Sample records for spherical molecules

  1. Sphericalization of the potential of interaction of anisotropic molecules with spherical particles

    NASA Astrophysics Data System (ADS)

    Fernández-Prini, R.; Japas, María L.

    1986-09-01

    The possibility of employing sphericalized intermolecular potentials to describe the interactions between nonpolar anisotropic molecules (CCl4 and benzene) with spherical nonpolar molecules (Ar, Xe, and CH4) has been tested for binary systems having liquid- and gas-like densities. Median and RAM sphericalization procedures have been used and their capacity to account for the experimental values of cross second virial coefficients and Henry's constants are compared. It is shown that the median sphericalized potentials, which are temperature and density independent, give a fairly good description of the data which is better than that provided by RAM potentials. The possibility of accounting correctly for the change of properties when the relative size of the interacting partners changes (e.g., conformal systems) is noteworthy.

  2. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    NASA Astrophysics Data System (ADS)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  3. Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Zhong-can, Ou-Yang

    2012-11-01

    With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters (0⩽l⩽L) is presented. Comprehensive formulas of L=1,2 have been obtained and the latter explains the optical activity and spontaneous splay texture observed in bent-core PLC. The expression of L=3 specifies for the molecules with D2 symmetry which can be applied to analyze the nonlinear optical second harmonic generation (SHG) observed in proteins, peptides, and double-stranded DNA at interfaces.

  4. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  5. Spherical sila- and germa-homoaromaticity.

    PubMed

    Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué

    2003-12-17

    Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.

  6. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  7. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemchinsky, V.; Khrabry, A.

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  8. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE PAGES

    Nemchinsky, V.; Khrabry, A.

    2018-02-01

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  9. The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates.

    PubMed

    Chua, Kee Sze; Koh, Ai Peng; Lam, Yeng Ming

    2010-11-01

    Block copolymers are useful for in situ synthesis of nanoparticles as well as producing nanoporous templates. As such, the effects of precursors on the block copolymer micelle structure is important. In this study, we investigate the effects of polarity of molecules introduced into block copolymer micelle cores on the micelle structure. The molecular dipole moment of the additive molecules has been evaluated and their effects on the block copolymer micelles investigated using light scattering spectroscopy, small-angle X-ray scattering, transmission electron microscopy and atomic force microscopy. The molecule with the largest dipole moment resulted in spherical structures with a polydispersity of less than 0.06 in a fully translational diffusion system. Surprisingly, the less polar additive molecules produced elongated micelles and the aspect ratio increases with decreasing polarity. The change in structure from spherical to elongated structure was attributed to P4VP chain extension, where compounds with polarity most similar to P4VP induce the most chain extension. The second virial coefficients of the solutions with elongated micelles are lower than that for spherical micelle systems by up to one order in magnitude, indicating a strong tendency for micelles to coalesce. On rinsing the spin-cast films, pores were obtained from spherical micelles and ridges from elongated micelles, suggesting a viable alternative for morphology modification using mild conditions where external annealing treatments to the film are not preferred. The knowledge of polarity effects of additive molecules on micelle structure has wider implications for supramolecular block copolymer systems where, depending on the application requirements, changes to the shape of the micelle structure can be induced or avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  10. An "adiabatic-hindered-rotor" treatment allows para-H(2) to be treated as if it were spherical.

    PubMed

    Li, Hui; Roy, Pierre-Nicholas; Le Roy, Robert J

    2010-09-14

    In para-H(2)-{molecule} interactions, the common assumption that para-H(2) may be treated as a spherical particle is often substantially in error. For example, quantum mechanical eigenvalues on a full four-dimensional (4D) potential energy surface for para H(2)-{linear molecule} species often differ substantially from those calculated from the corresponding two-dimensional (2D) surface obtained by performing a simple spherical average over the relative orientations of the H(2) moiety. However, use of an "adiabatic-hindered-rotor" approximation can yield an effective 2D surface whose spectroscopic properties are an order of magnitude closer to those yielded by a full 4D treatment.

  11. Structures and properties of spherical 90-vertex fullerene-like nanoballs.

    PubMed

    Scheer, Manfred; Schindler, Andrea; Bai, Junfeng; Johnson, Brian P; Merkle, Roger; Winter, Rainer; Virovets, Alexander V; Peresypkina, Eugenia V; Blatov, Vladislav A; Sierka, Marek; Eckert, Hellmut

    2010-02-15

    By applying the proper stoichiometry of 1:2 to [Cp(R)Fe(eta(5)-P(5))] and CuX (X=Cl, Br) and dilution conditions in mixtures of CH(3)CN and solvents like CH(2)Cl(2), 1,2-Cl(2)C(6)H(4), toluene, and THF, nine spherical giant molecules having the simplified general formula [Cp(R)Fe(eta(5)-P(5))]@[{Cp(R)Fe(eta(5)-P(5))}(12){CuX}(25)(CH(3)CN)(10)] (Cp(R)=eta(5)-C(5)Me(5) (Cp*); eta(5)-C(5)Me(4)Et (Cp(Et)); X=Cl, Br) have been synthesized and structurally characterized. The products consist of 90-vertex frameworks consisting of non-carbon atoms and forming fullerene-like structural motifs. Besides the mostly neutral products, some charged derivatives have been isolated. These spherical giant molecules show an outer diameter of 2.24 (X=Cl) to 2.26 nm (X=Br) and have inner cavities of 1.28 (X=Cl) and 1.20 nm (X=Br) in size. In most instances the inner voids of these nanoballs encapsulate one molecule of [Cp*Fe(eta(5)-P(5))], which reveals preferred orientations of pi-pi stacking between the cyclo-P(5) rings of the guest and those of the host molecules. Moreover, pi-pi and sigma-pi interactions are also found in the packing motifs of the balls in the crystal lattice. Electrochemical investigations of these soluble molecules reveal one irreversible multi-electron oxidation at E(p)=0.615 V and two reduction steps (-1.10 and -2.0 V), the first of which corresponds to about 12 electrons. Density functional calculations reveal that during oxidation and reduction the electrons are withdrawn or added to the surface of the spherical nanomolecules, and no Cu(2+) species are involved.

  12. Resonance energy transfer: The unified theory via vector spherical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherentmore » in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.« less

  13. Synthetic approaches to construct viral capsid-like spherical nanomaterials.

    PubMed

    Matsuura, Kazunori

    2018-06-06

    This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins. By mimicking the self-assembly of spherical viral capsids and clathrin, trigonal peptide conjugates bearing β-sheet-forming peptides, glutathiones, or coiled-coil-forming peptides were developed to construct viral capsid-like particles. β-Annulus peptides from tomato bushy stunt virus self-assembled into viral capsid-like nanocapsules with a size of 30-50 nm, which could encapsulate various guest molecules and be decorated with different molecules on their surface. Rationally designed fusion proteins bearing symmetric assembling units afforded precise viral capsid-like polyhedral assemblies. These synthetic approaches to construct artificial viruses could become useful guidelines to develop novel drug carriers, vaccine platforms, nanotemplates and nanoreactors.

  14. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  15. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  16. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.

    PubMed

    Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J

    2007-06-28

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  17. Orthogonal fast spherical Bessel transform on uniform grid

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.

    2017-07-01

    We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.

  18. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  19. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  20. Giant Spherical Cluster with I-C140 Fullerene Topology**

    PubMed Central

    Heinl, Sebastian; Peresypkina, Eugenia; Sutter, Jörg; Scheer, Manfred

    2015-01-01

    We report on an effective cluster expansion of CuBr-linked aggregates by the increase of the steric bulk of the CpR ligand in the pentatopic molecules [CpRFe(η5-P5)]. Using [CpBIGFe(η5-P5)] (CpBIG=C5(4-nBuC6H4)5), the novel multishell aggregate [{CpBIGFe(η5:2:1:1:1:1:1-P5)}12(CuBr)92] is obtained. It shows topological analogy to the theoretically predicted I-C140 fullerene molecule. The spherical cluster was comprehensively characterized by various methods in solution and in the solid state. PMID:26411255

  1. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    PubMed Central

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  2. A general mixture theory. I. Mixtures of spherical molecules

    NASA Astrophysics Data System (ADS)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  3. Giant Spherical Cluster with I-C140 Fullerene Topology.

    PubMed

    Heinl, Sebastian; Peresypkina, Eugenia; Sutter, Jörg; Scheer, Manfred

    2015-11-02

    We report on an effective cluster expansion of CuBr-linked aggregates by the increase of the steric bulk of the Cp(R) ligand in the pentatopic molecules [Cp(R)Fe(η(5)-P5)]. Using [Cp(BIG)Fe(η(5)-P5)] (Cp(BIG)=C5(4-nBuC6H4)5), the novel multishell aggregate [{Cp(BIG)Fe(η(5:2:1:1:1:1:1)-P5)}12(CuBr)92] is obtained. It shows topological analogy to the theoretically predicted I-C140 fullerene molecule. The spherical cluster was comprehensively characterized by various methods in solution and in the solid state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The method of planes pressure tensor for a spherical subvolume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, D. M., E-mail: d.heyes@imperial.ac.uk; Smith, E. R., E-mail: edward.smith05@imperial.ac.uk; Dini, D., E-mail: d.dini@imperial.ac.uk

    2014-02-07

    Various formulas for the local pressure tensor based on a spherical subvolume of radius, R, are considered. An extension of the Method of Planes (MOP) formula of Todd et al. [Phys. Rev. E 52, 1627 (1995)] for a spherical geometry is derived using the recently proposed Control Volume formulation [E. R. Smith, D. M. Heyes, D. Dini, and T. A. Zaki, Phys. Rev. E 85, 056705 (2012)]. The MOP formula for the purely radial component of the pressure tensor is shown to be mathematically identical to the Radial Irving-Kirkwood formula. Novel offdiagonal elements which are important for momentum conservation emergemore » naturally from this treatment. The local pressure tensor formulas for a plane are shown to be the large radius limits of those for spherical surfaces. The radial-dependence of the pressure tensor computed by Molecular Dynamics simulation is reported for virtual spheres in a model bulk liquid where the sphere is positioned randomly or whose center is also that of a molecule in the liquid. The probability distributions of angles relating to pairs of atoms which cross the surface of the sphere, and the center of the sphere, are presented as a function of R. The variance in the shear stress calculated from the spherical Volume Averaging method is shown to converge slowly to the limiting values with increasing radius, and to be a strong function of the number of molecules in the simulation cell.« less

  5. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  6. Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.

    PubMed

    Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan

    2018-04-01

    UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.

  7. Hierarchical Self-Organization of AB n Dendron-like Molecules into a Supramolecular Lattice Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xueyan; Zhang, Ruimeng; Li, Yiwen

    To understand the hierarchical self-organization behaviors of soft materials as well as their dependence on molecular geometry, a series of ABn dendron-type giant molecules based on polyhedral oligomeric silsesquioxane (POSS) nanoparticles were designed and synthesized. The apex of these molecules is a hydrophilic POSS cage with fourteen hydroxyl groups (denoted DPOSS). At its periphery, there are different numbers (n = 1–8) of hydrophobic POSS cages with seven isobutyl groups (denoted BPOSS), connected to the apical DPOSS via flexible dendron type linker(s). With varying the BPOSS number from one to seven, a supramolecular lattice formation sequence ranging from lamella (DPOSS-BPOSS), doublemore » gyroid (space group of Ia3d, DPOSS-BPOSS2), hexagonal cylinder (space group of P6mm, DPOSS-BPOSS3), Frank-Kasper A15 (space group of Pm3n, DPOSS-BPOSS4, DPOSS-BPOSS5, and DPOSS-BPOSS6), to Frank-Kasper sigma (space group of P42/mnm, DPOSS-BPOSS7) phases can be observed. The nanostructure formations in this series of ABn dendron-type giant molecules are mainly directed by the macromolecular geometric shapes. Furthermore, within each spherical motif, the soft spherical core is consisted of hydrophilic DPOSS cages with flexible linkages, while the hydrophobic BPOSS cages form the relative rigid shell and contact with neighbors to provide decreased interfaces among the spherical motifs for constructing final polyhedral motifs in these Frank-Kasper lattices. This study provides the design principle of macromolecules with specific geometric shapes and functional groups to achieve anticipated structures and macroscopic properties.« less

  8. A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Siavosh-Haghighi, Ali; Sewell, Thomas D.; Thompson, Donald L.

    2014-07-01

    Classical molecular dynamics simulations were used to study the relaxation of an excited nitromethane molecule in perfect crystalline nitromethane at 250 K and 1 atm pressure. The molecule was instantaneously excited by statistically distributing energy E∗ between 25.0 kcal/mol and 125.0 kcal/mol among the 21 degrees of freedom of the molecule. The relaxation occurs exponentially with time constants between 11.58 ps and 13.57 ps. Energy transfer from the excited molecule to surrounding quasi-spherical shells of molecules occurs concurrently to both the nearest and next-nearest neighbor shells, but with more energy per molecule transferred more rapidly to the first shell.

  9. Huygens-Fresnel picture for electron-molecule elastic scattering★

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2017-11-01

    The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  10. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  11. The spherical-harmonics representation for the interaction between diatomic molecules: The general case and applications to COsbnd CO and COsbnd HF

    NASA Astrophysics Data System (ADS)

    Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.; Barreto, Rodrigo L. P.; Palazzetti, Federico; Albernaz, Alessandra F.; Lombardi, Andrea; Maciel, Glauciete S.; Aquilanti, Vincenzo

    2017-07-01

    The spherical-harmonics expansion is a mathematically rigorous procedure and a powerful tool for the representation of potential energy surfaces of interacting molecular systems, determining their spectroscopic and dynamical properties, specifically in van der Waals clusters, with applications also to classical and quantum molecular dynamics simulations. The technique consists in the construction (by ab initio or semiempirical methods) of the expanded potential interaction up to terms that provide the generation of a number of leading configurations sufficient to account for faithful geometrical representations. This paper reports the full general description of the method of the spherical-harmonics expansion as applied to diatomic-molecule - diatomic-molecule systems of increasing complexity: the presentation of the mathematical background is given for providing both the application to the prototypical cases considered previously (O2sbnd O2, N2sbnd N2, and N2sbnd O2 systems) and the generalization to: (i) the COsbnd CO system, where a characteristic feature is the lower symmetry order with respect to the cases studied before, requiring a larger number of expansion terms necessary to adequately represent the potential energy surface; and (ii) the COsbnd HF system, which exhibits the lowest order of symmetry among this class of aggregates and therefore the highest number of leading configurations.

  12. Generalizations of the Toda molecule

    NASA Astrophysics Data System (ADS)

    Van Velthoven, W. P. G.; Bais, F. A.

    1986-12-01

    Finite-energy monopole solutions are constructed for the self-dual equations with spherical symmetry in an arbitrary integer graded Lie algebra. The constraint of spherical symmetry in a complex noncoordinate basis leads to a dimensional reduction. The resulting two-dimensional ( r, t) equations are of second order and furnish new generalizations of the Toda molecule equations. These are then solved by a technique which is due to Leznov and Saveliev. For time-independent solutions a further reduction is made, leading to an ansatz for all SU(2) embeddings of the Lie algebra. The regularity condition at the origin for the solutions, needed to ensure finite energy, is also solved for a special class of nonmaximal embeddings. Explicit solutions are given for the groups SU(2), SO(4), Sp(4) and SU(4).

  13. Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei

    2013-01-01

    At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…

  14. A spherical electron cloud hopping model for studying product branching ratios of dissociative recombination.

    PubMed

    Yu, Hua-Gen

    2008-05-21

    A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.

  15. Molecular theory for self assembling mixtures of patchy colloids and colloids with spherically symmetric attractions: The single patch case

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.; Chapman, Walter G.

    2013-09-01

    In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.

  16. Fabrication of metal nanoshells

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); King, Glen C. (Inventor); Lillehei, Peter T. (Inventor); Park, Yeonjoon (Inventor); Elliott, Jr., James R. (Inventor); Choi, Sang H. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.

  17. Polymeric and Lipid Membranes—From Spheres to Flat Membranes and vice versa

    PubMed Central

    Saveleva, Mariia S.; Gorin, Dmitry A.; Skirtach, Andre G.

    2017-01-01

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect “infinite” or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized. PMID:28809796

  18. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    PubMed

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  19. Equilibrium location for spherical DNA and toroidal cyclodextrin

    NASA Astrophysics Data System (ADS)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-05-01

    Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.

  20. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    PubMed

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  1. Absorption of Deuterium Fluoride Laser Radiation by the Atmosphere

    DTIC Science & Technology

    1976-04-01

    30 lines, and it would have been prohibitively costly in terms of time and money to measure the ab- sorption on all lines. McClatchey, et al.[3...linear molecule (N2O, CO2, CO) Herzberg [5] gives as an approximation 14 ^ Vi ~_ i’: (45) so that (47) qR(T) hcB V. (ln\\ 1.0 For asymmetric...top molecules (H20, 03) Herzberg [5] gives as an approximation (48) so that ABC \\hc; (49) ±-^f) For spherical top molecules (CH4) Herzberg [5

  2. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  3. Determination of pitch rotation in a spherical birefringent microparticle

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  4. Probing C60

    NASA Astrophysics Data System (ADS)

    Curl, Robert F.; Smalley, Richard E.

    1988-11-01

    Experiments involving the laser vaporization of graphite have indicated that one particular cluster of carbon, C60, is preeminently stable; this special stability may be evidence that C60 can readily take the form of a hollow truncated icosahedron (a sort of molecular soccerball). If true, this structure for C60 would be the first example of a spherical aromatic molecule. In fact, because of symmetry properties unique to the number 60, it may be the most perfectly spherical, edgeless molecule possible. Its rapid formation in condensing carbon vapors and its extreme chemical and photophysical stability may have far-reaching implications in a number of areas, particularly combustion science and astrophysics. For these reasons C60 and other clusters of carbon have continued to be the subject of intense research. This article provides a short review of the many new experimental probes of the properties of C60 and related carbon clusters.

  5. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality withmore » results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less

  6. On macromolecular refinement at subatomic resolution with interatomic scatterers

    PubMed Central

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-01-01

    A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package. PMID:18007035

  7. On macromolecular refinement at subatomic resolution with interatomic scatterers.

    PubMed

    Afonine, Pavel V; Grosse-Kunstleve, Ralf W; Adams, Paul D; Lunin, Vladimir Y; Urzhumtsev, Alexandre

    2007-11-01

    A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than approximately 1.0 A) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 A, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  8. Accurate thermodynamics for short-ranged truncations of Coulomb interactions in site-site molecular models

    NASA Astrophysics Data System (ADS)

    Rodgers, Jocelyn M.; Weeks, John D.

    2009-12-01

    Coulomb interactions are present in a wide variety of all-atom force fields. Spherical truncations of these interactions permit fast simulations but are problematic due to their incorrect thermodynamics. Herein we demonstrate that simple analytical corrections for the thermodynamics of uniform truncated systems are possible. In particular, results for the simple point charge/extended (SPC/E) water model treated with spherically truncated Coulomb interactions suggested by local molecular field theory [J. M. Rodgers and J. D. Weeks, Proc. Natl. Acad. Sci. U.S.A. 105, 19136 (2008)] are presented. We extend the results developed by Chandler [J. Chem. Phys. 65, 2925 (1976)] so that we may treat the thermodynamics of mixtures of flexible charged and uncharged molecules simulated with spherical truncations. We show that the energy and pressure of spherically truncated bulk SPC/E water are easily corrected using exact second-moment-like conditions on long-ranged structure. Furthermore, applying the pressure correction as an external pressure removes the density errors observed by other research groups in NPT simulations of spherically truncated bulk species.

  9. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20

    DOE PAGES

    Michael, J. Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily forl ≤ 4. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7.more » In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle–Coppens method in the Wolfram Mathematicasoftware to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.« less

  10. A method to obtain static potential for electron-molecule scattering

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan

    2014-05-01

    Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.

  11. Single molecule diffusion and the solution of the spherically symmetric residence time equation.

    PubMed

    Agmon, Noam

    2011-06-16

    The residence time of a single dye molecule diffusing within a laser spot is propotional to the total number of photons emitted by it. With this application in mind, we solve the spherically symmetric "residence time equation" (RTE) to obtain the solution for the Laplace transform of the mean residence time (MRT) within a d-dimensional ball, as a function of the initial location of the particle and the observation time. The solutions for initial conditions of potential experimental interest, starting in the center, on the surface or uniformly within the ball, are explicitly presented. Special cases for dimensions 1, 2, and 3 are obtained, which can be Laplace inverted analytically for d = 1 and 3. In addition, the analytic short- and long-time asymptotic behaviors of the MRT are derived and compared with the exact solutions for d = 1, 2, and 3. As a demonstration of the simplification afforded by the RTE, the Appendix obtains the residence time distribution by solving the Feynman-Kac equation, from which the MRT is obtained by differentiation. Single-molecule diffusion experiments could be devised to test the results for the MRT presented in this work. © 2011 American Chemical Society

  12. Overset grid implementation of the complex Kohn variational method for electron-polyatomic molecule scattering

    NASA Astrophysics Data System (ADS)

    McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren

    2017-04-01

    The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).

  13. {331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity

    NASA Astrophysics Data System (ADS)

    Song, Yahui; Miao, Tingting; Zhang, Peina; Bi, Cuixia; Xia, Haibing; Wang, Dayang; Tao, Xutang

    2015-04-01

    We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities.We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities. Electronic supplementary information (ESI) available: Extra TEM images and extinction spectra of the corresponding TOH Au NCs obtained with CTAB-Au seeds and CTAC-Au seeds, cyclic voltammograms of the corresponding TOH Au NCs with {221} facets and {331} facets in 0.50 M H2SO4 medium, cyclic voltammograms of TOH Au NCs with different sizes in 0.50 M H2SO4 medium and in 0.50 M KOH medium, the variation of oxidation peak current density of the GCEs modified by the 110 nm TOH Au NCs at different scanning cycle numbers, experimental extinction spectra of TOH Au NCs of different sizes, SERS spectra of 4-ATP molecules on the aggregates of 175 nm TOH Au NCs and 170 nm spherical Au NCs, the normal Raman spectrum of the neat film of the 4-ATP molecule, and summarized data of the Raman intensity and SERS enhancement factors of the TOH Au NCs with different sizes in specific Raman bands. See DOI: 10.1039/c5nr01049g

  14. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  15. DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO) m quantum dots interacting with CO, NO2 and SO3 molecules

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sankarasubramanian; Shankar, Ramasamy; Kolandaivel, Ponmalai

    2018-03-01

    Hollow spherical (HS) and hollow cubic (HC) (ZnO) m quantum dots (QDs) were constructed and optimized using density functional theory (DFT) method. CO, NO2 and SO3 molecules were used to interact with the HC and HS (ZnO) m QDs at the centre and on the surface of the QDs. The changes in the electronic energy levels of HC and HS (ZnO) m QDs due to the interactions of CO, NO2 and SO3 molecules have been studied. The electronic and spectroscopic properties, such as density of states, HOMO-LUMO energy gap, absorption spectra, IR and Raman spectra of HC and HS (ZnO) m QDs have been studied using DFT and Time dependent-DFT (TD-DFT) methods. The interaction energy values show that the SO3 molecule has strongly interacted with HC and HS (ZnO) m QDs than the CO and NO2 molecules. The results of the density of states show that the HC QDs have peaks that are very close to each other, whereas the same is found to be broad in the HS QDs. The HOMO-LUMO energy gap is more for the HS QDs than the HC QDs, and also it gets decreased, when the NO2 and SO3 molecules interact at the centre of the HC and HS (ZnO) m QDs. The blue and red shifts were observed in the absorption spectra of HS and HC QDs. The natural transition orbital (NTO) plot reveals that the interaction of the molecules on the surface of the QDs reduce the chance of electron-hole recombination; hence the energy gap increases for NO2 and SO3 molecular interactions on the surface of the HC and HS (ZnO) m QDs. The vibrational assignments have been made for HC and HS QDs interacting with CO, NO2 and SO3 molecules.

  16. Surface-enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerker, M.; Wang, D.S.; Chew, H.

    1980-12-15

    A model for Raman scattering by a molecule adsorbed at the surface of a spherical particle is articulated by treating the molecule as a classical electric dipole. This follows Moskovits's suggestion (J. Chem. Phys. 69, 4159 (1978)) and the experiments by Creighton et al. (J. Chem. Soc. Faraday Trans. II, 75, 790(1979)) that such a system may exhibit SERS simlar to that at roughened electrode surfaces. The molecule is stimulated by a primary field comprised of the incident and near-scattered fields. Emission consists of the dipole field plus a scattered field, each at the shifted frequency. Addition of feedback termsmore » between the dipole and the particle makes only a negligible contribution to the fields. For pyridine adsorbed at the surface of a silver sphere, the 1010 cm/sup -1/ band is enhanced by approx.10/sup 6/ if the radius is much less than the wavelengths and the excitation wavelength is approx.382 nm, a wavelength for which the relative refractive index of silver is close to m = ..sqrt..2i. Detailed results are given for the effect upon the angular distribution and the polarization of the Raman emission of particle size, distance from the surface, excitation wavelength, and location of the molecule upon the surface. These results simulate those observed at roughened silver electrodes and suggest that the mechanism of SERS at those electrodes may resemble the electromagnetic mechanism elucidated here. The authors predict that comparable effects should be observed for fluorescent scattering. 53 references, 9 figures.« less

  17. Global bending quantum number and the absence of monodromy in the HCN{r_reversible}CNH molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efstathiou, K.; Sadovskii, D.A.; Joyeux, M.

    We introduce and analyze a model system based on a deformation of a spherical pendulum that can be used to reproduce large amplitude bending vibrations of flexible triatomic molecules with two stable linear equilibria. On the basis of our model and the recent vibrational potential [ J. Chem. Phys. 115, 3706 (2001) ], we analyze the HCN/CNH isomerizing molecule. We find that HCN/CNH has no monodromy and introduce the second global bending quantum number for this system at all energies where the potential is expected to work. We also show that LiNC/LiCN is a qualitatively different system with monodromy.

  18. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  19. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  20. A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun

    2015-04-01

    The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles.The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles. Electronic supplementary information (ESI) available: detailed synthesis procedure, tables, crystal data in CIF files, IR data, TGA results and powder X-ray diffractogram for 1. CCDC 1042228. See DOI: 10.1039/c5nr01222h

  1. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2014-11-01

    Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene) (PS-b-PEO) diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical) macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  2. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  3. Mercedes-Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Holovko, M. F.

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  4. Mercedes–Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    PubMed Central

    Urbic, T.; Holovko, M. F.

    2011-01-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  5. The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules

    NASA Technical Reports Server (NTRS)

    Cheremisin, F. G.

    1972-01-01

    Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.

  6. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  7. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  8. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  9. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  10. On macromolecular refinement at subatomic resolution with interatomic scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented bymore » additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less

  11. Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model.

    PubMed

    Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali

    2018-02-28

    Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.

  12. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-07

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. © 2011 American Institute of Physics

  13. Fullerenes formation in flames

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.

    1993-01-01

    Fullerenes are composed of carbon atoms arranged in approximately spherical or ellipsoidal cages resembling the geodesic domes designed by Buckminster Fuller, after whom the molecules were named. The approximately spherical fullerene, which resembles a soccer ball and contains sixty atoms (C60), is called buckminsterfullerene. The fullerene containing seventy carbon atoms (C70) is approximately ellipsoidal, similar to a rugby ball. Fullerenes were first detected in 1985, in carbon vapor produced by laser evaporation of graphite. The closed shell structure, which has no edge atoms vulnerable to reaction, was proposed to explain the observed high stability of certain carbon clusters relative to that of others at high temperatures and in the presence of an oxidizing gas.

  14. Asymptotic behavior and interpretation of virtual states: The effects of confinement and of basis sets

    NASA Astrophysics Data System (ADS)

    Boffi, Nicholas M.; Jain, Manish; Natan, Amir

    2016-02-01

    A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.

  15. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chi-Jen; Ackerman, David M.; Slowing, Igor I.

