Sample records for spherical particles interacting

  1. Self assembly of anisotropic colloidal particles

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Wyss, Hans

    2012-02-01

    Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.

  2. Interactions of non-spherical particles in simple flows

    NASA Astrophysics Data System (ADS)

    Niazi, Mehdi; Brandt, Luca; Costa, Pedro; Breugem, Wim-Paul

    2015-11-01

    The behavior of particles in a flow affects the global transport and rheological properties of the mixture. In recent years much effort has been therefore devoted to the development of an efficient method for the direct numerical simulation (DNS) of the motion of spherical rigid particles immersed in an incompressible fluid. However, the literature on non-spherical particle suspensions is quite scarce despite the fact that these are more frequent. We develop a numerical algorithm to simulate finite-size spheroid particles in shear flows to gain new understanding of the flow of particle suspensions. In particular, we wish to understand the role of inertia and its effect on the flow behavior. For this purpose, DNS simulations with a direct-forcing immersed boundary method are used, with collision and lubrication models for particle-particle and particle-wall interactions. We will discuss pair interactions, relative motion and rotation, of two sedimenting spheroids and show that the interaction time increases significantly for non-spherical particles. More interestingly, we show that the particles are attracted to each other from larger lateral displacements. This has important implications for collision kernels. This work was supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS, and by the Swedish Research Council (VR).

  3. DLVO interaction energies between hollow spherical particles and collector surfaces

    USDA-ARS?s Scientific Manuscript database

    The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...

  4. Dynamics and interactions of particles in a thermophoretic trap

    NASA Astrophysics Data System (ADS)

    Foster, Benjamin; Fung, Frankie; Fieweger, Connor; Usatyuk, Mykhaylo; Gaj, Anita; DeSalvo, B. J.; Chin, Cheng

    2017-08-01

    We investigate dynamics and interactions of particles levitated and trapped by the thermophoretic force in a vacuum cell. Our analysis is based on footage taken by orthogonal cameras that are able to capture the three dimensional trajectories of the particles. In contrast to spherical particles, which remain stationary at the center of the cell, here we report new qualitative features of the motion of particles with non-spherical geometry. Singly levitated particles exhibit steady spinning around their body axis and rotation around the symmetry axis of the cell. When two levitated particles approach each other, repulsive or attractive interactions between the particles are observed. Our levitation system offers a wonderful platform to study interaction between particles in a microgravity environment.

  5. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    NASA Astrophysics Data System (ADS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.

  6. Functionalized patchy particles using colloidal lenses

    NASA Astrophysics Data System (ADS)

    Middleton, Christine

    2014-03-01

    Colloidal assembly had been limited by the isotropic, nonspecific nature of interactions between spherical colloidal particles. By giving particles patches functionalized with single stranded DNA, these interactions can be made both directional and specific. We create patchy particles by adding patches to spherical emulsion droplets using the depletion interaction. First we make polystyrene particles in the shape of contact lenses to be the patches. The lenses are functionalized with single stranded DNA on their convex side. Then we put the lenses on the surface of oil emulsion droplets using the depletion interaction, creating a patch (or multiple patches) on the surface of each emulsion droplet. The emulsion droplets can now interact with each other in a specific, directional way through DNA functionalized patches.

  7. Computations of Lifshitz-van der Waals interaction energies between irregular particles and surfaces at all separations for resuspension modelling

    NASA Astrophysics Data System (ADS)

    Priye, Aashish; Marlow, William H.

    2013-10-01

    The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.

  8. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.

    PubMed

    Lambert, B; Weynans, L; Bergmann, M

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  9. Curvature-induced capillary interaction of spherical particles at a liquid interface.

    PubMed

    Würger, Alois

    2006-10-01

    We consider a liquid interface with different principal curvatures +/-c and find that the mere presence of a spherical particle leads to a deformation field of quadrupolar symmetry; the corresponding "capillary quadrupole moment" is given by the ratio of the particle size and the curvature radius. The resulting pair interaction of nearby particles is anisotropic and favors the formation of aggregates of cubic symmetry. Since the single-particle trapping energy depends quadratically on curvature with a negative prefactor, a curvature gradient induces a lateral force that pushes the particles towards strongly curved regions of the interface. As an illustration we discuss the effects occurring on a catenoid.

  10. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions.

    PubMed

    Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit

    2017-01-01

    Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Key-lock colloids in a nematic liquid crystal.

    PubMed

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  12. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  13. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties

    PubMed Central

    Garapaty, Anusha

    2017-01-01

    Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025

  14. Sheet-like assemblies of spherical particles with point-symmetrical patches.

    PubMed

    Mani, Ethayaraja; Sanz, Eduardo; Roy, Soumyajit; Dijkstra, Marjolein; Groenewold, Jan; Kegel, Willem K

    2012-04-14

    We report a computational study on the spontaneous self-assembly of spherical particles into two-dimensional crystals. The experimental observation of such structures stabilized by spherical objects appeared paradoxical so far. We implement patchy interactions with the patches point-symmetrically (icosahedral and cubic) arranged on the surface of the particle. In these conditions, preference for self-assembly into sheet-like structures is observed. We explain our findings in terms of the inherent symmetry of the patches and the competition between binding energy and vibrational entropy. The simulation results explain why hollow spherical shells observed in some Keplerate-type polyoxometalates (POM) appear. Our results also provide an explanation for the experimentally observed layer-by-layer growth of apoferritin--a quasi-spherical protein.

  15. Electrohydrodynamic interactions of spherical particles under Quincke rotation

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2012-11-01

    Quincke rotation denotes the spontaneous rotation of dielectric particles immersed in a slightly dielectric liquid when subjected to a high enough DC electric field. It occurs when the charge relaxation time of the particles is greater than that of the fluid medium, causing the particles to become polarized in a direction opposite to that of the electric field and therefore giving rise to an unstable equilibrium position. When slightly perturbed, the particles start to rotate, and if the electric field exceeds a critical value the perturbations do not decay and the particle rotations reach a steady state with a constant angular velocity. We use a combination of numerical simulations and asymptotic theory to study the effect of electrohydrodynamic interactions between particles under Quincke rotation. We study the prototypical case of two equally charged spheres carrying no net charge and interacting with each other both hydrodynamically and electrically. The case of spherical particles free to roll on a horizontal grounded electrode is also described. We show that Quincke rotation results in self-propulsion of the particles in the plane of the electrode, and interactions between a pair of such ``rollers'' are analyzed.

  16. Hydrodynamic entrainment in micro-confined suspensions and its implications for two-point microrheology

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2017-11-01

    We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.

  17. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Engert, Julia; Besheer, Ahmed

    2013-09-10

    Non-spherical micro- and nanoparticles have recently gained considerable attention due to their surprisingly different interaction with biological systems compared to their spherical counterparts, opening new opportunities for drug delivery and vaccination. Up till now, electron microscopy is the only method to quantitatively identify the critical quality attributes (CQAs) of non-spherical particles produced by film-stretching; namely size, morphology and the quality of non-spherical particles (degree of contamination with spherical ones). However, electron microscopy requires expensive instrumentation, demanding sample preparation and non-trivial image analysis. To circumvent these drawbacks, the ability of different particle analysis methods to quantitatively identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl (polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was investigated. To this end, light obscuration, image-based analysis methods (Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry were used to study particles in the micron range, while asymmetric flow field fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi elastic light scattering (QELS) was used for particles in the nanometer range, and all measurements were benchmarked against electron microscopy. Results show that MFI can reliably identify particle size and aspect ratios of the 10 μm particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to differentiate between spherical and non-spherical 10 or 2 μm particles, and determine the amount of impurities in the sample. As for the nanoparticles, AF4 coupled to MALS and QELS allowed the measurement of the geometric (rg) and hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), confirming their morphology. While this study shows the utility of MFI, flow cytometry and AF4 for quantitative evaluation of the CQA of non-spherical particles over a wide size range, the limitations of the methods are discussed. The use of orthogonal characterization methods can provide a complete picture about the CQA of non-spherical particles over a wide size range. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Sphericalization of the potential of interaction of anisotropic molecules with spherical particles

    NASA Astrophysics Data System (ADS)

    Fernández-Prini, R.; Japas, María L.

    1986-09-01

    The possibility of employing sphericalized intermolecular potentials to describe the interactions between nonpolar anisotropic molecules (CCl4 and benzene) with spherical nonpolar molecules (Ar, Xe, and CH4) has been tested for binary systems having liquid- and gas-like densities. Median and RAM sphericalization procedures have been used and their capacity to account for the experimental values of cross second virial coefficients and Henry's constants are compared. It is shown that the median sphericalized potentials, which are temperature and density independent, give a fairly good description of the data which is better than that provided by RAM potentials. The possibility of accounting correctly for the change of properties when the relative size of the interacting partners changes (e.g., conformal systems) is noteworthy.

  19. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2015-03-01

    Micro- and nanoparticles in drug and vaccine delivery have opened up new possibilities in pharmaceutics. In the past, researchers focused mainly on particle size, surface chemistry and the use of various materials to control particle characteristics and functions. Lately, shape has been acknowledged as an important design parameter having an impact on the interaction with biological systems. In this review, we report on the latest developments in fabrication methods to tailor particle geometry, summarize analytical techniques for non-spherical particles and highlight the most important findings regarding their interaction with biological systems and their potential applications in drug delivery. The impact of shape on particle internalization into different cell types and particle biodistribution has been extensively studied in the past. Current research focuses on shape-dependent uptake mechanisms and applications for tumour therapy and vaccination. Different fabrication methods can be used to produce a variety of different particle types and shapes. Key challenges will be the transfer of new non-spherical particle fabrication methods from lab-scale to industrial large-scale production. Not all techniques may be scalable for the production of high quantities of particles. It will also be challenging to transfer the promising in vitro findings to suitable in vivo models.

  20. Adhesive interaction of elastically deformable spherical particles

    NASA Astrophysics Data System (ADS)

    D'yachenko, E. N.; Dueck, J. G.

    2012-01-01

    Two spherical particles that attract each other by van der Waals volume forces and can undergo deformation as a result of the attraction are considered. Small deformations of such particles can be described by the solution of the Hertz problem. The deformation of particles, in turn, alters the force of attraction between them. It has been established that the relationship between the adhesion and elasticity of the indicated particles is determined by the degree to which these particles deform and that the adhesion force acting between the particles depends on their elasticity, size, and the Hamaker constants.

  1. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  2. Emergence and Utility of Nonspherical Particles in Biomedicine

    PubMed Central

    Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola

    2016-01-01

    The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109

  3. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    NASA Astrophysics Data System (ADS)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  4. Design of Polymer-Grafted Particles for Biocompatability

    NASA Astrophysics Data System (ADS)

    Trombly, David; Ganesan, Venkat

    2009-03-01

    Drug designers often coat drug particles with grafted polymers in order to introduce a net repulsion between the particles and blood proteins. This net repulsion results from the energy cost of compressing grafted chains on approach of proteins. It thus overcomes the Van Der Waals attraction between drug and protein which would otherwise cause particle-protein agglomeration and ultimately thrombosis. This study proposes to develop a fundamental understanding of the role of different features in controlling the efficacy of the grafted layers. We address this issue by developing a framework to predict the interactions between a polymer-coated spherical particle and a bare spherical particle. In order to fully capture the two-sphere system, a numerical solution of polymer mean field theory is used in a bispherical coordinate system. Results for protein-particle interaction energies for different design parameters will be presented. For biological applications, polyethylene glycol is often used as the grafted polymer. The unique properties of this molecule will be accounted for using the n-cluster model.

  5. Novel Discrete Element Method for 3D non-spherical granular particles.

    NASA Astrophysics Data System (ADS)

    Seelen, Luuk; Padding, Johan; Kuipers, Hans

    2015-11-01

    Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.

  6. Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films

    DTIC Science & Technology

    2006-11-01

    Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution

  7. FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model

    NASA Astrophysics Data System (ADS)

    Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco

    2007-08-01

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.

  8. Modelling incompressible flows and fluid-structure interaction problems with smoothed particle hydrodynamics: Briefing on the 2017 SPHERIC Beijing International Workshop

    NASA Astrophysics Data System (ADS)

    Liu, Mou-bin; Huang, Can; Zhang, A.-man

    2018-02-01

    The 2017 SPHERIC Beijing International Workshop (or SPHERIC Beijing 2017) was held at Peking University, in China, on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We are delighted to present nine contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 13th SPHERIC Workshop (or SPHERIC 2018) will be held in Galway, Ireland in 2018 by the National University of Ireland, and the SPHERIC International Workshop in Harbin, China in 2019 by the Harbin Engineering University.

  9. Interpretation of Extinction in Gaussian-Beam Scattering

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1995-01-01

    The extinction efficiency for the interaction of a plane wave with a large nonabsorbing spherical particle is approximately 2.0. When a Gaussian beam of half-width w(sub 0) is incident upon a spherical particle of radius a with w(sub 0)/a less than 1, the extinction efficiency attains unexpectedly high or low values, contrary to intuitive expectations. The reason for this is associated with the so-called compensating term in the scattered field, which cancels the field of the Gaussian beam behind the particle, thereby producing the particle's shadow. I introduce a decomposition of the total exterior field into incoming and outgoing portions that are free of compensating terms. It is then shown that a suitably defined interaction efficiency has the intuitively expected asymptotic values of 2.0 for w(sub 0)/a much greater than 1 and 1.0 for w(sub 0)/a much less than 1.

