavy metal and rap music were compared with those who preferred other types of music. Results indicated that adolescents who preferred heavy metal and rap had a higher incidence of below-average school grades, school behavior problems, sexual activity, drug and alcohol use, and arrests. However, when gender was controlled, only below-average current and elementary school grades and a history of counseling in elementary school for school problems remained significant. Implications of these findings are discussed.
ERIC Educational Resources Information Center
US House of Representatives, 2011
2011-01-01
This paper presents the Committee on Education and the Workforce's hearing examining the adverse impact extensive federal regulations and reporting requirements have on teachers, administrators and students in elementary and secondary schools. Too many schools and school districts are overwhelmed by unnecessary paperwork requirements. Currently,…
Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi
2016-12-01
We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non-sphericity of clusters in X-ray and optical observations.
A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.
2018-03-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceccato, Alessandro; Frezzato, Diego, E-mail: diego.frezzato@unipd.it; Nicolini, Paolo
In this work, we deal with general reactive systems involving N species and M elementary reactions under applicability of the mass-action law. Starting from the dynamic variables introduced in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138(23), 234101 (2013); 138(23), 234102 (2013)], we turn to a new representation in which the system state is specified in a (N × M){sup 2}-dimensional space by a point whose coordinates have physical dimension of inverse-of-time. By adopting hyper-spherical coordinates (a set of dimensionless “angular” variables and a single “radial” one with physical dimension of inverse-of-time) and by examining themore » properties of their evolution law both formally and numerically on model kinetic schemes, we show that the system evolves towards the equilibrium as being attracted by a sequence of fixed subspaces (one at a time) each associated with a compact domain of the concentration space. Thus, we point out that also for general non-linear kinetics there exist fixed “objects” on the global scale, although they are conceived in such an abstract and extended space. Moreover, we propose a link between the persistence of the belonging of a trajectory to such subspaces and the closeness to the slow manifold which would be perceived by looking at the bundling of the trajectories in the concentration space.« less
Two-component Jaffe models with a central black hole - I. The spherical case
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Ziaee Lorzad, Azadeh
2018-02-01
Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.
NASA Astrophysics Data System (ADS)
Romano, Francesco; Cimmino, Rosario F.
2017-09-01
This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very innovative, it shows a very good adherence with results obtained with the conventional techniques in current usage.
NASA Astrophysics Data System (ADS)
Pearson, Roxanne N.
In 2010, the President's Council of Advisors on Science and Technology recommended that eight hundred new STEM focused elementary and middle schools be established. Unfortunately, districts may be slow to implement STEM at the elementary level because they do not understand how to do so effectively (Zimny, 2017). School administrators need a framework for decision-making and supervisory feedback related to the process of managing these programs (Zimny, 2017). To support administrators in implementing elementary STEM immersion programs, this project explored three questions: What criteria are common among existing STEM immersion program rubrics? What criteria should be included in a comprehensive rubric for managing elementary STEM immersion programs at the district level? What do district documents show about how elementary STEM immersion programs develop, implement, and evaluate those programs? The team developed a comprehensive STEM program review instrument including criteria for effective elementary STEM curriculum and the professional development and administrative support necessary to implement such curriculum. These criteria were organized into three stages, including the planning and development of elementary STEM immersion programs, the implementation of these programs, and the evaluation of these programs after they had been implemented for a significant period of time. The team synthesized best practice indicators relevant to elementary STEM programs from existing K-12 guides, then validated those indicators against current best practice research and feedback from STEM education experts. District documents from seven elementary STEM immersion programs in Missouri and Colorado were examined using the team's rubric. Scores were higher in the areas of program planning, content alignment, and ongoing refinement of curriculum, and lower in the areas of professional development for professional skills and STEM-specific pedagogy, two-way communication with stakeholders, and data collection for program refinement. Scores were lowest for those schools with inadequate documentation of their program management processes. The team recommended districts institute a more rigorous documentation process for managing innovative programs such as STEM immersion. Communication plans should include procedures for two-way communication with all stakeholders. Data collection and refinement efforts should increase, as should professional development opportunities related to professional skills and STEM-specific pedagogy; this should include administrators.
NASA Technical Reports Server (NTRS)
Klenzing, J.; Rowland, D.
2012-01-01
A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.
Educating a New Majority: Transforming America's Educational System for Diversity.
ERIC Educational Resources Information Center
Rendon, Laura I., Ed.; Hope, Richard O., Ed.
This book presents 20 papers on the current status and future needs of disadvantaged minority students in the elementary, secondary, and higher education systems. Papers are grouped into four sections: current challenges to minority education; restructuring schools to foster minority student success; reforming higher education; and leadership…
Teachers' Perceptions of Bullying: A Focus Group Approach
ERIC Educational Resources Information Center
Rosen, Lisa H.; Scott, Shannon R.; DeOrnellas, Kathy
2017-01-01
The current qualitative study used a focus group approach to examine teachers' perceptions of student aggressors and victims. Participants in the current study included 35 teachers from public elementary, middle, and high schools. Teachers' responses to five questions about risk factors for aggression and victimization, adaptive and maladaptive…
ERIC Educational Resources Information Center
Okita, Sandra Y.; Jamalian, Azadeh
2011-01-01
Developing curriculum and instruction for mathematics education and designing technologically enhanced learning environments are often pursued separately, but may need to be addressed together to effectively link the strengths of technology to performance in mathematics and conceptual understanding. This paper addresses current challenges with…
Mental Models of Elementary and Middle School Students in Analyzing Simple Battery and Bulb Circuits
ERIC Educational Resources Information Center
Jabot, Michael; Henry, David
2007-01-01
Written assessment items were developed to probe students' understanding of a variety of direct current (DC) resistive electric circuit concepts. The items were used to explore the mental models that grade 3-8 students use in explaining the direction of electric current and how electric current is affected by different configurations of simple…
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
NASA Astrophysics Data System (ADS)
Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George
2011-08-01
The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
NASA Astrophysics Data System (ADS)
Han, Alyson Kim
According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Gregory; Sadovskyy, Ivan A.; Glatz, Andreas
For many technological applications of superconductors the performance of a material is determined by the highest current it can carry losslessly-the critical current. In turn, the critical current can be controlled by adding nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different local and global optimization strategies to predict optimal structures of pinning centers leading to the highest possible critical currents. We demonstrate performance of these methods for a superconductor with randomly placed spherical, elliptical, and columnar defects.
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA Astrophysics Data System (ADS)
Gersch, Alan; A'Hearn, M. F.
2012-05-01
We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.
Three-Dimensional Spherical Models of Convection in the Earth's Mantle.
Bercovici, D; Schubert, G; Glatzmaier, G A
1989-05-26
Three-dimensional, spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus, subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Emergence and Utility of Nonspherical Particles in Biomedicine
Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola
2016-01-01
The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109
Molecular dynamics simulations of field emission from a prolate spheroidal tip
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
2016-12-01
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with a spherical approximation, which is good around the top of the tip, i.e., region where the current is generated.
NASA Astrophysics Data System (ADS)
Wehner, William; Schuster, Eugenio; Poli, Francesca
2016-10-01
Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.
Goekoop, Rutger; Goekoop, Jaap G.
2014-01-01
Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology. PMID:25427156
NASA Astrophysics Data System (ADS)
Coggins, Porter E.
2015-04-01
The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.
Peralta, Louisa R; Dudley, Dean A; Cotton, Wayne G
2016-05-01
School-based programs represent an ideal setting to enhance healthy eating, as most children attend school regularly and consume at least one meal and a number of snacks at school each day. However, current research reports that elementary school teachers often display low levels of nutritional knowledge, self-efficacy, and skills to effectively deliver nutrition education. The purpose of this review was to understand the availability and quality of resources that are accessible for elementary school teachers to use to support curriculum delivery or nutrition education programs. The review included 32 resources from 4 countries in the final analysis from 1989 to 2014. The 32 resources exhibited 8 dominant teaching strategies: curriculum approaches; cross-curricular approaches; parental involvement; experiential learning approaches; contingent reinforcement approaches; literary abstraction approaches; games-based approaches; and web-based approaches. The resources were accessible to elementary school teachers, with all the resources embedding curriculum approaches, and most of the resources embedding parental involvement strategies. Resources were less likely to embed cross-curricular and experiential learning approaches, as well as contingent reinforcement approaches, despite recent research suggesting that the most effective evidence-based strategies for improving healthy eating in elementary school children are cross-curricular and experiential learning approaches. © 2016, American School Health Association.
The Five-hundred-meter Aperture Spherical Radio Telescope Project
NASA Astrophysics Data System (ADS)
Li, Di; Pan, Zhichen
2016-07-01
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is a Chinese megascience project funded by the National Development and Reform Commission (NDRC) of the People's Republic of China. The National Astronomical Observatories of China (NAOC) is in charge of its construction and subsequent operation. Upon its expected completion in September 2016, FAST will surpass the 305 m Arecibo Telescope and the 100 m Green Bank Telescope in terms of absolute sensitivity in the 70 MHz to 3 GHz bands. In this paper, we report on the project, its current status, the key science goals, and plans for early science.