    2014-07-14

    Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P~(R-R c) σ, where passing is sterically blocked for R≤R c, with σ below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotationalmore » degrees of freedom for elongated molecules.« less

  17. Self-dual monopoles and toda molecules

    NASA Astrophysics Data System (ADS)

    Ganoulis, N.; Goddard, P.; Olive, D.

    1982-07-01

    Stable static solutions to a gauge field theory with a Higgs field in the adjoint representation and with vanishing self-coupling are self-dual in the sense of Bogomolny. Leznov and Saveliev showed that a specific form of spherical symmetry reduces these equations to a modified form of the Toda molecule equations associated with the overall gauge symmetry G. Values of the constants of integration are found in terms of the distant Higgs field, guaranteeing regularity of the solution at the origin. The expressions hold for any simple Lie group G, depending on G via its root system.

  18. Study the Formation of H2, HD and D2 under Various Interstellar Conditions

    NASA Astrophysics Data System (ADS)

    Sahu, Dipen; Chakrabarti, Sandip Kumar; Das, Ankan

    2016-07-01

    Hydrogen is the most abundant molecule in the Interstellar medium (ISM). Formation of gas phase hydrogen molecule is inefficient; perhaps grain surface acts as a necessary ingredients for the formation of H_2 molecule. H atoms accrete on the grain surface, recombine there and desorb in the gas phase. Similarly, deuterium accretion on grain surfaces can produce simple dueterated molecules (HD and D_2) on the ISM. Unlike gas phase reactions, rate equations can not yield accurate result for grain surface reactions due to inherent randomness of surface species. We use Monte-Carlo method to follow this surface chemistry which effectively take care of this randomness. We use square grids and impose periodic boundary condition on them to mimic the spherical nature of grains. Various types of rough surfaces are considered to study the impact on effective production rates. We found that these simple but most important molecules are produced in low temperature (physisorption sites) as well as in high temperature (chemisorption sites) regions.

  19. Roto-translational Raman spectra of pairs of hydrogen molecules from first principles.

    PubMed

    Gustafsson, Magnus; Frommhold, Lothar; Li, Xiaoping; Hunt, K L C

    2009-04-28

    We calculate the collision-induced, roto-translational, polarized, and depolarized Raman spectra of pairs of H(2) molecules. The Schrodinger equation of H(2)-H(2) scattering in the presence of a weak radiation field is integrated in the close-coupled scheme. This permits the accounting for the anisotropy of the intermolecular potential energy surface and thereby it includes mixing of polarizability components. The static polarizability invariants, trace and anisotropy, of two interacting H(2) molecules were obtained elsewhere [Li et al., J. Chem. Phys. 126, 214302 (2007)] from first principles. Here we report the associated spherical tensor components which, along with the potential surface, are input in the calculation of the supramolecular Raman spectra. Special attention is paid to the interferences in the wings of the rotational S(0)(0) and S(0)(1) lines of the H(2) molecule. The calculated Raman pair spectra show reasonable consistency with existing measurements of the polarized and depolarized Raman spectra of pairs of H(2) molecules.

  20. Self-assembly of tetravalent Goldberg polyhedra from 144 small components

    NASA Astrophysics Data System (ADS)

    Fujita, Daishi; Ueda, Yoshihiro; Sato, Sota; Mizuno, Nobuhiro; Kumasaka, Takashi; Fujita, Makoto

    2016-12-01

    Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules—for example, spherical virus capsids—are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.

  1. Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi

    2017-02-01

    We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).

  2. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice.

    PubMed

    Lu, Wen; He, Lang Chong; Wang, Chang He; Li, Yan Hua; Zhang, San Qi

    2008-10-01

    Taspine solid lipid nanoparticles (Ta-SLN) and taspine solid lipid nanoparticles modified by galactoside (Ta-G2SLN) were prepared by the film evaporation-extrusion method. The nanoparticles were spherical or near-spherical particles with smooth surface, small size and high encapsulation efficiency. Ta-G2SLN and Ta-SLN showed significant inhibition on 7721 cell growth. Intravenous injection of either Ta-SLN or Ta-G2SLN resulted in a higher plasma and liver concentration and a longer retention time in mice compared with the administration of Ta. These results suggested that SLN tended to be preferentially delivered to the liver and Ta-G2SLN may further enhance liver targeting.

  3. Thermally driven mass flows in the convection zone of the sun

    NASA Technical Reports Server (NTRS)

    Dijkhuis, G. C.

    1973-01-01

    A formulation of the fluid dynamics of convective regions is developed which leads to an analytical description of the solar rotation, the Evershed flow, and the supergranulation. The starting point of the present formulation is the mixing length picture of convective equilibrium, but the earlier point mass model for convective molecules is replaced here by a model with both inertia and intrinsic moment of inertia. This extension introduces three rotational degrees of freedom into the dynamics of individual convective molecules, which enter into the dynamical equations for a mixing length fluid in the form of a separate vector field which we term the spin field. It is shown that for convective molecules having a spherically symmetric mass distribution, the spin field is proportional to the local vorticity.

  4. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  5. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  6. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.

    PubMed

    Michael, J Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7 (Paturle & Coppens, 1988). In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.

  7. Microencapsulation Of Living Cells

    NASA Technical Reports Server (NTRS)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  8. Preparation of Ultrahigh Molecular Weight Polyethylene/Graphene Nanocomposite In situ Polymerization via Spherical and Sandwich Structure Graphene/Sio2 Support

    NASA Astrophysics Data System (ADS)

    Su, Enqi; Gao, Wensheng; Hu, Xinjun; Zhang, Caicai; Zhu, Bochao; Jia, Junji; Huang, Anping; Bai, Yongxiao

    2018-04-01

    Reduced graphene oxide/SiO2 (RGO/SiO2) serving as a novel spherical support for Ziegler-Natta (Z-N) catalyst is reported. The surface and interior of the support has a porous architecture formed by RGO/SiO2 sandwich structure. The sandwich structure is like a brick wall coated with a graphene layer of concreted as skeleton which could withstand external pressures and endow the structure with higher support stabilities. After loading the Z-N catalyst, the active components anchor on the surface and internal pores of the supports. When the ethylene molecules meet the active centers, the molecular chains grow from the surface and internal catalytic sites in a regular and well-organized way. And the process of the nascent molecular chains filled in the sandwich structure polymerization could ensure the graphene disperse uniformly in the polymer matrix. Compared with traditional methods, the porous spherical graphene support of this strategy has far more advantages and could maintain an intrinsic graphene performance in the nanocomposites.

  9. Self assembly of anisotropic colloidal particles

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Wyss, Hans

    2012-02-01

    Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.

  10. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  11. Computational evidence for stable inorganic fullerene-like structures of ceramic and semiconductor materials

    NASA Astrophysics Data System (ADS)

    Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.

    2001-12-01

    Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.

  12. Shape Effect in the Design of Nanowire Coated Microparticles as Transepithelial Drug Delivery Devices

    PubMed Central

    Uskoković, Vuk; Lee, Kunwoo; Lee, Phin Peng; Fischer, Kathleen E.; Desai, Tejal A.

    2012-01-01

    While the oral drug delivery route has traditionally been the most popular among patients, it is estimated that 90 % of therapeutic compounds possess oral bioavailability limitations. Thus, the development of novel drug carriers for more effective oral delivery of therapeutics is an important goal. Composite particles made by growing nanoscopic silicon wires from the surface of narrowly dispersed, microsized silica beads were previously shown to be able to: (a) adhere well onto the epithelium by interdigitating their nanowires with the apical microvilli; and (b) increase the permeability of Caco-2 cell monolayers with respect to small organic molecules in direct proportion to their concentration. A comparison between the effects of spherical and planar particle morphologies on the permeability of the epithelial cell layer in vitro and in vivo presented the subject of this study. Owing to their larger surface area, the planar particles exhibited a higher drug loading efficiency than their spherical counterparts, while simultaneously increasing the transepithelial permeation of a moderately sized model drug, insulin. The insulin elution profile for planar nanowire-coated particles displayed a continual increase in the cumulative amount of the released drug, approaching a constant release rate for 1 – 4 h period of the elution time. An immunohistochemical study confirmed the ability of planar silica particles coated with nanowires to loosen the tight junction of the epithelial cells to a greater extent than the spherical particles did, thus enabling a more facile transport of the drug across the epithelium. Transepithelial permeability tests conducted for model drugs ranging in size from 0.4 to 150 kDa yielded three categories of molecules depending on their permeation propensities. Insulin belonged to the category of molecules deliverable across the epithelium only with the assistance of nanowire-coated particles. Other groups of drugs, smaller and bigger, respectively, either did not need the carrier to permeate the epithelium or were not able to cross it even with the support from the nanowire-coated particles. Bioavailability of insulin orally administered to rabbits was also found to be increased when delivered in conjunction with the nanowire-coated planar particles. PMID:22900471

  13. Sulfur Chemistry in the Envelope of VY Canis Majoris: Detailed Analysis of SO and SO2 Emission

    NASA Astrophysics Data System (ADS)

    Adande, G. R.; Edwards, J. L.; Ziurys, L. M.

    2013-11-01

    Detailed radiative transfer modeling has been carried out for SO2 and SO originating in the envelope of the O-rich supergiant star VY Canis Majoris (VY CMa). A total of 27 transitions of SO2 and 7 transitions of SO lying in the energy range 3.0-138.2 cm-1 were analyzed using a new non-LTE radiative transfer code that incorporates non-spherical geometries. The spectra were primarily obtained from the Arizona Radio Observatory (ARO) 1 mm spectral survey of VY CMa, conducted with the Submillimeter Telescope; additional lines were measured with the ARO 12 m antenna at 2 and 3 mm. SO2 and SO were found to arise from five distinct outflows within the envelope, four which are asymmetric with respect to the star. Three flows arise from high-velocity red-shifted material, one from a blue-shifted wind, and the final from a classic "spherical" expansion. In the spherical component, the peak fractional abundance, relative to H2, of both molecules is f ~ 2.5 × 10-7 at r ~ 25 R *, and steadily decreases outward. SO2 appears to be a "parent" molecule, formed near the stellar photosphere. In the asymmetric outflows, both SO and SO2 are more prominent at large stellar radii in dense (106-107 cm-3), clumpy material, achieving their maximum abundance between 200 and 600 R * with f ~ 3.0 × 10-8-1.5 × 10-7. These results suggest that in the collimated outflows, both species are either produced by shock chemistry or are remnant inner shell material swept up in the high-velocity winds.

  14. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  15. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  16. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  17. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  18. From sphere to polyhedron: a hypothesis on the formation of high-index surfaces in nanocrystals.

    PubMed

    Zhou, Yan; Zhang, Junyan; Su, Gang; Li, Jiangong

    2014-10-06

    The morphology of tetrahexahedral nanocrystals could be understood on the basis of a hypothesis that the atoms or molecules on or near spherical surfaces can migrate till reaching their equilibrium positions. Such migration of atoms/molecules is shown to be closely related to the formation of high-index surfaces in nanopolyhedrons. On account of this hypothesis, a theoretical calculation about the indices of the surfaces in tetrahexahedrons is found in good agreement with the empirical results. A group of high-index surfaces for nanocrystals that can be formed under certain environments are thus predicted. This study may provide a novel idea for preparing the catalysts at nanoscale.

  19. Fundamental equations of a mixture of gas and small spherical solid particles from simple kinetic theory.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.

    1973-01-01

    The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.

  20. Behaviour of nematic liquid crystals doped with ferroelectric nanoparticles in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Emdadi, M.; Poursamad, J. B.; Sahrai, M.; Moghaddas, F.

    2018-06-01

    A planar nematic liquid crystal cell (NLC) doped with spherical ferroelectric nanoparticles is considered. Polarisation of the nanoparticles are assumed to be along the NLC molecules parallel and antiparallel to the director with equal probability. The NLC molecules anchoring to the cell walls are considered to be strong, while soft anchoring at the nanoparticles surface is supposed. Behaviour of the NLC molecules and nanoparticles in the presence of a perpendicular electric field to the NLC cell is theoretically investigated. The electric field of the nanoparticles is taken into account in the calculations. Freedericksz transition (FT) threshold field in the presence of nanoparticles is found. Then, the director and particles reorientations for the electric fields larger than the threshold field are studied. Measuring the onset of the nanoparticles reorientation is proposed as a new method for the FT threshold measurement.

  1. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  2. Theoretical investigation of gas-surface interactions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1990-01-01

    A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.

  3. Electron correlation by polarization of interacting densities

    NASA Astrophysics Data System (ADS)

    Whitten, Jerry L.

    2017-02-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.

  4. Symmetry-Based Techniques for Qualitative Understanding of Rovibrational Effects in Spherical-Top Molecular Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin Chadwick

    2011-12-01

    Using light to probe the structure of matter is as natural as opening our eyes. Modern physics and chemistry have turned this art into a rich science, measuring the delicate interactions possible at the molecular level. Perhaps the most commonly used tool in computational spectroscopy is that of matrix diagonalization. While this is invaluable for calculating everything from molecular structure and energy levels to dipole moments and dynamics, the process of numerical diagonalization is an opaque one. This work applies symmetry and semi-classical techniques to elucidate numerical spectral analysis for high-symmetry molecules. Semi-classical techniques, such as the Potential Energy Surfaces, have long been used to help understand molecular vibronic and rovibronic spectra and dynamics. This investigation focuses on newer semi-classical techniques that apply Rotational Energy Surfaces (RES) to rotational energy level clustering effects in high-symmetry molecules. Such clusters exist in rigid rotor molecules as well as deformable spherical tops. This study begins by using the simplicity of rigid symmetric top molecules to clarify the classical-quantum correspondence of RES semi-classical analysis and then extends it to a more precise and complete theory of modern high-resolution spectra. RES analysis is extended to molecules having more complex and higher rank tensorial rotational and rovibrational Hamiltonians than were possible to understand before. Such molecules are shown to produce an extraordinary range of rotational level clusters, corresponding to a panoply of symmetries ranging from C4v to C2 and C1 (no symmetry) with a corresponding range of new angular momentum localization and J-tunneling effects. Using RES topography analysis and the commutation duality relations between symmetry group operators in the lab-frame to those in the body-frame, it is shown how to better describe and catalog complex splittings found in rotational level clusters. Symmetry character analysis is generalized to give analytic eigensolutions. An appendix provides vibrational analogies. For the first time, interactions between molecular vibrations (polyads) are described semi-classically by multiple RES. This is done for the nu 3/2nu4 dyad of CF4. The nine-surface RES topology of the U(9)-dyad agrees with both computational and experimental work. A connection between this and a simpler U(2) example is detailed in an Appendix.

  5. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.

    PubMed

    Li, Hao; Chen, Guang; Das, Siddhartha

    2016-11-01

    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mechanism of bio molecule stabilized selenium nanoparticles against oxidation process and Clostridium Botulinum.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-02-01

    The bio molecules from plant leaf extract utilized in the preparation of selenium material at the nano scale. The selenium ion was reduced to selenium nanoparticles in the presence of molecule residue of the plant leaf extract. The bio molecule stabilized selenium nanoparticles were grown gradually in the reaction mixture. The selenium nanoparticles were characterized using atomic absorption spectroscopy, fourier transform inferred spectroscopy, X-ray diffraction, scanning electronic microscope and transmission electronic microscope. The selenium nanoparticles were synthesized successfully as the nano-crystalline pure hexagonal phase and the size range of 26-41 nm with spherical in shape. The activity and mechanism of nanoparticles suggested that the selenium nanoparticles are causes of leakage of reducing sugars and protein of pathogens membrane cell. The selenium nano are responsible for death and fully inhibited the microbial growth of pathogen. The bio molecule stabilized selenium nanoparticles were also investigated for the antioxidant agent. Selenium nanoparticles showed scavenging activity up to 94.48%. These results recommended that the advantages of using this method for synthesis of selenium nanoparticles with excellent antioxidant and antimicrobial mechanism and activity, which can be used as the antioxidant and antibiotic agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  8. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.

  9. Soliton-like defects in nematic liquid crystal thin layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less

  10. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  11. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE PAGES

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun; ...

    2017-04-03

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  12. Biosensing via light scattering from plasmonic core-shell nanospheres coated with DNA molecules

    NASA Astrophysics Data System (ADS)

    Xie, Huai-Yi; Chen, Minfeng; Chang, Yia-Chung; Moirangthem, Rakesh Singh

    2017-05-01

    We present both experimental and theoretical studies for investigating DNA molecules attached on metallic nanospheres. We have developed an efficient and accurate numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the Green's function approach with suitable spherical harmonic basis. Next, we use this method to study optical scattering from DNA molecules attached to metallic nanoparticles placed on a substrate and compare with experimental results. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on Au nanoparticles. Our theoretical simulation indicates that the coverage of Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material (which may absorb light), can lead to a small but detectable spectroscopic shift in both the Ψ and Δ spectra with more significant change in Δ spectra in agreement with experimental results. Our studies demonstrated the ultrasensitive capability of SE for sensing submonolayer coverage of DNA molecules on Au nanospheres. Hence the spectroscopic ellipsometric measurements coupled with theoretical analysis via an efficient computation method can be an effective tool for detecting DNA molecules attached on Au nanoparticles, thus achieving label-free, non-destructive, and high-sensitivity biosensing with nanoscale resolution.

  13. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.

    Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.

  14. Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature.

    PubMed

    Arnould, Audrey; Perez, Adrian A; Gaillard, Cédric; Douliez, Jean-Paul; Cousin, Fabrice; Santiago, Liliana G; Zemb, Thomas; Anton, Marc; Fameau, Anne-Laure

    2015-05-01

    Salt-free catanionic systems based on fatty acids exhibit a broad polymorphism by simply tuning the molar ratio between the two components. For fatty acid combined with organic amino counter-ions, very few data are available on the phase behavior obtained as a function of the molar ratio between the counter-ion and the fatty acid. We investigated the choline hydroxide/myristic acid system by varying the molar ratio, R=n(choline hydroxide)/n(myristic acid), and the temperature. Myristic acid ionization state was determined by coupling pH, conductivity and infra-red spectroscopy measurements. Self-assemblies were characterized by small angle neutron scattering and microscopy experiments. Self-assembly thermal behavior was investigated by differential scanning calorimetry, wide angle X-ray scattering and nuclear magnetic resonance. For R<1, ionized and protonated myristic acid molecules coexisted leading to the formation of facetted self-assemblies and lamellar phases. The melting process between the gel and the fluid state of these bilayers induced a structural change from facetted or lamellar objects to spherical vesicles. For R>1, myristic acid molecules were ionized and formed spherical micelles. Our study highlights that both R and temperature are two key parameters to finely control the self-assembly structure formed by myristic acid in the presence of choline hydroxide. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effects of Shapes of Solute Molecules on Diffusion: A Study of Dependences on Solute Size, Solvent, and Temperature.

    PubMed

    Chan, T C; Li, H T; Li, K Y

    2015-12-24

    Diffusivities of basically linear, planar, and spherical solutes at infinite dilution in various solvents are studied to unravel the effects of solute shapes on diffusion. On the basis of the relationship between the reciprocal of diffusivity and the molecular volume of solute molecules with similar shape in a given solvent at constant temperature, the diffusivities of solutes of equal molecular volume but different shapes are evaluated and the effects due to different shapes of two equal-sized solute molecules on diffusion are determined. It is found that the effects are dependent on the size of the solute pairs studied. Evidence of the dependence of the solute-shape effects on solvent properties is also demonstrated and discussed. Here, some new diffusion data of aromatic compounds in methanol at different temperatures are reported. The result for methanol in this study indicates that the effects of solute shape on diffusivity are only weakly dependent on temperature.

  16. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  17. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria.

    PubMed

    Hill, Steven C; Pan, Yong-Le; Williamson, Chatt; Santarpia, Joshua L; Hill, Hanna H

    2013-09-23

    This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B₆ and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.

  18. Excitation energy transfer in molecular complexes: transport processes, optical properties and effects of nearby placed metal nano-particles

    NASA Astrophysics Data System (ADS)

    May, Volkhard; Megow, Jörg; Zelinskyi, Iaroslav

    2012-04-01

    Excitation energy transfer (EET) in molecular systems is studied theoretically. Chromophore complexes are considered which are formed by a butanediamine dendrimer with four pheophorbide-a molecules. To achieve a description with an atomic resolution and to account for the effect of an ethanol solvent a mixed quantum classical methodology is utilized. Details of the EET and spectra of transient anisotropy showing signatures of EET are presented. A particular control of intermolecular EET is achieved by surface plasmons of nearby placed metal nanoparticles (MNP). To attain a quantum description of the molecule-MNP system a microscopic theory is introduced. As a particular application surface plasmon affected absorption spectra of molecular complexes placed in the proximity of a spherical MNP are discussed.

  19. Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes

    NASA Astrophysics Data System (ADS)

    Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.

    2017-03-01

    Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.

  20. Scaling of Linking and Writhing Numbers for Spherically Confined and Topologically Equilibrated Flexible Polymers

    PubMed Central

    Marko, John F.

    2011-01-01

    Scaling laws for Gauss linking number Ca and writhing number Wr for spherically confined flexible polymers with thermally fluctuating topology are analyzed. For ideal (phantom) polymers each of N segments of length unity confined to a spherical pore of radius R there are two scaling regimes: for sufficiently weak confinement (R ⪢ N1/3) each chain has |Wr| ≈ N1/2, and each pair of chains has average |Ca| ≈ N/R3/2; alternately for sufficiently tight confinement (N1/3 ⪢ R), |Wr| ≈ |CA| ≈ N/R3/2. Adding segment-segment avoidance modifies this result: for n chains with excluded volume interactions |Ca| ≈ (N/n)1/2f(ϕ) where f is a scaling function that depends approximately linearly on the segment concentration ϕ = nN/R3. Scaling results for writhe are used to estimate the maximum writhe of a polymer; this is demonstrated to be realizable through a writhing instability that occurs for a polymer which is able to change knotting topology and which is subject to an applied torque. Finally, scaling results for linking are used to estimate bounds on the entanglement complexity of long chromosomal DNA molecules inside cells, and to show how “lengthwise” chromosome condensation can suppress DNA entanglement. PMID:21686050

  1. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    PubMed Central

    Deng, Shaozhong; Xue, Changfeng; Baumketner, Andriy; Jacobs, Donald; Cai, Wei

    2013-01-01

    This paper extends the image charge solvation model (ICSM) [J. Chem. Phys. 131, 154103 (2009)], a hybrid explicit/implicit method to treat electrostatic interactions in computer simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and triaxial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molecular dynamics (MD) simulations. In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the proposed extension is an image approximation method to compute the reaction field for a point charge placed inside such a non-spherical cavity by using a single image charge located outside the cavity. The resulting generalized image charge solvation model (GICSM) is tested in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM simulations as a reference. We find that, for improved computational efficiency due to smaller simulation cells and consequently a less number of explicit solvent molecules, the generalized model can still faithfully reproduce known static and dynamic properties of liquid water at least for systems considered in the present paper, indicating its great potential to become an accurate but more efficient alternative to the ICSM when bio-macromolecules of irregular shapes are to be simulated. PMID:23913979

  2. Maturation of high-density lipoproteins

    PubMed Central

    Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus

    2009-01-01

    Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzatov, D. V., E-mail: dm-guzatov@mail.ru

    Analytic expressions for the radiative and nonradiative decay rates for an electric quadrupole source (atom, molecule) in the vicinity of a spherical particle (dielectric, metal) have been derived and analyzed within the classical electrodynamics. It has been shown that the highest increase in the decay rates appears in the quasi-static case, when the wavelength of the transition in question is much larger than the characteristic size of the system formed by the particle and the quadrupole. Asymptotic expressions for the decay rates have been derived for this case.

  4. Limiting assumptions in molecular modeling: electrostatics.

    PubMed

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  5. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  6. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  7. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  8. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  9. Synthesis of inorganic fullerene-like molecules.

    PubMed

    Bai, Junfeng; Virovets, Alexander V; Scheer, Manfred

    2003-05-02

    The reaction of [Cp*Fe(eta5-P5)] with Cu(I)Cl in solvent mixtures of CH2Cl2/CH3CN leads to the formation of entirely inorganic fullerene-like molecules of the formula [[Cp*Fe(eta5:eta1:eta1:eta1:eta1:eta1-P5)]12[CuCl]10[Cu2Cl3]5[Cu(CH3CN)2]5] (1) possessing 90 inorganic core atoms. This compound represents a structural motif similar to that of C60: cyclo-P5 rings of [Cp*Fe(eta5-P5)] molecules are surrounded by six-membered P4Cu2 rings that result from the coordination of each of the phosphorus lone pairs to CuCl metal centers, which are further coordinated by P atoms of other cyclo-P5 rings. Thus, five- and six-membered rings alternate in a manner comparable to that observed in the fullerene molecules. The so-formed half shells are joined by [Cu2Cl3]- as well as by [Cu(CH3CN)2]+ units. The spherical body has an inside diameter of 1.25 nanometers and an outside diameter of 2.13 nanometers, which is about three times as large as that of C60.

  10. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Pusheng; Asher, Sanford A.

    1999-01-01

    The separation of macromolecules such as polymers and DNA by means of electrophoresis, gel permeation chromatography or filtration exploits size-dependent differences in the time it takes for the molecules to migrate through a random porous network. Transport through the gel matrices, which usually consist of full swollen crosslinked polymers, depends on the relative size of the macromolecule compared with the pore radius. Sufficiently small molecules are thought to adopt an approximately spherical conformation when diffusing through the gel matrix, whereas larger ones are forced to migrate in a snake-like fashion. Molecules of intermediate size, however, can get temporarily trapped in the largest pores of the matrix, where the molecule can extend and thus maximize its conformational entropy. This `entropic trapping' is thought to increase the dependence of diffusion rate on molecular size. Here we report the direct experimental verification of this phenomenon. Bragg diffraction from a hydrogel containing a periodic array of monodisperse water voids confirms that polymers of different weights partition between the hydrogel matrix and the water voids according to the predictions of the entropic trapping theory. Our approach might also lead to the design of improved separation media based on entropic trapping.

  11. C{sub 60}-dyad aggregates: Self-organized structures in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guskova, O. A., E-mail: guskova@ipfdd.de, E-mail: s.raovaranasi@uq.edu.au; Varanasi, S. R., E-mail: guskova@ipfdd.de, E-mail: s.raovaranasi@uq.edu.au; Sommer, J.-U.

    2014-10-14

    Extensive full-atomistic molecular dynamics simulations are performed to study the self-organization of C{sub 60}-fullerene dyad molecules in water, namely phenyl-C{sub 61}-butyric acid methyl ester and fulleropyrrolidines, which have two elements of ordering, the hydrophobic fullerene cage and the hydrophilic/ionic group. While pristine fullerene or phenyl-C{sub 61}-butyric acid methyl ester forms spherical droplets in order to minimize the surface tension, the amphiphilic nature of charged solute molecules leads to the formation of supramolecular assemblies having cylindrical shape driven by charge repulsion between the ionic groups located on the surface of the aggregates. We show that formation of non-spherical micelles is themore » geometrical consequence if the fullerene derivatives are considered as surfactants where the ionized groups are only hydrophilic unit. The agglomeration behavior of fullerenes is evaluated by determining sizes of the clusters, solvent accessible surface areas, and shape parameters. By changing the size of the counterions from chloride over iodide to perchlorate we find a thickening of the cylinder-like structures which can be explained by stronger condensation of larger ions and thus partial screening of the charge repulsion on the cluster surface. The reason for the size dependence of counterion condensation is the formation of a stronger hydration shell in case of small ions which in turn are repelled from the fullerene aggregates. Simulations are also in good agreement with the experimentally observed morphologies of decorated C{sub 60}-nanoparticles.« less

  12. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties.