  10. Ion beam-induced shaping of Ni nanoparticles embedded in a silica matrix: from spherical to prolate shape

    PubMed Central

    2011-01-01

    Present work reports the elongation of spherical Ni nanoparticles (NPs) parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM) shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc) and remanence ratio (Mr/Ms) are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction. PMID:21711659

  11. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  12. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2014-04-25

    Particle geometry of micro- and nanoparticles has been identified as an important design parameter to influence the interaction with cells such as macrophages. A head to head comparison of elongated, non-spherical and spherical micro- and nanoparticles with and without PEGylation was carried out to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages were incubated with fluorescently labeled PLGA micro- and nanoparticles and analyzed by confocal laser scanning microscope (CLSM) and flow cytometry (FACS). Particle uptake into macrophages was significantly reduced upon PEGylation or elongated particle geometry. A combination of both, an elongated shape and PEGylation, had the strongest phagocytosis inhibiting effect for nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Non-Existence of Black Hole Solutionsfor a Spherically Symmetric, Static Einstein-Dirac-Maxwell System

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.

  14. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  15. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  16. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.

    PubMed

    Sherman, H; Nguyen, A V; Bruckard, W

    2016-11-22

    Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.

  17. Modelling sheet-flow sediment transport in wave-bottom boundary layers using discrete-element modelling.

    PubMed

    Calantoni, Joseph; Holland, K Todd; Drake, Thomas G

    2004-09-15

    Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.

  18. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    PubMed

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  19. Multiscale Experimental and Numerical Approach to the Powder Particle Shape Effect on Al-Al2O3 Coating Build-Up

    NASA Astrophysics Data System (ADS)

    Leger, P. E.; Sennour, M.; Delloro, F.; Borit, F.; Debray, A.; Gaslain, F.; Jeandin, M.; Ducos, M.

    2017-10-01

    Aluminum (Al) powders with spherical and irregular particle shapes were mixed with two alumina (Al2O3) powders with either a spherical or an angular particle shape to achieve high-performance cold-sprayed coatings onto steel. Two effects of the aluminum particle shape were observed. First, coating microstructure observation showed impinging heterogeneity depending on particle shape. Second, particle jet differences depending on particle morphology were shown by velocity maps. From the latter, SEM and XRD, three effects of the alumina particle shape were also shown, i.e., higher in-flight velocity of angular particles, fragmentation of spherical hollow particles and embedding of alumina particles with aluminum. Numerical simulation of particle impacts was developed to study the densification of Al coating due to Al2O3 addition through elucidation of Al-Al2O3 interaction behavior at the scale of the coating. Al/Al and Al/Al2O3 interfaces were investigated using TEM to understand coating strengthening effects due to alumina addition at the scale of the particle. As a whole, Al and Al2O3 particle shape effects were claimed to explain coating mechanical properties, e.g., microhardness and coating-substrate bond strength. This study resulted in specifying criteria to help cold spray users in selecting powders for their applications, to meet economic and technical requirements.

  20. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2002-10-01

    We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.

  1. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-09-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  2. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  3. Dynamical density functional theory for arbitrary-shape colloidal fluids including inertia and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim

    2015-11-01

    Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  4. Axial acoustic radiation force on a sphere in Gaussian field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less

  5. Calculation and experimental study on high-speed impact of heat-resistant coating materials with a meteoric particle

    NASA Astrophysics Data System (ADS)

    Glazunov, Anatoly; Ishchenko, Aleksandr; Afanas'eva, Svetlana; Belov, Nikolai; Burkin, Viktor; Rogaev, Konstantin; Yugov, Nikolai

    2016-01-01

    The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids.

  6. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    NASA Astrophysics Data System (ADS)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with the results obtained with direct measurement methods such as laser diffraction.

  7. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles

    PubMed Central

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of “crowding effect” which is the entropic interaction in the cell. PMID:26752650

  8. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles.

    PubMed

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of "crowding effect" which is the entropic interaction in the cell.

  9. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  10. Specific Recognition and Detection of MRSA Based on Molecular Probes Comprised of Lytic Phage and Antibody

    DTIC Science & Technology

    2011-03-29

    QCM system was employed to study bacteria-phage interactions. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18... QCM -D system (Sweden) was employed to study bacteria-phage interactions. Lytic phages were constructed into hollow spherical particles upon exposure to...a chloroform-water interface. These particles were converted into monolayers and deposited onto QCM -D crystals using Langmuir-Blodgett technique [I

  11. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  12. Particle shape impacts export and fate in the ocean through interactions with the globally abundant appendicularian Oikopleura dioica.

    PubMed

    Conley, Keats R; Sutherland, Kelly R

    2017-01-01

    Marine microbes exhibit highly varied, often non-spherical shapes that have functional significance for essential processes, including nutrient acquisition and sinking rates. There is a surprising absence of data, however, on how cell shape affects grazing, which is crucial for predicting the fate of oceanic carbon. We used synthetic spherical and prolate spheroid microbeads to isolate the effect of particle length-to-width ratios on grazing and fate in the ocean. Here we show that the shape of microbe-sized particles affects predation by the appendicularian Oikopleura dioica, a globally abundant marine grazer. Using incubation experiments, we demonstrate that shape affects how particles are retained in the house and that the minimum particle diameter is the key variable determining how particles are ingested. High-speed videography revealed the mechanism behind these results: microbe-sized spheroids oriented with the long axis parallel to fluid streamlines, matching the speed and tortuosity of spheres of equivalent width. Our results suggest that the minimum particle diameter determines how elongated prey interact with the feeding-filters of appendicularians, which may help to explain the prevalence of ellipsoidal cells in the ocean, since a cell's increased surface-to-volume ratio does not always increase predation. We provide the first evidence that grazing by appendicularians can cause non-uniform export of different shaped particles, thereby influencing particle fate.

  13. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    NASA Astrophysics Data System (ADS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O'Keeffe, Michael

    2014-12-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.

  14. Discrete Element Model for Suppression of Coffee-Ring Effect

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-02-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.

  15. Aerosol Particle Shape and Radiative Coupling in a Three Dimensional Titan GCM

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, O. B.; Friedson, A. J.; West, R. A.

    2010-10-01

    Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, as well as heating and cooling rates which in turn affect the circulation on Titan leading to feedback with the aerosol distribution. Correctly representing the aerosols in atmospheric models is crucial to understanding this atmosphere. Friedson et al. (2009, A global climate model of Titan's atmosphere and surface. Planet. SpaceSci. 57, 1931-1949.) produced a three-dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. We compare simulations with radiatively interactive aerosols with those using a prescribed aerosol radiative effect. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lofted by winds more in the summer hemisphere than the non-radiatively interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo. We compare simulations using spherical particles to simulations using fractal aggregate particles, which are expected from laboratory and observational data. Fractal particles have higher absorption in the UV, slower fall velocities and faster coagulation rates than equivalent mass spherical particles. We compare model simulations with observational data from the Cassini and Huygens missions.

  16. Sedimentation of Inertialess Particles in Stokes Flows

    NASA Astrophysics Data System (ADS)

    Höfer, Richard M.

    2018-05-01

    We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.

  17. Crystallization of Deformable Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Batista, Vera M. O.; Miller, Mark A.

    2010-08-01

    We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.

  18. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    PubMed

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  19. A boundary element method for particle and droplet electrohydrodynamics in the Quincke regime

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2014-11-01

    Quincke electrorotation is the spontaneous rotation of dielectric particles suspended in a dielectric liquid of higher conductivity when placed in a sufficiently strong electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While spherical harmonics can be used to solve the governing equations for a spherical particle, they cannot be used to study the dynamics of particles of more complex shapes or deformable particles or droplets. Here, we develop a novel boundary element formulation to model the dynamics of a dielectric particle under Quincke rotation based on the Taylor-Melcher leaky dielectric model, and compare the numerical results to theoretical predictions. We then employ this boundary element method to analyze the dynamics of a two-dimensional drop under Quincke rotation, where we allow the drop to deform under the electric field. Extensions to three-dimensions and to the electrohydrodynamic interactions of multiple droplets are also discussed.

  20. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  1. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  2. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  3. Characterization of individual complex particles in urban atmospheric environment

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takii, T.; Tomiyasu, B.; Nihei, Y.

    2006-07-01

    The origins of carrier particles of complex particles (iron-rich particles) collected from the urban atmospheric environment near to road traffic and a railroad were investigated from the detailed surface information using FE-SEM/EDS and TOF-SIMS analyses. From the FE-SEM/EDS analyses, the iron-rich particles were classified into two typical types (spherical type and non-spherical type). From the TOF-SIMS measurements, the characteristic secondary ions of spherical type of iron-rich particles were 23Na + and 39K +. The minor components of non-spherical type were Al, Ca and Ba. On the other hand, we carried out TOF-SIMS measurement to materials of rail origin and brake origin. From the comparison of these spectra pattern, it seemed that the spherical type of iron-rich particles was emitted from the rail origin. We concluded that the origin of non-spherical type of iron-rich particles were brake pad of vehicles.

  4. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces.

    PubMed

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  5. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NASA Astrophysics Data System (ADS)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  6. Bidispersed Sphere Packing on Spherical Surfaces

    NASA Astrophysics Data System (ADS)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  7. Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Xu, Zhenli

    2018-02-01

    An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.

  8. Superlattices assembled through shape-induced directional binding

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less

  10. Superlattices assembled through shape-induced directional binding

    DOE PAGES

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; ...

    2015-04-23

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less

  11. Shape effects of filaments versus spherical particles in flow and drug delivery

    PubMed Central

    GENG, YAN; DALHAIMER, PAUL; CAI, SHENSHEN; TSAI, RICHARD; TEWARI, MANORAMA; MINKO, TAMARA; DISCHER, DENNIS E.

    2009-01-01

    Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection. This is about ten times longer than their spherical counterparts and is more persistent than any known synthetic nanoparticle. Under fluid flow conditions, spheres and short filomicelles are taken up by cells more readily than longer filaments because the latter are extended by the flow. Preliminary results further demonstrate that filomicelles can effectively deliver the anticancer drug paclitaxel and shrink human-derived tumours in mice. Although these findings show that long-circulating vehicles need not be nanospheres, they also lend insight into possible shape effects of natural filamentous viruses. PMID:18654271

  12. Shape effects of filaments versus spherical particles in flow and drug delivery

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Dalhaimer, Paul; Cai, Shenshen; Tsai, Richard; Tewari, Manorama; Minko, Tamara; Discher, Dennis E.

    2007-04-01

    Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection. This is about ten times longer than their spherical counterparts and is more persistent than any known synthetic nanoparticle. Under fluid flow conditions, spheres and short filomicelles are taken up by cells more readily than longer filaments because the latter are extended by the flow. Preliminary results further demonstrate that filomicelles can effectively deliver the anticancer drug paclitaxel and shrink human-derived tumours in mice. Although these findings show that long-circulating vehicles need not be nanospheres, they also lend insight into possible shape effects of natural filamentous viruses.

  13. Simulation of hydrodynamically interacting particles near a no-slip boundary

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Brady, John F.

    2007-11-01

    The dynamics of spherical particles near a single plane wall are computed using an extension of the Stokesian dynamics method that includes long-range many-body and pairwise lubrication interactions between the spheres and the wall in Stokes flow. Extra care is taken to ensure that the mobility and resistance tensors are symmetric, positive, and definite—something which is ineluctable for particles in low-Reynolds-number flows. We discuss why two previous simulation methods for particles near a plane wall, one using multipole expansions and the other using the Rotne-Prager tensor, fail to produce symmetric resistance and mobility tensors. Additionally, we offer some insight on how the Stokesian dynamics paradigm might be extended to study the dynamics of particles in any confining geometry.

  14. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.

  15. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    PubMed

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  16. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metere, Alfredo, E-mail: alfredo.metere@mmk.su.se; Oleynikov, Peter; Dzugutov, Mikhail

    2014-12-21

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process,more » can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.« less

  17. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  18. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    NASA Astrophysics Data System (ADS)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  19. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  20. Particle-like solutions of the Einstein-Dirac-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-08-01

    We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.

  1. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  2. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge.

    PubMed

    Alizadeh, Amer; Wang, Moran

    2017-03-01

    Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore.

    PubMed

    Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.

  4. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganini, Iván E.; Pastorino, Claudio, E-mail: pastor@cnea.gov.ar; Urrutia, Ignacio, E-mail: iurrutia@cnea.gov.ar

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surfacemore » tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T − ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.« less

  5. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  6. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.

    2015-08-15

    This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.« less

  7. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  8. Application of close-packed structures in dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-03-01

    The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  10. Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters

    NASA Astrophysics Data System (ADS)

    Su, Jinghong; Chen, Xiaodong; Hu, Guoqing

    2018-03-01

    Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.

  11. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.