ERIC Educational Resources Information Center
Jones, Janet
1974-01-01
Described the efforts of an elementary school teacher to help her students to think and verbalize about their current experiences while including in the lesson some art history of the Paleolithic period. (Author/RK)
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
This is a report of oversight hearings held in Washington, D.C., on January 23 and 24 and February 5, 6, and 7, 1980, to provide the House of Representatives Subcommittee on Elementary, Secondary, and Vocational Education of the Committee of Education and Labor, with a general picture of the current state of American secondary education. The focus…
Gueon, Donghee; Hwang, Jeong Tae; Yang, Seung Bo; Cho, Eunkyung; Sohn, Kwonnam; Yang, Doo-Kyung; Moon, Jun Hyuk
2018-01-23
A carbon host capable of effective and uniform sulfur loading is the key for lithium-sulfur batteries (LSBs). Despite the application of porous carbon materials of various morphologies, the carbon hosts capable of uniformly impregnating highly active sulfur is still challenging. To address this issue, we demonstrate a hierarchical pore-structured CNT particle host containing spherical macropores of several hundred nanometers. The macropore CNT particles (M-CNTPs) are prepared by drying the aerosol droplets in which CNTs and polymer particles are dispersed. The spherical macropore greatly improves the penetration of sulfur into the carbon host in the melt diffusion of sulfur. In addition, the formation of macropores greatly develops the volume of the micropore between CNT strands. As a result, we uniformly impregnate 70 wt % sulfur without sulfur residue. The S-M-CNTP cathode shows a highly reversible capacity of 1343 mA h g -1 at a current density of 0.2 C even at a high sulfur content of 70 wt %. Upon a 10-fold current density increase, a high capacity retention of 74% is observed. These cathodes have a higher sulfur content than those of conventional CNT hosts but nevertheless exhibit excellent performance. Our CNTPs and pore control technology will advance the commercialization of CNT hosts for LSBs.
Optical aberrations induced by subclinical decentrations of the ablation pattern
NASA Astrophysics Data System (ADS)
Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo
2000-06-01
Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.
4D Infant Cortical Surface Atlas Construction using Spherical Patch-based Sparse Representation.
Wu, Zhengwang; Li, Gang; Meng, Yu; Wang, Li; Lin, Weili; Shen, Dinggang
2017-09-01
The 4D infant cortical surface atlas with densely sampled time points is highly needed for neuroimaging analysis of early brain development. In this paper, we build the 4D infant cortical surface atlas firstly covering 6 postnatal years with 11 time points (i.e., 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months), based on 339 longitudinal MRI scans from 50 healthy infants. To build the 4D cortical surface atlas, first , we adopt a two-stage groupwise surface registration strategy to ensure both longitudinal consistency and unbiasedness. Second , instead of simply averaging over the co-registered surfaces, a spherical patch-based sparse representation is developed to overcome possible surface registration errors across different subjects. The central idea is that, for each local spherical patch in the atlas space, we build a dictionary, which includes the samples of current local patches and their spatially-neighboring patches of all co-registered surfaces, and then the current local patch in the atlas is sparsely represented using the built dictionary. Compared to the atlas built with the conventional methods, the 4D infant cortical surface atlas constructed by our method preserves more details of cortical folding patterns, thus leading to boosted accuracy in registration of new infant cortical surfaces.
Understandings of Current Environmental Issues: Turkish Case Study in Six Teacher Education Colleges
ERIC Educational Resources Information Center
Cakir, Mustafa; Irez, Serhat; Dogan, Ozgur Kivilcan
2010-01-01
The purpose of this study is to profile future science teachers' understandings of current environmental issues in the context of an education reform in Turkey. Knowledge base and understandings of elementary and secondary prospective science teachers about biodiversity, carbon cycle, global warming and ozone layer depletion were targeted in the…
ERIC Educational Resources Information Center
Armstrong, Robert J.
A study was made to determine the current status of selected administrative areas of student teaching programs in Massachusetts and cooperative student teaching programs throughout the nation, the desirability of establishing cooperative programs in Massachusetts, and the organization and impelementation of these programs. Specific administrative…
A Study of Arizona's Teachers of English Language Learners
ERIC Educational Resources Information Center
Rios-Aguilar, Cecilia; Gonzalez-Canche, Manuel; Moll, Luis C.
2010-01-01
In this study a representative sample of 880 elementary and secondary teachers currently teaching in 33 schools across the state of Arizona were asked about their perceptions of how their ELL students were faring under current instructional policies for ELL students. Teachers were surveyed during the Spring of 2010. Overall findings show that most…
Overhaul of ESEA Could Drop Option of Alternate Exams
ERIC Educational Resources Information Center
Shah, Nirvi
2011-01-01
Renewal proposals for the Elementary and Secondary Education Act (ESEA), the current version of which is the No Child Left Behind (NCLB) Act, are still being discussed by congressional lawmakers and staff. Capitol Hill aides and U.S. Department of Education officials have suggested that a current federal regulation governing alternate testing for…
ERIC Educational Resources Information Center
Odum, Mary; McKyer, E. Lisako J.; Tisone, Christine A.; Outley, Corliss W.
2013-01-01
Background: Researchers in numerous disciplines have investigated the effects of the school environment on childhood obesity (CHO), one of the greatest current health concerns in the United States. There is a gap in current empirical evidence, however, on school personnel's perspectives of this issue. This study examined school personnel's…
Booming Economy Fuels Continued Expansion of For-Profit Child Care--Annual Status Report #13.
ERIC Educational Resources Information Center
Neugebauer, Roger
2000-01-01
Discusses growth of North America's 40 largest for- profit child care centers. Identifies current threats, including staffing shortage and increasing competition from public schools and among chains. Identifies current opportunities to include employer and franchise child care, upscale child care, elementary school services, and flexible hours.…
Monthly Record of Current Educational Publications. Bulletin, 1913, No. 1. Whole Number 508
ERIC Educational Resources Information Center
United States Bureau of Education, Department of the Interior, 1913
1913-01-01
This document contains a list of current educational publications received by the Bureau of Education. Some especially significant books listed during the past month are the following: Drever, Greek education; Parker, Textbook in the history of modern elementary education; Watson, Vives and the renascence education of women; Andrews, Introduction…
Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video
NASA Astrophysics Data System (ADS)
Boyce, Jill; Xu, Qian
2017-09-01
Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.
Electric breakdown during the pulsed current spreading in the sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.
2016-03-15
Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.
Remote listening and passive acoustic detection in a 3-D environment
NASA Astrophysics Data System (ADS)
Barnhill, Colin
Teleconferencing environments are a necessity in business, education and personal communication. They allow for the communication of information to remote locations without the need for travel and the necessary time and expense required for that travel. Visual information can be communicated using cameras and monitors. The advantage of visual communication is that an image can capture multiple objects and convey them, using a monitor, to a large group of people regardless of the receiver's location. This is not the case for audio. Currently, most experimental teleconferencing systems' audio is based on stereo recording and reproduction techniques. The problem with this solution is that it is only effective for one or two receivers. To accurately capture a sound environment consisting of multiple sources and to recreate that for a group of people is an unsolved problem. This work will focus on new methods of multiple source 3-D environment sound capture and applications using these captured environments. Using spherical microphone arrays, it is now possible to capture a true 3-D environment A spherical harmonic transform on the array's surface allows us to determine the basis functions (spherical harmonics) for all spherical wave solutions (up to a fixed order). This spherical harmonic decomposition (SHD) allows us to not only look at the time and frequency characteristics of an audio signal but also the spatial characteristics of an audio signal. In this way, a spherical harmonic transform is analogous to a Fourier transform in that a Fourier transform transforms a signal into the frequency domain and a spherical harmonic transform transforms a signal into the spatial domain. The SHD also decouples the input signals from the microphone locations. Using the SHD of a soundfield, new algorithms are available for remote listening, acoustic detection, and signal enhancement The new algorithms presented in this paper show distinct advantages over previous detection and listening algorithms especially for multiple speech sources and room environments. The algorithms use high order (spherical harmonic) beamforming and power signal characteristics for source localization and signal enhancement These methods are applied to remote listening, surveillance, and teleconferencing.
75 FR 22838 - Cape Romain National Wildlife Refuge, Charleston County, SC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... opportunities for hunting, fishing, wildlife observation, wildlife photography, and environmental education and... additional elementary schools, students, and teachers. The refuge would be staffed at current levels plus the...
Sommargren, Gary E.
1999-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Sommargren, G.E.
1999-08-03
An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.
An investigation of the generation and properties of laboratory-produced ball lightning
NASA Astrophysics Data System (ADS)
Oreshko, A. G.
2015-06-01
The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.
NASA Astrophysics Data System (ADS)
Raychaudhuri, Sananda; Ghosh, Shubhrangshu; Joarder, Partha S.
2018-06-01
Isolated massive elliptical galaxies, or that are present at the center of cool-core clusters, are believed to be powered by hot gas accretion directly from their surrounding hot X-ray emitting gaseous medium. This leads to a giant Bondi-type spherical/quasi-spherical accretion flow onto their host SMBHs, with the accretion flow region extending well beyond the Bondi radius. In this work, we present a detailed study of Bondi-type spherical flow in the context of these massive ellipticals by incorporating the effect of entire gravitational potential of the host galaxy in the presence of cosmological constant Λ, considering a five-component galactic system (SMBH + stellar + dark matter + hot gas + Λ). The current work is an extension of Ghosh & Banik (2015), who studied only the cosmological aspect of the problem. The galactic contribution to the potential renders the (adiabatic) spherical flow to become multi-transonic in nature, with the flow topology and flow structure significantly deviating from that of classical Bondi solution. More notably, corresponding to moderate to higher values of galactic mass-to-light ratios, we obtain Rankine-Hugoniot shocks in spherical wind flows. Galactic potential enhances the Bondi accretion rate. Our study reveals that there is a strict lower limit of ambient temperature below which no Bondi accretion can be triggered; which is as high as ˜9 × 106 K for flows from hot ISM-phase, indicating that the hot phase tightly regulates the fueling of host nucleus. Our findings may have wider implications, particularly in the context of outflow/jet dynamics, and radio-AGN feedback, associated with these massive galaxies in the contemporary Universe.
Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2014-10-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.
Application of identifying transmission spheres for spherical surface testing
NASA Astrophysics Data System (ADS)
Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen
2017-06-01
We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.
Life histories of female elementary teachers and their science/teacher role construction
NASA Astrophysics Data System (ADS)
Ramseur, Aletha Johnson
The research conducted in this study focuses on life histories of female elementary teachers and their science/teacher role construction. Identity theorists argue that the self consists of a collection of identities founded on occupying a particular role. Who we are depends on the roles we occupy. These roles are often referred to as "role identities". In the case of these participants, many role identities (mother, wife, sibling, and teacher) exist. This study focuses primarily on their (science) teacher role identity. Literature on women's lives, as learners and teachers, suggest that women's experiences, currently and throughout history influenced their teacher role construction. There is however, little knowledge of women's lives as elementary teachers of science and the affect of their experiences, currently and throughout history, on their (science) teacher identity construction. Schools delineated by race, class, and gender relations, are similar to other sectors of society's, social and cultural spheres within which race, class, and gender identities are constructed. Using in-depth-interviews female elementary teachers were encouraged to actively reconstruct their life and work-life experiences focusing on family, school and science interactions. They addressed the intellectual and emotional connections between their life and work experiences by focusing on details of their past and present experiences and examining the meaning of those experiences. It was the scrutiny of these connections between their life and work experiences, the meaning derived from them and historical events, and the constraints imposed on their personal choices by broader power relations, such as those of class, race, and gender that informed why we teach, how we teach, and what we teach.
Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop
NASA Technical Reports Server (NTRS)
Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.
2001-01-01
Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.
Should the Basket Be Lowered for Young Participants?
ERIC Educational Resources Information Center
Henry, George M.
1979-01-01
This article summarizes some of the current discussion concerning the height of the basketball goal. A system of graduated heights for elementary school, high school, college, and professional teams is suggested. (JMF)
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
Inversion of the Earth spherical albedo from radiation-pressure
NASA Astrophysics Data System (ADS)
Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri
2017-04-01
We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.
ERIC Educational Resources Information Center
Eidietis, Laura; Rutherford, Sandra
2009-01-01
In the activities presented in this article, students mimic real scientists while constructing predictions and scientific explanations about surface currents. The activities are inspired by and couched within true scientific inquiries regarding the ocean and the North American Great Lakes. Students engage in a classroom inquiry and use map-reading…
ERIC Educational Resources Information Center
Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy
2011-01-01
This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…
ERIC Educational Resources Information Center
Kao, Chen-yao
2012-01-01
This study examines the current problems affecting Taiwan's gifted education through a large-scale gifted program evaluation. Fifty-one gifted classes at 15 elementary schools and 62 gifted classes at 18 junior high schools were evaluated. The primary activities included in this biennial evaluation were document review, observation of…
The Next Chapter: Supporting Literacy within ESEA
ERIC Educational Resources Information Center
Haynes, Mariana
2015-01-01
Noting that 60 percent of both fourth and eighth graders currently struggle with reading, this report urges the U.S. Congress to focus on students' literacy development from early childhood through grade twelve as it works to rewrite of the Elementary and Secondary Education Act (ESEA), currently known as the No Child Left Behind Act (NCLB). In…
The "Family" Section in Current Elementary Social Studies Textbooks in China
ERIC Educational Resources Information Center
Zhao, Weiju; Zhang, Zhiping; Liu, Juan
2017-01-01
Family is the essential unit of society as well as the pupils' cradle for growing up. It is particularly significant to help pupils understand "family," then form a scientific concept of the family and develop a positive family sentiment. In the current primary school textbooks of "Morality and Life (Society)" (version of the…
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
The objective of this research is to investigate the effects of simulations based on conceptual change conditions (CCS) and traditional confirmatory simulations (TCS) on pre-service elementary school teachers' understanding of direct current electric circuits. The data was collected from a sample consisting of 89 students; 48 students in the…
Electric Current. Learning in Science Project. Working Paper No. 25.
ERIC Educational Resources Information Center
Osborne, Roger
One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on the concept of "electric current" held by 43 elementary school…
Literature Review of Spherical Resorcinol-Formaldehyde for Cesium Ion Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Garrett N.
2014-09-30
The current report summarizes work performed throughout the scientific community and DOE complex as reported in the open literature and DOE-sponsored reports to evaluate the Cs+ ion exchange (CIX) characteristics of SRF resin. King (2007) completed a similar literature review in support of material selection for the Small Column Ion Exchange (SCIX) project. Josephson et al. (2010) and Sams et al. (2009) provided a similar brief review of SRF CIX for the near-tank Cs+ removal (NTCR) project. Thorson (2008a) documented the basis for recommending SRF over SuperLigTM 644 as the primary CIX resin in the WTP. The current review expandsmore » on previous work, summarizes additional work completed to date, and provides a broad view of the literature without focusing on a specific column system. Although the focus of the current review is the SRF resin, many cited references include multiple materials such as the non-spherical GGRF and SuperLigTM 644 organic resins and crystalline silicotitanate (CST) IONSIVTM IE-911, a non-elutable inorganic material. This report summarizes relevant information provided in the literature.« less
Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin
2014-11-01
An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.
Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team
2017-10-01
Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
NASA Astrophysics Data System (ADS)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.
2017-10-01
Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals ;mud cracks; within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.
NASA Astrophysics Data System (ADS)
Widhitama, Y. N.; Lukito, A.; Khabibah, S.
2018-01-01
The aim of this research is to develop problem solving based learning materials on fraction for training creativity of elementary school students. Curriculum 2006 states that mathematics should be studied by all learners starting from elementary level in order for them mastering thinking skills, one of them is creative thinking. To our current knowledge, there is no such a research topic being done. To promote this direction, we initiate by developing learning materials with problem solving approach. The developed materials include Lesson Plan, Student Activity Sheet, Mathematical Creativity Test, and Achievement Test. We implemented a slightly modified 4-D model by Thiagajan et al. (1974) consisting of Define, Design, Development, and Disseminate. Techniques of gathering data include observation, test, and questionnaire. We applied three good qualities for the resulted materials; that is, validity, practicality, and effectiveness. The results show that the four mentioned materials meet the corresponding criteria of good quality product.
Carter, Chandra P; Reschly, Amy L; Lovelace, Matthew D; Appleton, James J; Thompson, Dianne
2012-06-01
Early school withdrawal, commonly referred to as dropout, is associated with a plethora of negative outcomes for students, schools, and society. Student engagement, however, presents as a promising theoretical model and cornerstone of school completion interventions. The purpose of the present study was to validate the Student Engagement Instrument-Elementary Version (SEI-E). The psychometric properties of this measure were assessed based on the responses of an ethnically diverse sample of 1,943 students from an urban locale. Exploratory and confirmatory factor analyses indicated that the 4-factor model of student engagement provided the best fit for the current data, which is divergent from previous SEI studies suggesting 5- and 6-factor models. Discussion and implications of these findings are presented in the context of student engagement and dropout prevention. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Johnson, Amy M.; Ozogul, Gamze; DiDonato, Matt D.; Reisslein, Martin
2013-10-01
Computer-based multimedia presentations employing animated agents (avatars) can positively impact perceptions about engineering; the current research advances our understanding of this effect to pre-college populations, the main target for engineering outreach. The study examines the effectiveness of a brief computer-based intervention with animated agents in improving perceptions about engineering. Five hundred sixty-five elementary, middle-, and high-school students in the southwestern USA viewed a short computer-based multimedia overview of four engineering disciplines (electrical, chemical, biomedical, and environmental) with embedded animated agents. Students completed identical surveys measuring five subscales of engineering perceptions immediately before and after the intervention. Analyses of pre- and post-surveys demonstrated that the computer presentation significantly improved perceptions for each student group, and that effects were stronger for elementary school students, compared to middle- and high-school students.
Local-area simulations of rotating compressible convection and associated mean flows
NASA Technical Reports Server (NTRS)
Hurlburt, Neal E.; Brummell, N. H.; Toomre, Juri
1995-01-01
The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.
Elementary Level Educational Curriculum Guide
DOT National Transportation Integrated Search
1989-01-01
This guide contains current and accurate information about the agricultural aviation industry. The hands-on design or practical approach allows for and encourages flexibility. The designated grade levels serve only as a suggested entry point for inst...