    PubMed

    Dreyer, Axel; Feld, Artur; Kornowski, Andreas; Yilmaz, Ezgi D; Noei, Heshmat; Meyer, Andreas; Krekeler, Tobias; Jiao, Chengge; Stierle, Andreas; Abetz, Volker; Weller, Horst; Schneider, Gerold A

    2016-05-01

    It is commonly accepted that the combination of the anisotropic shape and nanoscale dimensions of the mineral constituents of natural biological composites underlies their superior mechanical properties when compared to those of their rather weak mineral and organic constituents. Here, we show that the self-assembly of nearly spherical iron oxide nanoparticles in supercrystals linked together by a thermally induced crosslinking reaction of oleic acid molecules leads to a nanocomposite with exceptional bending modulus of 114 GPa, hardness of up to 4 GPa and strength of up to 630 MPa. By using a nanomechanical model, we determined that these exceptional mechanical properties are dominated by the covalent backbone of the linked organic molecules. Because oleic acid has been broadly used as nanoparticle ligand, our crosslinking approach should be applicable to a large variety of nanoparticle systems.

  13. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  14. Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.

    2011-03-01

    Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Itoh; B Kim; R Gearba

    C{sub 60} and C{sub 60}-ferrocene conjugated molecule bearing five carboxylic acids successfully anchor onto a silicon oxide surface as a monolayer through a simple method of simply dipping an amino-terminated surface into the solution of the C{sub 60} derivatives. The monolayer structure was characterized by UV-vis spectroscopy, X-ray reflectivity, X-ray photoelectron spectroscopy, and IR spectroscopy to reveal that the molecules are standing presenting its C{sub 60} spherical face at the surface. The electronic effect of the C{sub 60} monolayer and the ferrocene-functionalized C{sub 60} monolayer in OFET devices was investigated. When an n-type OFET was fabricated on the ferrocene functionalizedmore » monolayer, we see an enhancement in the mobility. When a p-type OFET was made the ferrocene-functionalized C{sub 60} monolayer showed a lowering of the carrier mobility.« less

  16. Design of Polymer-Grafted Particles for Biocompatability

    NASA Astrophysics Data System (ADS)

    Trombly, David; Ganesan, Venkat

    2009-03-01

    Drug designers often coat drug particles with grafted polymers in order to introduce a net repulsion between the particles and blood proteins. This net repulsion results from the energy cost of compressing grafted chains on approach of proteins. It thus overcomes the Van Der Waals attraction between drug and protein which would otherwise cause particle-protein agglomeration and ultimately thrombosis. This study proposes to develop a fundamental understanding of the role of different features in controlling the efficacy of the grafted layers. We address this issue by developing a framework to predict the interactions between a polymer-coated spherical particle and a bare spherical particle. In order to fully capture the two-sphere system, a numerical solution of polymer mean field theory is used in a bispherical coordinate system. Results for protein-particle interaction energies for different design parameters will be presented. For biological applications, polyethylene glycol is often used as the grafted polymer. The unique properties of this molecule will be accounted for using the n-cluster model.

  17. Collective degrees of freedom involved in absorption and desorption of surfactant molecules in spherical non-ionic micelles

    NASA Astrophysics Data System (ADS)

    Ahn, Yong Nam; Mohan, Gunjan; Kopelevich, Dmitry I.

    2012-10-01

    Dynamics of absorption and desorption of a surfactant monomer into and out of a spherical non-ionic micelle is investigated by coarse-grained molecular dynamics (MD) simulations. It is shown that these processes involve a complex interplay between the micellar structure and the monomer configuration. A quantitative model for collective dynamics of these degrees of freedom is developed. This is accomplished by reconstructing a multi-dimensional free energy landscape of the surfactant-micelle system using constrained MD simulations in which the distance between the micellar and monomer centers of mass is held constant. Results of this analysis are verified by direct (unconstrained) MD simulations of surfactant absorption in the micelle. It is demonstrated that the system dynamics is likely to deviate from the minimum energy path on the energy landscape. These deviations create an energy barrier for the monomer absorption and increase an existing barrier for the monomer desorption. A reduced Fokker-Planck equation is proposed to model these effects.

  18. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture.

    PubMed

    Zhong, Ziyi; Ng, Vivien; Luo, Jizhong; Teh, Siew-Pheng; Teo, Jaclyn; Gedanken, Aharon

    2007-05-22

    Copper oxide with various morphologies was synthesized by the hydrolysis of Cu(ac)2 with urea under mild hydrothermal conditions. In the synthesis, a series of organic amines with one or two amine groups (monoamine and diamine), including isobutylamine, octylamine (OLA), dodecylamine, octadecylamine (monoamines), ethylenediamine dihydrochloride, and hexamethylenediamine (diamines), was used as the "structure-directing agent". The monoamines led to the formation of one-dimensional (1D) aggregates of the copper oxide precursor particles (Pre-CuO), while the diamines led to the formation of two-dimensional (2D) aggregates. In both cases, the shorter carbon-chain amine molecules showed a stronger structure-directing function than that of the longer carbon-chain amine molecules. Next, in a series of syntheses, OLA was selected for further study, and the experimental parameters were systematically manipulated. When the hydrolysis was adjusted to a very slow rate by coupling the hydrolysis reaction with an esterification reaction, 1D aggregates of Pre-CuO were formed; when the hydrolysis rate was in the middle range, spherical Pre-CuO architectures composed of smaller linear aggregates were formed. However, under the high hydrolysis rates achieved by increasing the precipitation agent (urea) or by conducting the reaction at high temperatures (>/=120 degrees C), only Pre-CuO nanoparticles with a featureless morphology were formed. The formed spherical Pre-CuO architectures can be converted to a porous structure (CuOx) after removing the OLA molecules via calcination. Compared to the 1D and 2D aggregates, this porous architecture is highly thermally stable and did not collapse even after calcination at 500 degrees C. Preliminary results showed that the porous structure can be used both as a catalyst support and as a catalyst for the oxidation of CO at low temperatures.

  19. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  20. Comparative analysis of ArnCl2 (2 ? n ? 30) clusters taking into account molecular relaxation effects

    NASA Astrophysics Data System (ADS)

    Ferreira, G. G.; Borges, E.; Braga, J. P.; Belchior, J. C.

    Cluster structures are discussed in a nonrigid analysis, using a modified minima search method based on stochastic processes and classical dynamics simulations. The relaxation process is taken into account considering the internal motion of the Cl2 molecule. Cluster structures are compared with previous works in which the Cl2 molecule is assumed to be rigid. The interactions are modeled using pair potentials: the Aziz and Lennard-Jones potentials for the Ar==Ar interaction, a Morse potential for the Cl==Cl interaction, and a fully spherical/anisotropic Morse-Spline-van der Waals (MSV) potential for the Ar==Cl interaction. As expected, all calculated energies are lower than those obtained in a rigid approximation; one reason may be attributed to the nonrigid contributions of the internal motion of the Cl2 molecule. Finally, the growing processes in molecular clusters are discussed, and it is pointed out that the growing mechanism can be affected due to the nonrigid initial conditions of smaller clusters such as ArnCl2 (n ? 4 or 5), which are seeds for higher-order clusters.

  1. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  2. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis)more » spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.« less

  3. Topology of the electron density of d0 transition metal compounds at subatomic resolution.

    PubMed

    Batke, Kilian; Eickerling, Georg

    2013-11-14

    Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.

  4. Theory of Disk-to-Vesicle Transformation

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  5. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    NASA Astrophysics Data System (ADS)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  6. Performance Characterization of the Free Molecule Micro-Resistojet Utilizing Water Propellant (Postprint)

    DTIC Science & Technology

    2007-07-01

    Micci and A. Ketsdever, AIAA Progress in Astronautics and Aeronautics, Vol 187, pp. 45-137, 2000. 3. Janson, S., Helvajian , H ., Hansen, W., and...the radius of the propellant tank. The volume of the empty portion of a spherical propellant tank is given by ( )2 21 33e e t eV h r hπ= + (1...Where the resulting height of the propellant is 2p t eh r h = − (2) A correlation between p t h r and w m M is found in ref. 10. For the

  7. Performance Characterization of the Free Molecule Micro-Resistojet Utilizing Water Propellant (Preprint)

    DTIC Science & Technology

    2007-05-24

    187, pp. 45-137, 2000. 3. Janson, S., Helvajian , H ., Hansen, W., and Lodmell, J. “Microthrusters for Nanosatellites,” The Second International...spherical propellant tank is given by ( )2 21 33e e t eV h r hπ= + (1) Where the resulting height of the propellant is 2p t eh r h = − (2) A...correlation between p t h r and w m M is found in ref. 10. For the parameters of the TD, the resulting mass of the sloshing waves prior to the burn

  8. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  9. Microcavity surface plasmon resonance bio-sensors

    NASA Astrophysics Data System (ADS)

    Mosavian, Nazanin

    This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.

  10. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.

    1992-01-01

    A detailed chemical kinetic scheme is applied to stellar envelope profiles of gas density and temperature profiles in order to study the formation of PAH molecules in carbon-rich stellar outflows. Chemical concentration profiles are calculated for several envelope models by integrating the coupled continuity equations that include spherically expanding flows from an inner boundary at the shock formation radius. The influence of the 'inverse greenhouse' effect experienced by small PAHs is investigated and shown to increase the PAH yield by many orders of magnitude. It is shown that the route through propargyl radicals could be an important channel to produce benzene. PAH formation yields are found to be extremely sensitive to gas density and temperature and are much smaller than values inferred from the observed dust content of late-type carbon-rich stellar envelopes. It is therefore unlikely that aromatic molecules are generated in the stellar outflow itself.

  11. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    NASA Astrophysics Data System (ADS)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  12. A molecular dynamics study of chloride binding by the cryptand SC24

    NASA Technical Reports Server (NTRS)

    Owenson, B.; MacElroy, R. D.; Pohorille, A.

    1988-01-01

    The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.

  13. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    NASA Astrophysics Data System (ADS)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  14. Growth and modelling of spherical crystalline morphologies of molecular materials

    NASA Astrophysics Data System (ADS)

    Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.

    2014-10-01

    Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.

  15. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less

  16. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Schatz, George C.

    2017-06-01

    A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.

  17. A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates

    PubMed Central

    Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.

    2010-01-01

    Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952

  18. Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Saita, Sho; Kawano, Satoyuki

    2018-03-01

    Brownian motion of a spherical particle induced by the interaction with surrounding molecules is considered. If the particle is larger than the molecules and the temperature of surrounding media is spatially non-uniform, the interaction between an individual molecule and the particle is also position-dependent. That is, the particle is subject to inhomogeneous thermal fluctuation. In this paper, we investigate the contribution of the inhomogeneous thermal fluctuation to the thermophoresis, i.e., the Soret coefficient or thermal diffusion factor. The problem is simplified by assuming a hard-sphere potential between the particle and the surrounding molecules and is investigated using the kinetic theory, namely, we consider a linear Boltzmann-type equation for the velocity distribution function of the particle. Using the perturbation analysis with respect to the square root of mass ratio between the molecule and the particle, the drift-diffusion equation of the particle is derived. It is found that the Soret coefficient, or thermal diffusion factor, is dependent on the mass ratio and the excluded volume of the particle. In particular, when the ratio of the mass density of the particle to that of the surrounding media decreases, the Soret coefficient also decreases and may take negative value. The present result well describes the mass-dependency of thermal diffusion factor obtained by the molecular dynamics simulation carried out in an existing study and the one in the present study, where soft potentials of Lennard-Jones-type are used instead of hard-sphere potential.

  19. Cyclic tetraureas with variable flexibility--synthesis, crystal structures and properties.

    PubMed

    Meshcheryakov, Denys; Arnaud-Neu, Françoise; Böhmer, Volker; Bolte, Michael; Cavaleri, Julien; Hubscher-Bruder, Véronique; Thondorf, Iris; Werner, Sabine

    2008-09-21

    Macrocyclic molecules containing several amide or urea functions may serve as anion receptors. We describe the synthesis of 32-membered macrocycles, in which four rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All six possible combinations of these units (XXXX, XXXD, XXDD, XDXD, XDDD and DDDD) were synthesized and two examples were characterised by single-crystal X-ray analyses (DDDD and two structures for XXXD). Both macrocycles showed distinct differences in their overall conformation and consequently in their hydrogen-bonding pattern. Hydrogen-bonded solvent molecules are found for both compounds and intramolecular hydrogen bonds for the two structures of XXXD, but surprisingly no direct intermolecular hydrogen bonds between the macrocyclic tetraurea molecules. The interaction with various anions was studied by (1)H NMR spectroscopy. Stability constants for all tetramers were determined by UV spectroscopy for complexes with chloride, bromide, acetate and dihydrogenphosphate in acetonitrile-THF (3:1). The strongest binding was found for XXXD and acetate (log beta = 7.4 +/- 0.2), the weakest for XXXX and acetate (log beta = 5.1 +/- 0.5). MD simulations in chloroform and acetonitrile boxes show that all molecules except DDDD adopt very similar conformations characterized by an up-down-up-down arrangement of the spacer groups. Clustered solvation shells of acetonitrile molecules around XXXX and DDDD suggest their preorganization for spherical/planar and tetrahedral/bidentate anions, respectively, which in turn was corroborated by simulation of the corresponding complexes with chloride and dihydrogenphosphate.

  20. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory.

    PubMed

    Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor

    2018-05-24

    The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.

  1. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    NASA Astrophysics Data System (ADS)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  2. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  3. T.D.S. spectroscopic databank for spherical tops: DOS version

    NASA Astrophysics Data System (ADS)

    Tyuterev, V. G.; Babikov, Yu. L.; Tashkun, S. A.; Perevalov, V. I.; Nikitin, A.; Champion, J.-P.; Wenger, C.; Pierre, C.; Pierre, G.; Hilico, J.-C.; Loete, M.

    1994-10-01

    T.D.S. (Traitement de Donnees Spectroscopiques or Tomsk-Dijon-Spectroscopy project) is a computer package concerned with high resolution spectroscopy of spherical top molecules like CH4, CF4, SiH4, SiF4, SnH4, GeH4, SF6, etc. T.D.S. contains information, fundamental spectroscopic data (energies, transition moments, spectroscopic constants) recovered from comprehensive modeling and simultaneous fitting of experimental spectra, and associated software written in C. The T.D.S. goal is to provide an access to all available information on vibration-rotation molecular states and transitions including various spectroscopic processes (Stark, Raman, etc.) under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for T.D.S. may include: education/training in molecular physics, quantum chemistry, laser physics; spectroscopic applications (analysis, laser spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The reported DOS-version is designed for IBM and compatible personal computers.

  4. Solving radiative transfer with line overlaps using Gauss-Seidel algorithms

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Cernicharo, J.

    2008-09-01

    Context: The improvement in observational facilities requires refining the modelling of the geometrical structures of astrophysical objects. Nevertheless, for complex problems such as line overlap in molecules showing hyperfine structure, a detailed analysis still requires a large amount of computing time and thus, misinterpretation cannot be dismissed due to an undersampling of the whole space of parameters. Aims: We extend the discussion of the implementation of the Gauss-Seidel algorithm in spherical geometry and include the case of hyperfine line overlap. Methods: We first review the basics of the short characteristics method that is used to solve the radiative transfer equations. Details are given on the determination of the Lambda operator in spherical geometry. The Gauss-Seidel algorithm is then described and, by analogy to the plan-parallel case, we see how to introduce it in spherical geometry. Doing so requires some approximations in order to keep the algorithm competitive. Finally, line overlap effects are included. Results: The convergence speed of the algorithm is compared to the usual Jacobi iterative schemes. The gain in the number of iterations is typically factors of 2 and 4 for the two implementations made of the Gauss-Seidel algorithm. This is obtained despite the introduction of approximations in the algorithm. A comparison of results obtained with and without line overlaps for N2H^+, HCN, and HNC shows that the J=3-2 line intensities are significantly underestimated in models where line overlap is neglected.

  5. Electronic and molecular structure of carbon grains

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Luethi, Hans-Peter

    1990-01-01

    Clusters of carbon atoms have been studied with large-scale ab initio calculations. Planar, single-sheet graphite fragments with 6 to 54 atoms were investigated, as well as the spherical C(sub 60) Buckminsterfullerene molecule. Polycyclic aromatic hydrocarbons (PAHs) have also been considered. Thermodynamic differences between diamond- and graphite-like grains have been studied in particular. Saturation of the peripheral bonds with hydrogen is found to provide a smooth and uniform convergence of the properties with increasing cluster size. For the graphite-like clusters the convergence to bulk values is much slower than for the three-dimensional complexes.

  6. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  7. Core-Shell-Corona Micelles with a Responsive Shell.

    PubMed

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  8. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp

    2016-03-07

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  9. Simulation of size-exclusion chromatography distribution coefficients of comb-shaped molecules in spherical pores comparison of simulation and experiment.

    PubMed

    Radke, Wolfgang

    2004-03-05

    Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.

  10. Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.

    PubMed

    Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D

    2018-05-01

    We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.

  11. Tuning of peptide assembly through force balance adjustment.

    PubMed

    Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai

    2013-10-01

    Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  13. Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone?

    PubMed

    Kalyuzhnyi, Yu V; Vlachy, Vojko; Dill, Ken A

    2010-06-21

    We use the AMSA, associative mean spherical theory of associative fluids, to study ion-ion interactions in explicit water. We model water molecules as hard spheres with four off-center square-well sites and ions as charged hard spheres with sticky sites that bind to water molecules or other ions. We consider alkali halide salts. The choice of model parameters is based on two premises: (i) The strength of the interaction between a monovalent ion and a water molecule is inversely proportional to the ionic (crystal) diameter sigma(i). Smaller ions bind to water more strongly than larger ions do, taking into account the asymmetry of the cation-water and anion-water interactions. (ii) The number of contacts an ion can make is proportional to sigma2(i). In short, small ions bind waters strongly, but only a few of them. Large ions bind waters weakly, but many of them. When both a monovalent cation and anion are large, it yields a small osmotic coefficient of the salt, since the water molecules avoid the space in between large ions. On the other hand, salts formed from one small and one large ion remain hydrated and their osmotic coefficient is high. The osmotic coefficients, calculated using this model in combination with the integral equation theory developed for associative fluids, follow the experimental trends, including the unusual behavior of caesium salts.

  14. Functional Redundancy in HIV-1 Viral Particle Assembly

    PubMed Central

    O'Carroll, Ina P.; Crist, Rachael M.; Mirro, Jane; Harvin, Demetria; Soheilian, Ferri; Kamata, Anne; Nagashima, Kunio

    2012-01-01

    Expression of a retroviral Gag protein in mammalian cells leads to the assembly of virus particles. In vitro, recombinant Gag proteins are soluble but assemble into virus-like particles (VLPs) upon addition of nucleic acid. We have proposed that Gag undergoes a conformational change when it is at a high local concentration and that this change is an essential prerequisite for particle assembly; perhaps one way that this condition can be fulfilled is by the cooperative binding of Gag molecules to nucleic acid. We have now characterized the assembly in human cells of HIV-1 Gag molecules with a variety of defects, including (i) inability to bind to the plasma membrane, (ii) near-total inability of their capsid domains to engage in dimeric interaction, and (iii) drastically compromised ability to bind RNA. We find that Gag molecules with any one of these defects still retain some ability to assemble into roughly spherical objects with roughly correct radius of curvature. However, combination of any two of the defects completely destroys this capability. The results suggest that these three functions are somewhat redundant with respect to their contribution to particle assembly. We suggest that they are alternative mechanisms for the initial concentration of Gag molecules; under our experimental conditions, any two of the three is sufficient to lead to some semblance of correct assembly. PMID:22993163

  15. Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules.

    PubMed

    Henry, Marc

    2002-07-02

    The PACHA (Partial Atomic Charges and Hardnesses Analysis) formalism is applied to various supramolecular assemblies of water molecules. After a detailed study of all available crystal structures for ice polymorphs, we shown that the hydrogen bond strength is roughly constant below 1 GPa and considerably weakened above that value. New hydrogen bond patterns are proposed for ice IV, V, and VI after (EB) (electrostatic balance) minimization. For other polymorphs, there is an almost perfect coincidence between experimental and predicted hydrogen bond patterns. The evolution of hydrogen bond energy as a function of molecular geometry in water clusters with up to 280 water molecules and in large supramolecular compounds is quantitatively described. Intermolecular hydrogen bonds are found to lie between -9 and -32 kJ mol-1, the stronger interaction occurs within the spherical fully disordered water droplet buried at the heart of Müller's superfullerene keplerate. The weakest one occurs in a chiral molecular snub cube built from six calix[4]resorcinarene and eight water molecules. Intramolecular hydrogen bonds are found in the range -10-100 kJ mol-1 and can thus be considerably stronger than intermolecular bonds. Finally, through the investigation of a clathrate type I compound, it was possible to obtain a deep insight of the host-guest interactions and self-assembly rules of water cages in these materials.

  16. An alternative NMR method to determine nuclear shielding anisotropies for molecules in liquid-crystalline solutions with (13)C shielding anisotropy of methyl iodide as an example.

    PubMed

    Tallavaara, Pekka; Jokisaari, Jukka

    2008-03-28

    An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.

  17. The Effect of Calcium Phosphate Particle Shape and Size on their Antibacterial and Osteogenic Activity in the Delivery of Antibiotics in vitro

    PubMed Central

    Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.

    2013-01-01

    Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624

  18. Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria

    DOE PAGES

    Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.; ...

    2015-02-02

    This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are aminomore » acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (C F) is calculated and compared with one set of published measured values. We investigate power law (Ad y) approximations to C F, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (Q F=C F/geometric-cross-section) can be written for homogeneous particles as Q absR F, where Q abs is the absorption efficiency, and R F, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When Q F is plotted vs. m id or mi(m r-1)d, where m=m r+im i is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.« less

  19. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.

    PubMed

    Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man

    2012-01-01

    The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.

  20. A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer.

    PubMed Central

    Xiang, T X

    1993-01-01

    A novel combined approach of molecular dynamics (MD) and Monte Carlo simulations is developed to calculate various free-volume distributions as a function of position in a lipid bilayer membrane at 323 K. The model bilayer consists of 2 x 100 chain molecules with each chain molecule having 15 carbon segments and one head group and subject to forces restricting bond stretching, bending, and torsional motions. At a surface density of 30 A2/chain molecule, the probability density of finding effective free volume available to spherical permeants displays a distribution with two exponential components. Both pre-exponential factors, p1 and p2, remain roughly constant in the highly ordered chain region with average values of 0.012 and 0.00039 A-3, respectively, and increase to 0.049 and 0.0067 A-3 at the mid-plane. The first characteristic cavity size V1 is only weakly dependent on position in the bilayer interior with an average value of 3.4 A3, while the second characteristic cavity size V2 varies more dramatically from a plateau value of 12.9 A3 in the highly ordered chain region to 9.0 A3 in the center of the bilayer. The mean cavity shape is described in terms of a probability distribution for the angle at which the test permeant is in contact with one of and does not overlap with anyone of the chain segments in the bilayer. The results show that (a) free volume is elongated in the highly ordered chain region with its long axis normal to the bilayer interface approaching spherical symmetry in the center of the bilayer and (b) small free volume is more elongated than large free volume. The order and conformational structures relevant to the free-volume distributions are also examined. It is found that both overall and internal motions have comparable contributions to local disorder and couple strongly with each other, and the occurrence of kink defects has higher probability than predicted from an independent-transition model. Images FIGURE 1 PMID:8241390

  1. Design, Synthesis, and Self-Assembly of Well-Defined Hybrid Materials Including Polymer Amphiphiles and Giant Tetrahedra Molecules Based on Poss Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Mingjun

    "Bottom-up" techniques-based self-assembly are always attracting people's interests since this technology provides relatively low economic cost and fast route to construct organized structures at different scales. Considering unprecedented benefits from polymer materials, self-assemblies utilizing polymer building blocks have been extensively studied to achieve diverse hierarchical structures and various attractive properties. However, precise controls of chemical primary structures and compositions and exact constructions of hierarchal ordered structures in synthetic polymers are far from being fully appreciated. In this dissertation, a novel approach has been utilized to construct diverse well-defined nano-building blocks, giant molecules, via conjugating different, and functionalized molecular nanoparticles (MNPs) which are shape- and volume-persistent nano-objects with precise molecular structure and specific symmetry. The representative examples of the three basic categories of giant molecules, "giant polyhedra", "giant surfactants", and "giant shape amphiphiles" were discussed in details. First, a class of precisely defined, nanosized giant tetrahedra was constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces accurate positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper (FK) A15 phase. The FK and quasicrystal phases are originally identified in metal alloys and only sporadically observed in soft matters. It remains unclear how to correlate their stability with the chemical composition and molecular topology in the self-assembling systems. We then for this purpose designed and studied the self-assembly phase transition sequences of four series of hybrid giant surfactants based on hydrophilic POSS cages tethered with one to four polystyrene (PS) tails. With increasing the number of tails, molecular topological variations not only affect phase boundaries in terms of the PS volume fraction, but also open a window to stabilize supramolecular FK and quasicrystal phases in the spherical phase region, demonstrating the critical role of molecular topology in dictating the formation of unconventional supramolecular lattices of "soft" spherical motifs. The FK A15 phase was even surprisingly observed in the giant shape amphiphile molecule, triphenylene-6BPOSS, which has a disk-like flat triphenylene core connected with six hydrophobic POSS cages by sides. Without conical molecular shape, triphenylene-6BPOSS self-assembled and stabilized into supramolecular sphere via pi-pi interactions through a completely different mechanism with precious two cases. These studies indicate that "bottom-up" self-assemble based on well-defined giant molecules approach can be rather powerful to fabricate usually complicated hierarchical structures and open up a wide field of supramolecular self-assembly with unexpected structure and properties.

  2. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  3. Exact Green's functions for a Brownian particle reversibly binding to a fixed target in a finite, two-dimensional, circular domain

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2012-06-01

    Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.

  4. Modeling solvation effects in real-space and real-time within density functional approaches

    NASA Astrophysics Data System (ADS)

    Delgado, Alain; Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea

    2015-10-01

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the Octopus code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  5. Modeling solvation effects in real-space and real-time within density functional approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Alain; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana; Corni, Stefano

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that aremore » close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.« less

  6. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    NASA Astrophysics Data System (ADS)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  8. All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure.

    PubMed

    Matsui, Katsuma; Segawa, Yasutomo; Itami, Kenichiro

    2014-11-19

    The design and synthesis of a series of carbon nanocages consisting solely of benzene rings are described. Carbon nanocages are appealing molecules not only because they represent junction unit structures of branched carbon nanotubes, but also because of their potential utilities as unique optoelectronic π-conjugated materials and guest-encapsulating hosts. Three sizes of strained, conjugated [n.n.n]carbon nanocages (1, n = 4; 2, n = 5; 3, n = 6) were synthesized with perfect size-selectivity. Cyclohexane-containing units and 1,3,5-trisubstituted benzene-containing units were assembled to yield the minimally strained bicyclic precursors, which were successfully converted into the corresponding carbon nanocages via acid-mediated aromatization. X-ray crystallography of 1 confirmed the cage-shaped structure with an approximately spherical void inside the cage molecule. The present studies revealed the unique properties of carbon nanocages, including strain energies, size-dependent absorption and fluorescence, as well as unique size-dependency for the electronic features of 1-3.

  9. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  10. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE PAGES

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; ...

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  11. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  12. Van Vleck and the magnetic susceptibilities of gaseous molecules

    NASA Astrophysics Data System (ADS)

    Meyer, Horst

    2011-03-01

    In his 1927 Physical Review article and in his 1932 book, ~The Theory of Electric and Magnetic Susceptibilities,~Van Vleck used the new quantum theory to derive the magnetic susceptibilities of O2 and NO in their gaseous form ~and compared them with experiments. ~He was therefore very interested in low temperature susceptibility experiments on O2 at Oxford University in 1954 where individual O2 molecules were trapped in small, almost spherical cages in organic clathrates. Correspondence between him and this speaker, then at Oxford, led to further measurements of O2 and also of NO in such clathrates, to theory and to subsequent publications and correspondence. Later communication with Van Vleck on the magnetism in rare earth iron garnets, a subject of long-term interest to him, will be described ~in connection with experiments carried out at Duke University. Some fond personal ~recollections of this speaker of his interaction with Van Vleck - both while at Harvard, during visits and through correspondence which extended into the seventies - will be presented.