    PubMed

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Yasushi; Miyahara, Nobuyuki

    2008-09-01

    The radiation-transport code PHITS with an event generator mode has been applied to analyze energy depositions of electrons and charged heavy particles in two spherical phantoms and a voxel-based mouse phantom upon neutron irradiation. The calculations using the spherical phantoms quantitatively clarified the type and energy of charged particles which are released through interactions of neutrons with the phantom elements and contribute to the radiation dose. The relative contribution of electrons increased with an increase in the size of the phantom and with a decrease in the energy of the incident neutrons. Calculations with the voxel-based mouse phantom for 2.0-MeV neutron irradiation revealed that the doses to different locations inside the body are uniform, and that the energy is mainly deposited by recoil protons. The present study has demonstrated that analysis using PHITS can yield dose distributions that are accurate enough for RBE evaluation.

  12. Non-additive simple potentials for pre-programmed self-assembly

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    2015-03-01

    A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.

  13. Electrohydrodynamic interactions in Quincke rotation: from pair dynamics to collective motion

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2013-11-01

    Weakly conducting dielectric particles suspended in a dielectric liquid can undergo spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions whose effective viscosity can be reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between identical spheres using method of reflections. We also consider the case of spherical particles undergoing Quincke rotation next to a planar electrode, where hydrodynamic interactions with the no-slip boundary lead to a self-propelled velocity. The interactions between such Quincke rollers are analyzed, and a transition to collective motion is predicted in sufficiently dense collections of many rollers, in agreement with recent experiments.

  14. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.

    PubMed

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  15. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    NASA Astrophysics Data System (ADS)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  16. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  17. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  18. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    DOEpatents

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  19. An "adiabatic-hindered-rotor" treatment allows para-H(2) to be treated as if it were spherical.

    PubMed

    Li, Hui; Roy, Pierre-Nicholas; Le Roy, Robert J

    2010-09-14

    In para-H(2)-{molecule} interactions, the common assumption that para-H(2) may be treated as a spherical particle is often substantially in error. For example, quantum mechanical eigenvalues on a full four-dimensional (4D) potential energy surface for para H(2)-{linear molecule} species often differ substantially from those calculated from the corresponding two-dimensional (2D) surface obtained by performing a simple spherical average over the relative orientations of the H(2) moiety. However, use of an "adiabatic-hindered-rotor" approximation can yield an effective 2D surface whose spectroscopic properties are an order of magnitude closer to those yielded by a full 4D treatment.

  20. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  1. Simulations of electrically induced particle structuring on spherical drop surface

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia; Miksis, Michael

    2016-11-01

    Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electrical field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present a model to simulate the collective particle dynamics, which accounts for the electrohydrodynamic flow and particle dielectrophoresis due to the non-uniformity of local electrical field. In stronger electric fields, particles are expected to undergo Quincke rotation, inducing rotating clusters through inter-particle hydrodynamical interaction. We discuss how the field intensity influences the width, orientation and periodicity of the particle clusters. Our results provide insight into the various particle assembles discovered in the experiments.

  2. Interactions in Micellar Solutions of β-Casein

    NASA Astrophysics Data System (ADS)

    Leclerc, E.; Calmettes, P.

    1997-01-01

    β-casein is a flexible amphiphilic milk protein which forms spherical micelles in very dilute solution. The magnitude of the weight-average interactions between the solute particles has been inferred from small-angle neutron scattering experiments. At relatively high protein concentrations the interactions between micelles are repulsive, whatever the temperature. At lower concentration these interactions vanish and become more and more attractive when the critical micelle concentration is approached. Although indispensable for micelle formation, this fact seems to have not been previously reported.

  3. Hydrogels in endovascular embolization. I. Spherical particles of poly(2-hydroxyethyl methacrylate) and their medico-biological properties.

    PubMed

    Horák, D; Svec, F; Kálal, J; Gumargalieva, K; Adamyan, A; Skuba, N; Titova, M; Trostenyuk, N

    1986-05-01

    Spherical macroporous particles based on poly(2-hydroxyethyl methacrylate) with defined porosity, swelling and morphology have been developed, and are suitable for endovascular occlusion of various organs. Unlike cylindrical particles, spherical particles are specifically suited for transcatheteral introduction. The method chosen for the preparation of such particles was suspension radical polymerization, where the monomers were dissolved in a mixture of higher-boiling alcohols, and the solution dispersed in water. Physicochemical and medico-biological properties of spherical particles were examined. The residual amounts of monomers and other low-molecular compounds were checked; haematological analyses showed that the value 10(-5) g/g of the polymer was not toxic and contributed to an irreversible aggregation of thrombocytes. The occlusion effect in the vascular lumen was stable. The histomorphological results fully demonstrated the perfect biocompatibility of artificial spherical emboli. The latter met the requirements of application to clinical practice.

  4. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  5. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N.

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulasmore » are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.« less

  6. Preparation of spherical particles by vibrating orifice technique

    NASA Astrophysics Data System (ADS)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  7. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGES

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  8. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    NASA Astrophysics Data System (ADS)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis showed that the particles deviate from spherical and that they are not characterized by a defined structure. This observation supports the theory that nascent soot is not homogenous in structure or composition, and challenges the classical assumption that spherical growth and aggregation are separate, size dependent processes. In light of the new evidence that suggests nascent soot particles are structurally inhomogenous, careful consideration must be given to mobility measurements of particle mass and size. The interpretation of particle volume of irregularly shaped nascent soot particles is considered in this dissertation work. Additionally, uncertainties in the mass density of nascent soot are reviewed and the error in mass calculation is quantified.

  9. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.

  10. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  11. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers.

    PubMed

    Tong, Yu; Dong, Xufeng; Qi, Min

    2018-05-09

    The field-induced storage modulus is an important parameter for the applications of magnetorheological (MR) elastomers. In this study, a model mechanism is established to analyze the potential benefits of using flower-like particles as the active phase compared with the benefits of using conventional spherical particles. To verify the model mechanism and to investigate the difference in dynamic viscoelasticity between MREs with spherical particles and flower-like particles, flower-like cobalt particles and spherical cobalt particles with similar particle sizes and magnetic properties are synthesized and used as the active phase to prepare MR elastomers. As the model predicts, MREs with flower-like cobalt particles present a higher crosslink density and enhanced interfacial bond strength, which leads to a higher storage modulus and higher loss modulus with respect to MREs with spherical cobalt particles. The tunable range of the field-induced storage modulus of MREs is also improved upon using the flower-like particles as the active phase.

  12. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    EPA Science Inventory

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  13. Thermal diffusion behavior of hard-sphere suspensions.

    PubMed

    Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone

    2006-11-28

    We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.

  14. Do hydrodynamic interactions affect the swim pressure?

    PubMed

    Burkholder, Eric W; Brady, John F

    2018-05-09

    We study the motion of a spherical active Brownian particle (ABP) of size a, moving with a fixed speed U0, and reorienting on a time scale τR in the presence of a confining boundary. Because momentum is conserved in the embedding fluid, we show that the average force per unit area on the boundary equals the bulk mechanical pressure P∞ = p∞f + Π∞, where p∞f is the fluid pressure and Π∞ is the particle pressure; this is true for active and passive particles alike regardless of how the particles interact with the boundary. As an example, we investigate how hydrodynamic interactions (HI) change the particle-phase pressure at the wall, and find that Πwall = n∞(kBT + ζ(Δ)U0l(Δ)/6), where ζ is the (Stokes) drag on the swimmer, l = U0τR is the run length, and Δ is the minimum gap size between the particle and the wall; as Δ → ∞ this is the familiar swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 1-5].

  15. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  16. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE PAGES

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...

    2018-04-10

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  17. Simulation of particle motion in a closed conduit validated against experimental data

    NASA Astrophysics Data System (ADS)

    Dolanský, Jindřich

    2015-05-01

    Motion of a number of spherical particles in a closed conduit is examined by means of both simulation and experiment. The bed of the conduit is covered by stationary spherical particles of the size of the moving particles. The flow is driven by experimentally measured velocity profiles which are inputs of the simulation. Altering input velocity profiles generates various trajectory patterns. The lattice Boltzmann method (LBM) based simulation is developed to study mutual interactions of the flow and the particles. The simulation enables to model both the particle motion and the fluid flow. The entropic LBM is employed to deal with the flow characterized by the high Reynolds number. The entropic modification of the LBM along with the enhanced refinement of the lattice grid yield an increase in demands on computational resources. Due to the inherently parallel nature of the LBM it can be handled by employing the Parallel Computing Toolbox (MATLAB) and other transformations enabling usage of the CUDA GPU computing technology. The trajectories of the particles determined within the LBM simulation are validated against data gained from the experiments. The compatibility of the simulation results with the outputs of experimental measurements is evaluated. The accuracy of the applied approach is assessed and stability and efficiency of the simulation is also considered.

  18. Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets

    NASA Astrophysics Data System (ADS)

    Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.

    2010-03-01

    Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.

  19. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  20. Resource Letter NSM-1: New insights into the nuclear shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, David Jarvis; Hamilton, J. H.

    2011-01-01

    This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less

  1. Shock Interaction with Random Spherical Particle Beds

    NASA Astrophysics Data System (ADS)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  2. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.

    PubMed

    Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos

    2003-07-01

    To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.

  3. Nano- and microparticles at fluid and biological interfaces.

    PubMed

    Dasgupta, S; Auth, T; Gompper, G

    2017-09-20

    Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.

  4. Nano- and microparticles at fluid and biological interfaces

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Auth, T.; Gompper, G.

    2017-09-01

    Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.

  5. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  6. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-03-24

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  7. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less

  8. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U-Mo/Al dispersion type fuel plates

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Hofman, Gerard L.; Kee, Robert J.; King, Jeffrey C.

    2014-10-01

    Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  9. Elongated dust particles growth in a spherical glow discharge in ethanol

    NASA Astrophysics Data System (ADS)

    Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.

    2018-01-01

    The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.

  10. Spherical and cylindrical particle resonator as a cloak system

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.

    2018-05-01

    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.

  11. Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    NASA Astrophysics Data System (ADS)

    Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka

    2018-06-01

    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization.

  12. DNA-nanoparticle superlattices formed from anisotropic building blocks

    NASA Astrophysics Data System (ADS)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  13. Crowding Effects on the Formation and Maintenance of Nuclear Bodies: Insights from Molecular-Dynamics Simulations of Simple Spherical Model Particles

    PubMed Central

    Cho, Eun Jin; Kim, Jun Soo

    2012-01-01

    The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions. PMID:22947858

  14. Diffusion-controlled reactions: hydrodynamic interaction between charged, uniformly reactive spherical reactants.

    PubMed

    Allison, Stuart

    2006-12-28

    In this work, different models of hydrodynamic interaction (HI) are examined in the diffusion-controlled reaction between uniformly reactive charged spherical particles. In addition to Oseen "stick" and "slip" models of HI, one is considered that accounts for the disturbance of fluid flow by the ions around one reactive partner as they interact with a neighboring reactive species. This interaction is closely related to the "electrophoretic effect" in electrokinetics and can be described by a fairly simple electrophoretic, or E-tensor. These models are applied to the electron-transfer quenching reaction of Ru(bpy)3(2+) and methyl viologen (MV2+) over a wide range of NaCl concentrations (Chiorboli, C. et al., J. Phys. Chem. 1988, 92, 156). The back reaction is also considered. From a comparison of the salt dependence of the model and experimental rates, it is concluded that the "E-tensor" model works best and ignoring HI altogether works worst. The Oseen "stick" and "slip" models fall between these.

  15. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  16. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  17. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  18. Entrainment and scattering in microswimmer-colloid interactions

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yeomans, Julia M.

    2017-11-01

    We use boundary element simulations to study the interaction of model microswimmers with a neutrally buoyant spherical particle. The ratio of the size of the particle to that of the swimmer is varied from RP/RS≪1 , corresponding to swimmer-tracer scattering, to RP/RS≫1 , approximately equivalent to the swimmer interacting with a fixed, flat surface. We find that details of the swimmer and particle trajectories vary for different swimmers. However, the overall characteristics of the scattering event fall into two regimes, depending on the relative magnitudes of the impact parameter, ρ , and the collision radius, Rcoll=RP+RS . The range of particle motion, defined as the maximum distance between two points on the trajectory, has only a weak dependence on the impact parameter when ρ Rcoll the range decreases as a power law in ρ and is insensitive to the size of the particle. We also demonstrate that large particles can cause swimmers to be deflected through large angles. In some instances, this swimmer deflection can lead to larger net displacements of the particle. Based on these results, we estimate the effective diffusivity of a particle in a dilute bath of swimmers and show that there is a nonmonotonic dependence on particle radius. Similarly, we show that the effective diffusivity of a swimmer scattering in a suspension of particles varies nonmonotonically with particle radius.

  19. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  20. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  1. Hydrogels in endovascular embolization. II. Clinical use of spherical particles.

    PubMed

    Horák, D; Svec, F; Kálal, J; Adamyan, A A; Volynskii, Y D; Voronkova, O S; Kokov, L S; Gumargalieva, K Z

    1986-11-01

    In this study we report the results of clinical experiments, obtained with spherical particles made from poly(2-hydroxyethyl methacrylate) used in the embolization of arteriovenous anastomoses, in the suppression of pulmonary haemorrhage and haemoptysis and in the occlusion of some other arteries. So far we have used these particles in the treatment of 187 patients. It must be stressed that the advantage of spherical particles consists in the simplicity of their introduction into the blood vessel through a catheter, while in the blood vessel itself the particle swells in blood still more, when compared with the particle size in saline. This results in an immediate and permanent haemostatic effect. No revascularization occurs.