Zhou, Pingyan; Zhang, Cai; Liu, Jian; Wang, Zhe
2017-10-01
Heavy use of the Internet may lead to profound academic problems in elementary students, such as poor grades, academic probation, and even expulsion from school. It is of great concern that Internet addiction problems in elementary school students have increased sharply in recent years. In this study, 58,756 elementary school students from the Henan province of China completed four questionnaires to explore the mechanisms of Internet addiction. The results showed that resilience was negatively correlated with Internet addiction. There were three mediational paths in the model: (a) the mediational path through peer relationship with an effect size of 50.0 percent, (b) the mediational path through depression with an effect size of 15.6 percent, (c) the mediational path through peer relationship and depression with an effect size of 13.7 percent. The total mediational effect size was 79.27 percent. The effect size through peer relationship was the strongest among the three mediation paths. The current findings suggest that resilience is a predictor of Internet addiction. Improving children's resilience (such as toughness, emotional control, and problem solving) can be an effective way to reduce Internet addiction behavior. The current findings provide useful information for early detection and intervention for Internet addiction.
The Van Sant AVHRR image projected onto a rhombicosidodecahedron
NASA Astrophysics Data System (ADS)
Baron, Michael; Morain, Stan
1996-03-01
IDEATION, a design and development corporation, Santa Fe, New Mexico, has modeled Tom Van Sant's ``The Earth From Space'' image to a rhombicosidodecahedron. ``The Earth from Space'' image, produced by the Geosphere® Project in Santa Monica, California, was developed from hundreds of AVHRR pictures and published as a Mercator projection. IDEATION, utilizing a digitized Robinson Projection, fitted the image to foldable, paper components which, when interconnected by means of a unique tabular system, results in a rhombicosidodecahedron representation of the Earth exposing 30 square, 20 triangular, and 12 pentagonal faces. Because the resulting model is not spherical, the borders of the represented features were rectified to match the intersecting planes of the model's faces. The resulting product will be licensed and commercially produced for use by elementary and secondary students. Market research indicates the model will be used in both the demonstration of geometric principles and the teaching of fundamental spatial relations of the Earth's lands and oceans.
Cuetos, Alejandro; Patti, Alessandro
2015-08-01
We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
Electron reversal ionizer for detection of trace species using a spherical cathode
NASA Technical Reports Server (NTRS)
Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)
1994-01-01
A reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region employs an indirectly heated cathode having a concave emitting surface of width of W less than 2r, where r is the radius of curvature and preferably a ratio of width to radius approximately equal to one for optimum high current for a given cathode width.
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2010-05-01
The basic observables of the recently launched satellite gravity gradiometry mission GOCE are the second derivatives of the earth gravitational potential (components of the full Marussi tensor). These gravity gradients are highly sensitive to mass anomalies and mass transports in the earth system. The high- and mid-frequency components of the gradients are mainly affected by the topographic and isostatic masses whereby the downward continuation of the gradients is a rather difficult task. In order to stabilize this process the gradients have to be smoothed by applying topographic and isostatic reductions. In the space domain the modelling of topographic effects is based on the evaluation of functionals of the Newton integral. In the case of GOCE the second-order derivatives are required. Practical numerical computations rely on a discretisation of the earth's topography and a subdivision into different mass elements. Considering geographical gridlines tesseroids (spherical prisms) are well suited for the modelling of the topographic masses. Since the respective volume integrals cannot be solved in an elementary way in the case of tesseroids numerical approaches such as Taylor series expansion, Gauss-Legendre cubature or a point-mass approximation have to be applied. In this paper the topography is represented by the global Digital Terrain Model DTM2006.0 which was also used for the compilation of the Earth Gravitation Model EGM2008. In addition, each grid element of the DTM is classified as land, see or ice providing further information on the density within the evaluation of topographic effects. The computation points are located on a GOCE-like circular orbit. The mass elements are arranged on a spherical earth of constant radius and, in a more realistic composition, on the surface of an ellipsoid of revolution. The results of the modelling of each version are presented and compared to each other with regard to computation time and accuracy. Acknowledgements: This research has been financially supported by the German Federal Ministry of Education and Research (BMBF) within the REAL-GOCE project of the GEOTECHNOLOGIEN Programme.
Warm dark matter effects in a spherical collapse model with shear and angular momentum
NASA Astrophysics Data System (ADS)
Marciu, Mihai
2016-03-01
This paper investigates the nonlinear structure formation in a spherical top-hat collapse model based on the pseudo-Newtonian approximation. The system is composed of warm dark matter and dark energy and the dynamical properties of the collapsing region are analyzed for various parametrizations of the dark matter equation of state which are in agreement with current observations. Concerning dark energy, observational constraints of the Chevallier-Polarski-Linder model and the Jassal-Bagla-Padmanabhan equation of state have been considered. During the collapse, the positive dark matter pressure leads to an increase of growth for dark matter and dark energy perturbations and an accelerated expansion for the spherical region. Hence, in the warm dark matter hypothesis, the structure formation is accelerated and the inconsistencies of the Λ CDM model at the galactic scales could be solved. The results obtained are applicable only to adiabatic warm dark matter physical models which are compatible with the pseudo-Newtonian approach.
Plasma Studies in the SPECTOR Experiment as Target Development for MTF
NASA Astrophysics Data System (ADS)
Ivanov, Russ; Young, William; the Fusion Team, General
2016-10-01
General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.
NASA Astrophysics Data System (ADS)
London, Steven D.
2018-01-01
In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.
Ion flow measurements during the MHD relaxation processes in the HIST spherical torus device
NASA Astrophysics Data System (ADS)
Nishioka, T.; Hashimoto, S.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2008-11-01
Plasma flow is one of the key roles in self-organization and magnetic reconnection processes of helicity-driven spherical torus (ST) and spheromak. The HIST spherical torus can form the standard ST and the flipped ST plasmas by utilizing the variation of the external toroidal field coil current. The flipped ST plasma can be generated by changing the polarity of the toroidal magnetic field during the standard ST discharge [1]. We have developed an ion Doppler spectrometer (IDS) system using a compact 16 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. As the results, it was observed that ion velocity was about 10 km/s in the same direction as the toroidal current and ExB direction in the standard ST discharge. The observed ion velocity agrees with Mach probe measurements. During the transition from the standard ST to the flipped ST state, the ion temperature was fluctuated and increased. The result implies an ion heating during magnetic reconnections. In addition, the toroidal direction of the ion flow was reversed. The detail physics of the observed phenomenon will be shown. [1] M. Nagata et al., Phys Rev. Lett. 90, pp. 225001-225004 (2003).
Dynamic ocean-tide effects on Earth's rotation
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1993-01-01
This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.
Stichter, Janine P; O'Connor, Karen V; Herzog, Melissa J; Lierheimer, Kristin; McGhee, Stephanie D
2012-03-01
Despite frequent reports of academic success, individuals with high functioning autism or Aspergers Syndrome (HFA/AS) often manifest deficits in social abilities. These deficits can lead to daily difficulties, and negative long-term outcomes. Deficits in social competency are evident in this population from an early age, as children with HFA/AS present unique challenges relating to peers, interpreting complex contextual cues, and transitioning across settings. A paucity of social interventions exist that target elementary-age children with HFA/AS and their combination of core social competence deficit areas: theory of mind (ToM), emotional recognition, and executive functioning. The current study expanded on the Social Competence Intervention (for adolescents; SCI-A), as detailed in Stichter et al. (J Autism Dev Disorders 40:1067-1079, 2010), by adjusting the curriculum to meet the needs of an elementary population. Results indicate significant improvements on direct assessments measuring theory of mind and problem solving, and parent perceptions of overall social abilities and executive functioning for 20 students, aged 6-10, with HFA/AS. The elementary SCI program appears promising, however, additional replications are necessary including expansion to school settings.
NASA Astrophysics Data System (ADS)
Poland, Susan; Colburn, Amanda; Long, David E.
2017-09-01
In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the traditional, generalist model of teaching, wherein a teacher is responsible for teaching all subjects to one group of students each year. This mixed-methods study examines teacher perspectives on the practice of specialisation and generalisation through teacher interview data. Our teachers spoke candidly about their attitudes towards specialisation, the perceived impacts of specialization on teachers and students, and the role of accountability, administration, and testing in their decisions to specialise. Additionally, our teachers discussed time dedicated to science in specialist and generalist classrooms. Our findings suggest that specialist roles are sought by those who see specialisation as a means of reducing workload, while allowing for content mastery and improved instruction. Alternatively, generalist roles are sought by those who primarily view the role of elementary teaching as the care and development of children, and who prefer to focus on the classroom as a holistic, fluid space. Implications for science teaching are discussed.
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi; Ni, Luqun
2010-01-01
In the context of the linear theory of elasticity with eigenstrains, the radiated field including inertia effects of a spherical inclusion with dilatational eigenstrain radially expanding is obtained on the basis of the dynamic Green's function, and one of the half-space inclusion boundary (with dilatational eigenstrain) moving from rest in general subsonic motion is obtained by a limiting process from the spherically expanding inclusion as the radius tends to infinity while the eigenstrain remains constrained, and this is the minimum energy solution. The global energy-release rate required to move the plane inclusion boundary and to create an incremental region of eigenstrain is defined analogously to the one for moving cracks and dislocations and represents the mechanical rate of work needed to be provide for the expansion of the inclusion. The calculated value, which is the "self-force" of the expanding inclusion, has a static component plus a dynamic one depending only on the current value of the velocity, while in the case of the spherical boundary, there is an additional contribution accounting for the jump in the strain at the farthest part at the back of the inclusion having the time to reach the front boundary, thus making the dynamic "self-force" history dependent.
Pfrommer, Andreas; Henning, Anke
2017-05-01
The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.