  13. Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators

    NASA Astrophysics Data System (ADS)

    Freeman, Lindsay M.; Li, Su; Dayani, Yasaman; Choi, Hong-Seok; Malmstadt, Noah; Armani, Andrea M.

    2011-04-01

    Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for self-assembling lipid bilayers on spherical microresonators is developed and the bilayer-nature is verified. Subsequently, the microcavity is used to excite a Cy5-conjugated lipid located within the bilayer while the optical performance of the microcavity is characterized. The emission wavelength of the dye and the optical behavior of the microcavity agree with theoretical predictions.

  14. Liposome Technology for Industrial Purposes

    PubMed Central

    Wagner, Andreas; Vorauer-Uhl, Karola

    2011-01-01

    Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:21490754

  15. Wetting and spreading at the molecular scale

    NASA Technical Reports Server (NTRS)

    Koplik, Joel; Banavar, Jayanth R.

    1994-01-01

    We have studied the microscopic aspects of the spreading of liquid drops on a solid surface by molecular dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor and solid. We consider both spherically symmetric atoms and chain-like molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observed a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with qualitative behavior resembling recent experimental findings, but with interesting differences in the spreading rate.

  16. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  17. Molecular dynamics simulation of coarse-grained poly(L-lysine) dendrimers.

    PubMed

    Rahimi, Ali; Amjad-Iranagh, Sepideh; Modarress, Hamid

    2016-03-01

    Poly(L-lysine) (PLL) dendrimer are amino acid based macromolecules and can be used as drug delivery agents. Their branched structure allows them to be functionalized by various groups to encapsulate drug agents into their structure. In this work, at first, an attempt was made on all-atom simulation of PLL dendrimer of different generations. Based on all-atom results, a course-grained model of this dendrimer was designed and its parameters were determined, to be used for simulation of three generations of PLL dendrimer, at two pHs. Similar to the all-atom, the coarse-grained results indicated that by increasing the generation, the dendrimer becomes more spherical. At pH 7, the dendrimer had larger size, whereas at pH 12, due to back folding of branching chains, they had the tendency to penetrate into the inner layers. The calculated radial probability and radial distribution functions confirm that at pH 7, the PLL dendrimer has more cavities and as a result it can encapsulate more water molecules into its inner structure. By calculating the moment of inertia and the aspect ratio, the formation of spherical structure for PLL dendrimer was confirmed.

  18. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.

    2015-04-21

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less

  19. A study of isotropic-nematic transition of quadrupolar Gay-Berne fluid using density-functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2011-11-01

    The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.

  20. Water-maser emission from a planetary nebula with a magnetized torus.

    PubMed

    Miranda, L F; Gómez, Y; Anglada, G; Torrelles, J M

    2001-11-15

    A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.

  1. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  2. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  3. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets.

    PubMed

    Sandhu, Sana; Kumar, Rahul; Singh, Prabhpreet; Mahajan, Aman; Kaur, Manmeet; Kumar, Subodh

    2015-05-20

    1-(p-Terphenyl)-benzimidazolium (TRIPOD-TP) molecules undergo self-assembly to form rodlike structures in aqueous medium, as shown by field-emission scanning electron microscopy, transmission electron microscopy, and dynamic light scattering studies. Upon gradual addition of picric acid (PA), these aggregates undergo an aggregation/disaggregation process to complex morphological structures (10(-12)-10(-10) M PA) and spherical aggregates (10(-9)-10(-8) M PA). These spherical aggregates undergo further dissolution to well-dispersed spheres between 10(-7)-10(-6) M PA. During fluorescence studies, these aggregates demonstrate superamplified fluorescence quenching (>97%) in the presence of 10(-5) to 0.2 equiv of the probe concentration, an unprecedented process with PA. The lowest detection limits by solution of TRIPOD-TP are 5 × 10(-13) PA, 50 × 10(-12) M 2,4-dinitrophenol, 200 × 10(-12) M 2,4,6-trinitrotoluene, and 1 nM 1-chloro-2,4-dinitrobenzene. Paper strips dipped in the solution of TRIPOD-TP demonstrate quantitative fluorescence quenching between 10(-17) and 10(-6) M PA using front-surface steady state studies and can measure as low as 2.29 × 10(-20) g/cm(2) PA.

  4. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  5. A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.

    PubMed

    Riniker, Sereina; van Gunsteren, Wilfred F

    2011-02-28

    The development of coarse-grained (CG) models that correctly represent the important features of compounds is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. Most approaches reported in the literature model one or several molecules into a single uncharged CG bead. For water, this implicit treatment of the electrostatic interactions, however, fails to mimic important properties, e.g., the dielectric screening. Therefore, a coarse-grained model for water is proposed which treats the electrostatic interactions between clusters of water molecules explicitly. Five water molecules are embedded in a spherical CG bead consisting of two oppositely charged particles which represent a dipole. The bond connecting the two particles in a bead is unconstrained, which makes the model polarizable. Experimental and all-atom simulated data of liquid water at room temperature are used for parametrization of the model. The experimental density and the relative static dielectric permittivity were chosen as primary target properties. The model properties are compared with those obtained from experiment, from clusters of simple-point-charge water molecules of appropriate size in the liquid phase, and for other CG water models if available. The comparison shows that not all atomistic properties can be reproduced by a CG model, so properties of key importance have to be selected when coarse graining is applied. Yet, the CG model reproduces the key characteristics of liquid water while being computationally 1-2 orders of magnitude more efficient than standard fine-grained atomistic water models.

  6. Using inositol as a biocompatible ligand for efficient transgene expression

    PubMed Central

    Zhang, Lei; Bellis, Susan L; Fan, Yiwen; Wu, Yunkun

    2015-01-01

    Transgene transfection techniques using cationic polymers such as polyethylenimines (PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have shortcomings. PEIs have decent DNA-binding capability and good cell internalization performance, but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyperbranched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol (INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers with DNA produced compact nanocomposites. We then performed localization studies using fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO polymers, there was a corresponding increase in accumulation of the polymers within 293T cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled the possibility of using inositol as an effective ligand for transgene expression. PMID:25926732

  7. Molecular imprinted polymers for separation science: a review of reviews.

    PubMed

    Cheong, Won Jo; Yang, Song Hee; Ali, Faiz

    2013-02-01

    Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices.

    PubMed

    Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta

    2009-04-09

    Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.

  9. Solvent Flux Method (SFM): A Case Study of Water Access to Candida antarctica Lipase B.

    PubMed

    Benson, Sven P; Pleiss, Jürgen

    2014-11-11

    The solvent flux method (SFM) was developed to comprehensively characterize the influx of solvent molecules from the solvent environment into the active site of a protein in the framework of molecular dynamics simulations. This was achieved by introducing a solvent concentration gradient as well as partially reorienting and rescaling the velocity vector of all solvent molecules contained within a spherical volume enclosing the protein, thus inducing an accelerated solvent influx toward the active site. In addition to the detection of solvent access pathway within the protein structure, it is hereby possible to identify potential amino acid positions relevant to solvent-related enzyme engineering with high statistical significance. The method is particularly aimed at improving the reverse hydrolysis reaction rates in nonaqueous media. Candida antarctica lipase B (CALB) binds to a triglyceride-water interface with its substrate entrance channel oriented toward the hydrophobic substrate interface. The lipase-triglyceride-water system served as a model system for SFM to evaluate the influx of water molecules to the active site. As a proof of principle for SFM, a previously known water access pathway in CALB was identified as the primary water channel. In addition, a secondary water channel and two pathways for water access which contribute to water leakage between the protein and the triglyceride-water interface were identified.

  10. Computer simulations of polymer chain structure and dynamics on a hypersphere in four-space

    NASA Astrophysics Data System (ADS)

    Râsmark, Per Johan; Ekholm, Tobias; Elvingson, Christer

    2005-05-01

    There is a rapidly growing interest in performing computer simulations in a closed space, avoiding periodic boundary conditions. To extend the range of potential systems to include also macromolecules, we describe an algorithm for computer simulations of polymer chain molecules on S3, a hypersphere in four dimensions. In particular, we show how to generate initial conformations with a bond angle distribution given by the persistence length of the chain and how to calculate the bending forces for a molecule moving on S3. Furthermore, we discuss how to describe the shape of a macromolecule on S3, by deriving the radius of gyration tensor in this non-Euclidean space. The results from both Monte Carlo and Brownian dynamics simulations in the infinite dilution limit show that the results on S3 and in R3 coincide, both with respect to the size and shape as well as for the diffusion coefficient. All data on S3 can also be described by master curves by suitable scaling by the corresponding values in R3. We thus show how to extend the use of spherical boundary conditions, which are most effective for calculating electrostatic forces, to polymer chain molecules, making it possible to perform simulations on S3 also for polyelectrolyte systems.

  11. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  12. Fullerene (C60) films for solid lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhushan, B.; Gupta, B.K.; Van Cleef, G.W.

    1993-10-01

    The advent of techniques for producing gram quantities of a new form of stable, pure, solid carbon, designated as fullerene, opens a profusion of possibilities to be explored in many disciplines including tribology. Fullerenes take the form of hollow geodesic domes, which are formed from a network of pentagons and hexagons with covalently bonded carbon atoms. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in an fcc lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene andmore » benzene and are easily sublimed. The low surface energy, high chemical stability, spherical shape, weak intermolecular bonding, and high load bearing capacity of C60 molecules offer potential for various mechanical and tribological applications. This paper describes the crystal structure and properties of fullerenes and proposes a mechanism for self-lubricating action. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this paper. The results of this study indicate that C60, owing to its unique crystal structure and bonding, may be a promising solid lubricant. 31 refs.« less

  13. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells. Time-Resolved Microwave Conductivity and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Arntsen, Christopher D.; Hernandez, Samuel

    2013-09-23

    The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility inmore » conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.« less

  14. Metal-enhanced fluorescence of dye-doped silica nano particles.

    PubMed

    Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L

    2015-03-01

    Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.

  15. Single-particle studies of band alignment effects on electron transfer dynamics from semiconductor hetero-nanostructures to single-walled carbon nanotubes.

    PubMed

    Yuan, Chi-Tsu; Wang, Yong-Gang; Huang, Kuo-Yen; Chen, Ting-Yu; Yu, Pyng; Tang, Jau; Sitt, Amit; Banin, Uri; Millo, Oded

    2012-01-24

    We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation. © 2011 American Chemical Society

  16. A review on preparation of silver nano-particles

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Haider, Mohammad J.; Mehde, Mohammad S.

    2018-05-01

    The term "nano particle" (NP) refers to particle diameter in nanometers in size. Nanoparticles contain a small number of constituent atoms or molecules that differ from the properties inherent in their bulk counterparts, found in various forms such as spherical, triangular, cubic, pentagonal, rod-shaped, shells, elliptical and so on. In this chapter, it has been presented the theoretical concepts of the preparation of AgNPS as powders and collide nanoparticles, techniques of preparation with their characterization (morphology, sign charge and potential value, particle distribution ….etc.). Also, included unique properties of AgNPS that are different from those of their bulk materials like: High surface area to volume ratio effects Quantization of electronic and vibration properties.

  17. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  18. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.

  20. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate

    NASA Astrophysics Data System (ADS)

    Coman, Cristina; Leopold, Loredana Florina; Rugină, Olivia Dumitriţa; Barbu-Tudoran, Lucian; Leopold, Nicolae; Tofană, Maria; Socaciu, Carmen

    2014-01-01

    A green synthesis was used for preparing stable colloidal gold nanoparticles by using Allium sativum aqueous extract both as reducing and capping agent. The obtained nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. Moreover, their potential to be used as surface-enhanced Raman scattering (SERS) substrate was investigated. The obtained gold nanoparticles have spherical shape with mean diameters of 9-15 nm (depending on the amount of reducing agent used under boiling conditions) and are stable up to several months. FTIR spectroscopy shows that the nanoparticles are capped by protein molecules from the extract. The protein shell offers a protective coating, relatively impervious to external molecules, thus, rendering the nanoparticles stable and quite inert. These nanoparticles have the potential to be used as SERS substrates, both in solution and inside human fetal lung fibroblast HFL-1 living cells. We were able to demonstrate both the internalization of the nanoparticles inside HFL-1 cells and their ability to preserve the SERS signal after cellular internalization.

  1. Large entropy derived from low-frequency vibrations and its implications for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Chen, Hongshan

    2018-02-01

    Adsorption and desorption are driven by the energy and entropy competition, but the entropy effect is often ignored in hydrogen storage and the optimal adsorption strength for the ambient storage is controversial in the literature. This letter investigated the adsorption states of the H2 molecule on M-B12C6N6 (M = Li, Na, Mg, Ca, and Sc) and analyzed the correlation among the zero point energy (ZPE), the entropy change, and the adsorption energy and their effects on the delivery capacities. The ZPE has large correction to the adsorption energy due to the light mass of hydrogen. The computations show that the potential energies along the spherical surface centered at the alkali metals are very flat and it leads to large entropy (˜70 J/mol.K) of the adsorbed H2 molecules. The entropy change can compensate the enthalpy change effectively, and the ambient storage can be realized with relatively weak adsorption of ΔH = -12 kJ/mol. The results are encouraging and instructive for the design of hydrogen storage materials.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Takayuki; Okamoto, Masami

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-raymore » analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH{sup +} and CaH{sub 2}PO{sub 4}{sup +}. The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.« less

  3. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  4. Fabrication of DNA/Hydroxyapatite nanocomposites by simulated body fluid for gene delivery

    NASA Astrophysics Data System (ADS)

    Takeshita, Takayuki; Okamoto, Masami

    2015-05-01

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH+ and C a H2P O4+ . The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.

  5. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  6. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-07

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

  7. Statistical Mechanical Theory of Penetrant Diffusion in Polymer Melts and Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth

    We generalize our force-level, self-consistent nonlinear Langevin equation theory of activated diffusion of a dilute spherical penetrant in hard sphere fluids to predict the long-time diffusivity of molecular penetrants in supercooled polymer liquids and non-aging glasses. Chemical complexity is treated using an a priori mapping to a temperature-dependent hard sphere mixture model where polymers are disconnected into effective spheres based on the Kuhn length as the relevant coarse graining scale. A key parameter for mobility is the penetrant to polymer segment diameter ratio, R. Our calculations agree well with experimental measurements for a wide range of temperatures, penetrant sizes (from gas molecules with R ~0.3 to aromatic molecules with R ~1) and diverse amorphous polymers, over 10 decades variation of penetrant diffusivity. Structural parameter transferability is good. We have also formulated a theory at finite penetrant loading for the coupled penetrant-polymer dynamics in chemically (nearly) matched mixtures (e.g., toluene-polystyrene) which captures well the increase of penetrant diffusivity and decrease of polymer matrix vitrification temperature with increasing loading.

  8. Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential.

    PubMed

    Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla

    2017-06-01

    In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

  9. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of ({eta}{sup 5}-C{sub 5}H{sub 4}X)Rh(CO){sub 2}more » complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C{sub 60} molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C{sub 60} reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs.« less

  10. Molecular mechanisms of hydrogen loaded B-hydroquinone clathrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daschbach, John L.; Chang, Tsun-Mei; Corrales, Louis R.

    2006-09-07

    Molecular dynamics simulations are used to investigate the molecular interactions of hydrogen loaded beta-hydroquinone clathrate. It is found that at lower temperatures, higher loadings are more stable, whereas, at higher temperatures, lower loadings are more stable. This trend can be understood based on the interactions in the system. For loadings greater than one, the repulsive forces between the guest molecules shove each other towards the attractive forces between the guest and host molecules leading to a stabilized minimum energy configuration at low temperatures. At higher temperatures greater displacements take the system away from the shallow energy minimum and the trendmore » reverses. The asymmetries of the clathrate cage structure are due to the presence of the attractive forces at loadings greater than one that lead to confined states. The nature of the cavity structure is nearly spherical for a loading of one, leads to preferential occupation near the hydroxyl ring crowns of the cavity with a loading of two, and at higher loadings, leads to occupation of the interstitial sites (the hydroxyl rings) between cages by a single H2 molecule with the remaining molecules occupying the equatorial plane of the cavity. At higher temperatures, the cavity is more uniformly occupied for all loadings, where the occupation of the interstitial positions of the cavities leads to facile diffusion. ACKNOWLEDGEMENT This work was partially supported by NIDO (Japan), LDRD (PNNL), EERE U.S. Department of Energy, and by OBES, U.S. DOE. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy« less

  11. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less

  12. Morphometric approach to thermodynamic quantities of solvation of complex molecules: Extension to multicomponent solvent

    NASA Astrophysics Data System (ADS)

    Kodama, Ryota; Roth, Roland; Harano, Yuichi; Kinoshita, Masahiro

    2011-07-01

    The morphometric approach (MA) is a powerful tool for calculating a solvation free energy (SFE) and related quantities of solvation thermodynamics of complex molecules. Here, we extend it to a solvent consisting of m components. In the integral equation theories, the SFE is expressed as the sum of m terms each of which comprises solute-component j correlation functions (j = 1, …, m). The MA is applied to each term in a formally separate manner: The term is expressed as a linear combination of the four geometric measures, excluded volume, solvent-accessible surface area, and integrated mean and Gaussian curvatures of the accessible surface, which are calculated for component j. The total number of the geometric measures or the coefficients in the linear combinations is 4m. The coefficients are determined in simple geometries, i.e., for spherical solutes with various diameters in the same multicomponent solvent. The SFE of the spherical solutes are calculated using the radial-symmetric integral equation theory. The extended version of the MA is illustrated for a protein modeled as a set of fused hard spheres immersed in a binary mixture of hard spheres. Several mixtures of different molecular-diameter ratios and compositions and 30 structures of the protein with a variety of radii of gyration are considered for the illustration purpose. The SFE calculated by the MA is compared with that by the direct application of the three-dimensional integral equation theory (3D-IET) to the protein. The deviations of the MA values from the 3D-IET values are less than 1.5%. The computation time required is over four orders of magnitude shorter than that in the 3D-IET. The MA thus developed is expected to be best suited to analyses concerning the effects of cosolvents such as urea on the structural stability of a protein.

  13. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  14. Lipid Bilayer-Enabled Synthesis of Waxberry-like Core/Fluidic Satellite Nanoparticles: toward Ultrasensitive SERS Tags for Bioimaging.

    PubMed

    Mei, Rongchao; Wang, Yunqing; Liu, Wanhui; Chen, Lingxin

    2018-06-25

    Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to hotspots at junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.

  15. SCF-Xα-SW electron densities with the overlapping sphere approximation

    NASA Astrophysics Data System (ADS)

    McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.

    Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential approximation, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT approximation in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS approximation is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS approximation increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.

  16. Electrophoretic ratcheting of spherical particles in a simple microfluidic device: making particles move against the direction of the net electric field

    NASA Astrophysics Data System (ADS)

    Wang, Hanyang; Slater, Gary; Haan, Hendrick

    We examine the electrophoresis of spherical particles in microfluidic devices made of alternating wells and narrow channels a type of system previously used to separate DNA molecules. Using computer simulations, we first show why it should be possible to separate particles having the same free-solution mobility using these systems in DC fields. Interestingly, in some of the systems we studied, the mobility shows an inversion as the field intensity is increased: while small particles have higher mobilities at low fields, the situation is reversed at high fields with the larger particles then moving faster. The resulting nonlinearity allows us to use asymmetric AC electric fields to build a ratchet in which particles have a net size-dependent velocity in the presence of an unbiased (zero-mean) AC field. Exploiting the inversion mentioned above, we show how to build pulsed field sequences that make particles move against the net field (an example of negative mobility). Finally, we demonstrate that it is possible to use these pulsed fields to make particles of different sizes move in opposite directions even though their charge have the same sign. Potential uses of these idea are discussed. Gary is my supervisor in my Master program.

  17. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.

    PubMed

    Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos

    2003-07-01

    To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.

  18. The quadrupole model for rigid-body gravity simulations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2013-07-01

    We introduce two new models for gravitational simulations of systems of non-spherical bodies, such as comets and asteroids. In both models, one body (the "primary") may be represented by any convenient means, to arbitrary accuracy. In our first model, all of the other bodies are represented by small gravitational "molecules" consisting of a few point masses, rigidly linked together. In our second model, all of the other bodies are treated as point quadrupoles, with gravitational potentials including spherical harmonic terms up to the third degree (rather than only the first degree, as for ideal spheres or point masses). This quadrupole formulation may be regarded as a generalization of MacCullagh's approximation. Both models permit the efficient calculation of the interaction energy, the force, and the torque acting on a small body in an arbitrary external gravitational potential. We test both models for the cases of a triaxial ellipsoid, a rectangular parallelepiped, and "duplex" combinations of two spheres, all in a point-mass potential. These examples were chosen in order to compare the accuracy of our technique with known analytical results, but the ellipsoid and duplex are also useful models for comets and asteroids. We find that both approaches show significant promise for more efficient gravitational simulations of binary asteroids, for example. An appendix also describes the duplex model in detail.

  19. Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO2.

    PubMed

    Liu, Bing; Tang, Xinpeng; Fang, Wenjing; Li, Xiaoqi; Zhang, Jun; Zhang, Zhiliang; Shen, Yue; Yan, Youguo; Sun, Xiaoli; He, Jianying

    2016-10-26

    Reverse micelles (RMs) in supercritical CO 2 (scCO 2 ) are promising alternatives for organic solvents, especially when both polar and non-polar components are involved. Fluorinated surfactants, particularly double-chain fluorocarbon surfactants, are able to form well-structured RMs in scCO 2 . The inherent self-assembly mechanisms of surfactants in scCO 2 are still subject to discussion. In this study, molecular dynamics simulations are performed to investigate the self-aggregation behavior of di-CF4 based RMs in scCO 2 , and stable and spherical RMs are formed. The dynamics process and the self-assembly structure in the RMs reveal a three-step mechanism to form the RMs, that is, small RMs, rod-like RMs and fusion of the rod-like RMs. Hydrogen-bonds between headgroups and water molecules, and salt bridges linking Na + ions, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The results show that di-CF4 molecules have a high surfactant coverage at the RM interface, implying a high CO 2 -philicity. This mainly results from bending of the short chain (C-COO-CH 2 -(CF2) 3 -CF3) due to the flexible carboxyl group. The microscopic insight provided in this study is helpful in understanding surfactant self-assembly phenomena and designing new CO 2 -philic surfactants.

  20. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1.

    PubMed

    Han, Jingyan; Shuvaev, Vladimir V; Davies, Peter F; Eckmann, David M; Muro, Silvia; Muzykantov, Vladimir R

    2015-07-28

    Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Total cross sections of electron scattering by molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3 at 30-5000 eV

    NASA Astrophysics Data System (ADS)

    Shi, D. H.; Sun, J. F.; Zhu, Z. L.; Liu, Y. F.

    2010-04-01

    Total cross sections of electron scattering by eight molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3, which have some structural similarities, are calculated at the Hartree-Fork level by the modified additivity rule approach [D.H. Shi, J.F. Sun, Z.L. Zhu, H. Ma, Y.F. Liu, Eur. Phys. J. D 45, 253 (2007); D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, X.D. Yang, Chin. Opt. Lett. 4, 192 (2006)]. The modified additivity rule approach takes into considerations that the contributions of the geometric shielding effect vary as the energy of incident electrons, the dimension of target molecule, the number of electrons in the molecule and the number of atoms constituting the molecule. The present investigations cover the impact energy range from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Excellent agreement is observed even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to carry out the total cross section calculations of electron scattering by these molecules at intermediate and high energies, in particular over the energy range above 80 eV or so. It proves that the microscopic molecular properties, such as the geometrical size of the target and the number of atoms constituting the molecule, are of crucial importance in the TCS calculations. The new results for PH(CH3)2 and PH2CH3 are also presented at energies from 30 to 5000 eV, although no experimental and theoretical data are available for comparison. In the present calculations, the atoms are still represented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption terms.

  2. DAMQT: A package for the analysis of electron density in molecules

    NASA Astrophysics Data System (ADS)

    López, Rafael; Rico, Jaime Fernández; Ramírez, Guillermo; Ema, Ignacio; Zorrilla, David

    2009-09-01

    DAMQT is a package for the analysis of the electron density in molecules and the fast computation of the density, density deformations, electrostatic potential and field, and Hellmann-Feynman forces. The method is based on the partition of the electron density into atomic fragments by means of a least deformation criterion. Each atomic fragment of the density is expanded in regular spherical harmonics times radial factors, which are piecewise represented in terms of analytical functions. This representation is used for the fast evaluation of the electrostatic potential and field generated by the electron density and nuclei, as well as for the computation of the Hellmann-Feynman forces on the nuclei. An analysis of the atomic and molecular deformations of the density can be also carried out, yielding a picture that connects with several concepts of the empirical structural chemistry. Program summaryProgram title: DAMQT1.0 Catalogue identifier: AEDL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3 No. of lines in distributed program, including test data, etc.: 278 356 No. of bytes in distributed program, including test data, etc.: 31 065 317 Distribution format: tar.gz Programming language: Fortran90 and C++ Computer: Any Operating system: Linux, Windows (Xp, Vista) RAM: 190 Mbytes Classification: 16.1 External routines: Trolltech's Qt (4.3 or higher) ( http://www.qtsoftware.com/products), OpenGL (1.1 or higher) ( http://www.opengl.org/), GLUT 3.7 ( http://www.opengl.org/resources/libraries/glut/). Nature of problem: Analysis of the molecular electron density and density deformations, including fast evaluation of electrostatic potential, electric field and Hellmann-Feynman forces on nuclei. Solution method: The method of Deformed Atoms in Molecules, reported elsewhere [1], is used for partitioning the molecular electron density into atomic fragments, which are further expanded in spherical harmonics times radial factors. The partition is used for defining molecular density deformations and for the fast calculation of several properties associated to density. Restrictions: The current version is limited to 120 atoms, 2000 contracted functions, and l=5 in basis functions. Density must come from a LCAO calculation (any level) with spherical (not Cartesian) Gaussian functions. Unusual features: The program contains an OPEN statement to binary files (stream) in file GOPENMOL.F90. This statement has not a standard syntax in Fortran 90. Two possibilities are considered in conditional compilation: Intel's ifort and Fortran2003 standard. This latter is applied to compilers other than ifort (gfortran uses this one, for instance). Additional comments: The distribution file for this program is over 30 Mbytes and therefore is not delivered directly when download or e-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Largely dependent on the system size and the module run (from fractions of a second to hours). References: [1] J. Fernández Rico, R. López, I. Ema, G. Ramírez, J. Mol. Struct. (Theochem) 727 (2005) 115.

  3. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  4. 131 iodine gamma dose determination in the thyroid gland using two geometrical shapes: a comparative study

    NASA Astrophysics Data System (ADS)

    Betka, A.; Bentabet, A.; Azbouche, A.; Fenineche, N.; Adjiri, A.; Dib, A.

    2015-05-01

    In order to study the internal gamma dose, we used a Monte Carlo code ‘Penelope’ simulation with two geometrical models (cylindrical and spherical). The deposited energy was determined via the loss of energy calculated from the quantum theory for inelastic collisions based on the first-order (plane-wave) Born approximation for charged particles with individual atoms and molecules. Our results show that the cylindrical geometry is more suitable for carrying out such a study. Moreover, we developed an analytical expression for the 131 iodine gamma dose (the energy deposited per photon absorbed dose). This latter could be considered as an important tool for evaluating the gamma dose without going through stochastic models.

  5. High-Level ab initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.

  6. High-Level ab-initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17 : a New Global Minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum

  7. Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.

    PubMed

    Haustein, M; Wahab, M; Mögel, H-J; Schiller, P

    2015-04-14

    Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.

  8. Seeds mediated synthesis of giant gold particles on the glass surface

    NASA Astrophysics Data System (ADS)

    Vasko, A. A.; Borodinova, T. I.; Marchenko, O. A.; Snegir, S. V.

    2018-03-01

    Herein, we present the protocols of synthesis of two types of gold particles which are in the great interest for the purpose of molecular electronics. The first type is the flat prisms with a triangular/hexagonal shape and a lateral size up to 80 µm. They were synthesized directly on a glass surface pretreated with (3-aminopropyl)-triethoxysilane molecules. The second type of particles was synthesized with using gold seeds with diameter of 18 nm. These seeds were deposited on a glass surface coated with APTES. The resulted three-dimensional structures with a form close to spherical increase in size up to 0.5-0.08 µm. Moreover, these particles grew up separately and did not merge during 48 h of synthesis.