  2. Analysis of dark matter axion clumps with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Hertzberg, Mark P.

    2018-01-01

    Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.

  3. Understanding magnetic remanence acquisition through combined synthetic sediment deposition experiments and numerical simulations.

    NASA Astrophysics Data System (ADS)

    Bilardello, D.

    2014-12-01

    Understanding depositional remanent magnetizations (DRMs) bears implications on interpreting paleomagnetic and paleointensity records extracted from sedimentary rocks. Laboratory deposition experiments have yielded DRMs with shallow remanent inclinations and revealed a field dependence of the magnetization (M), which is orders of magnitude lower than the saturation remanence. To investigate these observations further, experiments involving differently shaped particles were performed. Spherical particles confirmed the field dependence of both the inclination error and M and the fact that the DRM acquired experimentally is lower than saturation. A sediment concentration dependence of the inclination error was observed, indicating a dependance of the inclination error on the sediment load/burial depth or the sedimentation rate. Other outcome was the certainty that spherical particles alone can lead to substantial inclination shallowing. Numerical simulations of settling spherical particles indicated that DRM should be ~10 times lower than the saturation remanence and predicted that rolling of the grains on the sediment surface and particle interactions during settling can produce a substantial shallowing of the inclination and lowering of the remanence, bringing the simulations in close agreement to the experimental results. Experiments involving platy particles, instead allowed interesting comparisons and gave insight into the behavior of differently shaped particles, for instance yielding smaller amounts of shallowing than spheres, in contrast to general belief. Viewing DRM as an anisotropic process allows fitting the experimental results with tensors (kDRM). The ratios of kvertical over khorizontal are in good agreement to the ratios of M obtained in vertical over horizontal experimental fields, which should be equivalent to the widely used inclination shallowing factor f. Experimental results were highly repeatabile, however not always as repeatable for both M and inclination (direction) for both particle shapes, heighlighting that while a sediment might carry a stable remanent direction, it may not always be a particularily good paleointensity recorder.

  4. Fluorescence labeling of colloidal core-shell particles with defined isoelectric points for in vitro studies.

    PubMed

    Daberkow, Timo; Meder, Fabian; Treccani, Laura; Schowalter, Marco; Rosenauer, Andreas; Rezwan, Kurosch

    2012-02-01

    In the light of in vitro nanotoxicological studies fluorescence labeling has become standard for particle localization within the cell environment. However, fluorescent labeling is also known to significantly alter the particle surface chemistry and therefore potentially affect the outcome of cell studies. Hence, fluorescent labeling is ideally carried out without changing, for example, the isoelectric point. A simple and straightforward method for obtaining fluorescently labeled spherical metal oxide particles with well-defined isoelectric points and a narrow size distribution is presented in this study. Spherical amorphous silica (SiO2, 161 nm diameter) particles were used as the substrate material and were coated with silica, alumina (Al2O3), titania (TiO2), or zirconia (ZrO2) using sol-gel chemistry. Fluorescent labeling was achieved by directly embedding rhodamine 6G dye in the coating matrix without affecting the isoelectric point of the metal oxide coatings. The coating quality was confirmed by high resolution transmission electron microscopy, energy filtered transmission electron microscopy and electrochemical characterization. The coatings were proven to be stable for at least 240 h under different pH conditions. The well-defined fluorescent particles can be directly used for biomedical investigations, e.g. elucidation of particle-cell interactions in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Collisions of droplets on spherical particles

    NASA Astrophysics Data System (ADS)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 < We < 1015, 0.0070 < Oh < 0.0089, and 0.09 < Ω < 0.55, respectively. The droplet-particle collisions are first quantified in terms of the outcome. In addition to the conventional deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  6. A study of the effect of solid particle impact and particle shape on the erosion morphology of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1984-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.

  7. Net motion of acoustically levitating nano-particles: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Lippera, Kevin; Dauchot, Olivier; Benzaquen, Michael; Gulliver-LadHyX Collaboration

    2017-11-01

    A particle 2D-trapped in the nodal planed of a standing acoustic wave is prone to acoustic-phoretic motion as soon as its shape breaks polar or chiral symmetry. such a setup constitues an ideal system to study boundaryless 2D collective behavior with purely hydrodynamic long range interactions. Recent studies have indeed shown that quasi-spherical particles may undergo net propulsion, a feature partially understood theoretically in the particular case of infinite viscous boundary layers. We here extend the theoretical results of to any boundary layer thickness, by that meeting typical experimental conditions. In addition, we propose an explanation for the net spinning of the trapped particles, as observed in experiments.

  8. On the crystallization of polymer composites with inorganic fullerene-like particles.

    PubMed

    Enyashin, Andrey N; Glazyrina, Polina Yu

    2012-05-21

    The effect of a sulfide fullerene-like particle embedded into a polymer has been studied by molecular dynamics simulations on the nanosecond time scale using a mesoscopic Van der Waals force field evaluated for the case of a spherical particle. Even in this approach, neglecting the atomistic features of the surface, the inorganic particle acts as a nucleation agent facilitating the crystallization of the polymeric sample. A consideration of the Van der Waals force field of multi-walled sulfide nanoparticles suggests that in the absence of chemical interactions the size of the nanoparticle is dominating for the adhesion strength, while the number of sulfide layers composing the cage does not play a role.

  9. The influence of particle shape on dielectric enhancement in metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, W. T.; Jacobs, I. S.

    1992-04-01

    Disordered suspensions of conducting particles exhibit substantial permittivity enhancements beyond the predictions of the Clausius-Mossotti equation and other purely dipolar approximations. The magnitude of the enhancement depends upon the shape of the particles. A recently developed effective cluster model for spherical particles [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension as a mixture, or mesosuspension, of isolated spheres and close-packed spherical clusters of arbitrary size is in excellent agreement with experiments on well-stirred suspensions of spheres over the entire accessible range of volume loading. In this paper, the effective cluster model is extended to be applicable to disordered suspensions of arbitrarily shaped conducting particles. Two physical parameters are used to characterize a general suspension: the angular average polarizability of an isolated particle, and the volume loading at closest packing of the suspension. Multipole interactions within the clusters are treated exactly. External particle-shape-dependent interactions between clusters and isolated particles are treated in the dipole approximation in two ways: explicitly, using the Clausius-Mossotti equation, and implicitly, using the Wiener equation. Both versions of the model are used to find the permittivity of a monodisperse suspension of conducting spheroids, for which the model parameters can be determined independently. The two versions are in good agreement when the axial ratio of the particles is not extreme. The Clausius-Mossotti version of the model yields a mesoscopic analogue of the dielectric virial expansion. It is limited to small volume loadings when the particles have an extremely nonspherical shape. The Wiener equation version of the model holds at all volume loadings for particles of arbitrary shape. Comparison of the two versions of the model leads to a simple physical interpretation of Wiener's equation. The models are compared with experiments of Kelly, Stenoien, and Isbell [J. Appl. Phys. 24, 258 (1953)] on aluminum and zinc particles in paraffin, with Nasuhoglu's experiments on iron particles in oil [Commun. Fac. Sci. Univ. Ankara 4, 108 (1952)], and with new X-band and Kα-band permittivity measurements on Ni-Cr alloy particles in a polyurethane binder.

  10. Optical properties of soot particles: measurement - model comparison

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.

  11. Discrete element modelling of bedload transport

    NASA Astrophysics Data System (ADS)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth profiles were compared in the case of the one-size mixture. The turbulent fluid velocity profile was prescribed and attached to the variable upper bedline. Provided the upper bedline was calculated with a refined space and time resolution, a fair agreement between DEM and experiments was reached. Experiments with two-size mixtures were designed to study vertical grain size sorting or segregation patterns. Sorting is arguably the reason why the predictive capacity of bedload formulations remains so poor. Modelling of the two-size mixture was also performed and gave promising qualitative results.

  12. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles.

    PubMed

    Pryamitsyn, Victor; Ganesan, Venkat

    2015-10-28

    We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.

  13. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  14. Gas and particle motions in a rapidly decompressed flow

    NASA Astrophysics Data System (ADS)

    Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda

    2017-11-01

    To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  15. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.

    PubMed

    Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S

    2002-05-15

    A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

  16. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  17. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  18. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  19. Generalized seniority on a deformed single-particle basis

    NASA Astrophysics Data System (ADS)

    Jia, L. Y.

    2017-09-01

    Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis [J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015), 10.1088/0954-3899/42/11/115105]. This work redesigns the scheme to make it applicable to deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 94 64 158Gd for intrinsic (body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow -k. By allowing as many as four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and the pairs gradually break up as excitation energy increases.

  20. Energy ejection in the collapse of a cold spherical self-gravitating cloud

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Marcos, B.; Sylos Labini, F.

    2009-08-01

    When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may, in principle, be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depend on the initial conditions, for the one-parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as N1/3, a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the N -> ∞ limit) is assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to N1/3, while the fraction of the initial mass ejected grows only very slowly with N, approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time-dependent potential of an already re-expanding central core. Using modified initial configurations, we explore the importance of fluctuations at different scales and discreteness (i.e. non-Vlasov) effects in the dynamics.

  1. Equilibium and Stability of Spherical Vlasov Systems

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Chacon, L.; Finn, J. M.

    2002-04-01

    Collisionless systems with inverse square interaction potentials and possible background confining potentials are considered for the case of spherical symmetry and in the Vlasov limit. The equilibrium is the most general, with single-particle distribution function dependence on both total energy E and total angular momentum L. A new formulation of the full integral-equation stability problem is developed. For a general spherical harmonic perturbation potential, the 3D stability problem is reduced to a 2D problem in an arbitrary central plane of motion, then to a small number of coupled 1D problems involving only the radius. Normal modes depend only on the total mode number l, as is shown directly by this new formulation, with all m degenerate. This method has been used for the Coulomb (repulsive) case.[1] An equilibrium family with uniform central (electron) density is found, and the low-frequency response computed to show that these solutions may provide stable confinement of a massive second (ion) species. These methods may be applied to a particle bunch in the beam frame, and some stability results appropriate to this case are presented. Application to the gravitational (attractive) case is also described, and some initial analytic results are presented. [1] D. C. Barnes, L. Chacón, J. M. Finn, “Equilibrium and Low-frequency Stability of a Uniform Density, Collisionless, Spherical Vlasov System,” submitted to Phys. of Plasmas (2002).

  2. Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye-Hückel approximation and Deryagin formulation.

    PubMed

    Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L

    2011-01-21

    We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may dramatically change depending on the interplay between characteristic Debye length, thickness of ion-permeable layers and their respective protolytic features (e.g. location, magnitude and sign of charge density). This formalism extends a recent model by Ohshima which is strictly limited to interaction between soft mono-shell particles within Deryagin and Debye-Hückel approximations under conditions where ionizable sites are completely dissociated.

  3. Calibration of optical particle-size analyzer

    DOEpatents

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  4. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  5. Cross-stream migration of active particles

    NASA Astrophysics Data System (ADS)

    Uspal, William; Katuri, Jaideep; Simmchen, Juliane; Miguel-Lopez, Albert; Sanchez, Samuel

    For natural microswimmers, the interplay of swimming activity and external flow can promote robust directed motion, e.g. propulsion against (upstream rheotaxis) or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model system, we report on a strong directional response that naturally emerges for spherical active particles in a channel flow. The particles align their propulsion axis to be perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model that captures this spontaneous transverse orientational order. We show how the directional response emerges from the interplay of external shear flow and swimmer/surface interactions (e.g., hydrodynamic interactions) that originate in swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that show good agreement with the experimental probability distributions. Our findings show that the qualitative response of microswimmers to flow is sensitive to the detailed interaction between individual microswimmers and bounding surfaces.

  6. Strong Shock Propagating Over A Random Bed of Spherical Particles

    NASA Astrophysics Data System (ADS)

    Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S.; Thakur, Siddharth

    2017-11-01

    The study of shock interaction with particles has been largely motivated because of its wide-ranging applications. The complex interaction between the compressible flow features, such as shock wave and expansion fan, and the dispersed phase makes this multi-phase flow very difficult to predict and control. In this talk we will be presenting results on fully resolved inviscid simulations of shock interaction with random bed of particles. One of the fascinating observations from these simulations are the flow field fluctuations due to the presence of randomly distributed particles. Rigorous averaging (Favre averaging) of the governing equations results in Reynolds stress like term, which can be classified as pseudo turbulence in this case. We have computed this ``Reynolds stress'' term along with individual fluctuations and the turbulent kinetic energy. Average pressure was also computed to characterize the strength of the transmitted and the reflected waves. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program.

  7. Point-particle method to compute diffusion-limited cellular uptake.

    PubMed

    Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  8. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drera, Saleem S.; Hofman, Gerard L.; Kee, Robert J.

    Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 mu m in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the presentmore » paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates. (C) 2014 Elsevier B.V. All rights reserved.« less

  9. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  10. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  11. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Long Fung Frankie

    2017-04-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in medium vacuum through thermophoresis. Typical sizes of the trapped particles are between 10 μm and 1 mm; air pressure is between 1 and 10 Torr. We describe the experimental setup used to produce the temperature gradient, as well as our procedure for introducing particles into the experimental setup. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment. NSF MRSEC Grant No. DMR-1420709.

  12. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  13. Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis.

    PubMed

    Goswami, Prakash; Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2017-03-01

    We study the effects of solvent-mediated nonelectrostatic ion-ion interactions on electrophoretic mobility of a charged spherical particle. To this end, we consider the case of low surface electrostatic potential resulting in the linearization of the governing equations, which enables us to deduce a closed-form analytical solution to the electrophoretic mobility. We subsequently compare our results to the standard model using Henry's approach and report the changes brought about by the nonelectrostatic potential. The classical approach to determine the electrophoretic mobility underpredicts the particle velocity when compared with experiments. We show that this issue can be resolved by taking into account nonelectrostatic interactions. Our analysis further reveals the phenomenon of electrophoretic mobility reversal that has been experimentally observed in numerous previous studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    PubMed

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  15. Drag reduction in turbulent channel laden with finite-size oblate spheroids

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration

    2016-11-01

    Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.

  16. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  17. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  18. The attachment of α -synuclein to a fiber: A coarse-grain approach

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.

    2017-03-01

    We present simulations of the amyloidogenic core of α-synuclein, the protein causing Parkinson's disease, as a short chain of coarse-grain patchy particles. Each particle represents a sequence of about a dozen amino acids. The fluctuating secondary structure of this intrinsically disordered protein is modelled by dynamic variations of the shape and interaction characteristics of the patchy particles, ranging from spherical with weak isotropic attractions for the disordered state to spherocylindrical with strong directional interactions for a β-sheet. Flexible linkers between the particles enable sampling of the tertiary structure. This novel model is applied here to study the growth of an amyloid fibril, by calculating the free energy profile of a protein attaching to the end of a fibril. The simulation results suggest that the attaching protein readily becomes trapped in a mis-folded state, thereby inhibiting further growth of the fibril until the protein has readjusted to conform to the fibril structure, in line with experimental findings and previous simulations on small fragments of other proteins.

  19. A modified Fermi-Walker derivative for inextensible flows of binormal spherical image

    NASA Astrophysics Data System (ADS)

    Suroğlu, Gülden Altay

    2018-03-01

    Fermi-Walker derivative and biharmonic particle play an important role in skillful applications. We obtain a new characterization on binormal spherical indicatrix by using the Fermi-Walker derivative and parallelism in space. We suggest that an inextensible flow is the necessary and sufficient condition for this particle. Finally, we give some characterizations for a non-rotating frame of this binormal spherical indicatrix.

  20. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  1. Interaction of evaporating and condensing particles in the free-molecular regime

    NASA Astrophysics Data System (ADS)

    Kogan, M. N.; Bobrov, I. N.; Cercignani, C.; Frezzotti, A.

    1995-07-01

    In a previous paper it was shown that repulsive/attractive forces arise between evaporating/ condensing particles in the free-molecular regime. Here we obtain explicit expressions for these forces in the case of spherical particles with equal temperatures. The temperature of the surrounding vapor is, generally speaking, different from that of the particles. Numerical results are obtained for different values of the ratios between particle and vapor temperatures and pressures, of the particles radii and of the evaporation coefficients. In the case when the evaporation coefficient equals unity, an exact expression is obtained for the force between particles of different radii. A simple model describing coagulation processes and taking the above-mentioned forces into account is proposed. It is shown that for large values of the vapor supersaturation, the influence of these forces on the coagulation rate may be very pronounced.

  2. Image method for electrostatic energy of polarizable dipolar spheres

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian

    2017-08-01

    The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.

  3. Characterization of Particle Size Standard NIST 1019b with SynchrotronX-ray Microtomography and Digital Data Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jon M.; Rivers, Mark L.; Perlowitz, Michael A.

    We show that synchrotron x-ray microtomography ({mu}CT) followed by digital data extraction can be used to examine the size distribution and particle morphologies of the polydisperse (750 to 2450 {micro}m diameter) particle size standard NIST 1019b. Our size distribution results are within errors of certified values with data collected at 19.5 {micro}m/voxel. One of the advantages of using {mu}CT to investigate the particles examined here is that the morphology of the glass beads can be directly examined. We use the shape metrics aspect ratio and sphericity to examine of individual standard beads morphologies as a function of spherical equivalent diameters.more » We find that the majority of standard beads possess near-spherical aspect ratios and sphericities, but deviations are present at the lower end of the size range. The majority (> 98%) of particles also possess an equant form when examined using a common measure of equidimensionality. Although the NIST 1019b standard consists of loose particles, we point out that an advantage of {mu}CT is that coherent materials comprised of particles can be examined without disaggregation.« less

  4. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  5. Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass.

    PubMed

    Chen, Chunhong; Wang, Haiyan; Han, Chuanlong; Deng, Jiang; Wang, Jing; Li, Mingming; Tang, Minghui; Jin, Haiyan; Wang, Yong

    2017-02-22

    The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m 2 g -1 ) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.

  6. The theory of nonstationary thermophoresis of a solid spherical particle

    NASA Astrophysics Data System (ADS)

    Kuzmin, M. K.; Yalamov, Yu. I.

    2007-06-01

    The theory of nonstationary thermophoresis of a solid spherical particle in a viscous gaseous medium is presented. The theory is constructed on the solutions of fluid-dynamics and thermal problems, each of which is split into stationary and strictly nonstationary parts. The solution of the stationary parts of the problems gives the final formula for determining the stationary component of the thermophoretic velocity of this particle. To determine the nonstationary component of the thermophoretic velocity of the particle, the corresponding formula in the space of Laplace transforms is derived. The limiting value theorems from operational calculus are used for obtaining the dependence of the nonstationary component of the thermophoretic velocity of the spherical particle on the strictly nonstationary temperature gradient for large and small values of time. The factors determining the thermophoretic velocity of the particle under investigation are determined.

  7. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    DTIC Science & Technology

    2013-10-10

    spherical nanoparticles where the particle−particle plasmonic interactions create CD and chiral plasmonic excitations.11,20,34 Since CPNs are vertically...Information Additional electron microscope images, CD spectra with silica nanoparticles , and UV−vis absorbance data. This material is available free of charge...materials based on individual nanoparticles (NPs)7,8 or their assemblies9,10 have attracted much attention because of the tunability of their absorption bands

  8. Investigating the role of particle shape on colloid transport and retention in saturated porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Li, Y.; Seymour, M.; Chen, G.; Su, C.

    2013-12-01

    Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.

  9. A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1982-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials.

  10. Tailoring the chirality of light emission with spherical Si-based antennas.

    PubMed

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  11. Shape effects on time-scale divergence at athermal jamming transition of frictionless non-spherical particles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2017-10-01

    The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.

  12. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    NASA Astrophysics Data System (ADS)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.

  13. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  14. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    NASA Astrophysics Data System (ADS)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  15. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    NASA Astrophysics Data System (ADS)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt increase at Rep = 20.

  16. Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics--a review.

    PubMed

    Kleinstreuer, Clement; Feng, Yu

    2013-02-01

    All naturally occurring and most man-made solid particles are nonspherical. Examples include air-pollutants in the nano- to micro-meter range as well as blood constituents, drug particles, and industrial fluid-particle streams. Focusing on the modeling and simulation of inhaled aerosols, theories for both spherical and nonspherical particles are reviewed to analyze the contrasting transport and deposition phenomena of spheres and equivalent spheres versus ellipsoids and fibers.

  17. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  18. A Facile Method for Preparation of Polymer Particles Having a "Cylindrical" Shape.

    PubMed

    Li, Wei; Suzuki, Toyoko; Minami, Hideto

    2018-06-16

    A facile and novel approach to prepare monodisperse polystyrene (PS) particles having a "cylindrical" shape was discovered. The proposed synthetic method involved dispersion polymerization of the spherical PS particles stirred in a polyvinylpyrrolidone (PVP) aqueous solution for several hours using a magnetic stirrer at room temperature. In the presence of PVP, the spherical PS particles deformed into cylindrical shapes following stirring; however, the particles did not deform in the absence of PVP. The deformation rate of the particles was affected by the molecular weight of the dissolved PVP. This stirring method is not only highly efficient and provides high yield, but is also applicable to other materials such as polymethyl methacrylate. Moreover, the cylindrical particles were successfully applied as particulate surfactants in a Pickering emulsion system, which exhibited excellent stability as comparison with the system using spherical particles as a surfactant. In the latter case, the emulsion was left standing for more than 4 months. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion

    NASA Astrophysics Data System (ADS)

    Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun

    2016-07-01

    Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.

  20. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.

    PubMed

    Shen, Zaiyi; Würger, Alois; Lintuvuori, Juho S

    2018-03-27

    Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].

  1. Anomalous change of Airy disk with changing size of spherical particles

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen

    2016-02-01

    Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.

  2. High explosive compound

    DOEpatents

    Crawford, Theodore C.

    1976-01-01

    1. A low detonation velocity explosive consisting essentially of a particulate mixture of ortho-boric acid and trinitrotoluene, said mixture containing from about 25 percent to about 65 percent by weight of ortho-boric acid, said ortho-boric acid comprised of from 60 percent to 90 percent of spherical particles having a mean particle size of about 275 microns and 10 percent to 40 percent of spherical particles having a particle size less than about 44 microns.

  3. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  4. Mechanistic approach to study conjugation of nanoparticles for biomedical applications.

    PubMed

    Uddin, Imran

    2018-05-16

    Interaction of nanoparticles with biological systems turns out to be vibrant for their efficient application in biomedical field. Here, we have shown antibiotic amakicin loaded nanoparticles are responsible for the dual role as reducing and stabilizing the silver nanoparticles without the use of any undesired chemicals. Synthesized nanoparticles are well-dispersed having quasi spherical morphology with an average particle size around 10-11 nm. Crystallinity of nanoparticles was measured using selected area electron diffraction (SAED) and powder XRD analysis which show that particles are perfectly crystalline with cubic phase of geometry. UV-Vis, FTIR and circular dichroism (CD) analysis explained the presence and interaction of antibiotic on the nanoparticle's surface. Amakicin functionalized Ag nanoparticles used in this study have shown enhanced antibacterial activity against E. coli. These studies will help in designing an in-depth understanding that how nanostructures can possibly interact with biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Frankie; Usatyuk, Mykhaylo; DeSalvo, B. J.; Chin, Cheng

    2017-01-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorovich, S V; Protsenko, I E

    We report the results of numerical modelling of emission of a two-level atom near a metal nanoparticle under resonant interaction of light with plasmon modes of the particle. Calculations have been performed for different polarisations of light by a dipole approximation method and a complex multipole method. Depending on the distance between a particle and an atom, the contribution of the nonradiative process of electron tunnelling from a two-level atom into a particle, which is calculated using the quasi-classical approximation, has been taken into account and assessed. We have studied spherical gold and silver particles of different diameters (10 –more » 100 nm). The rates of electron tunnelling and of spontaneous decay of the excited atomic state are found. The results can be used to develop nanoscale plasmonic emitters, lasers and photodetectors. (nanooptics)« less

  7. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.

  8. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  9. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  10. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  11. Dynamics of a suspension of interacting yolk-shell particles

    DOE PAGES

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; ...

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function ofmore » the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.« less

  12. Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom

    NASA Astrophysics Data System (ADS)

    Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph

    2018-03-01

    The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.

  13. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle interactions depending on laser intensity and wavelength. In particular, implantation of ions departing from the nanoparticles towards the substrate is predicted.

  14. Particle aggregation during receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Kosmrlj, Andrej

    Receptor-mediated endocytosis of particles is driven by large binding energy between ligands on particles and receptors on a membrane, which compensates for the membrane bending energy and for the cost due to the mixing entropy of receptors. While the receptor-mediated endocytosis of individual particle is well understood, much less is known about the joint entry of multiple particles. Here, we demonstrate that the endocytosis of multiple particles leads to a kinetically driven entropic attraction, which may cause the aggregation of particles observed in experiments. During the endocytosis particles absorb nearby receptors and thus produce regions, which are depleted of receptors. When such depleted regions start overlapping, the corresponding particles experience osmotic-like attractive entropic force. If the attractive force between particles is large enough to overcome the repulsive interaction due to membrane bending, then particles tend to aggregate provided that they are sufficiently close, such that they are not completely engulfed before they come in contact. We discuss the necessary conditions for the aggregation of cylindrical particles during receptor-mediated endocytosis and comment on the generalization to spherical particles.

  15. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  16. Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popeski-Dimovski, Riste

    Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.

  17. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    NASA Astrophysics Data System (ADS)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  18. Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres

    NASA Astrophysics Data System (ADS)

    Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying

    2018-04-01

    Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.

  19. Rotation of a Spherical Particle with Electrical Dipole Moment Induced by Steady Irradiation in a Static Electric Field

    NASA Astrophysics Data System (ADS)

    Grachev, A. I.