Underlying Changes in Repeated Reading: An Eye Movement Study
ERIC Educational Resources Information Center
Foster, Tori E.; Ardoin, Scott P.; Binder, Katherine S.
2013-01-01
conclusive evidence as to the mechanisms through which RR takes effect. Eye movement studies allow for precise examination of intervention effects. The current study examined underlying changes in elementary students' ("N" = 43) reading behavior…
NASA Astrophysics Data System (ADS)
Hock, Emily; Sharp, Zoe
2016-03-01
Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.
ERIC Educational Resources Information Center
Mason, Emily
2010-01-01
Research investigating music textbook series is limited and has primarily focused on series no longer in publication, on two grade levels, and/or on limited cultures. The purpose of this study is to examine what countries are and have been represented in current music textbook series. Additional questions in the study pertain to frequency and…
ERIC Educational Resources Information Center
Fagioli, Loris P.
2014-01-01
This study compared a value-added approach to school accountability to the currently used metrics of accountability in California of Adequate Yearly Progress (AYP) and Academic Performance Index (API). Five-year student panel data (N?=?53,733) from 29 elementary schools in a large California school district were used to address the research…
The Lesson Plan of the Month. Series 3. 10 Lesson Series.
ERIC Educational Resources Information Center
Phi Alpha Delta Fraternity International, Granada Hills, CA. Public Service Center.
Focusing on current topics germane to law-related education (LRE), this guide features ten LRE lessons. As part of a series of lesson plans compiled by Phi Alpha Delta, this collection presents a lesson plan on current issues for each month of the school year. Intended for high school and middle school with adaptations for elementary school, the…
Evaluation of Classroom Teachers' Opinions about In-Service Training (The Case of Mugla)
ERIC Educational Resources Information Center
Aykaç, Necdet; Yildirim, Kasim
2017-01-01
The current study aimed to evaluate the classroom teachers' opinions about in-service training process. Thus, the current study was designed as a descriptive case study. A total of 28 classroom teachers constituted the sample group of the research. The research process was carried out on the classroom teachers working in state elementary schools…
ERIC Educational Resources Information Center
Matthews, Wendy K.; Koner, Karen
2017-01-01
The focus of this exploratory study was to examine the current trends of K-12 music educators in the United States regarding their (a) professional background, (b) classroom teaching responsibilities, and (c) job satisfaction. Participants included seven thousand four hundred and sixty-three (N = 7,463) currently employed music teachers who were…
The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.
Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E
2004-05-15
Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.
Seroepidemiology of pertussis among elementary school children in northern Taiwan.
Kuo, Ching-Chia; Huang, Yhu-Chering; Hsieh, Yu-Chia; Huang, Ya-Ling; Huang, Yu-Chiau; Hung, Yung-Tai
2017-06-01
Pertussis has been considered a vaccine-preventable "childhood disease", but a shift in age distribution has been reported worldwide. We conducted a seroepidemiological study in 2013 in Taiwan to elucidate the seroprevalence of pertussis among elementary school children. With a multilevel randomized method, which included 14 variables (4 population variables, 4 socio-educational variables, and 6 medical facilities' variables), the 29 executive districts of New Taipei City, Taiwan, were categorized into five strata. From each stratum, the number of school children as well as the number of elementary schools were proportionally selected. Enzyme immunoassay was applied for pertussis immunoglobulin-G measurement. A total of 936 children from 14 schools were recruited. Most participants (98.89%) received at least three doses of acellular diphtheria-tetanus-pertussis vaccine. The overall seropositive rate for pertussis was 33.97%. The seropositive rate was highest for students in Grade 1 (49.36%) and then declined with time, except for Grade 6 students. Students from Grade 1 to Grade 4 had a significant higher seropositive rate (37.18% vs. 27.56%, p = 0.002) than those from Grade 5 to Grade 6, but a lower geometric mean titer (18.71 NovaTec Unit/mL vs. 20.04 NovaTec Unit/mL, p = 0.20). For the class grades, geometric mean titers were positively correlated with seroprevalence (p < 0.005). Currently, almost one-third of elementary school children in Taiwan were seropositive for pertussis, a rate lower than expected. Seroprevalence declined with increasing class grades except for Grade 6. The current national immunization program may not provide adequate protection for children against pertussis. Copyright © 2015. Published by Elsevier B.V.
Heating and current drive on NSTX
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.
1997-04-01
Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.
NASA Astrophysics Data System (ADS)
Wood, E. L.
2012-12-01
Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.
Teaching science as argument: Prospective elementary teachers' knowledge
NASA Astrophysics Data System (ADS)
Barreto-Espino, Reizelie
For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry processes. (4) Scaffolded protocols positively influenced participants' attention to having students construct evidence-based explanations during science planning and teaching. (5) Teachers' beliefs about children's science capabilities influence their attention to and adoption of practices associated with teaching science as argument. Findings are discussed in terms of their implications for teacher education, such as the use of coherent conceptual frameworks to guide coursework and field experiences and the development of video-based cases that represent "images of the possible" associated with challenging reform-oriented teaching practices.
Practical Quantum Realization of the Ampere from the Elementary Charge
NASA Astrophysics Data System (ADS)
Brun-Picard, J.; Djordjevic, S.; Leprat, D.; Schopfer, F.; Poirier, W.
2016-10-01
One major change of the future revision of the International System of Units is a new definition of the ampere based on the elementary charge e . Replacing the former definition based on Ampère's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from e , accurate to within 10-8 in relative value and fulfilling traceability needs, is still missing despite the many efforts made for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are accurately quantized in terms of e fJ (fJ is the Josephson frequency) with measurement uncertainty of 10-8. This new quantum current source, which is able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. In addition, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single-electron pumps.
NASA Astrophysics Data System (ADS)
Holota, Petr; Nesvadba, Otakar
2017-04-01
The paper is motivated by the role of boundary value problems in Earth's gravity field studies. The discussion focuses on Neumann's problem formulated for the exterior of an oblate ellipsoid of revolution as this is considered a basis for an iteration solution of the linear gravimetric boundary value problem in the determination of the disturbing potential. The approach follows the concept of the weak solution and Galerkin's approximations are applied. This means that the solution of the problem is approximated by linear combinations of basis functions with scalar coefficients. The construction of Galerkin's matrix for basis functions generated by elementary potentials (point masses) is discussed. Ellipsoidal harmonics are used as a natural tool and the elementary potentials are expressed by means of series of ellipsoidal harmonics. The problem, however, is the summation of the series that represent the entries of Galerkin's matrix. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Therefore, the straightforward application of series of ellipsoidal harmonics is complemented by deeper relations contained in the theory of ordinary differential equations of second order and in the theory of Legendre's functions. Subsequently, also hypergeometric functions and series are used. Moreover, within some approximations the entries are split into parts. Some of the resulting series may be summed relatively easily, apart from technical tricks. For the remaining series the summation was converted to elliptic integrals. The approach made it possible to deduce a closed (though approximate) form representation of the entries in Galerkin's matrix. The result rests on concepts and methods of mathematical analysis. In the paper it is confronted with a direct numerical approach applied for the implementation of Legendre's functions. The computation of the entries is more demanding in this case, but conceptually it avoids approximations. Finally, some specific features associated with function bases generated by elementary potentials in case the ellipsoidal solution domain are illustrated and discussed.
Veghte, Daniel P; Freedman, Miriam A
2012-11-06
It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.
NASA Astrophysics Data System (ADS)
Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj
2017-12-01
In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, E; Peng, Yueng Kay Martin
Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to amore » conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.« less
ERIC Educational Resources Information Center
Interracial Books for Children Bulletin, 1982
1982-01-01
In order to provide information missing from elementary and secondary educational materials, briefly reviews the history, geography, and current political, economic, demographic, and social characteristics of El Salvador, Guatemala, Honduras, and Nicaragua. Some information is also given about Costa Rica, Panama, and Belize.
Selected Survey of Educational Law and Policy Literature.
ERIC Educational Resources Information Center
Piele, Philip K., Comp.
1983-01-01
Annotations from three issues of "Current Index to Journals in Education" were selected on the basis of anticipated reader interest. Articles dealing with elementary and secondary education organized by subjects are followed by articles dealing with postsecondary education. (MLF)
ERIC Educational Resources Information Center
Cary, Michael S.
1981-01-01
Describes the current impoverishment of the humanities and the gulf separating the humanities from the sciences. Discusses the need for adequate humanities instruction at the elementary-secondary level. Suggests that humanities teachers rediscover the Italian Renaissance spirit to improve their teaching. (SB)
NASA Astrophysics Data System (ADS)
Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.
A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.
Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo
NASA Astrophysics Data System (ADS)
Takahashi, F.
2011-12-01
Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.
Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.
2013-10-01
Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.
A new evaluation method of electron optical performance of high beam current probe forming systems.
Fujita, Shin; Shimoyama, Hiroshi
2005-10-01
A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D; Thio, Y F
In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes ismore » discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Glazkova, E. A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, N. V., E-mail: nvsv@ispms.tsc.ru
In the current paper, the mixed SiO{sub 2}/Al{sub 2}O{sub 3} aerogel was synthesized by sol-gel method with subcritical drying and characterized. Tetraethoxysilane was used as a precursor of silicon sol. The flower-shaped alumina suspension was peptized to produce alumina sol. The aerogel texture, morphology, and structure were determined using scanning electron microscopy, X-ray diffraction, low-temperature nitrogen adsorption, and high-resolution spectroscopy. A special attention was paid to the pore structure of aerogel, and aerogel framework was formed by the spherical agglomerates containing spherical particles of silicon oxide and alumina nanopetals. The pore size distribution was bimodal with peaks of 5.5 nm andmore » 77 nm.« less
A poloidal section neutron camera for MAST upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangaroon, S.; Weiszflog, M.; Cecconello, M.