  9. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.

    PubMed

    Kalpana, Duraisamy; Lee, Yang Soo

    2013-03-05

    Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Dynamics and cluster formation in charged and uncharged Ficoll70 solutions

    NASA Astrophysics Data System (ADS)

    Palit, Swomitra; Yethiraj, Anand

    2017-08-01

    We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the translational diffusion for both uncharged and charged polysaccharide (Ficoll70) in water. Analysis of the data indicates that the NMR signal attenuation above a certain packing fraction can be adequately fitted with a bi-exponential function. The self-diffusion measurements also show that the Ficoll70, an often-used compact, spherical polysucrose molecule, is itself nonideal, exhibiting signs of both softness and attractive interactions in the form of a stable suspension consisting of monomers and clusters. Further, we can quantify the fraction of monomers and clusters. This work strengthens the picture of the existence of a bound water layer within and around a porous Ficoll70 particle.

  11. Lasing properties of polymerized chiral nematic Bragg onion microlasers.

    PubMed

    Humar, Matjaž; Araoka, Fumito; Takezoe, Hideo; Muševič, Igor

    2016-08-22

    Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

  12. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  13. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives.

    PubMed

    Yamaguchi, Y; Takenaga, M; Kitagawa, A; Ogawa, Y; Mizushima, Y; Igarashi, R

    2002-06-17

    We investigated the controlled release of human insulin at an initial stage from poly(DL-lactic-co-glycolic acid) (PLGA, M(w) 6600) spherical matrices. PLGA microcapsules were prepared by the novel solvent evaporation multiple emulsion process. When the crystalline insulin was dispersed in dichloromethane as solid-in-oil (S/O) dispersion, it was found that most of insulin molecules were inlaid on the surface of PLGA microcapsules. Consequently, insulin-loaded PLGA microcapsules exhibited marked rapid release of insulin within several hours in both in vivo and in vitro experiments. On the other hand, the addition of glycerol or water in the primary dichloromethane dispersion results in drastically suppressed initial release. It was found by SEM observation that water- or glycerol-in-oil (W/O or G/O) type mini-emulsion droplets with a mean diameter of 300-500 nm were formed in this primary solution. This phenomenon can be theoretically presumed to occur because insulin and PLGA molecules, having amphiphilic properties, converge on the interface between the hydrophilic additive and dichloromethane. Hence, insulin molecules heterogeneously located in the inside of PLGA microcapsules, not on the surface, would be gradually released with PLGA hydrolytic decomposition. As an additional effect of glycerol, the initial burst was further suppressed due to the decrease of the glass transition temperature of PLGA from 42.5 to 36.7 degrees C. Since the annealing of PLGA molecules took place at around 37 degrees C, the porous structure of microspheres immediately disappeared after immersion in PBS or subcutaneous administration. The insulin diffusion through the water-filled pores would be effectively prevented. The strict controlled initial release of insulin from the PLGA microsphere suggested the possibility of utilization in insulin therapy for type I diabetic patients who need construction of a basal insulin profile.

  14. Aqueous solvation of Mg(ii) and Ca(ii): A Born-Oppenheimer molecular dynamics study of microhydrated gas phase clusters

    NASA Astrophysics Data System (ADS)

    León-Pimentel, C. I.; Amaro-Estrada, J. I.; Hernández-Cobos, J.; Saint-Martin, H.; Ramírez-Solís, A.

    2018-04-01

    The hydration features of [Mg(H2O)n ] 2 + and [Ca(H2O)n ] 2 + clusters with n = 3-6, 8, 18, and 27 were studied by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/6-31+G** level of theory. For both ions, it is energetically more favorable to have all water molecules in the first hydration shell when n ≤ 6, but stable lower coordination average structures with one water molecule not directly interacting with the ion were found for Mg2+ at room temperature, showing signatures of proton transfer events for the smaller cation but not for the larger one. A more rigid octahedral-type structure for Mg2+ than for Ca2+ was observed in all simulations, with no exchange of water molecules to the second hydration shell. Significant thermal effects on the average structure of clusters were found: while static optimizations lead to compact, spherically symmetric hydration geometries, the effects introduced by finite-temperature dynamics yield more prolate configurations. The calculated vibrational spectra are in agreement with infrared spectroscopy results. Previous studies proposed an increase in the coordination number (CN) from six to eight water molecules for [Ca(H2O)n ] 2 + clusters when n ≥ 12; however, in agreement with recent measurements of binding energies, no transition to a larger CN was found when n > 8. Moreover, the excellent agreement found between the calculated extended X-ray absorption fine structure spectroscopy spectra for the larger cluster and the experimental data of the aqueous solution supports a CN of six for Ca2+.

  15. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  16. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  17. Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions.

    PubMed

    Wang, Yan; Chen, Bo Zhi; Liu, Yue Jin; Wu, Zhi Min; Guo, Xin Dong

    2017-03-01

    The pH-sensitive nanoparticles are selected as the potentially promising oral protein and peptide drug carriers due to their excellent performance. With the poly (lactic-co-glycolic acid)/hydroxypropyl methylcellulose phthalate (PLGA/HP55) nanoparticle as a model nanoparticle, the structure-property relationship of nanoparticles with different conditions is investigated by dissipative particle dynamics (DPD) simulations in our work. In the oral drug delivery system, the poly (lactic-co-glycolic acid) (PLGA) is hydrophobic polymer, hydroxypropyl methylcellulose phthalate (HP55) is pH-sensitive enteric polymer which used to protect the nanoparticles through the stomach and polyvinyl alcohol (PVA) is hydrophilic polymer as the stabilizer. It can be seen from DPD simulations that all polymer molecules form spherical core-shell nanoparticles with stabilizer PVA molecules adsorbed on the outer surface of the PLGA/HP55 matrix at certain compositions. The DPD simulation study can provide microscopic insight into the formation and morphological changes of pH-sensitive nanoparticles which is useful for the design of new materials for high-efficacy oral drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Pentak, Danuta

    2014-03-01

    The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.

  19. Photoprotective effects of apple peel nanoparticles

    PubMed Central

    Bennet, Devasier; Kang, Se Chan; Gang, Jongback; Kim, Sanghyo

    2014-01-01

    Plants contain enriched bioactive molecules that can protect against skin diseases. Bioactive molecules become unstable and ineffective due to unfavorable conditions. In the present study, to improve the therapeutic efficacy of phytodrugs and enhance photoprotective capability, we used poly(D,L-lactide-co-glycolide) as a carrier of apple peel ethanolic extract (APETE) on permeation-enhanced nanoparticles (nano-APETE). The in vitro toxicity of nano-APETE-treated dermal fibroblast cells were studied in a bioimpedance system, and the results coincided with the viability assay. In addition, the continuous real-time evaluations of photodamage and photoprotective effect of nano-APETE on cells were studied. Among three different preparations of nano-APETE, the lowest concentration provided small, spherical, monodispersed, uniform particles which show high encapsulation, enhanced uptake, effective scavenging, and sustained intracellular delivery. Also, the nano-APETE is more flexible, allowing it to permeate through skin lipid membrane and release the drug in a sustained manner, thus confirming its ability as a sustained transdermal delivery. In summary, 50 μM nano-APETE shows strong synergistic photoprotective effects, thus demonstrating its higher activity on target sites for the treatment of skin damage, and would be of broad interest in the field of skin therapeutics. PMID:24379668

  20. CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer.

    PubMed

    Lee, Jung-Pil; Koh, Haeng-Deog; Shin, Won-Jeong; Kang, Nam-Goo; Park, Soojin; Lee, Jae-Suk

    2014-03-01

    We demonstrate the well-defined control of phase transition of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer from spherical micelles to lamellar structures, in which CdS and C60 nanoparticles (NPs) are selectively positioned at the P2VP domains. The CdS NPs are in situ synthesized using PS-b-P2VP block copolymer templates that are self-assembled in PS-selective solvents. The CdS-PS-b-P2VP micellar structures are transformed to lamellar phase by adjusting a solvent selectivity for both blocks. In addition, a binary system of CdS/C60 embedded in PS-b-P2VP lamellar structures (CdS/C60-PS-b-P2VP) is fabricated by embedding C60 molecules into P2VP domain though charge-transfer complexation between pyridine units of PS-b-P2VP and C60 molecules. The CdS/C60-PS-b-P2VP nanostructured films are characterized by transmission electron microscopy (TEM) and UV-Vis spectrometer. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent

    PubMed Central

    Sugaya, Sari; Yamada, Masumi; Hori, Ayaka; Seki, Minoru

    2013-01-01

    In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads—Ca-alginate and chitosan—with sizes of 6–10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes. PMID:24396529

  2. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.

    PubMed

    Sugaya, Sari; Yamada, Masumi; Hori, Ayaka; Seki, Minoru

    2013-01-01

    In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads-Ca-alginate and chitosan-with sizes of 6-10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.

  3. Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots.

    PubMed

    Jia, Yuhua; Li, Jinyu; Chen, Jincan; Hu, Ping; Jiang, Longguang; Chen, Xueyuan; Huang, Mingdong; Chen, Zhuo; Xu, Peng

    2018-05-09

    Clinical photosensitizers suffer from the disadvantages of fast photobleaching and high systemic toxicities because of the off-target photodynamic effects. To address these problems, we report a self-assembled pentalysine-phthalocyanine assembly nanodots (PPAN) fabricated by an amphipathic photosensitizer-peptide conjugate. We triggered the photodynamic therapy effects of photosensitizers by precisely controlling the assembly and disintegration of the nanodots. In physiological aqueous conditions, PPAN exhibited a size-tunable spherical conformation with a highly positive shell of the polypeptides and a hydrophobic core of the π-stacking Pc moieties. The assembly conformation suppressed the fluorescence and the reactive oxygen species generation of the monomeric photosensitizer molecules (mono-Pc) and thus declined the photobleaching and off-target photodynamic effects. However, tumor cells disintegrated PPAN and released the mono-Pc molecules, which exhibited fluorescence for detection and the photodynamic effects for the elimination of the tumor tissues. The molecular dynamics simulations revealed the various assembly configurations of PPAN and illustrated the assembly mechanism. At the cellular level, PPAN exhibited a remarkable phototoxicity to breast cancer cells with the IC 50 values in a low nanomolar range. By using the subcutaneous and orthotopic breast cancer animal models, we also demonstrated the excellent antitumor efficacies of PPAN in vivo.

  4. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.

    PubMed

    de Graaf, Joost; Rempfer, Georg; Holm, Christian

    2015-04-01

    Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  5. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  6. How Water’s Properties Are Encoded in Its Molecular Structure and Energies

    PubMed Central

    2017-01-01

    How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties. PMID:28949513

  7. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    PubMed Central

    Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim

    2010-01-01

    To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity. PMID:20517481

  8. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  9. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  10. Optical isotropy and iridescence in a smectic 'blue phase'.

    PubMed

    Yamamoto, Jun; Nishiyama, Isa; Inoue, Miyoshi; Yokoyama, Hiroshi

    2005-09-22

    When liquid crystal molecules are chiral, the twisted structure competes with spatially uniform liquid crystalline orders, resulting in a variety of modulated liquid crystal phases, such as the cholesteric blue phase, twist grain boundary and smectic blue phases. Here we report a liquid crystal smectic blue phase (SmBP(iso)), formed from a two-component mixture containing a chiral monomer and a 'twin' containing two repeat units of the first molecule connected by a linear hydrocarbon spacer. The phase exhibits the simultaneous presence of finite local-order parameters of helices and smectic layers, without any discontinuity on a mesoscopic length scale. The anomalous softening of elasticity due to a strong reduction in entropy caused by mixing the monomer and the twin permits the seamless coexistence of these two competing liquid crystal orders. The new phase spontaneously exhibits an optically isotropic but uniformly iridescent colour and automatically acquires spherical symmetry, so that the associated photonic band gap maintains the same symmetry despite the local liquid crystalline order. We expect a range of unusual optical transmission properties based on this three-dimensional isotropic structure, and complete tunability due to the intrinsic softness and responsiveness of the liquid crystalline order against external fields.

  11. The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods.

    PubMed

    Lynch, Benjamin J; Zhao, Yan; Truhlar, Donald G

    2005-03-03

    Three new multicoefficient correlation methods (MCCMs) called BMC-QCISD, BMC-CCSD, and BMC-CCSD-C are optimized against 274 data that include atomization energies, electron affinities, ionization potentials, and reaction barrier heights. A new basis set called 6-31B(d) is developed and used as part of the new methods. BMC-QCISD has mean unsigned errors in calculating atomization energies per bond and barrier heights of 0.49 and 0.80 kcal/mol, respectively. BMC-CCSD has mean unsigned errors of 0.42 and 0.71 kcal/mol for the same two quantities. BMC-CCSD-C is an equally effective variant of BMC-CCSD that employs Cartesian rather than spherical harmonic basis sets. The mean unsigned error of BMC-CCSD or BMC-CCSD-C for atomization energies, barrier heights, ionization potentials, and electron affinities is 22% lower than G3SX(MP2) at an order of magnitude less cost for gradients for molecules with 9-13 atoms, and it scales better (N6 vs N,7 where N is the number of atoms) when the size of the molecule is increased.

  12. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE PAGES

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; ...

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  13. High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap

    PubMed Central

    Kang, Jeon Woong; So, Peter T. C.; Dasari, Ramachandra R.; Lim, Dong-Kwon

    2015-01-01

    We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules. PMID:25646716

  14. Spherical beamforming for spherical array with impedance surface

    NASA Astrophysics Data System (ADS)

    Tontiwattanakul, Khemapat

    2018-01-01

    Spherical microphone array beamforming has been a popular research topic for recent years. Due to their isotropic beam in three dimensional spaces as well as a certain frequency range, the arrays are widely used in many applications such as sound field recording, acoustic beamforming, and noise source localisation. The body of a spherical array is usually considered perfectly rigid. A sound field captured by the sensors on spherical array can be decomposed into a series of spherical harmonics. In noise source localisation, the amplitude density of sound sources is estimated and illustrated by mean of colour maps. In this work, a rigid spherical array covered by fibrous materials is studied via numerical simulation and the performance of the spherical beamforming is discussed.

  15. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOEpatents

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  16. Apparatus for irradiating a continuously flowing stream of fluid

    DOEpatents

    Speir, Leslie G.; Adams, Edwin L.

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  17. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  18. A kinetic theory description of the viscosity of dense fluids consisting of chain molecules.

    PubMed

    de Wijn, Astrid S; Vesovic, Velisa; Jackson, George; Trusler, J P Martin

    2008-05-28

    An expression for the viscosity of a dense fluid is presented that includes the effect of molecular shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed, rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions between two rigid spheres belonging to different chains. The approach is thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed in terms of two molecular parameters, the diameter sigma of the spherical segment and the chain length (number of segments) m. It is demonstrated that an analysis of viscosity data of a particular pure fluid alone cannot be used to obtain independently effective values of both sigma and m. Nevertheless, the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere making up the chain can be represented by the diameter of a methane molecule. The effective chain lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The dependence can be approximated by a simple relationship m=1+(C-1)3. The same relationship was reported within the context of a statistical associating fluid theory equation of state treatment of the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same value for the chain lengths of n-alkanes.

  19. Plasmonic core-satellite assemblies with high stability and yield (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ching; Lin, Tien-Hsin; Liu, Zhi-Yan; Chen, Jyun-Hao; Wang, Yi-Chen; Chen, Shiuan-Yeh

    2016-09-01

    Plasmonic structures are attractive due to their optical properties in the near-field and far-field. In the near-field, the enhanced field they generated strongly interacts with materials in proximity to the surface and even produces the quantum hybrid states in the strong coupling regime. In the far-field, the larger scattering cross section of plasmonic particles provides better contrast for tissue imaging. In addition, the strong absorption can generate substantial amount of heat for cancer cell elimination. These optical properties are usually engineered through tuning the size and morphology of individual nanoparticles by various chemical synthesis methods. The alternative way is to use coupled structure based on existing particles. The molecule-linked structure is a common way for 3D plasmonic materials. However, to produce a stable coupled structure in the solution phase is challenging. The formation of linkage between linker molecules is usually time-consuming and at low efficiency. Increasing the concentration of linker molecules may raise the reaction speed but also result in the random aggregation of particles. In this work, a polyelectrolyte coating is used to connect spherical nanoparticles of different sizes to form core-satellite assemblies (CSA). The coupled core-satellite structure is formed almost immediately after the solutions of two particles are mixed. The output efficiency is nearly 100%. The CSA is robust under the additional silica shell coating and strong laser illumination. The stability of this CSA is confirmed by the Raman spectra and this assembly can potentially be used as Raman tags.

  20. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.

    PubMed

    Soh, Jun Hui; Lin, Yiyang; Rana, Subinoy; Ying, Jackie Y; Stevens, Molly M

    2015-08-04

    A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17β-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.

  1. Association and dissociation of an aqueous amphiphile at elevated temperatures.

    PubMed

    Bowron, D T; Finney, J L

    2007-08-23

    The hydrophobic interaction is often thought to increase with increasing temperature. Although there is good experimental evidence for decreased aqueous solubility and increased clustering of both nonpolar and amphiphilic molecules as temperature is increased, the detailed nature of the changes in intermolecular interactions with temperature remain unknown. By use of isotope substitution neutron scattering difference measurements on a 0.04 mole fraction solution of tert-butanol in water as the solute clustering passes through a temperature maximum, the changes in local intermolecular structures are examined. Although, as expected, the solute molecules cluster through increased contact between their nonpolar head groups with the exclusion of water, the detailed geometry of the mutual interactions changes as temperature increases. As the clustering breaks up with further temperature increase, the local structures formed do not mirror those that were found in the low-temperature dispersed system: the disassembly process is not the reverse of assembly. The clusters formed by the solute head groups are reminiscent of structures that are found in systems of spherical molecules, modulated by the additional constraint of near-maximal hydrogen bonding between the polar tails of the alcohol and the solvent water. Although the overall temperature behavior is qualitatively what would be expected of a hydrophobically driven system, the way the system resolves the competing interactions and their different temperature dependencies is complex, suggesting it could be misleading to think of the aggregation of aqueous amphiphiles solely in terms of a hydrophobic driving force.

  2. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Gitelman, L.; Israeli, M.; Averbuch, A.; Nathan, M.; Schuss, Z.; Golodnitsky, D.

    2007-12-01

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  3. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  4. Characterizations of individual human red blood cells from patients with diabetes mellitus (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, SangYun; Jang, Seongsoo; Park, HyunJoo; Park, YongKeun

    2016-03-01

    We systematically measure the morphological, biochemical, and biomechanical properties of individual human red blood cells (RBCs) from patients with diabetes mellitus using quantitative phase imaging technique to characterize the diabetic red cells with respect to those of the healthy. The 3-D refractive index tomograms and 2-D dynamic membrane fluctuation maps of individual RBCs are reconstructed from a set of the retrieved complex optical fields at various laser incidence angles using the Common-path diffraction optical tomography, from which volume, surface area, sphericity, hemoglobin (Hb) concentration, Hb content, and membrane fluctuation are obtained simultaneously. The correlative relations among the retrieved red cell indices of diabetic and healthy RBCs are also investigated with capabilities of individual cell measurement. As expected, there are no significant alterations in morphologies (cellular volumes, surface area, and sphericity) between diabetic and healthy RBCs. However, despite the minute mean corpuscular Hb differences in cell blood count datasheet, the measured Hb concentrations and Hb contents of diabetic RBCs are statistically higher than those of healthy RBCs, which might be related to the glycation of Hb molecules by hyperglycemia. Meanwhile, the membrane fluctuations of diabetic RBCs are clearly diminished compared to healthy red cells, implying the significantly decreased RBC deformability. In particular, it seems that the membrane fluctuations have mild negative relationships with the reported HbA1c levels.

  5. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    PubMed

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  7. The efficiency of aspheric intraocular lens according to biometric measurements.

    PubMed

    Whang, Woong-Joo; Piao, Junjie; Yoo, Young-Sik; Joo, Choun-Ki; Yoon, Geunyoung

    2017-01-01

    To analyze internal spherical aberration in pseudophakic eyes that underwent aspheric intraocular lens (IOL) implantation, and to investigate the relationships between biometric data and the effectiveness of aspheric IOL implantation. This retrospective study included 40 eyes of 40 patients who underwent implantation of an IOL having a negative spherical aberration of -0.20 μm (CT ASPHINA 509M; Carl Zeiss Meditec Inc., Germany). The IOLMaster (version 5.0; Carl Zeiss AG, Germany) was used for preoperative biometric measurements (axial length, anterior chamber depth, central corneal power) and the measurement of postoperative anterior chamber depth. The spherical aberrations were measured preoperatively and 3 months postoperatively using the iTrace (Tracey Technologies, Houston, TX, USA) at a pupil diameter of 5.0 mm. We investigated the relationships between preoperative biometric data and postoperative internal spherical aberration, and compared biometric measurements between 2 subgroups stratified according to internal spherical aberration (spherical aberration ≤ -0.06 μm vs. spherical aberration > -0.06 μm). The mean postoperative internal spherical aberration was -0.087 ± 0.063 μm. Preoperative axial length and residual total spherical aberration showed statistically significant correlations with internal spherical aberration (p = 0.041, 0.002). Preoperative axial length, postoperative anterior chamber depth, IOL power, and residual spherical aberration showed significant differences between the 2 subgroups stratified according to internal spherical aberration (p = 0.020, 0.029, 0.048, 0.041 respectively). The corrective effect of an aspheric IOL is influenced by preoperative axial length and postoperative anterior chamber depth. Not only the amount of negative spherical aberration on the IOL surface but also the preoperative axial length should be considered to optimize spherical aberration after aspheric IOL implantation.

  8. Experiments and Theory of Induced Optical Magnetization

    NASA Astrophysics Data System (ADS)

    Fisher, Alexander A.

    This thesis reports the results of light scattering experiments at moderate optical intensities (˜ 108 W/cm2) in which the magnetic component of light induces magnetic dipolar response of unprecedented intensity by a novel nonlinear mechanism. Both experimentally and theoretically the amplitude of induced magnetization is found to be as large as electric polarization (M = cP) at intensities above ~ 108 W/cm2 in different materials, greatly exceeding the conventional bounds of the multipole expansion. The transverse nature of the magnetization, its frequency, and its quadratic dependence on incident light intensity are in agreement with an exact theory which identifies the importance of magnetically-induced torque in achieving 2-photon resonance of this ultrafast process. In this work we report and compare the intensity dependence of cross-polarized scattering in the transparent molecular liquids CCl4, SiCl 4, SiBr4, SnCl4, C6H6, C 6D6, C6H5NH2, and C 6H5CN and the crystalline solid Gd3Ga5O 12. Complete radiation patterns of co-polarized and cross-polarized light scattering were recorded as a function of intensity in these homogeneous media and subsequently decomposed into polarized and unpolarized components to provide a more complete picture of scattering dynamics than has been possible in past experiments. The cross-polarized scattering observed from spherical-top molecules CCl4, SiCl4, SiBr4, and SnCl4 and crystalline GGG is argued to originate from magnetic dipoles induced by a second-order optical nonlinearity driven jointly by the E and B fields of light. Among the spherical top molecular liquids, SnCl4 developed more intense magnetic scattering at a fixed intensity than CCl4, in agreement with the predicted dependence on rotational frequency and damping. Cross-polarized scattering in anisotropic molecules C6H6, C6D6, C6 H5NH2, and C6H5CN, on the other hand, is known to originate from optical orientation of permanent electric dipole moments in first-order or differential polarizability in third-order. The importance of rotational dynamics to depolarization in all the liquids studied is outlined and confirmed through observation of an isotopic effect in the scattering from C6H6 vs. C6D 6. Finally, the new nonlinear optical process investigated here provides a method for generating oriented rotations of molecules.

  9. New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4

    NASA Astrophysics Data System (ADS)

    Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.

    2004-11-01

    A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and the DVR approximation in the radial coordinates. The solution of the secular problem is carried through a series of intermediate diagonalisations and truncations. Restrictions on the complexity of the problem: (1) The size of the final Hamiltonian matrix that can be practically diagonalised; (2) The DVR approximation for a radial coordinate fails for values of the coordinate near zero—this is remedied only for one radial coordinate by using analytical integration. Typical running time: problem-dependent Unusual features of the program: A user-supplied subroutine to evaluate the potential energy is a program requirement. External routines: BLAS and LAPACK are required. References: [1] J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 92 (1985) 1400. [2] J.R. Henderson, C.R. Le Sueur, J. Tennyson, Comp. Phys. Comm. 75 (1993) 379.

  10. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, S. Sindhu; Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu; SUNY Eye Institute, New York, NY

    Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel andmore » as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0{sup +/−}) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0{sup +/−}/AQP1{sup +/−}) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P{sub f}) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.« less

  11. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology.

    PubMed

    Benard, Yohann; Lopez-Gil, Norberto; Legras, Richard

    2010-12-01

    To study the impact on the subjective depth of field of 4th-order spherical aberration and its combination with 6th-order spherical aberration and analyze the accuracy of image-quality metrics in predicting the impact. Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France. Case series. Subjective depth of field was defined as the range of defocus at which the target (3 high-contrast letters at 20/50) was perceived acceptable. Depth of field was measured using 0.18 diopter (D) steps in young subjects with the addition of the following spherical aberration values: ±0.3 μm and ±0.6 μm 4th-order spherical aberration with 3.0 mm and 6.0 mm pupils and ±0.3 μm 4th-order spherical aberration with ±0.1 μm 6th-order spherical aberration for 6.0 mm pupils. The addition of ±0.3 and ±0.6 μm 4th-order spherical aberration increased depth of field by 30% and 45%, respectively. The combination of 4th-order spherical aberration and 6th-order spherical aberration of opposite signs increased depth of field more than 4th-order spherical aberration alone (ie, 63%), while the combination of 4th-order spherical aberration and 6th-order spherical aberration of the same signs did not (ie, 24%). Whereas the midpoint of the depth of field could be predicted by image-quality metrics, none was found a good predictor of objectionable depth of field. Subjective depth of field increased when 4th-order spherical aberration and 6th-order spherical aberration of opposite signs were added but could not be predicted with image-quality metrics. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage.

    PubMed

    Chávez-Calderón, Adriana; Paraguay-Delgado, Francisco; Orrantia-Borunda, Erasmo; Luna-Velasco, Antonia

    2016-12-01

    Semiconductor SnO 2 nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO 2 NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO 2 NPs (2 and 40 nm) and one size of flower-like SnO 2 NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO 2 NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 9  CFU mL -1 ) exposed to up to 1000 mg L -1 of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC 50  > 500 mg L -1 ) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn 4+ was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO 2 NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    NASA Astrophysics Data System (ADS)

    Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka

    2018-06-01

    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization.

  14. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    PubMed

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  15. Modelling incompressible flows and fluid-structure interaction problems with smoothed particle hydrodynamics: Briefing on the 2017 SPHERIC Beijing International Workshop

    NASA Astrophysics Data System (ADS)

    Liu, Mou-bin; Huang, Can; Zhang, A.-man

    2018-02-01

    The 2017 SPHERIC Beijing International Workshop (or SPHERIC Beijing 2017) was held at Peking University, in China, on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We are delighted to present nine contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 13th SPHERIC Workshop (or SPHERIC 2018) will be held in Galway, Ireland in 2018 by the National University of Ireland, and the SPHERIC International Workshop in Harbin, China in 2019 by the Harbin Engineering University.

  16. Orientational order in bipolar nematic microdroplets close to the phase transition

    NASA Astrophysics Data System (ADS)

    Vilfan, I.; Vilfan, M.; Žumer, S.