    2018-04-01

    Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.

  20. Effective Thermal Conductivity of Spherical Particulate Nanocomposites: Comparison with Theoretical Models, Monte Carlo Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Machrafi, Hatim; Lebon, Georgy

    2014-11-01

    The purpose of this work is to study heat conduction in systems that are composed out of spherical micro-and nanoparticles dispersed in a bulk matrix. Special emphasis will be put on the dependence of the effective heat conductivity on various selected parameters as dimension and density of particles, interface interaction with the matrix. This is achieved by combining the effective medium approximation and extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by three examples: Silicium-Germanium, Silica-epoxy-resin and Copper-Silicium systems. Predictions of our model are in good agreement with other theoretical models, Monte-Carlo simulations and experimental data.

  1. Avian influenza a virus budding morphology: spherical or filamentous?

    USDA-ARS?s Scientific Manuscript database

    Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...

  2. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  3. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  4. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  5. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    NASA Astrophysics Data System (ADS)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  6. Modeling of conductive particle motion in viscous medium affected by an electric field considering particle-electrode interactions and microdischarge phenomenon

    NASA Astrophysics Data System (ADS)

    Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.

    2016-10-01

    Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.

  7. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure.

    PubMed

    Xiong, Yu; Georgieva, Radostina; Steffen, Axel; Smuda, Kathrin; Bäumler, Hans

    2018-03-15

    The Co-precipitation Crosslinking Dissolution technique (CCD-technique) allows a few-steps fabrication of particles composed of different biopolymers and bioactive agents under mild conditions. Morphology and properties of the fabricated biopolymer particles depend on the fabrication conditions, the nature of the biopolymers and additives, but also on the choice of the inorganic templates for co-precipitation. Here, we investigate the influence of an acidic biopolymer, hyaluronic acid (HA), on the formation of particles from bovine hemoglobin and bovine serum albumin applying co-precipitation with CaCO 3 and MnCO 3 . CaCO 3 templated biopolymer particles are almost spherical with particle size from 2 to 20 µm and protein entrapment efficiency from 13 to 77%. Presence of HA causes significant structural changes of the particles and decreasing protein entrapment efficiency. In contrast, MnCO 3 templated particles exhibit uniform peanut shape and submicron size with remarkably high protein entrapment efficiency of nearly 100%. Addition of HA has no influence on the protein entrapment efficiency or on morphology and size of the particles. These effects can be attributed to the strong interaction of Mn 2+ with proteins and much weaker interaction with HA. Therefore, entrapment efficiency, size and structure of biopolymer particles can be optimized by varying the mineral templates and additives. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Electrosprayed Polyvinylpyrrolidone (PVP) Submicron Particles Loaded by Green Tea Extracts

    NASA Astrophysics Data System (ADS)

    Kamaruddin; Sriyanti, I.; Edikresnha, D.; Munir, M. M.; Khairurrijal, K.

    2018-05-01

    Electrospraying technique has been successfully used to synthesize composite submicron particles of polyvinylpyrrolidone (PVP) and green tea extract (GTE). The precursor solutions were PVP in ethanol (15 wt%) and GTE in ethanol (10 wt%), which were then mixed at varying ratio. The mixed solution then underwent electrospraying process at an applied voltage of 15 kV, a distance of collector to the nozzle at 15 cm, and a flow rate of 3 µL/min. The composite submicron particles of PVP-GTE showed smooth and fine spherical morphology without fibers or beaded fibers. To a certain degree, the increase of GTE content in the PVP-GTE mixed solution decreased the average diameter of PVP-GTE composite particles. Moreover, the analysis of the FTIR spectra confirmed the existing molecular interaction between PVP and GTE in the composite submicron particles as shown by the shift of PVP wavenumber towards GTE, which has typically smaller wavenumber.

  9. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  10. Method for producing metallic microparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  11. Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble

    NASA Astrophysics Data System (ADS)

    Wu, Shengji; Zuo, Zhigang; Stone, Howard A.; Liu, Shuhong

    2017-08-01

    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. Our force balance model shows that four nondimensional factors involving the particle radius a , the maximum bubble radius Rmax , the initial separation distance l0 between the particle center and the bubble center, the fluid viscosity μf , and the particle and fluid densities ρp and ρf , respectively, in detail l0 /Rmax , a /Rmax , ρp /ρf , and μ*=μfTc /ρfRmax2 , where Tc=0.915 Rmax√{ρf /(p∞-pv ) } , influence the particle-bubble dynamics, and reasonably predict the maximum particle velocity and the limiting condition when the particle starts to "bounce off" the bubble during bubble growth. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water.

  12. DNA Packaging Mutant: Repression of the Vaccinia Virus A32 Gene Results in Noninfectious, DNA-Deficient, Spherical, Enveloped Particles

    PubMed Central

    Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard

    1998-01-01

    The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036

  13. Rheology of dense suspensions of non colloidal particles

    NASA Astrophysics Data System (ADS)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  14. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  15. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  16. A parallel direct-forcing fictitious domain method for simulating microswimmers

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Lin, Zhaowu

    2017-11-01

    We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.

  17. Particle Engulfment and Pushing By Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The study of particle behavior at solid/liquid interfaces (SLI s) is at the center of the Particle Engulfment and Pushing (PEP) research program. Interactions of particles with SLI s have been of interest since the 1960 s, starting with geological observations, i.e., frost heaving. Ever since, this field of research has become significant to such diverse areas as metal matrix composite materials, fabrication of superconductors, and inclusion control in steels. The PEP research effort is geared towards understanding the fundamental physics of the interaction between particles and a planar SLI. Experimental work including 1-g and mu-g experiments accompany the development of analytical and numerical models. The experimental work comprised of substantial groundwork with aluminum (Al) and zinc (Zn) matrices containing spherical zirconia particles, mu-g experiments with metallic Al matrices and the use of transparent organic metal-analogue materials. The modeling efforts have grown from the initial steady-state analytical model to dynamic models, accounting for the initial acceleration of a particle at rest by an advancing SLI. To gain a more comprehensive understanding, numerical models were developed to account for the influence of the thermal and solutal field. Current efforts are geared towards coupling the diffusive 2-D front tracking model with a fluid flow model to account for differences in the physics of interaction between 1-g and -g environments. A significant amount of this theoretical investigation has been and is being performed by co-investigators at NASA MSFC.

  18. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia

    PubMed Central

    Branquinho, Luis C.; Carrião, Marcus S.; Costa, Anderson S.; Zufelato, Nicholas; Sousa, Marcelo H.; Miotto, Ronei; Ivkov, Robert; Bakuzis, Andris F.

    2013-01-01

    Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia. PMID:24096272

  19. Energy gain calculations in Penning fusion systems using a bounce-averaged Fokker-Planck model

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Miley, G. H.; Barnes, D. C.; Knoll, D. A.

    2000-11-01

    In spherical Penning fusion devices, a spherical cloud of electrons, confined in a Penning-like trap, creates the ion-confining electrostatic well. Fusion energy gains for these systems have been calculated in optimistic conditions (i.e., spherically uniform electrostatic well, no collisional ion-electron interactions, single ion species) using a bounce-averaged Fokker-Planck (BAFP) model. Results show that steady-state distributions in which the Maxwellian ion population is dominant correspond to lowest ion recirculation powers (and hence highest fusion energy gains). It is also shown that realistic parabolic-like wells result in better energy gains than square wells, particularly at large well depths (>100 kV). Operating regimes with fusion power to ion input power ratios (Q-value) >100 have been identified. The effect of electron losses on the Q-value has been addressed heuristically using a semianalytic model, indicating that large Q-values are still possible provided that electron particle losses are kept small and well depths are large.

  20. The relationship between resonance scattering and the formation of an acoustojet under the interaction of ultrasound with a dielectric sphere immersed in water

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.; Tseplyaev, I. S.

    2017-08-01

    We demonstrated for the first time the influence of the main parameters of dielectric spherical cavity, immersed in water, to transformation of whispering gallery mode into acoustojet (acoustic jets) by interaction of acoustic plane wave scatterer. It has been shown that the relative speed of sound in the material, the relative density of the material and the radius of particle significantly affect the condition for the formation of WGM resonance. However, the "more sensitive" parameter is the relative speed of sound.

  1. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2001-01-09

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  2. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  3. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    PubMed

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  4. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-06-01

    The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.

  5. Dynamics of two interacting active Janus particles.

    PubMed

    Bayati, Parvin; Najafi, Ali

    2016-04-07

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O[1/D](3) and O[1/D](4) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  6. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  7. Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh-Gans-Debye and anomalous diffraction approximations and its consequences

    NASA Astrophysics Data System (ADS)

    Paramonov, L. E.

    2012-05-01

    Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.

  8. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-12-01

    The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.

  9. Electrical and magnetic properties of spherical SmFeO{sub 3} synthesized by aspartic acid assisted combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuvaraj, Subramanian; Layek, Samar; Vidyavathy, S. Manisha

    2015-12-15

    Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, whichmore » confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.« less

  10. Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.

    PubMed

    Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan

    2018-04-01

    UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.

  11. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  12. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  13. Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles

    NASA Astrophysics Data System (ADS)

    Schmidbauer, E.

    1988-05-01

    Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.

  14. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.

    PubMed

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  15. Injection of Compact Torus into the HIST spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Katsumoto, S.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2006-10-01

    The three-dimensional interaction of a spheromak-like compact torus (CT) plasma with spherical torus (ST) plasmas has been experimentally studied to understand magnetic reconnection, helicity current drive, particle fuelling and Alfvén wave excitation [1]. We have examined how the sign of helicity (Co-HI and Counter-HI) of the injected CT influences on the ST plasmas on HIST [2]. The dynamics of the CT have been identified to be significantly different between the both injection cases. Time-frequency analysis shows that the fluctuation induced in the co-HI case has the maximum spectral amplitude at around 300 -- 400 kHz that may indicate the magnetic reconnection. In this case, the CT particle is released quickly at a periphery region, but on the other hand, for the counter-HI case, the CT could penetrate deeply into the core region as accompanied by Alfvén wave due to no magnetic reconnection. [1] M. Nagata, et al., Nucl. Fusion 45, 1056 (2005) [2] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003)

  16. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  17. Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Saita, Sho; Kawano, Satoyuki

    2018-03-01

    Brownian motion of a spherical particle induced by the interaction with surrounding molecules is considered. If the particle is larger than the molecules and the temperature of surrounding media is spatially non-uniform, the interaction between an individual molecule and the particle is also position-dependent. That is, the particle is subject to inhomogeneous thermal fluctuation. In this paper, we investigate the contribution of the inhomogeneous thermal fluctuation to the thermophoresis, i.e., the Soret coefficient or thermal diffusion factor. The problem is simplified by assuming a hard-sphere potential between the particle and the surrounding molecules and is investigated using the kinetic theory, namely, we consider a linear Boltzmann-type equation for the velocity distribution function of the particle. Using the perturbation analysis with respect to the square root of mass ratio between the molecule and the particle, the drift-diffusion equation of the particle is derived. It is found that the Soret coefficient, or thermal diffusion factor, is dependent on the mass ratio and the excluded volume of the particle. In particular, when the ratio of the mass density of the particle to that of the surrounding media decreases, the Soret coefficient also decreases and may take negative value. The present result well describes the mass-dependency of thermal diffusion factor obtained by the molecular dynamics simulation carried out in an existing study and the one in the present study, where soft potentials of Lennard-Jones-type are used instead of hard-sphere potential.

  18. Size-Dependent Mechanism of Intracellular Localization and Cytotoxicity of Mono-Disperse Spherical Mesoporous Nano- and Micron-Bioactive Glass Particles

    PubMed Central

    Li, Yuli; Hu, Qing; Miao, Guohou; Zhang, Qing; Yuan, Bo; Zhu, Ye; Fu, Xiaoling; Chen, Xiaofeng; Mao, Chuanbin

    2016-01-01

    Mono-disperse spherical mesoporous nano- and micro- bioactive glass particles (NMBGs) can find potential use in bone tissue engineering. However, their size-dependent interaction with osteoblasts has never been studied. Herein, the proliferation, morphology, cytoskeleton organization and apoptosis of MC3T3-E1 osteoblasts are studied in response to the NMBGs with varying sizes (from 61 to 1085 nm) at different concentrations. Generally, smaller NMBGs at a lower dose show weaker cytotoxicity compared to the larger particles and higher doses, arising from a novel size-dependent mechanism of intracellular localization of NMBGs observed by electron and confocal microscopy. Specifically, NMBGs pass through perinuclear membrane of the cells to initiate endocytosis. Once internalized, the sizes of NMBGs are found to play a significant role in determining their intracellular localization. When the NMBGs are smaller than 174 nm, they are transported via the lysosomal pathway and phagocytized in lysosomes, resulting in little cytotoxicity at later time points. On the contrary, larger NMBGs (over 174 nm) escape from the lysosomes after endocytosis, and are localized inside the intra-cytoplasmic vacuoles or randomly in the cytoplasm of cells. Their lysosomal escape may damage the lysosomes, inducing cell apoptosis and thus the greater cytotoxicity. PMID:27305811

  19. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  20. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  1. Interaction of human low density lipoprotein and apolipoprotein B with ternary lipid microemulsion. Physical and functional properties.