2014-08-21
The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part ofmore » the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.« less
Interaction of rotating helical magnetic field with the HIST spherical torus plasmas
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Sugahara, Masato; Yamada, Satoshi; Yoshikawa, Tatsuya; Fukumoto, Naoyuki; Nagata, Masayoshi
2006-10-01
The physical mechanism of current drive by co-axial helicity injection (CHI) has been experimentally investigated on both spheromak and spherical torus (ST) configurations on the HIST device [1]. It has been observed that the n = 1 kink mode rotates toroidally with a frequency of 10-20 kHz in the ExB direction. It seems that the induced toroidal current by CHI strongly relates with the observed rotating kink mode. On the other hand, it is well known that MHD instabilities can be controlled or even suppressed by an externally applied helical magnetic field in tokamak devices. Therefore, we have started to install two sets of external helical coils in order to produce a rotating helical magnetic field on HIST. Mode structures of the generated rotating helical magnetic field and preliminary experimental results of the interaction of the rotating helical magnetic field with the HIST plasmas will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003)
Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colburn, Heather A.; Bryan, Samuel A.; Camaioni, Donald M.
This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicatemore » test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.« less
Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak
NASA Astrophysics Data System (ADS)
Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.
2015-12-01
Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.
Biomechanical evaluation of a spherical lumbar interbody device at varying levels of subsidence.
Rundell, Steven A; Isaza, Jorge E; Kurtz, Steven M
2011-01-01
Ulf Fernström implanted stainless steel ball bearings following discectomy, or for painful disc disease, and termed this procedure disc arthroplasty. Today, spherical interbody spacers are clinically available, but there is a paucity of associated biomechanical testing. The primary objective of the current study was to evaluate the biomechanics of a spherical interbody implant. It was hypothesized that implantation of a spherical interbody implant, with combined subsidence into the vertebral bodies, would result in similar ranges of motion (RoM) and facet contact forces (FCFs) when compared with an intact condition. A secondary objective of this study was to determine the effect of using a polyetheretherketone (PEEK) versus a cobalt chrome (CoCr) implant on vertebral body strains. We hypothesized that the material selection would have a negligible effect on vertebral body strains since both materials have elastic moduli substantially greater than the annulus. A finite element model of L3-L4 was created and validated by use of ROM, disc pressure, and bony strain from previously published data. Virtual implantation of a spherical interbody device was performed with 0, 2, and 4 mm of subsidence. The model was exercised in compression, flexion, extension, axial rotation, and lateral bending. The ROM, vertebral body effective (von Mises) strain, and FCFs were reported. Implantation of a PEEK implant resulted in slightly lower strain maxima when compared with a CoCr implant. For both materials, the peak strain experienced by the underlying bone was reduced with increasing subsidence. All levels of subsidence resulted in ROM and FCFs similar to the intact model. The results suggest that a simple spherical implant design is able to maintain segmental ROM and provide minimal differences in FCFs. Large areas of von Mises strain maxima were generated in the bone adjacent to the implant regardless of whether the implant was PEEK or CoCr.
ERIC Educational Resources Information Center
Macintosh, Henry G.
A study was conducted to examine and compare, in 10 selected countries, the interaction between current conceptions and theories of assessment and assessment practices. Of particular interest was the nature of changing practice and theory in assessing the learning achievements of students in elementary and secondary education, as well as the…
ERIC Educational Resources Information Center
Ulubey, Özgür; Yildirim, Kasim; Alpaslan, Muhammet Mustafa; Aykaç, Necdet
2017-01-01
The purpose of the current study is to determine teachers' opinions about professional development schools. In the current study; one of the mixed methods, the convergent design was employed. The sampling of the quantitative dimension of the study is comprised of 256 teachers working in 21 elementary and secondary schools in the city of Mugla. The…
Two Perspectives on Psychoactive Drugs: Commentary on Wolfensberger (1994).
ERIC Educational Resources Information Center
Levitas, Andrew; And Others
1994-01-01
This commentary on a 1994 article by Wolfensberger on the current mental retardation scene, in which he describes prescription psychoactive drugs as health destroying and life destroying, criticizes Wolfensberger's comments on "psychoactive medications," noting "elementary errors,""apparently concocted figures," and…
Preparing Healthy Young Children for Hospitalization: A Rationale and Proposal.
ERIC Educational Resources Information Center
Poster, Elizabeth C.
1984-01-01
Proposes a precrisis curriculum for nursery and elementary schools to prepare healthy young children for hospitalization as an alternative to current preadmission preparation programs. Key elements include such stress-immunization techniques as systematic desensitization, modeling, and rehearsal. (AS)
Aligning oversize/overweight permit fees with agency costs : critical issues.
DOT National Transportation Integrated Search
2013-08-01
This project provides an elementary analysis of issues and a proposed framework for the state to evaluate cost recovery options : due to OSOW operations. The authors provide a review of current permitting practices, provide a sampling of fee structur...
Aligning oversize/overweight fees with agency costs : critical issues.
DOT National Transportation Integrated Search
2013-08-01
This project provides an elementary analysis of issues and a proposed framework for the state to evaluate cost recovery options : due to OSOW operations. The authors provide a review of current permitting practices, provide a sampling of fee structur...
Selected Survey of Educational Law and Policy Literature.
ERIC Educational Resources Information Center
Piele, Philip K.
1983-01-01
Contains abstracts dealing with elementary, secondary, and postsecondary education from the October-December 1982 issues of the "Current Index to Journals in Education." Subject areas covered include administration, collective bargaining, computers, copyright, desegregation, deregulation, employment, finance, foreign countries, handicapped,…
Learning through Literature: Cultures, Intermediate.
ERIC Educational Resources Information Center
Ryan, Concetta Doti
This resource book provides specific strategies and activities for integrating middle grade elementary multicultural studies with 34 related children's literature selections. This book addresses current trends in education: multicultural studies and understanding, the whole language movement, and the emphasis on integrating curriculum areas. This…
Metamaterials for Miniaturization of Optical Components
2014-09-24
elementary EM fields are exactly the Maxwell equations with proper conserved currents; (iii) a free charge moves uniformly preserving up to the...Disordered Systems -- A Conference in Honor of Leonid Pastur , Hagen, Germany, Some Mathematical Problems in a Neoclassical Theory of Electric Charges
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; ...
2017-08-29
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Effect of conductor geometry on source localization: Implications for epilepsy studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlitt, H.; Heller, L.; Best, E.
1994-07-01
We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we mustmore » first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head.« less
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.
Solar quiet day ionospheric source current in the West African region.
Obiekezie, Theresa N; Okeke, Francisca N
2013-05-01
The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January-December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year's change in the source current system of Sq.
Broughton, David P; Waker, Anthony J
2017-05-01
Neutron dosimetry in reactor fields is currently mainly conducted with unwieldy flux monitors. Tissue Equivalent Proportional Counters (TEPCs) have been shown to have the potential to improve the accuracy of neutron dosimetry in these fields, and Multi-Element Tissue Equivalent Proportional Counters (METEPCs) could reduce the size of instrumentation required to do so. Complexity of current METEPC designs has inhibited their use beyond research. This work proposes a novel hemispherical counter with a wireless anode ball in place of the traditional anode wire as a possible solution for simplifying manufacturing. The hemispherical METEPC element was analyzed as a single TEPC to first demonstrate the potential of this new design by evaluating its performance relative to the reference spherical TEPC design and a single element from a cylindrical METEPC. Energy deposition simulations were conducted using the Monte Carlo code PHITS for both monoenergetic 2.5 MeV neutrons and the neutron energy spectrum of Cf-D2O moderated. In these neutron fields, the hemispherical counter appears to be a good alternative to the reference spherical geometry, performing slightly better than the cylindrical counter, which tends to underrespond to H*(10) for the lower neutron energies of the Cf-D2O moderated field. These computational results are promising, and if follow-up experimental work demonstrates the hemispherical counter works as anticipated, it will be ready to be incorporated into an METEPC design.
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Short articles describe techniques suitable for junior high school science, including the use of a toy drinking bird" to start discussion, using cobalt chloride solution to demonstrate convection currents, demonstration of the relationship between freezing point and concentration, and instructions for building a simple lens camera, a circuit…
Effective Programs for Latino Students.
ERIC Educational Resources Information Center
Slavin, Robert E., Ed.; Calderon, Margarita, Ed.
This collection of papers presents the current state of research on effective instructional programs for Hispanic American students. The 10 chapters are: (1) "Effective Programs for Latino Students in Elementary and Middle Schools" (Olatokunbo S. Fashola, Robert E. Slavin, Margarita Calderon, and Richard Duran); (2) "Effective…
GALAXY Classroom: Television for Tomorrow.