    1989-10-01

    The ordering in bipolar liquid-crystal droplets close to the nematic-paranematic phase translation is studied. Here, ``paranematic'' refers to the phase above the nematic-isotropic transition temperature. The structure of spherical droplets is obtained after the minimization of the Landau-de Gennes-type free energy assuming a constant value of the surface order parameter and strong anchoring of the molecules parallel to the surface. Disordered defect regions caused by elastic deformations are found close to the poles. The defect regions grow into the droplet as the coexistence temperature between the paranematic and nematic phases is approached from below. The temperature-radius phase diagram shows the first-order coexistence curve terminating in the critical point and a pronounced decrease of the coexistence temperature on approaching the critical radius.

  17. Self-Assembled ZnO Nanosheet-Based Spherical Structure as Photoanode in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ameri, Mohsen; Raoufi, Meysam; Zamani-Meymian, M.-R.; Samavat, Feridoun; Fathollahi, M.-R.; Mohajerani, Ezeddin

    2018-03-01

    High surface area and enhanced light scattering of ZnO nanosheet aggregates have made them a promising active layer candidate material for fabrication of nanostructure dye-sensitized solar cells. Here, we propose a facile preparation method of such ZnO nanosheet structures, and in order to verify their applicability as photoanode material for dye-sensitized solar cells, we employ morphological, optical, structural and electrical measurements. The results reveal the high surface area available for dye molecules for enhancing adsorption, high light scattering and competitive power conversion efficiencies compared to the works in literature. Finally, the device is optimized with respect to the photoanode thickness. The favorable features shown here can extend the application of the structure to other types of sensitization-based perovskite and quantum dot solar cells.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Hui; Mignolet, Benoit; Fang, Li

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1–5 × 10 14 W/cm 2), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho 3N@C 80 q+, q = 1–2, was found to be different from that of C 60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C 60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho 3N@C 80 is responsible for the nmore » = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10 14 W/cm 2.« less

  19. Neutron scattering studies of molecular conformations in liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  20. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Frankie; Usatyuk, Mykhaylo; DeSalvo, B. J.; Chin, Cheng

    2017-01-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.

  1. Evaluating the Laplace pressure of water nanodroplets from simulations

    NASA Astrophysics Data System (ADS)

    Malek, Shahrazad M. A.; Sciortino, Francesco; Poole, Peter H.; Saika-Voivod, Ivan

    2018-04-01

    We calculate the components of the microscopic pressure tensor as a function of radial distance r from the centre of a spherical water droplet, modelled using the TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating the microscopic pressure (Ikeshoji et al 2003 Mol. Simul. 29 101) in order to apply it to a rigid molecular model of water. As test cases, we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath a surface region comprising approximately two molecular layers, the pressure tensor becomes approximately isotropic and constant with r. We find that the dependence of the pressure on droplet radius is that expected from the Young-Laplace equation, despite the small size of the droplets.

  2. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  3. Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere.

    PubMed

    Yoshida, Kenta; Bright, Alexander N; Ward, Michael R; Lari, Leonardo; Zhang, Xudong; Hiroyama, Tomoki; Boyes, Edward D; Gai, Pratibha L

    2014-10-24

    The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.

  4. Structure of the starch granule--a curved crystal.

    PubMed

    Larsson, K

    1991-09-01

    A structure model of the molecular arrangement in native starch proposed earlier is further considered, with special regard to the lateral packing of cluster units. The amylopectin molecules are radially distributed, with branches concentrated in clusters. Within each cluster the polyglucan chains form double helices which are hexagonally packed. The clusters form spherically concentric crystalline layers with amylose in an amorphous form acting as a space-filler. A translational mechanism for the change of helical direction at boundaries between clusters is proposed which can account for variations in the curvature of the concentric layers. The model is related to X-ray diffraction data and optical birefringence, considering dissembly at gelatinization. The structure is also discussed in relation to biosynthesis. Some aspects of gelatinization, such as the recent glass-transition approach, are then considered.

  5. Tunable Porosities and Shapes of Fullerene-Like Spheres

    PubMed Central

    Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred

    2015-01-01

    The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976

  6. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  7. Mechanical properties of fullerite of various composition

    NASA Astrophysics Data System (ADS)

    Rysaeva, L. Kh.

    2017-12-01

    Molecular dynamics simulation is used to study the structures of fullerite of various composition as well as their mechanical properties. Fullerites based on fullerene C60 with simple cubic and face-centered packing, fullerene-like molecule C48 and fullerene C240 with simple cubic packing are studied. Compliance and stiffness coefficients are calculated for fullerites C60 and C48. For fullerite C240, C60, and C48, deformation behavior under the effect of hydrostatic compression is also investigated. It is shown that the fullerenes in the fullerite remain almost spherical up to high values of compressive strain, as a result of which the fullerite is an elastic medium up to densities of 2.5 g/cm3. The increasing stiffness and strength under an applied compression is found for all the considered fullerites.

  8. Fabrication of Controllable Pore and Particle Size of Mesoporous Silica Nanoparticles via a Liquid-phase Synthesis Method and Its Absorption Characteristics

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo

    2011-12-01

    Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.

  9. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  10. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Liu, Li; Li, Hui; Yao, Shouzhuo

    2009-09-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  11. Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.

    PubMed

    Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G

    2013-01-01

    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.

  12. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  13. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  14. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition

    PubMed Central

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-01-01

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065

  15. Carbon Chemistry in the Envelope of VY Canis Majoris: Implications for Oxygen-Rich Evolved Stars

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-04-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO+ have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO+ in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ~ 0.4-5 × 10-4, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ~ 0.9-9 × 10-6), with no obvious dependence on the mass-loss rate. In VY CMa, HCO+ is present in all three outflows with f ~ 0.4-1.6 × 10-8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ~ 150-190, while [CN]/[HCN] ~ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ~ 2-6 × 10-7. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent velocities.

  16. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  17. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  18. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  19. Fabrication of free-standing albumin-nanosheets having heterosurfaces.

    PubMed

    Okamura, Yosuke; Goto, Takahiro; Niwa, Daisuke; Fukui, Yoshihito; Otsuka, Masanobu; Motohashi, Norikazu; Osaka, Tetsuya; Takeoka, Shinji

    2009-04-01

    Sheet-shaped carriers, having both obverse and reverse surfaces and thus a large contact area for targeting a site, have several advantages over spherical-shaped carriers, which have an extremely small contact area for targeting sites. Here, we proposed a novel method to prepare a free-standing ultrathin and biocompatible nanosheet having heterosurfaces, by a combination of four processes: (1) specific adsorption of recombinant human serum albumin (rHSA) molecules onto a patterned octadecyltrimethoxysilane self-assembled monolayer region (ODS-SAM), (2) preparation of nanosheets of rHSA molecules bearing thiol groups (SH-rHSA) via two-dimensionally disulfide crosslinking, (3) surface modification of the resulting nanosheet, and (4) preparation of the free-standing nanosheet by detachment from the ODS-SAM. The SH-rHSA molecules at pH 5.0 and a concentration of 1 microg/mL were specifically adsorbed on the patterned ODS-SAM regions by hydrophobic interaction, and were two-dimensionally crosslinked in the presence of copper ion as an oxidant. The rHSA-nanosheets were then simply detached from the ODS-SAM by treatment with surfactant. We succeeded in the preparation of rectangular (10 microm x 30 microm) and ultrathin (4.5 +/- 1.0 nm) rHSA-nanosheets on a patterned ODS-SAM, and could also obtain free-standing rHSA-nanosheets having heterosurfaces by surface modification with fluorescent latex beads. Thus, the rHSA-nanosheets having heterosurfaces could be regarded as a new biomaterial for drug carriers, hemostatic reagents, wound dressing for burn injury, and so forth. Copyright 2008 Wiley Periodicals, Inc.

  20. Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules

    PubMed Central

    Choi, Seon–Jin; Choi, Chanyong; Kim, Sang-Joon; Cho, Hee-Jin; Hakim, Meggie; Jeon, Seokwoo; Kim, Il–Doo

    2015-01-01

    Tailoring of semiconducting metal oxide nanostructures, which possess controlled pore size and concentration, is of great value to accurately detect various volatile organic compounds in exhaled breath, which act as potential biomarkers for many health conditions. In this work, we have developed a very simple and robust route for controlling both the size and distribution of spherical pores in electrospun WO3 nanofibers (NFs) via a sacrificial templating route using polystyrene colloids with different diameters (200 nm and 500 nm). A tentacle-like structure with randomly distributed pores on the surface of electrospun WO3 NFs were achieved, which exhibited improved surface area as well as porosity. Porous WO3 NFs with enhanced surface area exhibited high gas response (Rair/Rgas = 43.1 at 5 ppm) towards small and light H2S molecules. In contrast, porous WO3 NFs with maximized pore diameter showed a high response (Rair/Rgas = 2.8 at 5 ppm) towards large and heavy acetone molecules. Further enhanced sensing performance (Rair/Rgas = 65.6 at 5 ppm H2S) was achieved by functionalizing porous WO3 NFs with 0.1 wt% non-oxidized graphene (NOGR) flakes by forming a Schottky barrier (ΔΦ = 0.11) at the junction between the WO3 NFs (Φ = 4.56 eV) and NOGR flakes (Φ = 4.67 eV), which showed high potential for the diagnosis of halitosis. PMID:25626399

  1. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  2. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

    PubMed Central

    Techane, Sirnegeda D.; Gamble, Lara J.; Castner, David G.

    2011-01-01

    Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (∼15%) and oxidized sulfur (∼20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. PMID:21974680

  3. 3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles.

    PubMed

    Tan, Huanshu; Peng, Shuhua; Sun, Chao; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    In the study of nanobubbles, nanodroplets or nanolenses immobilised on a substrate, a cross-section of a spherical cap is widely applied to extract geometrical information from atomic force microscopy (AFM) topographic images. In this paper, we have developed a comprehensive 3D spherical-cap fitting procedure (3D-SCFP) to extract morphologic characteristics of complete or truncated spherical caps from AFM images. Our procedure integrates several advanced digital image analysis techniques to construct a 3D spherical-cap model, from which the geometrical parameters of the nanostructures are extracted automatically by a simple algorithm. The procedure takes into account all valid data points in the construction of the 3D spherical-cap model to achieve high fidelity in morphology analysis. We compare our 3D fitting procedure with the commonly used 2D cross-sectional profile fitting method to determine the contact angle of a complete spherical cap and a truncated spherical cap. The results from 3D-SCFP are consistent and accurate, while 2D fitting is unavoidably arbitrary in the selection of the cross-section and has a much lower number of data points on which the fitting can be based, which in addition is biased to the top of the spherical cap. We expect that the developed 3D spherical-cap fitting procedure will find many applications in imaging analysis.

  4. Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Gruber, T.; Rummel, R.

    2009-04-01

    Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?

  5. Terraced spreading of simple liquids on solid surfaces

    NASA Technical Reports Server (NTRS)

    Yang, Ju-Xing; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    We have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observe a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within and between layers. The quantitative behavior resembles recent experimental findings, but the detailed dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time as R-squared approximately equal to log10t, which disagrees with experiments on polymeric liquids as well as recent calculations.

  6. Preparation, structural and dielectric characteristics of Y0.5La0.95PO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Raina, Bindu; Verma, Seema; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Nanoparticles of yttrium substituted lanthanum phosphate having formulae Y0.5La0.95PO4 were successfully prepared through co-precipitation method. The phase, purity and crystallinity of 5% yttrium substituted lanthanum phosphate (Y: LaP 5%) powder was characterized by X-ray diffraction technique which suggests the sample belonging to monoclinic monazite crystal system. The spherical morphology with partial agglomeration having grain size in the nano scale range was observed with transmission electron microscopy. FTIR analysis depicts the presence of water molecule along with the phosphate group. The electrical properties of the grown composition show dependence of dielectric constant and dielectric loss on frequency and temperature. The continuous decrease in dielectric constant with increase in frequency suggests that the conduction mechanism is due to hopping of the charge carriers from one site to another.

  7. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes.

    PubMed

    Puthusseri, Divya; Babu, Deepu J; Okeil, Sherif; Schneider, Jörg J

    2017-10-04

    Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO 2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO 2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

  8. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles.

    PubMed

    Ashokkumar, Thirunavukkarasu; Prabhu, Durai; Geetha, Ravi; Govindaraju, Kasivelu; Manikandan, Ramar; Arulvasu, Chinnasamy; Singaravelu, Ganesan

    2014-11-01

    An ethnopharmacological approach for biosynthesis of gold nanoparticles is being demonstrated using seed coat of Cajanus cajan. Medicinal value of capping molecule investigated for anticancer activity and results disclose its greater potential. The active principle of the seed coat [3-butoxy-2-hydroxypropyl 2-(2,4-dihydroxyphenyl) acetate] is elucidated. Rapid one-step synthesis yields highly stable, monodisperse (spherical) gold nanoparticles in the size ranging from 9 to 41 nm. Anticancer activity has been studied using liver cancer cells and cytotoxic mechanism has been evaluated using MTT, Annexin-V/PI Double-Staining Assay, Cell cycle, Comet assay and Flow cytometric analysis for apoptosis. The present investigation will open up a new possibility of functionalizing gold nanoparticles for apoptosis studies in liver cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a first-passage perspective

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas; Clark, Aaron

    2014-03-01

    Aquatic microorganisms face a variety of challenges in the course of development. One central challenge is efficiently regulating the export of toxic molecules inside the developing embryo. The strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. In this talk we consider the first-passage problem for the uptake of exported toxins by a spherical embryo. A perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms in the vicinity of the embryo, and that fluid flow enhances the effectiveness of toxin export. We highlight connections between the model results and recent experiments on the development of sea urchin embryos. We acknowledge financial support from the University of Michigan-Dearobrn CASL Faculty Summer Research Grant.

  10. Electron impact ionisation cross section for organoplatinum compounds

    NASA Astrophysics Data System (ADS)

    Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2016-11-01

    This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.

  11. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  12. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  13. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  14. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy.

    PubMed

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-09-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle. PLS models predicting the moisture content were based on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded prediction errors between 0.27 and 0.48 μm. The morphology of the spray-dried particles had a significant impact on the predictive ability of the models. Good predictive models could be obtained for spherical particles with a calibration error (RMSECV) of 0.22 μm, whereas wrinkled particles resulted in much less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles.

  15. Burning velocity measurements of nitrogen-containing compounds.

    PubMed

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  16. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles.

    PubMed

    Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal

    2018-05-01

    When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.

  17. Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

    PubMed Central

    2018-01-01

    Mesoporous silica nanoparticles (MSNs) have sparked considerable interest in drug/gene delivery, catalysis, adsorption, separation, sensing, antireflection coatings and bioimaging because of their tunable structural properties. The shape, size and pore structure of MSNs are greatly influenced by the type of additives used, e.g., solvent and pore-templating agent. Here, we studied the influence of cyclodextrin (CD) molecules on the formation of MSNs. The nanoparticles over 100 nm in diameter were synthesized by surfactant-templated, hydrolysis–polycondensation reactions in the presence of pristine CD (β-CD) or hydroxypropyl-functionalized CDs (HP-γ-CD and HP-β-CD). Depending on the formulation conditions, differently shaped MSNs, such as bean-like, spherical, ellipsoid, aggregate and faceted were generated. The morphology and size of MSNs varied with the CD-type used. Generally, spherical particles were obtained with β-CD, while a faceted morphology was observed for the particles synthesized using HP-CDs. The particle size could be tuned by adjusting the amount of CD used; increasing the CD concentration led to larger particles. MSNs synthesized in the presence of β-CD displayed a smaller particle size than those produced with HP-functional CDs. FTIR, TGA and solid-state 13C NMR demonstrated the adsorption of CDs on the particle surfaces. The proposed concept allows for the synthesis of silica nanoparticles with control over particle shape and size by adjusting the concentration of additives in a simple, one-pot reaction system for a wide range of applications. PMID:29527443

  18. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.

    PubMed

    Ritchie, David W

    2003-07-01

    This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of

  19. Spin-symmetry conversion and internal rotation in high J molecular systems

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  20. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism

    PubMed Central

    Kler, Stanislav; Asor, Roi; Li, Chenglei; Ginsburg, Avi; Harries, Daniel; Oppenheim, Ariella; Zlotnick, Adam; Raviv, Uri

    2012-01-01

    Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using Time-Resolved Small-Angle X-ray Scattering (TR-SAXS) we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500 mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly 1/3 complete within 35 milliseconds, following a two–state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 109 M−1 s−1. The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process. PMID:22329660

  1. Study of electron impact inelastic scattering of chlorine molecule (Cl2)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.

    2018-02-01

    A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.

  2. Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen

    2012-01-01

    The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.

  3. Brownian dynamics simulations of simplified cytochrome c molecules in the presence of a charged surface

    NASA Astrophysics Data System (ADS)

    Gorba, C.; Geyer, T.; Helms, V.

    2004-07-01

    Simulations were performed for up to 150 simplified spherical horse heart cytochrome c molecules in the presence of a charged surface, which serves as an approximate model for a lipid membrane. Screened electrostatic and short-ranged attractive as well as repulsive van der Waals forces for interparticle and particle-membrane interactions are utilized in the simulations. At a distance from the membrane, where particle-membrane interactions are negligible, the simulation is coupled to a noninteraction continuum analogous to a heat bath [Geyer et al., J. Chem. Phys. 120, 4573 (2004)]. From the particles' density profiles perpendicular to the planar surface binding isotherms are derived and compared to experimental results [Heimburg et al. (1999)]. Using a negatively charged structureless membrane surface a saturation effect was found for relatively large particle concentrations. Since biological membranes often contain membrane proteins, we also studied the influence of additional charges on our model membrane mimicking bacterial reaction centers. We find that the onset of the saturation occurs for much lower concentrations and is sensitive to the detailed implementation. Therefore we suggest that local distortion of membrane planarity (undulation), or lipid demixing, or the presence of charged integral membrane proteins create preferential binding sites on the membrane. Only then do we observe saturation at physiological concentrations.

  4. A Gaussian quadrature method for total energy analysis in electronic state calculations

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika

    This article reports studies by Fukushima and coworkers since 1980 concerning their highly accurate numerical integral method using Gaussian quadratures to evaluate the total energy in electronic state calculations. Gauss-Legendre and Gauss-Laguerre quadratures were used for integrals in the finite and infinite regions, respectively. Our previous article showed that, for diatomic molecules such as CO and FeO, elliptic coordinates efficiently achieved high numerical integral accuracy even with a numerical basis set including transition metal atomic orbitals. This article will generalize straightforward details for multiatomic systems with direct integrals in each decomposed elliptic coordinate determined from the nuclear positions of picked-up atom pairs. Sample calculations were performed for the molecules O3 and H2O. This article will also try to present, in another coordinate, a numerical integral by partially using the Becke's decomposition published in 1988, but without the Becke's fuzzy cell generated by the polynomials of internuclear distance between the pair atoms. Instead, simple nuclear weights comprising exponential functions around nuclei are used. The one-center integral is performed with a Gaussian quadrature pack in a spherical coordinate, included in the author's original program in around 1980. As for this decomposition into one-center integrals, sample calculations are carried out for Li2.

  5. Block ionomer complexes as prospective nanocontainers for drug delivery.

    PubMed

    Oh, Kyung T; Bronich, Tatiana K; Bromberg, Lev; Hatton, T Alan; Kabanov, Alexander V

    2006-09-28

    Nanosized environmentally responsive materials are of special interest for various applications, including drug delivery. Block ionomer complexes (BIC) composed of graft-comb copolymers of Pluronic and poly(acrylic acid) (Pluronic-PAA) and a model cationic surfactant, hexadecyltrimethylammonium bromide (HTAB), were synthesized by mixing the polymer and surfactant in aqueous media. According to TEM, the resulting BIC represented spherical particles of nanoscale size (50 to 100 nm). The stability of the BIC in the aqueous dispersion depended on the lengths of the hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide) chains in Pluronic molecules as well as on the surface charge of the resulting complexes. The latter was controlled by changing the ratio of the Pluronic-PAA and HTAB in the BIC and by changing the pH due to reversible ionization of the PAA chains. The acidification of the media below pH 6.0 resulted in the appearance of a strong positive charge on the BIC, which in the intracellular environment can trigger interaction of such BIC with the cell membranes. An efficient solubilization of a model hydrophobic molecule, Sudan III, and a drug, Etoposide, in such BIC was demonstrated with the loading capacities of about 6 to 15% by weight of the dispersed complex. Overall, these BIC wield a promise as environmentally responsive nanocarriers for pharmaceuticals.

  6. Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Decuzzi, Paolo

    2016-09-01

    Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.

  7. Eshelby's problem of a spherical inclusion eccentrically embedded in a finite spherical body

    PubMed Central

    He, Q.-C.

    2017-01-01

    Resorting to the superposition principle, the solution of Eshelby's problem of a spherical inclusion located eccentrically inside a finite spherical domain is obtained in two steps: (i) the solution to the problem of a spherical inclusion in an infinite space; (ii) the solution to the auxiliary problem of the corresponding finite spherical domain subjected to appropriate boundary conditions. Moreover, a set of functions called the sectional and harmonic deviators are proposed and developed to work out the auxiliary solution in a series form, including the displacement and Eshelby tensor fields. The analytical solutions are explicitly obtained and illustrated when the geometric and physical parameters and the boundary condition are specified. PMID:28293141

  8. Modeling mantle convection in the spherical annulus

    NASA Astrophysics Data System (ADS)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  9. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  10. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn increasing attention because of the richness in phases that they exhibit. Due to the unique coupling between dipole properties and the packing constraints placed by the bent shape, these molecules are emerging as strong candidates in electromechanical devices. However, most applications require that the molecules be aligned, which has proved difficult. Our group has tested such molecules both as Langmuir layers and, when transferred to a solid, as alignment layers with some limited success. However, these molecules do not behave well with the surfaces and the domains at the air/water interface tend to form ill-controlled multilayer structures since attraction with the surfaces is relatively weak. New bent-core molecules obtained from Prof. Dr. C. Tsehiemke from Department of Chemistry Institute of Organic Chemistry, Martin-Luther-University, Germany, have a hydrophilic group at one end. We expect this molecule to behave better on the surface because of the stronger attraction of the hydrophilic group towards the surface than for the bent-core molecules without the hydrophilic group. Polydimethylsiloxane (PDMS) is a polymer which finds many applications in modifying surface properties. It is used in manufacturing lubricants, protective coatings, hair conditioner and glass-coating. However its properties are not well understood. This polymer has been proposed to follow either helical or caterpillar conformations on a surface. The orientational order of CH3 side groups can test for these conformations (they would be predominantly up/down for the caterpillar conformation, but rotating through the entire 360 degree for the helical one). Thus previous work on the Langmuir polymer films at the air/water interface were complemented by deuterium NMR studies to probe their conformations at a surface. These experiments were performed using humid porous solids, in order to provide sufficient surface area for the technique. Previous tests in this group at room temperature were suggestive but inconclusive because of the rapid averaging motion of the molecules. Here, we attempt to freeze the molecules on the surface.

  11. Spherical Tensor Calculus for Local Adaptive Filtering

    NASA Astrophysics Data System (ADS)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  12. Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method.

    PubMed

    Hatt, Mathieu; Laurent, Baptiste; Fayad, Hadi; Jaouen, Vincent; Visvikis, Dimitris; Le Rest, Catherine Cheze

    2018-04-01

    Sphericity has been proposed as a parameter for characterizing PET tumour volumes, with complementary prognostic value with respect to SUV and volume in both head and neck cancer and lung cancer. The objective of the present study was to investigate its dependency on tumour delineation and the resulting impact on its prognostic value. Five segmentation methods were considered: two thresholds (40% and 50% of SUV max ), ant colony optimization, fuzzy locally adaptive Bayesian (FLAB), and gradient-aided region-based active contour. The accuracy of each method in extracting sphericity was evaluated using a dataset of 176 simulated, phantom and clinical PET images of tumours with associated ground truth. The prognostic value of sphericity and its complementary value with respect to volume for each segmentation method was evaluated in a cohort of 87 patients with stage II/III lung cancer. Volume and associated sphericity values were dependent on the segmentation method. The correlation between segmentation accuracy and sphericity error was moderate (|ρ| from 0.24 to 0.57). The accuracy in measuring sphericity was not dependent on volume (|ρ| < 0.4). In the patients with lung cancer, sphericity had prognostic value, although lower than that of volume, except for that derived using FLAB for which when combined with volume showed a small improvement over volume alone (hazard ratio 2.67, compared with 2.5). Substantial differences in patient prognosis stratification were observed depending on the segmentation method used. Tumour functional sphericity was found to be dependent on the segmentation method, although the accuracy in retrieving the true sphericity was not dependent on tumour volume. In addition, even accurate segmentation can lead to an inaccurate sphericity value, and vice versa. Sphericity had similar or lower prognostic value than volume alone in the patients with lung cancer, except when determined using the FLAB method for which there was a small improvement in stratification when the parameters were combined.

  13. An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2015-06-01

    We develop an equation of state (EoS) for describing isotropic-nematic (IN) phase equilibria of Lennard-Jones (LJ) chain fluids. The EoS is developed by applying a second order Barker-Henderson perturbation theory to a reference fluid of hard chain molecules. The chain molecules consist of tangentially bonded spherical segments and are allowed to be fully flexible, partially flexible (rod-coil), or rigid linear. The hard-chain reference contribution to the EoS is obtained from a Vega-Lago rescaled Onsager theory. For the description of the (attractive) dispersion interactions between molecules, we adopt a segment-segment approach. We show that the perturbation contribution for describing these interactions can be divided into an "isotropic" part, which depends only implicitly on orientational ordering of molecules (through density), and an "anisotropic" part, for which an explicit dependence on orientational ordering is included (through an expansion in the nematic order parameter). The perturbation theory is used to study the effect of chain length, molecular flexibility, and attractive interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from Monte Carlo simulations in the isobaric-isothermal (NPT) ensemble, and an expanded formulation of the Gibbs-ensemble. Our results show that the anisotropic contribution to the dispersion attractions is irrelevant for LJ chain fluids. Using the isotropic (density-dependent) contribution only (i.e., using a zeroth order expansion of the attractive Helmholtz energy contribution in the nematic order parameter), excellent agreement between theory and simulations is observed. These results suggest that an EoS contribution for describing the attractive part of the dispersion interactions in real LCs can be obtained from conventional theoretical approaches designed for isotropic fluids, such as a Perturbed-Chain Statistical Associating Fluid Theory approach.

  14. On the Lowest Ro-Vibrational States of Protonated Methane: Experiment and Analytical Model

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Protonated methane, CH_5^+, is the prototype of an extremely floppy molecule. To the best of our knowledge all barriers are surmountable in the rovibrational ground state; the large amount of zero-point vibrational energy leads to large amplitude motions for many degrees of freedom. Low resolution but broad band vibrational spectroscopy [1] revealed an extremely wide range of C-H stretching vibrations. Comparison with theoretical IR spectra supported the structural motif of a CH_3 tripod and an H_2 moiety, bound to the central carbon atom by a 3c2e bond. In a more dynamic picture the five protons surround the central carbon atom without significant restrictions on the H-C-H bending or H_n-C torsional motions. The large-amplitude internal motions preclude a simple theoretical description of the type possible for more conventional molecules, such as the related spherical-top methane molecule. Recent high-resolution ro-vibrational spectra obtained in cold ion trap experiments [2] show that the observed CH_5^+ transitions belong to a very well-defined energy level scheme describing the lowest rotational and vibrational states of this enigmatic molecule. Here we analyse the experimental ground state combination differences and associate them with the motional states of CH_5^+ allowed by Fermi-Dirac statistics. A model Hamiltonian for unrestricted internal rotations in CH_5^+ yields a simple analytical expression for the energy eigenvalues, expressed in terms of new quantum numbers describing the free internal rotation. These results are compared to the experimental combination differences and the validity of the model will be discussed together with the underlying assumptions. [1] O. Asvany, P. Kumar, I. Hegemann, B. Redlich, S. Schlemmer and D. Marx, Science 309, (2005) 1219-1222 [2] O. Asvany, K.M.T. Yamada, S. Brünken, A. Potapov, S. Schlemmer, Science 347 (2015) 1346-1349

  15. Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Champion, J. P.; Tyuterev, Vl. G.