    PubMed

    Chun, P W; Brumbaugh, E E; Shiremann, R B

    1986-12-31

    Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.

  2. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  3. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  4. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  5. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution

    NASA Astrophysics Data System (ADS)

    Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; Wang, Z.

    2017-12-01

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO3)2) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, `quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  6. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution.

    PubMed

    Pan, Xiaole; Uno, Itsushi; Wang, Zhe; Nishizawa, Tomoaki; Sugimoto, Nobuo; Yamamoto, Shigekazu; Kobayashi, Hiroshi; Sun, Yele; Fu, Pingqing; Tang, Xiao; Wang, Zifa

    2017-03-23

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO 3 ) 2 ) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, 'quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  7. Rigid spherical particles in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  8. Direct comparison of extinction coefficients derived from Mie-scattering lidar and number concentrations of particles, subjective weather report in Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki

    2015-03-01

    Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.

  9. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease

    PubMed Central

    Ubaidillah; Imaduddin, F.; Choi, Seung-Bok; Yazid, I. I. M.

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail. PMID:29630595

  10. Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buseck, Peter

    2016-03-01

    During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particlesmore » that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.« less

  11. Characterization of the crystal structure, kinematics, stresses and rotations in angular granular quartz during compaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, Ryan C.; Herbold, Eric B.; Pagan, Darren C.

    Three-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution in situ . Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort tomore » date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles. Therefore, the focus of the present paper is on the mechanics of several hundred angular particles during compaction using in situ 3DXRD to study the crystal structure, kinematics, stresses and rotations of angular quartz grains. Comparisons are also made between the compaction response of angular grains and that of spherical grains, and stress-induced twinning within individual grains is discussed.« less

  12. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease.

    PubMed

    Mohamad, N; Ubaidillah; Mazlan, S A; Imaduddin, F; Choi, Seung-Bok; Yazid, I I M

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail.

  13. Characterization of the crystal structure, kinematics, stresses and rotations in angular granular quartz during compaction

    DOE PAGES

    Hurley, Ryan C.; Herbold, Eric B.; Pagan, Darren C.

    2018-06-28

    Three-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution in situ . Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort tomore » date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles. Therefore, the focus of the present paper is on the mechanics of several hundred angular particles during compaction using in situ 3DXRD to study the crystal structure, kinematics, stresses and rotations of angular quartz grains. Comparisons are also made between the compaction response of angular grains and that of spherical grains, and stress-induced twinning within individual grains is discussed.« less

  14. Strongly localized image states of spherical graphitic particles.

    PubMed

    Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula

    2014-01-01

    We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  15. SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix

    NASA Astrophysics Data System (ADS)

    Vázquez-Quesada, A.; Ellero, M.

    2017-12-01

    In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vázquez-Quesada and Ellero ["Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics," J. Non-Newtonian Fluid Mech. 233, 37-47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vázquez-Quesada, Ellero, and Español ["Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations," Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells, this delivers a specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model by studying the dynamics of single and mutually interacting "noncolloidal" rigid spheres under shear flow and in the presence of confinement. Numerical results agree well with available numerical and experimental data. It is straightforward to extend the particulate model to Brownian conditions and to more complex viscoelastic solvents.

  16. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  17. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores a useful application of having thermally labile DNA duplexes bound to anisotropic nanoparticles -- the selective photothermal heating and release of hybridized oligonucleotides via a plasmon excitation-based mechanism. The final chapter presents a brief summary of the seminal findings of this thesis and provides an outlook covering future directions and remaining challenges for the field. A comprehensive review covering methods to synthesize and assemble noble metal nanostructures is included in the appendix as an additional resource. All experimental chapters are organized similarly; they begin with an abstract or introduction to motivate and contextualize the work, present the main results and discussion with brief experimental details, and conclude with more detailed, supplementary information for the interested reader. As a whole, this work establishes fundamental understanding and new experimental methods for exploiting nanoscale shape anisotropy to manipulate the chemical and physical properties of matter.

  18. Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry

    NASA Astrophysics Data System (ADS)

    Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.

    2018-03-01

    In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.

  19. Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Eliezer, Shalom; Wang, Jiaxiang; Korn, Georg; Nissim, Noaz; Xu, Yan-Xia; Lalousis, Paraskevas; Kirchhoff, Gotz J.; Miley, George H.

    2018-05-01

    For developing a laser boron fusion reactor driven by picosecond laser pulses of more than 30 petawatts power, advances are reported about computations for the plasma block generation by the dielectric explosion of the interaction. Further results are about the direct drive ignition mechanism by a single laser pulse without the problems of spherical irradiation. For the sufficiently large stopping lengths of the generated alpha particles in the plasma results from other projects can be used.

  20. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  1. Radiation drag in the field of a non-spherical source

    NASA Astrophysics Data System (ADS)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  2. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  3. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  4. Moment equations for chromatography using superficially porous spherical particles.

    PubMed

    Miyabe, Kanji

    2011-01-01

    New moment equations were developed for chromatography using superficially porous (shell-type) spherical particles, which have recently attracted much attention as one of separation media for fast separation with high efficiency. At first, the moment equations of the first absolute and second central moments in the real time domain were derived from the analytical solution in the Laplace domain of a set of basic equations of the general rate model of chromatography, which represent the mass balance, mass-transfer rate, and reaction kinetics in the column packed with shell-type particles. Then, the moment equations were used for analyzing the experimental data of chromatography of kallidin in a Halo column, which were published in a previous paper written by other researchers. It was tried to predict the chromatographic behavior of shell-type particles having different shell thicknesses. The new moment equations are useful for a detailed analysis of the chromatographic behavior of shell-type spherical particles. It is also concluded that they can be used for the preliminarily optimization of their structural characteristics.

  5. Efficiency at maximum power of a chemical engine.

    PubMed

    Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian

    2013-10-07

    A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.

  6. Linearized T-Matrix and Mie Scattering Computations

    NASA Technical Reports Server (NTRS)

    Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.

    2011-01-01

    We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.

  7. An Electron is the God Particle

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2001-04-01

    Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff

  8. Hydrogels in endovascular embolization. IV. Effect of radiopaque spherical particles on the living tissue.

    PubMed

    Horák, D; Svec, F; Kálal, J; Adamyan, A; Skuba, N; Titova, M; Dan, V; Varava, B; Trostenyuk, N; Voronkova, O

    1988-07-01

    In this study we report the results of toxicological, histological and haematological experiments on radiopaque spherical particles based on poly(2-hydroxyethyl methacrylate). These particles have been developed for endovascular occlusion of various organs. Radiopacity was attained by two independent methods: the chemical attachment of radiopaque substances to the hydrogel or the precipitation of radiopaque substances in the hydrogel network. The first method yields particles that appear to have uniformly-distributed contrast material, but in the particles prepared by the second procedure the contrast material is predominantly located on the surface. The visibility of such particles by X-rays makes possible controlled embolus introduction and inspection of the polymer for long periods after embolization. Radiopaque contrasting changes the morphology and reduces the porosity of the material but supports quick thrombus formation. Embolic material implanted in rabbits becomes surrounded by a thin fibrous capsule and undergoes partial organization. This and other results of medico-biological investigations have fully demonstrated the biocompatibility of radiopaque spherical emboli, which can now be used clinically.

  9. Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions.

    PubMed

    Megías-Alguacil; Durán; Delgado

    2000-11-01

    The presence of a sufficient concentration of solid particles in a solution gives rise to a large increase in its viscosity and, more importantly, to significant deviations with respect to its original Newtonian behavior. Different rheological techniques are available to characterize such deviations, but the simplest one, obtention of steady-state rheograms, is already extremely useful with that purpose. In this work, this technique is applied to suspensions of zirconia particles, both synthesized with spherical geometry and commercial. The sigma(shear stress)-gamma;(shear rate) curves show that the suspensions are nonideal plastic, thus exhibiting a finite yield stress, sigma(0), and a shear-thinning flow. It is through sigma(0) that a connection can be established between steady-state rheological behavior and interaction energy between particles, since sigma(0) can be estimated as the maximum attractive force between particles multiplied by the number of bonds per unit area between a given particle and its neighbors. Having an experimental determination of sigma(0), the verification of its relation with the attractive forces requires estimation of the potential energy of interaction between any pair of particles. Two approaches will be considered: one is the classical DLVO model, in which the potential energy, V, is the sum of the van der Waals (V(LW)) and electrostatic (V(EL)) contributions. The second approach is the so-called extended DLVO theory, in which the acid-base interaction V(AB) (related to the hydrophilic repulsion or hydrophobic attraction between the particles) is considered in addition to V(LW) and V(EL). The three contributions can be calculated as a function of the interparticle distance if the particle-solution interface is characterized from both the electric and the thermodynamic points of view. The former is carried out by means of electrophoretic mobility measurements and the latter by contact angle determinations for three probe liquids on zirconia powder layers. Comparison between measured and calculated sigma(0) values was carried out for suspensions of spherical, monodisperse ZrO(2) particles, with volume fraction of solids, straight phi, ranging between 4.6 and 21.7%, in 10(-3) M NaCl solutions. In the case of commercial particles, the effects of both NaCl concentration (10(-5) to 10(-1) M) and volume fraction (3.5 to 21%) were investigated. It is found that the classical DLVO theory cannot be used to predict the yield stress when [NaCl]=10(-5) M, since the high zeta potentials and thick double layers never yield partial differential V/ partial differential R>0 (the interaction is repulsive for all distances) in such a case. A similar problem was encountered in 10(-1) M solutions, but now because V is always attractive, and no maximum force can be found. On the contrary, the extended DLVO model always yield physically reasonable sigma(0) values (coincident with those deduced from the classical approach when calculation is possible in the latter case). The comparison with experimental data shows that theory clearly underestimates sigma(0) by one order of magnitude or even more. The possible role of particle aggregation in this underestimation is discussed in terms of the scaling behavior of sigma(0) as a function of straight phi. Copyright 2000 Academic Press.

  10. On the scattering directionality of a dielectric particle dimer of High Refractive Index.

    PubMed

    Barreda, Ángela I; Saleh, Hassan; Litman, Amélie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2018-05-22

    Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.

  11. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-04-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  12. Aerosol Number Size Distribution and Type Classification from 4-Year Polarization Optical Particle Counter (POPC) Measurements at Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.

    2017-12-01

    The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance of a major mineral dust plume. Co-located aerosol lidar measurements also revealed that spherical pollution particles were observed near the surface prior to a major plume of non-spherical mineral dust.

  13. Nonspherical and Spherical Characterization of Ice in Hurricane Erin for Wideband Passive Microwave Comparisons

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Holthaus, Eric; Albers, Cerese; Kim, Min-Jeong

    2007-01-01

    In order to better understand the characteristics of frozen cloud particles in hurricane systems, computed brightness temperatures were compared with radiometric observations of Hurricane Erin (2001) from the NASA ER-2 aircraft. The focus was oil the frozen particle microphysics and the high frequencies (2 85 GHz) that are particularly sensitive to frozen particles. Frozen particles in hurricanes are an indicator of increasing hurricane intensity. In fact "hot towers" associated with increasing hurricane intensity are composed of frozen ice cloud particles. (They are called hot towers because their column of air is warmer than the surrounding air temperature, but above about 5-7 km to the tops of the towers at 15-19 km, the cloud particles are frozen.) This work showed that indeed, one can model information about cloud ice particle characteristics and indicated that nonspherical ice shapes, instead of spherical particles, provided the best match to the observations. Overall, this work shows that while non-spherical particles show promise, selecting and modeling a proper ice particle parameterization can be difficult and additional in situ measurements are needed to define and validate appropriate parameterizations. This work is important for developing Global Precipitation Measurement (GPM) mission satellite algorithms for the retrieval of ice characteristics both above the melting layer, as in Hurricane Erin, and for ice particles that reach the surface as falling snow.

  14. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.

  15. Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M

    NASA Astrophysics Data System (ADS)

    Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.

    2011-10-01

    The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.

  16. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  17. Variation of stresses ahead of the internal cracks in ReNi{sub 5} powders during hydrogen charging and discharging cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biner, S.B.

    1998-07-01

    In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.

  18. Resuspension of particles in an oscillating grid turbulent flow using PIV and 3D-PTV

    NASA Astrophysics Data System (ADS)

    H, Traugott; T, Hayse; A, Liberzon

    2011-12-01

    Description of the mechanisms responsible for the initiation of particle motion from a surface and re-entrainment of particles into suspension remains a challenge, partially due to the technical difficulties to quantify the forces applied on the particles and the collection of high resolution data of particle displacements simultaneously. In this study we explore the process of initial entrainment of spherical particles from smooth beds into zero-mean-shear turbulent flow in an oscillating grid chamber. Particle image velocimetry (PIV) and three-dimensional particle tracking velocimetry (3D-PTV) are used to correlate in a quantitative manner the turbulent flow properties responsible for pick-up, detachment and re-entrainment of particles. The results are compared to the existing models of critical shear velocity and provide further insight into the resuspension process of spherical particles in the transitional range of particle size Reynolds numbers 2 <= Rep <= 500.