ERIC Educational Resources Information Center
Graumann, Peter
1994-01-01
An interactive learning service for elementary grades, "GALAXY Classroom," offers enrichment opportunities to classrooms. Students communicate via fax in response to questions posed in satellite transmitted segments. The primary market for "GALAXY Classroom" is the at-risk student. Sidebars describe costs and current offerings.…
Student Centered Curriculum: Elementary School
ERIC Educational Resources Information Center
Rondone, Atria
2014-01-01
Student-centered learning has an important place in education because it fosters student engagement and allows the traditional micromanaging teacher to transform into a guide. The current education model emphasizes teacher control and curriculum based on standardized testing, which stunts students' natural learning processes. This study…
Molina, A; Laborda, E; González, J; Compton, R G
2013-05-21
Nuances of the linear diffusion layer approximation are examined for slow charge transfer reactions at (hemi)spherical micro- and nanoelectrodes. This approximation is widely employed in Electrochemistry to evaluate the extent of electrolyte solution perturbed by the electrode process, which is essential to the understanding of the effects arising from thin-layer diffusion, convergent diffusion, convection, coupled chemical reactions and the double layer. The concept was well established for fast charge transfer processes at macroelectrodes, but remains unclear under other conditions such that a thorough assessment of its meaning was necessary. In a previous publication [A. Molina, J. González, E. Laborda and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 2381-2388] we shed some light on the influence of the reversibility degree. In the present work, the meaning of the diffusion layer thickness is investigated when very small electrodes are employed and so the contribution of convergent diffusion to the mass transport is very important. An analytical expression is given to calculate the linear diffusion layer thickness at (hemi)spherical electrodes and its behaviour is studied for a wide range of conditions of reversibility (from reversible to fully-irreversible processes) and electrode size (from macro- to nano-electrodes). Rigorous analytical solutions are deduced for true concentration profiles, surface concentrations, linear diffusion layer thickness and current densities when a potential pulse is applied at (hemi)spherical electrodes. The expressions for the magnitudes mentioned above are valid for electrodes of any size (including (hemi)spherical nanoelectrodes) and for any degree of reversibility, provided that mass transport occurs exclusively via diffusion. The variation of the above with the electrode size, applied potential and charge transfer kinetics is studied.
Theory of EMP Coupling in the Source Region
1980-02-28
ploblem rot discussed in the present report is the effect: of breakdown in air (e.g., rnuclear lightning) and in the soil on coupled currents . There are...LIST OF TABLES 8 CHAPTER 1--INTRODUCTION AND BASIC EQUATIONS 9 1.1 INTRODUCTION 9 1.2 MAXWELL’S EQUATIONS 10 1.3 SOURCE -’ND CONDUCTION CURRENTS 13 1.4...3.3 THE COMPTON CURRENT 32 3.4 THE AIR CONDUCTIVITY 33 3.5 SCALING WITH DISTANCE 38 3.6 THE RADIAL E FOR SPHERICAL SYMMETRY 38 3.7 FIELDS GENERATED BY
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.
2016-10-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M
2016-12-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...
2017-09-21
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Peng, Yueng Kay Martin
Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is of the order of the sonic speed as observed in National Spherical Torus Experiment [E. J. Synakowski, M. G. Bell, R. E. Bell et al., Nucl. Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and bootstrap current density are modified by a factor of the order of the square of the toroidal Mach number. The consequences of the orbitmore » squeezing are also presented. The theory is developed for parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the transport modeling is discussed.« less
Natural Divertor Spherical Tokamak Plasmas with bean shape and ergodic limiter
NASA Astrophysics Data System (ADS)
Ribeiro, Celso; Herrera, Julio; Chavez, Esteban; Tritz, Kevin
2013-10-01
The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We report here improvements in the self-consistency of these equilibrium comparisons and a preliminary study of their MHD stability beta limits. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.
Connection between black-hole quasinormal modes and lensing in the strong deflection limit.
Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G
2010-06-25
The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.
NASA Astrophysics Data System (ADS)
Trexler, Cary Jay
1999-09-01
Although rhetoric abounds in the agricultural education literature regarding the public's dearth of agri-food system literacy, problems arise when establishing educational interventions to help ameliorate illiteracy. Researchers do not fully know what individuals understand about the complex agri-food system. Hence, educational programs and curricula may focus on areas where students already possess well developed and scientifically accurate schemata, while ignoring other areas where incompatible or naive understandings persist. Democratic decisions about complex societal and environmental issues, such as trade-offs of our industrial agri-food system, require individuals to possess understandings of complex interrelationships. This exploratory qualitative study determines what two groups---elementary students and prospective elementary school teachers---understand about selected concepts foundational to agri-food system literacy. To ground the study in current national education curricular standards, a synthesis of both agricultural and science education benchmarks was developed. This helped structure interviews with the study's informants: nine elementary students and nine prospective elementary teachers. Analysis of discourse was based upon a conceptual change methodology. Findings showed that informant background and non-school experiences were linked to agri-food system literacy, while formal, in-school learning was not. For elementary students, high socio-economic status, gardening and not living in urban areas were correlates with literacy; the prospective teacher group exhibited similar trends. Informants understood that food came from farms where plants and animals were raised. For the majority, however, farms were described as large gardens. Additionally, informants lacked a clear understanding of the roles soil and fertilizers play in crop production. Further, few spoke of weeds as competitors with crops for growth requirements. Informants understood that agricultural technologies saved time and reduced labor and were concerned with the immediate impact of agricultural pollution. They, however, did not link their food and fiber consumption with resources use or environmental impact. Additionally, half of the prospective teachers did not understand genetics well enough to discuss how humans engineer life. Notable differences were found between teachers and students in 17% of the elementary benchmarks. Differences between the two groups were found in the elementary students' lack of ability to proffer cause-effect relationships, especially in regard to the use of agricultural technologies.
Luckner, J
1991-03-01
Many hearing-impaired students demonstrate difficulty in academically measuring up to their hearing peers. The deficiencies become especially obvious during their secondary school years. This study surveyed a national sample of elementary and secondary level teachers of the hearing impaired to compare their perceptions of the competencies needed to work with hearing-impaired students. The results suggest that teachers at both levels believe that some skills are fundamental for all teachers of the hearing-impaired, regardless of the age level of the students. However, the data also suggest there are some important differences. Concerns about state certification procedures and current practices in teacher training programs are discussed.
Donica, Denise K; Larson, Michelle H; Zinn, Abbey A
2012-01-01
ABSTRACT The purpose of this study was to investigate perceptions of elementary school teachers on training in handwriting instruction received during their education, as well as their current classroom practices. The quantity and quality of training in handwriting instruction provided by baccalaureate degree-granting teacher education programs in North Carolina was also examined. An online survey was administered to each population identified to inquire about handwriting instruction practices. Results from 505 teachers and 16 professors indicated that while handwriting instruction content is valued by both teachers and professors, varied levels of training were provided to the teachers. Implications for occupational therapy practice are discussed including strategies for school-based therapists.
ERIC Educational Resources Information Center
Lefebvre, Sue
Teaching materials for a comprehensive and integrated study of Mexico at the elementary level are presented. Emphasis throughout is on developing cross-cultural comparisons between Hermosillo and its sister city, Phoenix, for whom the program was created. Mexican geography, history, current events, politics, art, entertainment, education, people,…
Harvard Education Letter, 1999.
ERIC Educational Resources Information Center
Graves-Desai, Kelly, Ed.
1999-01-01
This document is comprised of the six issues in volume 15 of the Harvard Education Letter, a bimonthly newsletter addressing current issues in elementary and secondary education. Articles in this volume include the following: (1) January-February--"Retention vs. Social Promotion: Schools Search for Alternatives" (Kelly), and "School…
ERIC Educational Resources Information Center
Wendell, Kristen B.
2012-01-01
Structural engineering can be a rich and exciting context for exploring and learning about the properties of materials. Even a structure as commonplace as a house requires careful consideration of important properties such as strength, stability, and insulation. As a former engineer and current elementary science teacher educator, the author has…
A Special Report on Middle Schools.
ERIC Educational Resources Information Center
Hollifield, John H.
1988-01-01
The first Center for Research on Elementary and Middle Schools (CREM) report describes the structures and practices currently used at all school levels for staffing, grouping, and scheduling. The report assesses the effects of departmentalization, tracking, ability grouping, and grade spans on student learning and development. (MLH)
Teacher Evaluation: The Limits of Looking.
ERIC Educational Resources Information Center
Stodolsky, Susan S.
1984-01-01
Reviews current teacher evaluation practices with particular focus on the use of observation. Argues that direct observation is an inadequate evaluation technique because it assumes that stability and consistency are necessary for effective teaching. Presents data showing that flexibility is a more accurate characterization of elementary level…
Implementing Computer Technologies: Teachers' Perceptions and Practices
ERIC Educational Resources Information Center
Wozney, Lori; Venkatesh, Vivek; Abrami, Philip
2006-01-01
This study investigates personal and setting characteristics, teacher attitudes, and current computer technology practices among 764 elementary and secondary teachers from both private and public school sectors in Quebec. Using expectancy-value theory, the Technology Implementation Questionnaire (TIQ) was developed; it consists of 33 belief items…
All Aboard! For a Lesson on Magnetic Levitated Trains.
ERIC Educational Resources Information Center
Moore, Virginia S.; Kaszas, William J.
1995-01-01
Presents an activity that explores the operation of Maglev trains. Demonstrates that elementary students can master cutting-edge technology through creating and racing magnetic vehicles on a specially designed track, researching the history of rail transportation, and exploring a current science issue. (NB)
Assessing National Data on Education.