    2012-07-01

    The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version [Nikitin AV, Champion JP, Tyuterev VlG. The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules. J Quant Spectrosc Radiat Transf 2003;82:239-49.] was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possibilities for spectra calculations and modeling by getting rid of several previous limitations particularly for the size of polyads and the number of tensors involved. It allows dealing with overlapping polyads and includes more efficient and faster algorithms for the calculation of coefficients related to molecular symmetry properties (6C, 9C and 12C symbols for C3v, Td, and Oh point groups) and for better convergence of least-square-fit iterations as well. The new version is not limited to polyad effective models. It also allows direct predictions using full ab initio ro-vibrational normal mode Hamiltonians converted into the irreducible tensor form. Illustrative examples on CH3D, CH4, CH3Cl, CH3F and PH3 are reported reflecting the present status of data available. It is written in C++ for standard PC computer operating under Windows. The full package including on-line documentation and recent data are freely available at http://www.iao.ru/mirs/mirs.htm or http://xeon.univ-reims.fr/Mirs/ or http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/MIRS.html and as supplementary data from the online version of the article.

  16. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.

    PubMed

    Dietze, Holger H; Cox, Michael J

    2003-02-01

    Soft contact lenses produce a significant level of spherical aberration affecting their power on-eye. A simple model assuming that a thin soft contact lens aligns to the cornea predicts that these effects are similar on-eye and off-eye. The wavefront aberration for 17 eyes and 33 soft contact lenses on-eye was measured with a Shack-Hartmann wavefront sensor. The Zernike coefficients describing the on-eye spherical aberration of the soft contact lens were compared with off-eye ray-tracing results. Paraxial and effective lens power changes were determined. The model predicts the on-eye spherical aberration of soft contact lenses closely. The resulting power change for a +/- 7.00 D spherical soft contact lens is +/- 0.5 D for a 6-mm pupil diameter and +/- 0.1 D for a 3-mm pupil diameter. Power change is negligible for soft contact lenses corrected for off-eye spherical aberration. For thin soft contact lenses, the level of spherical aberration and the consequent power change is similar on-eye and off-eye. Soft contact lenses corrected for spherical aberration in air will be expected to be aberration-free on-eye and produce only negligibly small power changes. For soft contact lenses without aberration correction, for higher levels of ametropia and large pupils, the soft contact lens power should be determined with trial lenses with their power and p value similar to the prescribed lens. The benefit of soft contact lenses corrected for spherical aberration depends on the level of ocular spherical aberration.

  17. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    NASA Astrophysics Data System (ADS)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  18. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  19. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  20. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  1. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  2. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  3. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  4. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  5. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Engert, Julia; Besheer, Ahmed

    2013-09-10

    Non-spherical micro- and nanoparticles have recently gained considerable attention due to their surprisingly different interaction with biological systems compared to their spherical counterparts, opening new opportunities for drug delivery and vaccination. Up till now, electron microscopy is the only method to quantitatively identify the critical quality attributes (CQAs) of non-spherical particles produced by film-stretching; namely size, morphology and the quality of non-spherical particles (degree of contamination with spherical ones). However, electron microscopy requires expensive instrumentation, demanding sample preparation and non-trivial image analysis. To circumvent these drawbacks, the ability of different particle analysis methods to quantitatively identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl (polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was investigated. To this end, light obscuration, image-based analysis methods (Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry were used to study particles in the micron range, while asymmetric flow field fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi elastic light scattering (QELS) was used for particles in the nanometer range, and all measurements were benchmarked against electron microscopy. Results show that MFI can reliably identify particle size and aspect ratios of the 10 μm particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to differentiate between spherical and non-spherical 10 or 2 μm particles, and determine the amount of impurities in the sample. As for the nanoparticles, AF4 coupled to MALS and QELS allowed the measurement of the geometric (rg) and hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), confirming their morphology. While this study shows the utility of MFI, flow cytometry and AF4 for quantitative evaluation of the CQA of non-spherical particles over a wide size range, the limitations of the methods are discussed. The use of orthogonal characterization methods can provide a complete picture about the CQA of non-spherical particles over a wide size range. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A mathematical model of single target site location by Brownian movement in subcellular compartments.

    PubMed

    Kuthan, Hartmut

    2003-03-07

    The location of distinct sites is mandatory for many cellular processes. In the subcompartments of the cell nucleus, only very small numbers of diffusing macromolecules and specific target sites of some types may be present. In this case, we are faced with the Brownian movement of individual macromolecules and their "random search" for single/few specific target sites, rather than bulk-averaged diffusion and multiple sites. In this article, I consider the location of a distant central target site, e.g. a globular protein, by individual macromolecules executing unbiased (i.e. drift-free) random walks in a spherical compartment. For this walk-and-capture model, the closed-form analytic solution of the first passage time probability density function (p.d.f.) has been obtained as well as the first and second moment. In the limit of a large ratio of the radii of the spherical diffusion space and central target, well-known relations for the variance and the first two moments for the exponential p.d.f. were found to hold with high accuracy. These calculations reinforce earlier numerical results and Monte Carlo simulations. A major implication derivable from the model is that non-directed random movement is an effective means for locating single sites in submicron-sized compartments, even when the diffusion coefficients are comparatively small and the diffusing species are present in one copy only. These theoretical conclusions are underscored numerically for effective diffusion constants ranging from 0.5 to 10.0 microm(2) s(-1), which have been reported for a couple of nuclear proteins in their physiological environment. Spherical compartments of submicron size are, for example, the Cajal bodies (size: 0.1-1.0 microm), which are present in 1-5 copies in the cell nucleus. Within a small Cajal body of radius 0.1 microm a single diffusing protein molecule (with D=0.5 microm(2) s(-1)) would encounter a medium-sized protein of radius 2.5 nm within 1 s with a probability near certainty (p=0.98).

  7. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.

  8. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741

  9. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less

  10. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less

  11. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  12. Protozoal Digestion of Coat-Defective Bacillus subtilis Spores Produces “Rinds” Composed of Insoluble Coat Protein▿

    PubMed Central

    Carroll, Alicia Monroe; Plomp, Marco; Malkin, Alexander J.; Setlow, Peter

    2008-01-01

    The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a “rind” that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon. PMID:18689521

  13. Underscreening in ionic liquids: a first principles analysis.

    PubMed

    Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre

    2018-02-07

    An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these 'primitive' and 'semi-primitive' models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length [Formula: see text], which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where [Formula: see text] increases with density beyond a critical density at which the Debye length [Formula: see text] becomes comparable to the ion diameter. In this high density regime the ratio [Formula: see text] increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.

  14. Underscreening in ionic liquids: a first principles analysis

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre

    2018-02-01

    An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these ‘primitive’ and ‘semi-primitive’ models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length λS , which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where λS increases with density beyond a critical density at which the Debye length λD becomes comparable to the ion diameter. In this high density regime the ratio λ_S/λD increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.

  15. Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.

    2012-06-11

    The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less

  16. Director configurations in nematic droplets with inhomogeneous boundary conditions

    NASA Astrophysics Data System (ADS)

    Prishchepa, O. O.; Shabanov, A. V.; Zyryanov, V. Ya.

    2005-09-01

    The nematic droplets with director configurations intermediate between the bipolar and radial structures have been investigated experimentally and theoretically. The liquid crystal 4'-n-pentyl-4-cyanobiphenyl (5CB) with a variable addition of the lecithin dispersed in polyvinylbutyral has been used. The characteristic textures of the droplets formed at various lecithin contents have been examined using polarizing microscope both in the crossed polarizers and without analyzer. The computer simulation has been performed for proper ordering of the director in spherical nematic droplets by minimizing the free energy in the one-constant approximation. The inhomogeneous boundary conditions with strong anchoring of the molecules at the interface have been used. The distribution of the anchoring angle at the droplet surface has been estimated based on analysis of observed patterns. The simulated textures of the droplets under crossed polarizers are shown to compare well with the experimental ones.

  17. Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations

    DOE PAGES

    Abbott, Lauren J.; Frischknecht, Amalie L.

    2017-01-23

    We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less

  18. Computer simulation of supersonic rarefied gas flow in the transition region, about a spherical probe; a Monte Carlo approach with application to rocket-borne ion probe experiments

    NASA Technical Reports Server (NTRS)

    Horton, B. E.; Bowhill, S. A.

    1971-01-01

    This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.

  19. DNA Microcapsule for Photo-Triggered Drug Release Systems.

    PubMed

    Kamiya, Yukiko; Yamada, Yoshinobu; Muro, Takahiro; Matsuura, Kazunori; Asanuma, Hiroyuki

    2017-12-19

    In this study we constructed spherical photo-responsive microcapsules composed of three photo-switchable DNA strands. These strands first formed a three-way junction (TWJ) motif that further self-assembled to form microspheres through hybridization of the sticky-end regions of each branch. To serve as the photo-switch, multiple unmodified azobenzene (Azo) or 2,6-dimethyl-4-(methylthio)azobenzene (SDM-Azo) were introduced into the sticky-end regions via a d-threoninol linker. The DNA capsule structure deformed upon trans-to-cis isomerization of Azo or SDM-Azo induced by specific light irradiation. In addition, photo-triggered release of encapsulated small molecules from the DNA microcapsule was successfully achieved. Moreover, we demonstrated that photo-triggered release of doxorubicin caused cytotoxicity to cultured cells. This biocompatible photo-responsive microcapsule has potential application as a photo-controlled drug-release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study.

    PubMed

    Michael, J Robert; Koritsanszky, Tibor

    2017-05-28

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  1. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field

    DOE PAGES

    Xiong, Hui; Mignolet, Benoit; Fang, Li; ...

    2017-03-09

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1–5 × 10 14 W/cm 2), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho 3N@C 80 q+, q = 1–2, was found to be different from that of C 60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C 60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho 3N@C 80 is responsible for the nmore » = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10 14 W/cm 2.« less

  2. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  3. Electron-induced scattering dynamics of Boron, Aluminium and Gallium trihalides in the intermediate energy domain

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2018-05-01

    This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.

  4. Phase stability and dynamics of entangled polymer-nanoparticle composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less

  5. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  6. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    PubMed

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charged triblock copolymer self-assembly into charged micelles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  8. Electron and positron interaction with pyrimidine: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Sinha, Nidhi; Antony, Bobby

    2018-03-01

    Pyrimidine (C4H4N2) is considered as the building block of nucleobases, viz., cytosine, thymine and uracil. They provide a blueprint for probing the scattering of radiation by DNA and RNA bases. In this article, we report the elastic and total scattering cross-sections for electron and positron scattering from the pyrimidine molecule, employing a spherical complex optical potential (SCOP) formalism for an extensive energy range of 10 eV to 5 keV. In the case of positron scattering, the original SCOP formalism is modified to adequately solve the positron-target dynamics. Moreover, a reasonable agreement is observed between the present results and other available datasets, for both electron and positron scattering. The cross-sections for electron and positron impact scattering by pyrimidine are necessary input data for codes that seek to simulate radiation damage, and hence are useful to model biomolecular systems.

  9. Bio-green synthesis of Fe doped SnO2 nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.

    2017-05-01

    Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.

  10. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  11. Fullerene-like Polyoxotitanium Cage with High Solution Stability.

    PubMed

    Gao, Mei-Yan; Wang, Fei; Gu, Zhi-Gang; Zhang, De-Xiang; Zhang, Lei; Zhang, Jian

    2016-03-02

    We present the formation of the largest titanium-oxo cluster, [Ti42(μ3-O)60(OiPr)42(OH)12)](6-), with the first fullerene-like Ti-O shell structure. The {Ti42O60} core of this compound exemplifies the same icosahedral (Ih) symmetry as C60, the highest possible symmetry for molecules. According to the coordination environments, the Ti centers in this cluster can be arranged into a Platonic {Ti12} icosahedron and an Archimedean {Ti30} icosidodecahedron. The solution stability of this cluster was confirmed by electrospray ionization mass spectrometry. The spherical body of the {Ti42O60} core has an inside diameter of 1.05 nm and an outside diameter of 1.53 nm, which could be directly visualized by high-resolution transmission electron microscopy. Our results demonstrate that titanium oxide can also form fullerene-like shell structures.

  12. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Weaving colloidal webs around droplets: spontaneous assembly of extended colloidal networks encasing microfluidic droplet ensembles.

    PubMed

    Zheng, Lu; Ho, Leon Yoon; Khan, Saif A

    2016-10-26

    The ability to form transient, self-assembling solid networks that 'cocoon' emulsion droplets on-demand allows new possibilities in the rapidly expanding area of microfluidic droplet-based materials science. In this communication, we demonstrate the spontaneous formation of extended colloidal networks that encase large microfluidic droplet ensembles, thus completely arresting droplet motion and effectively isolating each droplet from others in the ensemble. To do this, we employ molecular inclusion complexes of β-cyclodextrin, which spontaneously form and assemble into colloidal solids at the droplet interface and beyond, via the outward diffusion of a guest molecule (dichloromethane) from the droplets. We illustrate the advantage of such transient network-based droplet stabilization in the area of pharmaceutical crystallization, where we are able to fabricate monodisperse spherical crystalline microgranules of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), a model hydrophobic drug, with a dramatic enhancement of particle properties compared to conventional methods.

  14. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  15. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery

    NASA Astrophysics Data System (ADS)

    Klein, Justin S.; Mitchell, Gregory S.; Cherry, Simon R.

    2017-05-01

    Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.

  16. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system.

    PubMed

    Zarate, J; Virdis, L; Orive, G; Igartua, M; Hernández, R M; Pedraz, J L

    2011-01-01

    Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052 ± 0.057 µm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.

  17. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  18. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study

    NASA Astrophysics Data System (ADS)

    Michael, J. Robert; Koritsanszky, Tibor

    2017-05-01

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  19. Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells.

    PubMed

    Costa, Marcilia P; Feitosa, Anderson C S; Oliveira, Fátima C E; Cavalcanti, Bruno C; da Silva, Eufrânio N; Dias, Gleiston G; Sales, Francisco A M; Sousa, Bruno L; Barroso-Neto, Ito L; Pessoa, Cláudia; Caetano, Ewerton W S; Di Fiore, Stefano; Fischer, Rainer; Ladeira, Luiz O; Freire, Valder N

    2016-07-02

    Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.

  20. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  1. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Lei, Peng; Shan, Yujuan; Zhang, Dawei

    2018-03-01

    In this paper, chitosan (CS)/poly (vinyl alcohol) (PVA)/graphene oxide (GO) composite nanofibrous membranes were prepared via electrospinning. Such nanofibrous membranes have been characterized and investigated for their morphological, structural, thermal stability, hydrophilic and antibacterial properties. SEM images showed that the uniform and defect-free nanofibers were obtained and GO sheets, shaping spindle and spherical, were partially embedded into nanofibers. FTIR, XRD, DSC and TGA indicated the good compatibility between CS and PVA. There were strong intermolecular hydrogen bonds between the chitosan and PVA molecules. Contact angle measurement indicated that while increasing the content of GO, the distance between fibers increased and water drop showed wetting state on the surface of nanofibrous membranes. As a result, the contact angle decreased significantly. Meanwhile, good antibacterial activity of the prepared nanofibrous membranes were exhibited against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

  2. Image method for electrostatic energy of polarizable dipolar spheres

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian

    2017-08-01

    The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.

  3. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  4. Fabrication of stainless steel spherical anodes for use with boat-mounted boom electroshocker

    USGS Publications Warehouse

    Martinez, Patrick J.; Tiffan, Kenneth F.

    1992-01-01

    A frugal method of fabricating spherical anodes from stainless steel mixing bowls is presented. We believe that the purported mechanical disadvantages of using spherical electrodes are largely unfounded.

  5. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  6. Dynamic Pressure Distribution due to Horizontal Acceleration in Spherical LNG Tank with Cylindrical Central Part

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun; Shin, Sang-Hoon

    2017-11-01

    Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.

  7. Spherical aberration yielding optimum visual performance: Evaluation of intraocular lenses using adaptive optics simulation

    PubMed Central

    Werner, John S.; Elliott, Sarah L.; Choi, Stacey S.; Doble, Nathan

    2009-01-01

    PURPOSE To evaluate the influence of spherical aberration on contrast sensitivity using adaptive optics. SETTING Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology & Vision Science, University of California, Davis Medical Center, Sacramento, California, USA. METHODS Contrast sensitivity at 8 cycles per degree was evaluated using an adaptive optics system that permitted aberrations to be measured with a Shack-Hartman wavefront sensor and controlled by a 109 actuator continuous-surface deformable mirror that was at a plane conjugate to the observer’s pupil. Vertical Gabor patches were viewed through a 6.3 mm diameter pupil conjugate aperture. Contrast sensitivity was measured with the deformable mirror set to produce 1 of 5 spherical aberration profiles (−0.2 to +0.2 μm). Contrast sensitivity over the range of spherical aberration was fitted with a polynomial function. RESULTS Three observers (age 21 to 24 years) participated. The measured total mean spherical aberration resulting from the spherical aberration profiles produced by the deformable mirror was between −0.15 μm and +0.25 μm. The peak contrast sensitivity of this function for the 3 observers combined occurred at +0.06 μm of spherical aberration. The peak contrast sensitivity was also achieved with positive spherical aberration for observer (mean 0.09). CONCLUSION There was intersubject variability in the measurements; however, the average visual performance was best with the introduction of a small positive spherical aberration. PMID:19545813

  8. C3H2 observations as a diagnostic probe for molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  9. Long-range correlations, geometrical structure, and transport properties of macromolecular solutions. The equivalence of configurational statistics and geometrodynamics of large molecules.

    PubMed

    Mezzasalma, Stefano A

    2007-12-04

    A special theory of Brownian relativity was previously proposed to describe the universal picture arising in ideal polymer solutions. In brief, it redefines a Gaussian macromolecule in a 4-dimensional diffusive spacetime, establishing a (weak) Lorentz-Poincaré invariance between liquid and polymer Einstein's laws for Brownian movement. Here, aimed at inquiring into the effect of correlations, we deepen the extension of the special theory to a general formulation. The previous statistical equivalence, for dynamic trajectories of liquid molecules and static configurations of macromolecules, and rather obvious in uncorrelated systems, is enlarged by a more general principle of equivalence, for configurational statistics and geometrodynamics. Accordingly, the three geodesic motion, continuity, and field equations could be rewritten, and a number of scaling behaviors were recovered in a spacetime endowed with general static isotropic metric (i.e., for equilibrium polymer solutions). We also dealt with universality in the volume fraction and, unexpectedly, found that a hyperscaling relation of the form, (average size) x (diffusivity) x (viscosity)1/2 ~f(N0, phi0) is fulfilled in several regimes, both in the chain monomer number (N) and polymer volume fraction (phi). Entangled macromolecular dynamics was treated as a geodesic light deflection, entaglements acting in close analogy to the field generated by a spherically symmetric mass source, where length fluctuations of the chain primitive path behave as azimuth fluctuations of its shape. Finally, the general transformation rule for translational and diffusive frames gives a coordinate gauge invariance, suggesting a widened Lorentz-Poincaré symmetry for Brownian statistics. We expect this approach to find effective applications to solutions of arbitrarily large molecules displaying a variety of structures, where the effect of geometry is more explicit and significant in itself (e.g., surfactants, lipids, proteins).

  10. Hints of a rotating spiral structure in the innermost regions around IRC +10216

    PubMed Central

    Quintana-Lacaci, G.; Cernicharo, J.; Agúndez, M.; Prieto, L. Velilla; Castro-Carrizo, A.; Marcelino, N.; Cabezas, C.; Peña, I.; Alonso, J.L.; Zúñiga, J.; Requena, A.; Bastida, A.; Kalugina, Y.; Lique, F.; Guélin, M.

    2016-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is allowing us to study the innermost regions of the circumstellar envelopes of evolved stars with un-precedented precision and sensitivity. Key processes in the ejection of matter and dust from these objects occur in their inner zones. In this work, we present sub-arcsecond interferometric maps of transitions of metal-bearing molecules towards the prototypical C-rich evolved star IRC +10216. While Al-bearing molecules seem to be present as a roughly spherical shell, the molecular emission from the salts NaCl and KCl presents an elongation in the inner regions, with a central minimum. In order to accurately analyze the emission from the NaCl rotational lines, we present new calculations of the collisional rates for this molecule based on new spectroscopic constants. The most plausible interpretation for the spatial distribution of the salts is a spiral with a NaCl mass of 0.08M☉. Alternatively, a torus of gas and dust would result in similar structures as those observed. From the torus scenario we derive a mass of ~ 1.1 × 10−4M☉. In both cases, the spiral and the torus, the NaCl structure presents an inner minimum of 27 AU. In the case of the torus, the outer radius is 73 AU. The kinematics of both the spiral and the torus suggests that they are slowly expanding and rotating. Alternative explanations for the presence of the elongation are explored. The presence of these features only in KCl and NaCl might be a result of their comparatively high dipole moment with respect to the Al-bearing species. PMID:26997665

  11. Microwave and millimeter wave astrochemistry: Laboratory studies of transition metal-containing free radicals and spectroscopic observations of molecular interstellar environments

    NASA Astrophysics Data System (ADS)

    Adande, Gilles Rapotchombo

    Progress in our understanding of the chemical composition of the interstellar medium leans both on laboratory analyses of high resolution rotational spectra from molecules that may be present in these regions, and on radio astronomical observations of molecular tracers to constrain astrochemical models. Due to the thermodynamic conditions in outer space, some molecules likely to be found in interstellar regions in relevant abundances are open shell radicals. In a series of laboratory studies, the pure rotational spectra of the transition metal containing radicals sulfur species ScS, YS, VS and ZnSH were obtained for the first time. In addition to accurate and precise rest frequencies for these species, bonding characteristics were determined from fine and hyperfine molecular parameters. It was found that these sulfides have a higher degree of covalent bonding than their mostly ionic oxide counterparts. Isomers and isotope ratios are excellent diagnostic tools for a variety of astrochemical models. From radio observations of isotopes of nitrile species, the galactic gradient of 14N/15N was accurately established. A further study of this ratio in carbon rich asymptotic giant branch stars provided observational evidence for an unknown process in J type carbon stars, and highlighted the need to update stellar nucleosynthesis models. Proper radiative transfer modeling of the emission spectra of interstellar molecules can yield a wealth of information about the abundance and distribution of these species within the observed sources. To model the asymmetric emission of SO and SO2 in oxygen-rich supergiants, an in-house code was developed, and successfully applied to gain insight into circumstellar sulfur chemistry of VY Canis Majoris. It was concluded that current astrochemistry kinetic models, based on spherical symmetry assumptions, need to be revisited.

  12. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules

    PubMed Central

    Elcock, Adrian H.

    2013-01-01

    Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman’s Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor. PMID:23914146

  13. Hints of a rotating spiral structure in the innermost regions around IRC +10216.

    PubMed

    Quintana-Lacaci, G; Cernicharo, J; Agúndez, M; Prieto, L Velilla; Castro-Carrizo, A; Marcelino, N; Cabezas, C; Peña, I; Alonso, J L; Zúñiga, J; Requena, A; Bastida, A; Kalugina, Y; Lique, F; Guélin, M

    2016-02-20

    The Atacama Large Millimeter/submillimeter Array (ALMA) is allowing us to study the innermost regions of the circumstellar envelopes of evolved stars with un-precedented precision and sensitivity. Key processes in the ejection of matter and dust from these objects occur in their inner zones. In this work, we present sub-arcsecond interferometric maps of transitions of metal-bearing molecules towards the prototypical C-rich evolved star IRC +10216. While Al-bearing molecules seem to be present as a roughly spherical shell, the molecular emission from the salts NaCl and KCl presents an elongation in the inner regions, with a central minimum. In order to accurately analyze the emission from the NaCl rotational lines, we present new calculations of the collisional rates for this molecule based on new spectroscopic constants. The most plausible interpretation for the spatial distribution of the salts is a spiral with a NaCl mass of 0.08 M ☉ . Alternatively, a torus of gas and dust would result in similar structures as those observed. From the torus scenario we derive a mass of ~ 1.1 × 10 -4 M ☉ . In both cases, the spiral and the torus, the NaCl structure presents an inner minimum of 27 AU. In the case of the torus, the outer radius is 73 AU. The kinematics of both the spiral and the torus suggests that they are slowly expanding and rotating. Alternative explanations for the presence of the elongation are explored. The presence of these features only in KCl and NaCl might be a result of their comparatively high dipole moment with respect to the Al-bearing species.

  14. PEG-coumarin nanoaggregates as π-π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery.

    PubMed

    Behl, Gautam; Kumar, Parveen; Sikka, Manisha; Fitzhenry, Laurence; Chhikara, Aruna

    2018-03-01

    Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π-π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π-π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π-π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π-π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (D av ) was in the range of 120-160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC 50 ~11 and ~15 μM as compared to free CUR, IC 50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.

  15. Hints of a Rotating Spiral Structure in the Innermost Regions around IRC+10216

    NASA Astrophysics Data System (ADS)

    Quintana-Lacaci, G.; Cernicharo, J.; Agúndez, M.; Velilla Prieto, L.; Castro-Carrizo, A.; Marcelino, N.; Cabezas, C.; Peña, I.; Alonso, J. L.; Zúñiga, J.; Requena, A.; Bastida, A.; Kalugina, Y.; Lique, F.; Guélin, M.

    2016-02-01

    The Atacama Large Millimeter/submillimeter Array is allowing us to study the innermost regions of the circumstellar envelopes of evolved stars with unprecedented precision and sensitivity. Key processes in the ejection of matter and dust from these objects occur in their inner zones. In this work, we present sub-arcsecond interferometric maps of transitions of metal-bearing molecules toward the prototypical C-rich evolved star IRC +10216. While Al-bearing molecules seem to be present as a roughly spherical shell, the molecular emission from the salts NaCl and KCl presents an elongation in the inner regions with a central minimum. In order to accurately analyze the emission from the NaCl rotational lines, we present new calculations of the collisional rates for this molecule based on new spectroscopic constants. The most plausible interpretation for the spatial distribution of the salts is a spiral with a NaCl mass of 0.08 {M}⊙ . Alternatively, a torus of gas and dust would result in structures similar to those observed. From the torus scenario we derive a mass of ˜1.1 × 10-4 {M}⊙ . In both cases, the spiral and the torus, the NaCl structure presents an inner minimum of 27 AU. In the case of the torus, the outer radius is 73 AU. The kinematics of both the spiral and the torus suggests that they are slowly expanding and rotating. Alternative explanations for the presence of the elongation are explored. The presence of these features only in KCl and NaCl might be a result of their comparatively high dipole moment with respect to the Al-bearing species.

  16. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  17. Spherical solitons in Earth'S mesosphere plasma

    NASA Astrophysics Data System (ADS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth's mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev-Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  18. Spherical solitons in Earth’S mesosphere plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annou, K., E-mail: kannou@cdta.dz; Annou, R.

    2016-01-15

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  19. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  20. A multiball read-out for the spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  1. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  2. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  3. Lash-free spherical bearing

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1979-01-01

    Grooved and chamfered spherical bearing can maintain close contact between its ball and race, even when it is vibrated. Bearing thus eliminates major cause of wear and loosening in spherical bearings: pounding of ball on race under vibration.

  4. Region Spherical Harmonic Magnetic Modeling from Near-Surface and Satellite-Altitude Anomlaies

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; von Frese, Ralph R. B.; Taylor, Patrick T.