ERIC Educational Resources Information Center
Plisko, Valena White; And Others
This paper applies questions of coverage, quality and linkages to the current collection of national statistics on education at the preprimary, elementary/secondary, and higher education levels. The main questions raised at the preprimary level pertain to availability of programs, standards, and family-school interaction. At the…
The Harvard Education Letter, 1997.
ERIC Educational Resources Information Center
Graves-Desai, Kelly, Ed.; Maloney, Karen, Ed.
1997-01-01
This document is comprised of volume 13 of the Harvard Education Letter, published bimonthly and addressing current issues in elementary and secondary education. Articles in the six issues of this volume include: (1) January-February --"Making Detracking Work" (Lynn and Wheelock), "Developing a Culture of High Expectations for…
ERIC Educational Resources Information Center
Food and Drug Administration (DHEW), Washington, DC.
Eight self-contained lessons present information about topics of current interest in the Food and Drug Administration. Multidisciplinary in nature, the lessons can be integrated into ongoing activities in elementary or secondary level reading, math, language arts, social studies, science, art, health, consumer education, and home economics. The…
How the nature of science is presented to elementary students in science read-alouds
NASA Astrophysics Data System (ADS)
Rivera, Seema
Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool in elementary science classrooms. The results of the study encourage more science education research in the science read-aloud practice. Keywords: NOS, read-aloud, elementary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya
A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita
2017-07-01
To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.
Toward More Local Control: Financial Reform for Public Education.
ERIC Educational Resources Information Center
American Education, 1983
1983-01-01
The report of the presidential Advisory Panel on Financing Elementary and Secondary Education presents the panel's philosophy, describes current problems, and recommends (1) returning financial autonomy to state and local levels, (2) dismantling the Department of Education, (3) deregulating public schools, and (4) encouraging school-based…
Pulse Power--A Heart Physiology Program for Children.
ERIC Educational Resources Information Center
Hinson, Curt
1994-01-01
Primary grade students at a Delaware elementary school currently participate in the Pulse Power heart physiology program. Students receive mastery instruction and use heart monitors to exercise performance throughout the 6-phase program. Data from homework and from the heart monitors identify student progress, knowledge, and cardiovascular…
Harvard Education Letter, 2002.
ERIC Educational Resources Information Center
Gordon, David T., Editor
2002-01-01
This document is comprised of the 6 issues in volume 18 of the Harvard Education Letter, a bimonthly newsletter addressing current issues in elementary and secondary education. Articles in this volume include the following: (1) January/February--"Curriculum Access in the Digital Age" (David T. Gordon) and "Using Charters To Improve…
Alternatives to an elementary Higgs
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Grojean, Christophe; Terning, John
2016-10-01
Strongly coupled and extra-dimensional models of electroweak symmetry breaking are reviewed. Models examined include warped extra dimensions, bulk Higgs, "little" Higgs, dilaton Higgs, composite Higgs, twin Higgs, quantum critical Higgs, and "fat" SUSY Higgs. Also discussed are current bounds and future LHC searches for this class of models.
Costs and Benefits of Family Involvement in Homework
ERIC Educational Resources Information Center
Van Voorhis, Frances Landis
2011-01-01
Homework represents one research-based instructional strategy linked to student achievement. However, challenges abound with its current practice. This paper presents the results of three 2-year longitudinal interventions of the Teachers Involve Parents in Schoolwork (TIPS) homework program in elementary mathematics, middle school language arts,…
Computers in Physical Education.
ERIC Educational Resources Information Center
Sydow, James Armin
Although computers have potential applications in the elementary and secondary physical education curriculum, current usage is minimal when compared to other disciplines. However, present trends indicate a substantial growth in the use of the computer in a supportive role in assisting the teacher in the management of instructional activities.…
Asian Pacific Perspectives: Japanese Americans.
ERIC Educational Resources Information Center
Los Angeles Unified School District, CA.
These instructional materials on Japanese Americans for elementary students were developed through the K.E.Y.S. project (Knowledge of English Yields Success). Information is included on early immigrants, their historical and cultural background, and current problems of Japanese Americans. Resource guides describe the purpose of the unit, how to…
Prospective Teachers' Understandings: Function and Composite Function.
ERIC Educational Resources Information Center
Meel, David E.
2003-01-01
The current education reform efforts place greater emphasis on conceptual understanding and focus attention on teacher preparation, especially on the adequacy of teachers' mathematical knowledge of the material they will be teaching. This paper discusses the responses of 20 prospective elementary and special education mathematics specialists to…
Evaluating Multiethnic Materials.
ERIC Educational Resources Information Center
Garcia, Jesus
The problem of identifying good ethnic studies materials is a result of the large amount of materials produced in the 1960s and of the currently renewed interest in ethnic studies. Four types of materials are available to elementary classroom teachers: ethnic information, single-ethnic approaches, minority or European-ethnic approaches, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... academic or language-training institution, to include approved private elementary and secondary schools and... appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of... Secretary of Education, to develop and conduct a program to collect information on nonimmigrant foreign...
Trajectories of Aggressive Behavior and Children's Social-Cognitive Development
ERIC Educational Resources Information Center
Averdijk, Margit; Malti, Tina; Ribeaud, Denis; Eisner, Manuel
2011-01-01
The current study investigated developmental trajectories of teacher-reported aggressive behavior and whether these trajectories are associated with social-cognitive development (i.e., aggressive problem-solving) across the first three elementary grades in a large sample from Switzerland (N = 1,146). Semiparametric group-based analyses were…
Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?
ERIC Educational Resources Information Center
Redman, Christine
2017-01-01
The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…
Modeling Mathematical Ideas: Developing Strategic Competence in Elementary and Middle School
ERIC Educational Resources Information Center
Suh, Jennifer M.; Seshaiyer, Padmanabhan
2016-01-01
"Modeling Mathematical Ideas" combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students' common misconceptions in investigating and…
ERIC Educational Resources Information Center
Learning, 1994
1994-01-01
Pullout pages provide suggestions for teaching elementary students at all levels about the wonders of human ingenuity. The suggestions help students see that great ideas come from the need to solve real-life problems and that one great idea leads to another, so current inventions help predict future inventions. (SM)
ERIC Educational Resources Information Center
Odland, Jerry
2007-01-01
The No Child Left Behind (NCLB) Act is currently being reviewed in Congress for reauthorization. NCLB, among the most significant U.S. education initiatives, reauthorized the 1965 Elementary and Secondary Education Act and is founded on four primary objectives: (1) increasing accountability for states, school districts, and schools; (2) giving…
ERIC Educational Resources Information Center
Brown, Joyce V.
2010-01-01
The current educational reform agenda requires that stakeholders in the school community help all students graduate. The U.S. Department of Education's "A Blueprint for Reform: Reauthorization of the Elementary and Secondary Education Act" sends all stakeholders a clear message to take action that results in every student completing high school…
ERIC Educational Resources Information Center
Schuster, Dwight
2008-01-01
Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…
Teaching about Religion in Public Schools.
ERIC Educational Resources Information Center
Piediscalzi, Nicholas, Ed.; Collie, William E., Ed.
Sixteen articles written by various authors are contained in this book about teaching religion in public schools. Developed for both elementary and secondary programs, the articles detail current practices. Models and units of study are suggested for teaching religion in different subject areas, including language arts, humanities, and social…
Harvard Education Letter, 2001.
ERIC Educational Resources Information Center
Gordon, David, T., Ed.
2001-01-01
This document is comprised of the six issues in volume 17 of the Harvard Education Letter, a bimonthly newsletter addressing current issues in elementary and secondary education. Articles in this volume include the following: (1) January-February--"Charters and Districts: Three Stages in an Often Rocky Relationship" (Kelly) and "'We…
Solar quiet day ionospheric source current in the West African region
Obiekezie, Theresa N.; Okeke, Francisca N.
2012-01-01
The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year’s change in the source current system of Sq. PMID:25685434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayob, M. T. M.; Ahmad, A. F.; Mohd, H. M. K.
Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in themore » range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.« less
Material model for physically based rendering
NASA Astrophysics Data System (ADS)
Robart, Mathieu; Paulin, Mathias; Caubet, Rene
1999-09-01
In computer graphics, a complete knowledge of the interactions between light and a material is essential to obtain photorealistic pictures. Physical measurements allow us to obtain data on the material response, but are limited to industrial surfaces and depend on measure conditions. Analytic models do exist, but they are often inadequate for common use: the empiric ones are too simple to be realistic, and the physically-based ones are often to complex or too specialized to be generally useful. Therefore, we have developed a multiresolution virtual material model, that not only describes the surface of a material, but also its internal structure thanks to distribution functions of microelements, arranged in layers. Each microelement possesses its own response to an incident light, from an elementary reflection to a complex response provided by its inner structure, taking into account geometry, energy, polarization, . . ., of each light ray. This model is virtually illuminated, in order to compute its response to an incident radiance. This directional response is stored in a compressed data structure using spherical wavelets, and is destined to be used in a rendering model such as directional radiosity.
The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle
Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E
2004-01-01
Cytosolic [Ca2+] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca2+ sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near −50 mV) or at −20mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to ‘lone embers’ observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 μm. Other parameters depended on voltage. At −50 mV average duration was 111 ms and latency 185 ms. At −20 mV duration was 203 ms and latency 24 ms. Ca2+ release current, calculated on an average of events, was nearly steady at 0.5–0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at −20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca2+ release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells. PMID:14990680