    2013-01-01

    The compiled near-surface data and satellite crustal magnetic measured data are modeled with a regionally concentrated spherical harmonic presentation technique over Australia and Antarctica. Global crustal magnetic anomaly studies have used a spherical harmonic analysis to represent the Earth's magnetic crustal field. This global approach, however is best applied where the data are uniformly distributed over the entire Earth. Satellite observations generally meet this requirement, but unequally distributed data cannot be easily adapted in global modeling. Even for the satellite observations, due to the errors spread over the globe, data smoothing is inevitable in the global spherical harmonic presentations. In addition, global high-resolution modeling requires a great number of global spherical harmonic coefficients for the regional presentation of crustal magnetic anomalies, whereas a lesser number of localized spherical coefficients will satisfy. We compared methods in both global and regional approaches and for a case where the errors were propagated outside the region of interest. For observations from the upcoming Swarm constellation, the regional modeling will allow the production a lesser number of spherical coefficients that are relevant to the region of interest

  5. Minimum change in spherical aberration that can be perceived

    PubMed Central

    Manzanera, Silvestre; Artal, Pablo

    2016-01-01

    It is important to know the visual sensitivity to optical blur from both a basic science perspective and a practical point of view. Of particular interest is the sensitivity to blur induced by spherical aberration because it is being used to increase depth of focus as a component of a presbyopic solution. Using a flicker detection-based procedure implemented on an adaptive optics visual simulator, we measured the spherical aberration thresholds that produce just-noticeable differences in perceived image quality. The thresholds were measured for positive and negative values of spherical aberration, for best focus and + 0.5 D and + 1.0 D of defocus. At best focus, the SA thresholds were 0.20 ± 0.01 µm and −0.17 ± 0.03 µm for positive and negative spherical aberration respectively (referred to a 6-mm pupil). These experimental values may be useful in setting spherical aberration permissible levels in different ophthalmic techniques. PMID:27699113

  6. Characterization of individual complex particles in urban atmospheric environment

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takii, T.; Tomiyasu, B.; Nihei, Y.

    2006-07-01

    The origins of carrier particles of complex particles (iron-rich particles) collected from the urban atmospheric environment near to road traffic and a railroad were investigated from the detailed surface information using FE-SEM/EDS and TOF-SIMS analyses. From the FE-SEM/EDS analyses, the iron-rich particles were classified into two typical types (spherical type and non-spherical type). From the TOF-SIMS measurements, the characteristic secondary ions of spherical type of iron-rich particles were 23Na + and 39K +. The minor components of non-spherical type were Al, Ca and Ba. On the other hand, we carried out TOF-SIMS measurement to materials of rail origin and brake origin. From the comparison of these spectra pattern, it seemed that the spherical type of iron-rich particles was emitted from the rail origin. We concluded that the origin of non-spherical type of iron-rich particles were brake pad of vehicles.

  7. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  8. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    PubMed

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  9. Decoherence and Determinism in a One-Dimensional Cloud-Chamber Model

    NASA Astrophysics Data System (ADS)

    Sparenberg, Jean-Marc; Gaspard, David

    2018-03-01

    The hypothesis (Sparenberg et al. in EPJ Web Conf 58:01016, [1]. https://doi.org/10.1051/epjconf/20135801016) that the particular linear tracks appearing in the measurement of a spherically-emitting radioactive source in a cloud chamber are determined by the (random) positions of atoms or molecules inside the chamber is further explored in the framework of a recently established one-dimensional model (Carlone et al. Comm Comput Phys 18:247, [2]. https://doi.org/10.4208/cicp.270814.311214a). In this model, meshes of localized spins 1/2 play the role of the cloud-chamber atoms and the spherical wave is replaced by a linear superposition of two wave packets moving from the origin to the left and to the right, evolving deterministically according to the Schrödinger equation. We first revisit these results using a time-dependent approach, where the wave packets impinge on a symmetric two-sided detector. We discuss the evolution of the wave function in the configuration space and stress the interest of a non-symmetric detector in a quantum-measurement perspective. Next we use a time-independent approach to study the scattering of a plane wave on a single-sided detector. Preliminary results are obtained, analytically for the single-spin case and numerically for up to 8 spins. They show that the spin-excitation probabilities are sometimes very sensitive to the parameters of the model, which corroborates the idea that the measurement result could be determined by the atom positions. The possible origin of decoherence and entropy increase in future models is finally discussed.

  10. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties

    NASA Astrophysics Data System (ADS)

    Kalugina, Yulia N.; Roy, Pierre-Nicholas

    2017-12-01

    We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.

  11. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties.

    PubMed

    Kalugina, Yulia N; Roy, Pierre-Nicholas

    2017-12-28

    We present a five-dimensional potential energy surface (PES) for the HF@C 60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C 60 molecules are considered rigid with bond length r HF = 0.9255 Å (gas phase ground rovibrational state geometry). The C 60 geometry is of I h symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C 60 , and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C 60 and obtain good agreement with experiment.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.

    This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are aminomore » acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (C F) is calculated and compared with one set of published measured values. We investigate power law (Ad y) approximations to C F, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (Q F=C F/geometric-cross-section) can be written for homogeneous particles as Q absR F, where Q abs is the absorption efficiency, and R F, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When Q F is plotted vs. m id or mi(m r-1)d, where m=m r+im i is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.« less

  13. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    PubMed

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  14. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.

    PubMed

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin

    2017-08-01

    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams

    NASA Astrophysics Data System (ADS)

    Luo, Yamei; Lü, Baida

    2009-06-01

    The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.

  16. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  17. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-03-24

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  18. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less

  19. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Y.K.M.; Strickler, D.J.

    The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seenmore » at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.« less

  1. Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Khorshidi, A.

    2013-04-01

    Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).

  2. Topography measurements of high NA aspherical microlenses by digital holographic microscopy with spherical illumination

    NASA Astrophysics Data System (ADS)

    Józwik, Michal; Mikuła, Marta; Kozacki, Tomasz; Kostencka, Julianna; Gorecki, Christophe

    2017-06-01

    In this contribution, we propose a method of digital holographic microscopy (DHM) that enables measurement of high numerical aperture spherical and aspherical microstructures of both concave and convex shapes. The proposed method utilizes reflection of the spherical illumination beam from the object surface and the interference with a spherical reference beam of the similar curvature. In this case, the NA of DHM is fully utilized for illumination and imaging of the reflected object beam. Thus, the system allows capturing the phase coming from larger areas of the quasi-spherical object and, therefore, offers possibility of high accuracy characterization of its surface even in the areas of high inclination. The proposed measurement procedure allows determining all parameters required for the accurate shape recovery: the location of the object focus point and the positions of the illumination and reference point sources. The utility of the method is demonstrated with characterization of surface of high NA focusing objects. The accuracy is firstly verified by characterization of a known reference sphere with low error of sphericity. Then, the method is applied for shape measurement of spherical and aspheric microlenses. The results provide a full-field reconstruction of high NA topography with resolution in the nanometer range. The surface sphericity is evaluated by the deviation from the best fitted sphere or asphere, and the important parameters of the measured microlens: e.g.: radius of curvature and conic constant.

  3. Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System.

    PubMed

    Figliozzi, Patrick; Peterson, Curtis W; Rice, Stuart A; Scherer, Norbert F

    2018-04-25

    A major impediment to a more complete understanding of barrier crossing and other single-molecule processes is the inability to directly visualize the trajectories and dynamics of atoms and molecules in reactions. Rather, the kinetics are inferred from ensemble measurements or the position of a transducer ( e. g., an AFM cantilever) as a surrogate variable. Direct visualization is highly desirable. Here, we achieve the direct measurement of barrier crossing trajectories by using optical microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i. e. passing events, in an optical ring trap. A two-step mechanism similar to a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis that combines detailed knowledge of each trajectory, a statistically significant number of repetitions of the passing events, and the driving force dependence of the process. We find that while the total event rate increases with driving force, this increase is due to an increase in the rate of encounters. There is no drive force dependence on the rate of barrier crossing because the key motion for the process involves a random (thermal) radial fluctuation of one particle allowing the other to pass. This simple experiment can readily be extended to study more complex barrier crossing processes by replacing the spherical metal nanoparticles with anisotropic ones or by creating more intricate optical trapping potentials.

  4. The Nucleation Rate of Single O2 Nanobubbles at Pt Nanoelectrodes.

    PubMed

    Soto, Álvaro Moreno; German, Sean R; Ren, Hang; van der Meer, Devaraj; Lohse, Detlef; Edwards, Martin A; White, Henry S

    2018-06-13

    Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O 2 nanobubbles resulting from the electrooxidation of H 2 O 2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, i nb p , is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, t ind , dramatically decreases as the applied current approaches i nb p , a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below i nb p , nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic t ind . We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, E a , which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O 2 molecules contained in the nucleus (50 to 900 molecules).

  5. Identification of Phosphorus Monoxide (X2Πr) in VY Canis Majoris: Detection of the First PO Bond in Space

    NASA Astrophysics Data System (ADS)

    Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M.

    2007-09-01

    A new interstellar molecule, PO (X2Πr), has been detected toward the envelope of the oxygen-rich supergiant star VY Canis Majoris (VY CMa) using the Submillimeter Telescope of the Arizona Radio Observatory. The J=5.5-->4.5 and J=6.5-->5.5 rotational transitions of PO at 240 and 284 GHz were observed, each of which consisted of well-defined lambda-doublets. The line profiles are roughly parabolic in shape, analogous to PN, and suggest that this species arises from the spherical wind in VY CMa, as opposed to the collimated blue- and redshifted outflows. Comparison of line intensities indicates that PO arises from a confined source roughly 1" in extent, with a column density of Ntot ~= 2.8 × 1015 cm-2, which corresponds to a fractional abundance of f~9×10-8, relative to H2. Consequently, PO and PN have similar concentrations in VY CMa, a result not predicted by either LTE or kinetic models of circumstellar chemistry. These phosphorus compounds may arise from shock-induced reactions in this active envelope. Phosphorus monoxide is the first interstellar molecule detected that contains a PO bond, a moiety essential in biochemical compounds. It is also the first new species to be identified in an oxygen-rich, as opposed to a carbon-rich, circumstellar envelope.

  6. Floral Biosynthesis of Mn3O4 and Fe2O3 Nanoparticles Using Chaenomeles sp. Flower Extracts for Efficient Medicinal Applications

    NASA Astrophysics Data System (ADS)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Kolesnikov, Evgeny; Dmitry, Arkhipov; Ishteev, Artur; Gusev, Alexander; Kuznetsov, Denis

    2017-08-01

    Manganese oxide (Mn3O4) and iron oxide (Fe2O3) nanoparticles were successfully synthesized with the flower extracts of Chaenomeles sp. This is the first ever approach to synthesize nanoparticles from Chaenomeles sp. flower extracts. The organic molecules present in the flower extracts actively converted the nitrate precursor into its corresponding nanoparticles. The organic molecules that are involved in the synthesis of nanoparticles are identified using different phytochemical and gas chromatography-mass spectrometry analyses. The identified components are glycosides, alkaloids, terpenoids, saponins, flavonoids, quinines, and steroids. The structural and chemical compositions of the synthesized powder were also analyzed. The x-ray powder diffraction analysis revealed that the particles show tetragonal and rhombohedral crystalline phases. The Fourier transform infrared spectroscopy analysis showed the functional groups that are involved in the reduction of nitrates into the corresponding nanoparticles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of the elements in the synthesized nanoparticles. Transmission electron microscopy images showed the formation of spherical nanoparticles with an average size of 30-100 nm. Antioxidant analysis showed that the synthesized nanoparticles had excellent antioxidant potential. The antibacterial study showed that they inhibit the growth of harmful bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes. Thus, this study proposes a new eco-friendly and nontoxic method to synthesize nanoparticles for medicinal applications.

  7. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  8. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane

    2017-08-01

    The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.

  9. Synthesis of ZnO particles using water molecules generated in esterification reaction

    NASA Astrophysics Data System (ADS)

    Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran

    2017-07-01

    Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).

  10. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.

    PubMed

    Xia, Z; Goldsmith, H L; van de Ven, T G

    1994-04-01

    Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.

  11. Hydrodynamic and Nonhydrodynamic Contributions to the Bimolecular Collision Rates of Solute Molecules in Supercooled Bulk Water

    PubMed Central

    2015-01-01

    Bimolecular collision rate constants of a model solute are measured in water at T = 259–303 K, a range encompassing both normal and supercooled water. A stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl, is studied using electron paramagnetic resonance spectroscopy (EPR), taking advantage of the fact that the rotational correlation time, τR, the mean time between successive spin exchanges within a cage, τRE, and the long-time-averaged spin exchange rate constants, Kex, of the same solute molecule may be measured independently. Thus, long- and short-time translational diffusion behavior may be inferred from Kex and τRE, respectively. In order to measure Kex, the effects of dipole–dipole interactions (DD) on the EPR spectra must be separated, yielding as a bonus the DD broadening rate constants that are related to the dephasing rate constant due to DD, Wdd. We find that both Kex and Wdd behave hydrodynamically; that is to say they vary monotonically with T/η or η/T, respectively, where η is the shear viscosity, as predicted by the Stokes–Einstein equation. The same is true of the self-diffusion of water. In contrast, τRE does not follow hydrodynamic behavior, varying rather as a linear function of the density reaching a maximum at 276 ± 2 K near where water displays a maximum density. PMID:24874024

  12. Are Nanoparticles Spherical or Quasi-Spherical?

    PubMed

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Impact of Primary Spherical Aberration, Spatial Frequency and Stiles Crawford Apodization on Wavefront determined Refractive Error: A Computational Study

    PubMed Central

    Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.

    2013-01-01

    Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093

  14. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  15. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  16. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  17. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  18. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  19. A deformable spherical planet exploration robot

    NASA Astrophysics Data System (ADS)

    Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun

    2013-03-01

    In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.

  20. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE PAGES

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (α RΡ² 2/μ² ²)¹ /³ R (where α R, Ρmore » 2 and μ 2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration α R. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Y n and Y n+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  1. Prevalence and associations of anisometropia with spherical ametropia, cylindrical power, age, and sex in refractive surgery candidates.

    PubMed

    Linke, Stephan J; Richard, Gisbert; Katz, Toam

    2011-09-29

    To analyze the prevalence and associations of anisometropia with spherical ametropia, astigmatism, age, and sex in a refractive surgery population. Medical records of 27,070 eyes of 13,535 refractive surgery candidates were reviewed. Anisometropia, defined as the absolute difference in mean spherical equivalent powers between right and left eyes, was analyzed for subjective (A(subj)) and cycloplegic refraction (A(cycl)). Correlations between anisometropia (>1 diopter) and spherical ametropia, cylindrical power, age, and sex, were analyzed using χ² and nonparametric Kruskal-Wallis or Mann-Whitney tests and binomial logistic regression analyses. Power vector analysis was applied for further analysis of cylindrical power. Prevalence of A(subj) was 18.5% and of A(cycl) was 19.3%. In hyperopes, logistic regression analysis revealed that only spherical refractive error (odds ratio [OR], 0.72) and age (OR, 0.97) were independently associated with anisometropia. A(subj) decreased with increasing spherical ametropia and advancing age. Cylindrical power and sex did not significantly affect A(subj). In myopes all explanatory variables (spherical power OR, 0.93; cylindrical power OR, 0.75; age OR, 1.02; sex OR, 0.8) were independently associated with anisometropia. Cylindrical power was most strongly associated with anisometropia. Advancing age and increasing spherical/cylindrical power correlated positively with increasing anisometropia in myopic subjects. Female sex was more closely associated with anisometropia. This large-scale retrospective analysis confirmed an independent association between anisometropia and both spherical ametropia and age in refractive surgery candidates. Notably, an inverse relationship between these parameters in hyperopes was observed. Cylindrical power and female sex were independently associated with anisometropia in myopes.

  2. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  3. Sheet-like assemblies of spherical particles with point-symmetrical patches.

    PubMed

    Mani, Ethayaraja; Sanz, Eduardo; Roy, Soumyajit; Dijkstra, Marjolein; Groenewold, Jan; Kegel, Willem K

    2012-04-14

    We report a computational study on the spontaneous self-assembly of spherical particles into two-dimensional crystals. The experimental observation of such structures stabilized by spherical objects appeared paradoxical so far. We implement patchy interactions with the patches point-symmetrically (icosahedral and cubic) arranged on the surface of the particle. In these conditions, preference for self-assembly into sheet-like structures is observed. We explain our findings in terms of the inherent symmetry of the patches and the competition between binding energy and vibrational entropy. The simulation results explain why hollow spherical shells observed in some Keplerate-type polyoxometalates (POM) appear. Our results also provide an explanation for the experimentally observed layer-by-layer growth of apoferritin--a quasi-spherical protein.

  4. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  5. Analysis of scattering by a linear chain of spherical inclusions in an optical fiber

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis D.; Uzunoglu, Nikolaos K.

    2006-12-01

    The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE11 mode, are presented for several cases.

  6. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  7. Light-weight spherical submergence vessel

    NASA Technical Reports Server (NTRS)

    Baker, I.

    1974-01-01

    Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.

  8. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  9. Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia

    2017-07-01

    We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.

  10. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  11. Acoustic field of a wedge-shaped section of a spherical cap transducer.

    PubMed

    Ketterling, Jeffrey A

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10% +/- 5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  12. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  13. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Vossmerbaeumer, Urs

    2015-05-01

    This review was conducted to compare the physical effect of aspheric IOL implantation on wavefront properties with that of spherical IOL implantation. The peer-reviewed literature was systematically searched in Medline, Embase, Web of Science, Biosis, and the Cochrane Library according to the Cochrane Collaboration method. Inclusion criteria were randomized controlled trials comparing the use of aspheric versus spherical monofocal IOL implantation that assessed visual acuity, contrast sensitivity, or quality of vision. A secondary outcome was ocular wavefront analysis; spherical aberration, higher-order aberrations (HOAs), coma, and trefoil were evaluated. Effects were calculated as standardized mean differences (Hedges g) and were pooled using random-effect models. Thirty-four of 43 studies provided data for wavefront analysis. Aspheric monofocal IOL implantation resulted in less ocular spherical aberration and fewer ocular HOAs than spherical IOLs. This might explain the better contrast sensitivity in patients with aspheric IOLs. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Non-astigmatic imaging with matched pairs of spherically bent reflectors

    DOEpatents

    Bitter, Manfred Ludwig [Princeton, NJ; Hill, Kenneth Wayne [Plainsboro, NJ; Scott, Steven Douglas [Wellesley, MA; Feder, Russell [Newton, PA; Ko, Jinseok [Cambridge, MA; Rice, John E [N. Billerica, MA; Ince-Cushman, Alexander Charles [New York, NY; Jones, Frank [Manalapan, NJ

    2012-07-10

    Arrangements for the point-to-point imaging of a broad spectrum of electromagnetic radiation and ultrasound at large angles of incidence employ matched pairs of spherically bent reflectors to eliminate astigmatic imaging errors. Matched pairs of spherically bent crystals or spherically bent multi-layers are used for X-rays and EUV radiation; and matched pairs of spherically bent mirrors that are appropriate for the type of radiation are used with microwaves, infrared and visible light, or ultrasound. The arrangements encompass the two cases, where the Bragg angle--the complement to the angle of incidence in optics--is between 45.degree. and 90.degree. on both crystals/mirrors or between 0.degree. and 45.degree. on the first crystal/mirror and between 45.degree. and 90.degree. on the second crystal/mirror, where the angles of convergence and divergence are equal. For x-rays and EUV radiation, also the Bragg condition is satisfied on both spherically bent crystals/multi-layers.

  15. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  16. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  17. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Yan, You-Xian; Wang, Jin-Long; Yu, Shu-Hong

    2013-11-01

    In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications.In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications. Electronic supplementary information (ESI) available: Preparation of GO aqueous colloid solution; XPS spectra of GO paper and PDA modified rGO paper; SEM images of rGO/Ag hybrid paper after immersed in mercaptoethanol solution or in high alkaline solution; photograph and SEM image of pure rGO paper after reaction with AgNO3 solution. SEM image and TEM graph of the pre-synthesized Ag NPs and their SEM images incubated with PDA modified rGO paper; SERS spectra of R6G (1.0 × 10-4 M) molecules before and after cleaning with concentrated hydrochloric acid liquid taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; SERS spectra of R6G (1.0 × 10-4 M) molecules with different reusable cycles taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; comparison between different kinds of substrates with the detection limit toward R6G. See DOI: 10.1039/c3nr03857b

  18. Association between Refractive Errors and Ocular Biometry in Iranian Adults

    PubMed Central

    Hashemi, Hassan; Khabazkhoob, Mehdi; Emamian, Mohammad Hassan; Shariati, Mohammad; Miraftab, Mohammad; Yekta, Abbasali; Ostadimoghaddam, Hadi; Fotouhi, Akbar

    2015-01-01

    Purpose: To investigate the association between ocular biometrics such as axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous chamber depth (VCD) and corneal power (CP) with different refractive errors. Methods: In a cross-sectional study on the 40 to 64-year-old population of Shahroud, random cluster sampling was performed. Ocular biometrics were measured using the Allegro Biograph (WaveLight AG, Erlangen, Germany) for all participants. Refractive errors were determined using cycloplegic refraction. Results: In the first model, the strongest correlations were found between spherical equivalent with axial length and corneal power. Spherical equivalent was strongly correlated with axial length in high myopic and high hyperopic cases, and with corneal power in high hyperopic cases; 69.5% of variability in spherical equivalent was attributed to changes in these variables. In the second model, the correlations between vitreous chamber depth and corneal power with spherical equivalent were stronger in myopes than hyperopes, while the correlations between lens thickness and anterior chamber depth with spherical equivalent were stronger in hyperopic cases than myopic ones. In the third model, anterior chamber depth + lens thickness correlated with spherical equivalent only in moderate and severe cases of hyperopia, and this index was not correlated with spherical equivalent in moderate to severe myopia. Conclusion: In individuals aged 40-64 years, corneal power and axial length make the greatest contribution to spherical equivalent in high hyperopia and high myopia. Anterior segment biometric components have a more important role in hyperopia than myopia. PMID:26730304

  19. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.

    PubMed

    Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui

    2017-05-28

    Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  20. Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH) 2 as cathode materials for Ni-metal hydride batteries

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang

    In this paper we compare the behavior of non-spherical and spherical β-Ni(OH) 2 as cathode materials for Ni-MH batteries in an attempt to explore the effect of microstructure and surface properties of β-Ni(OH) 2 on their electrochemical performances. Non-spherical β-Ni(OH) 2 powders with a high-density are synthesized using a simple polyacrylamide (PAM) assisted two-step drying method. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) testing, laser particle size analysis, and tap-density testing are used to characterize the physical properties of the synthesized products. Electrochemical characterization, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and a charge/discharge test, is also performed. The results show that the non-spherical β-Ni(OH) 2 materials exhibit an irregular tabular shape and a dense solid structure, which contains many overlapped sheet nano crystalline grains, and have a high density of structural disorder and a large specific surface area. Compared with the spherical β-Ni(OH) 2, the non-spherical β-Ni(OH) 2 materials have an enhanced discharge capacity, higher discharge potential plateau and superior cycle stability. This performance improvement can be attributable to a higher proton diffusion coefficient (4.26 × 10 -9 cm 2 s -1), better reaction reversibility, and lower electrochemical impedance of the synthesized material.

  1. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2017-10-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.

  2. Analysis of experimental heats of dilution of aqueous solutions of NaBPh 4 by use of the mean spherical approximation and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    M'halla, Jalel; M'halla, Sondes; Wipff, Georges

    2003-03-01

    Calorimetric measurements of heats of dilution: QDC→0 =- nsφL,sexp, of aqueous solutions of NaBPh 4 are determined at 25 °C in the concentration range: 0

  3. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  4. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  5. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    NASA Astrophysics Data System (ADS)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31775c

  6. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  7. OFF-CENTER SPHERICAL MODEL FOR DOSIMETRY CALCULATIONS IN CHICK BRAIN TISSUE

    EPA Science Inventory

    The paper presents calculations for the electric field and absorbed power density distribution in chick brain tissue inside a test tube, using an off-center spherical model. It is shown that the off-center spherical model overcomes many of the limitations of the concentric spheri...

  8. Cylindrometer

    ERIC Educational Resources Information Center

    Khan, Sameen Ahmed

    2010-01-01

    Spherometers are instruments designed to measure the radius of curvature of spherical surfaces. They are particularly useful in situations where only a portion of the spherical surface is available, for example, for measuring the radii of curvature of spherical lenses. A spherometer can be easily modified so that it can also be used to measure the…

  9. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  10. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  11. Geometrical Method for the Calculation of Spherical Harmonics up to an Arbitrary Degree and Order

    NASA Astrophysics Data System (ADS)

    Svehla, D.

    2009-12-01

    We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, i.e. up to a degree and order 1e6 and beyond. It is shown, that spherical harmonics can be treated as vectors in Hilbert hyperspace leading to the unitary hermitian rotation matrices with geometric properties.

  12. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    NASA Astrophysics Data System (ADS)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  13. Spherical bearing. [to reduce vibration effects

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A. (Inventor)

    1978-01-01

    A spherical bearing including an inner ball with an opening for receiving a shaft and a spherical outer surface is described. Features of the bearing include: (1) a circular outer race including a plurality of circumferentially spaced sections extending around the inner ball for snugly receiving the inner ball; and (2) a groove extending circumferentially around the race producing a thin wall portion which permits the opposed side portions to flex relative to the ball for maximizing the physical contact between the inner surface of the race and the spherical outer surface of the ball.

  14. In situ observation of melting and crystallization of Si on porous Si3N4 substrate that repels Si melt

    NASA Astrophysics Data System (ADS)

    Itoh, Hironori; Okamura, Hideyuki; Asanoma, Susumu; Ikemura, Kouhei; Nakayama, Masaharu; Komatsu, Ryuichi

    2014-09-01

    High temperature in situ observation of melting and crystallization of spherical Si droplets on a substrate with a porous surface was carried out for the first time using an original in situ observation apparatus. The contact angle between the Si melt and the substrate was measured to be 160°, with the Si melt forming spherical droplets on the substrate. During crystallization, a ring-like pattern was observed on the surface of the spherical Si melt droplets due to crystal growth at low levels of supercooling. The solidified spherical Si crystals consisted of single or twin grains. This demonstrates that high-quality spherical Si crystals can be prepared easily and stably by using a Si melt-repelling substrate.

  15. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  16. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-means Cluster Analysis.

    PubMed

    Craen, Saskia de; Commandeur, Jacques J F; Frank, Laurence E; Heiser, Willem J

    2006-06-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these populations showed a significant effect of lack of sphericity and group size. This effect was, however, not as large as expected, with still a recovery index of more than 0.5 in the "worst case scenario." An interaction effect between the two data aspects was also found. The decreasing trend in the recovery of clusters for increasing departures from sphericity is different for equal and unequal group sizes.

  17. The sagitta and lens thickness: the exact solution and a matrix approximation for lenses with toric, spherical, and cylindrical surfaces.

    PubMed

    Harris, W F

    1989-03-01

    The exact equation for sagitta of spherical surfaces is generalized to toric surfaces which include spherical and cylindrical surfaces as special cases. Lens thickness, therefore, can be calculated accurately anywhere on a lens even in cases of extreme spherical and cylindrical powers and large diameters. The sagittae of tire- and barrel-form toric surfaces differ off the principal meridians, as is shown by a numerical example. The same holds for pulley- and capstan-form toric surfaces. A general expression is given for thickness at an arbitrary point on a toric lens. Approximate expressions are derived and re-expressed in terms of matrices. The matrix provides an elegant means of generalizing equations for spherical surfaces and lenses to toric surfaces and lenses.

  18. Evaluating Descent and Ascent Trajectories Near Non-Spherical Bodies

    NASA Technical Reports Server (NTRS)

    Werner, Robert A.

    2010-01-01

    Spacecraft landing on small bodies pass through regions where conventional gravitation formulations using exterior spherical harmonics are inaccurate. An investigation shows that a formulation using interior solid spherical harmonics might be satisfactory. Interior spherical harmonic expansions are usable inside an imaginary, empty sphere. For this application, such a sphere could be positioned in empty space above the intended landing site and rotating with the body. When the spacecraft is inside this sphere, the interior harmonic expansion would be used instead of the conventional, exterior harmonic expansion. Coefficients can be determined by a least-squares fit to gravitation measurements synthesized from conventional formulations. Due to their unfamiliarity, recurrences for interior, as well as exterior, expansions are derived. Hotine's technique for partial derivatives of exterior spherical harmonics is extended to interior harmonics.

  19. Geometrical Theory of Spherical Harmonics for Geosciences

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen

    2010-05-01

    Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.

  20. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-07-28

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.

Top