  19. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  20. Numerical investigation on the Ångström exponent of black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Li, Ji; Liu, Chao; Yin, Yan; Kumar, K. Raghavendra

    2016-04-01

    Black carbon (BC) plays an important role on the global and regional climate, whereas there are significant uncertainties on its optical properties. Among various optical properties, the Ångström exponent (AE) indicates the spectral variation of the particle-optic interaction and is widely used to understand the aerosol properties. We consider the influence of BC geometry on its optical properties and assess the sensitivity of the AE to particle geometry and size distribution. The fractal aggregates with different fractal dimensions are used to represent realistic BC particles, and popular equivalent volume spherical and spheroidal models are also considered for comparison. Even if the fractal aggregates become highly compact and spherical, their optical properties are still significantly different from those of equivalent volume spheres or spheroids. Meanwhile, the Rayleigh-Debye-Gans approximation can hardly provide accurate results for all optical quantities of aggregates with different dimensions. The extinction Ångström exponent (EAE) and absorption Ångström exponent (AAE) are sensitive to both particle geometry and size distribution. With BC becoming more compact (from fractal aggregate to spheroid and to sphere), the AE becomes more sensitive to particle size distribution. The EAE and AAE of aggregates with different size distributions vary between 1.10-1.63 and 0.87-1.50, respectively, whereas those of the spheres or spheroids have wider ranges. Furthermore, the AE at smaller wavelengths (between 0.35 µm and 0.55 µm) is more sensitive to geometry and size distribution than that given by optical properties at larger wavelengths (between 0.55 µm and 0.88 µm).

  1. Dielectric magnetic microparticles as photomagnonic cavities: Enhancing the modulation of near-infrared light by spin waves

    NASA Astrophysics Data System (ADS)

    Almpanis, Evangelos

    2018-05-01

    The coupling between spin waves and optical Mie resonances inside a dielectric magnetic spherical particle, which acts simultaneously as a photonic and magnonic (photomagnonic) cavity, is investigated by means of numerical calculations accurate to arbitrary order in the magnetooptical coupling coefficient. Isolated dielectric magnetic particles with diameters of just a few microns support high-Q optical Mie resonances at near-infrared frequencies and localized spin waves, providing an ultrasmall and compact platform in the emerging field of cavity optomagnonics. Our results predict the occurrence of strong interaction effects, beyond the linear-response approximation, which lead to enhanced modulation of near-infrared light by spin waves through multimagnon absorption and emission mechanisms.

  2. Mean-force-field and mean-spherical approximations for the electric microfield distribution at a charged point in the charged-hard-particles fluid

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Yaakov

    1989-01-01

    The linearized mean-force-field approximation, leading to a Gaussian distribution, provides an exact formal solution to the mean-spherical integral equation model for the electric microfield distribution at a charged point in the general charged-hard-particles fluid. Lado's explicit solution for plasmas immediately follows this general observation.

  3. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    PubMed

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Hydrodynamics of interaction of particles (including cells) with surfaces

    NASA Astrophysics Data System (ADS)

    Duszyk, Marek; Doroszewski, Jan

    The study of the phenomena related to the motion of particles flowing in the proximity of the wall is pursued for purely cognitive reason as well as for some important practical purposes in various fields of technology, biology and medicine. When small spherical rigid particles move in the direction parallel to the surface their velocity is smaller than that of the fluid and depends on the ratio of the distance from the wall to the particle radius. The velocity of a particle falling down in a vertical cylinder is maximal in an eccentric position. A sphere in contact with the wall remains stationary. Translational velocity of spherical rigid particles the dimension of which are comparable to that of the tube is only slightly dependent of their lateral position. The differences in the flow parameters of deformable particles in comparison with rigid ones depend on the particle and fluid viscosity coefficient. When the particles move perpendicularly toward the wall, their velocity decreases as the particle approaches the surface. The change of particle velocity is inversely proportional to the gap. There are several theories explaining the influence of the channel diameter on the suspension viscosity (sigma phenomenon); a modern approach is based on the analysis of rheological properties of suspensions. The explanations of the Fahraeus effect (i.e. the fact that the concentration of particles flowing in a tube linking two containers are smaller than that in the containers) are based on non-uniform particle distribution in a transverse cross section and on the differences of velocities of particles and medium. The deviation of the velocity profile of a suspension of rigid particles flowing through a tube from the parabolic shape (blunting) does not depend on the flow velocity; as concerns deformable particles, however, this effect is the smaller the greater is the flow velocity. When the Reynolds number for particles is greater than 10 -3, there appears a component of particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.

  5. Optimal conditions for particle-bubble attachment in flotation: an experimental study

    NASA Astrophysics Data System (ADS)

    Sanchez Yanez, Aaron; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T.

    2017-11-01

    Mineral flotation is a process used in the mining industry for separating solid particles of different sizes and densities. The separation is done by injecting bubbles into a slurry where the particles attach to them, forming floating aggregates. The attachment depends mainly on the bubbles and particles sizes as well as the hydrophobicity and roughness of the particles. We simplified the collective behavior in the industrial process to a single free particle-bubble collision, in contrast with previous studies where one of the two was kept fixed. We experimentally investigated the collision of spherical solid particles of a fixed diameter with bubbles of different sizes. By controlling the initial relative offset of the bubble and the particle, we conducted experiments observing their interaction. Recording with two synchronized high-speed cameras, perpendicular to each other, we can reconstruct the tridimensional trajectories of the bubble, the solid particle, and the aggregate. We describe the conditions for which the attachment happens in terms of dimensionless parameters such as the Ohnesorge number, the relative particle-bubble offset and the hydrophobicity of the particle surface. We furthermore investigate the role of the surface roughness in the attachment.

  6. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  7. Development of Metronidazole-Loaded Colon-Targeted Microparticulate Drug Delivery System.

    PubMed

    Kumar, Manoj; Awasthi, Rajendra

    2015-01-01

    Crohn’s disease and ulcerative colitis are the main autoimmune inflammatory bowel diseases. Metronidazole is the most commonly used drug for the treatment of Crohn’s disease. However, the pharmacokinetic profile of this drug indicates that the largest amount of the drug is absorbed from the upper part of the intestines and very little concentration of the drugs reaches the colon.Objectives: The aim of this investigation was to formulate metronidazole loaded microspheres for the efficient therapy of inflammatory bowel diseases.Material and Methods: Microspheres were prepared using the emulsification-solvent evaporation method. The effect of Eudragit S100 concentration and the ratio of liquid paraffin (light: heavy) on percentage yield, particle size, morphology, drug encapsulation and in vitro drug release was examined. Drug-polymer interaction was investigated using Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that the particle had good flow properties, encapsulation efficiency (56.11 ・} 1.51–81.02 ・} 2.14%)and cumulative drug release (64.14 ・} 0.83–79.69 ・} 2.45%) in a phosphate buffer (pH 6.8) after 10 h of the dissolution study.An increased particle size was observed with an increasing polymer concentration. It was observed that the Eudragit had a positive effect on the drug encapsulation and negative effect on drug release. Aggregation of drug-polymer droplets was observed at a lower level of magnesium stearate during microsphere preparation. The results of FTIR spectroscopy revealed the absence of any drug-polymer interactions. However, slight peak shifting and suppression in peak height was observed.This might be due to the minor ionic interactions. The microspheres were discrete, spherical and free-flowing. The spherical shape of the microspheres was confirmed from SEM photomicrographs. The developed microspheres showed a controlled drug release and were found to follow Higuchi’s model. The release mechanism of metronidazole from the microspheres was Fickian diffusion without swelling. The results suggest that the developed microspheres could enhance drug entrapment, and inflect the drug release.

  8. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  9. Structure evolution of gelatin particles induced by pH and ionic strength.

    PubMed

    Xu, Jing; Li, Tianduo; Tao, Furong; Cui, Yuezhi; Xia, Yongmei

    2013-03-01

    Microstructure of gelatin particles played a key role in determining the physicochemical properties of gelatin. Ionic strength and pH as systematic manners were considered to affect gelatin particles structure on the micrometer scale. Scanning electron microscopy was used for depicting the morphologies of gelatin particles. Increasing pH to 10.0 or decreasing pH to 4.0, spherical, spindle, and irregular aggregates of gelatin particles at 2, 6, 10, and 14% solution (w/w) were all transformed to spindle aggregates. When NaCl was added to the system, the molecular chains of gelatin possibly rearranged themselves in a stretched state, and the ribbon aggregates was observed. The structural transitions of gelatin aggregates were strongly depended on the electrostatic repulsion. In the gelatin-sodium dodecyl sulfate (SDS) case, the micrometer scale of aggregates was larger and the different degrees of cross-links were induced through hydrophobic interaction and electrostatic repulsion. Copyright © 2012 Wiley Periodicals, Inc.

  10. Mesoscale Diffractive Photonics in Geosciences

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.

    2016-06-01

    The scattered light by various dielectric particles in atmosphere give information about the type of molecules and particles and their location, which are important to definition of propagation limitations through atmospheric and space weather variations, crisis communications, etc. Although these investigations explain far field properties of disturbed radiations, the solution of the physical problem requires simulations of the interactions in near-field. It has been shown that strongly localized EM field near the surface of single dielectric particle may be form by non-spherical and non-symmetrical mesoscale particles both as in transmitting as in reflection mode. It was also shown that the main lobe is narrower in case of 3 cube chain than single cube in far field, but there are many side-scattering lobes. It was mentioned that unique advantages provided by mesoscale dielectric photonic crystal based particles with three spatial dimensions of arbitrary shape allow developing a new types of micro/nano-probes with subwavelength resolution for ultra compact spectrometer-free sensor for on board a spacecraft or a plane.

  11. Fly ash particles spheroidization using low temperature plasma energy

    NASA Astrophysics Data System (ADS)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  12. Impact of a nonuniform charge distribution on virus assembly

    NASA Astrophysics Data System (ADS)

    Li, Siyu; Erdemci-Tandogan, Gonca; Wagner, Jef; van der Schoot, Paul; Zandi, Roya

    2017-08-01

    Many spherical viruses encapsulate their genomes in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genomes. We model the effect of the nonuniform icosahedral charge distribution from the protein shell instead using a mean-field theory. We find that this nonuniform charge distribution strongly affects the optimal genome length and that it can explain the experimentally observed phenomenon of overcharging of virus and viruslike particles.

  13. Orbitals for classical arbitrary anisotropic colloidal potentials

    NASA Astrophysics Data System (ADS)

    Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera

    2017-11-01

    Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.

  14. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.

    PubMed

    de Graaf, Joost; Rempfer, Georg; Holm, Christian

    2015-04-01

    Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  15. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Sun, Hongyuan; He, Jieyu

    2017-12-01

    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  17. A truncated spherical shell model for nuclear collective excitations: Applications to the odd-mass systems, neutron-proton systems, and other topics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hua.

    1989-01-01

    One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics formore » the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior.« less

  18. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  19. Analytical description of lateral binding force exerted on bi-sphere induced by high-order Bessel beams

    NASA Astrophysics Data System (ADS)

    Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.

    2018-07-01

    Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.

  20. The drag and lift of different non-spherical particles from low to high Re

    NASA Astrophysics Data System (ADS)

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  1. Diffraction of a Gaussian Beam by a Spherical Obstacle

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1993-01-01

    The Kirchhoff integral for diffraction in the near-forward direction is derived from the exact solution of the electromagnetic boundary value problem of a focused Gaussian laser beam incident on a spherical particle. The diffracted intensity in the vicinity of the particle is computed and the way in which the features of the diffraction pattern depend on the width of the Gaussian beam is commented on.

  2. Spherical shock-wave propagation in three-dimensional granular packings.

    PubMed

    Xue, Kun; Bai, Chun-Hua

    2011-02-01

    We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.

  3. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  4. Analysis of pinching in deterministic particle separation

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  5. The Effect of Calcium Phosphate Particle Shape and Size on their Antibacterial and Osteogenic Activity in the Delivery of Antibiotics in vitro

    PubMed Central

    Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.

    2013-01-01

    Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624

  6. Properties of plate-like carbonyl iron particle for magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Shilan, S. T.; Mazlan, S. A.; Khairi, M. H. A.; Ubaidillah

    2016-11-01

    This work experimentally discussed the characterization, magnetic, and rheological properties of plate-like carbonyl iron particle (CIP) in comparison with conventional spherical CIP. Plate-like CIP was produced by using ball milling method. The effect of plate-like shape on the magnetic behavior of CIP was firstly investigated by vibrating sample magnetometer (VSM). The results indicated that the plate-like CIP obtained higher saturation magnetization (about 8%) than that of the spherical particles. In addition, the field-dependent rheological properties such as yield stress were investigated and the results are compared between two particles as a function of the magnetic field intensity.

  7. Variation of stresses ahead of the internal cracks in ReNi{sub 5} powders during hydrogen charging and discharging cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biner, S.B.

    1997-12-31

    In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles where Re denotes the rare earths La, Ce, and Misch-metals during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--30% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.

  8. Contribution of High-Order Rainbows to the Scattering of a Gaussian Laser Beam by a Spherical Particle

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1993-01-01

    I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the details for constructing a computer program to implement the theory. Computational results indicate that if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is incident near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth- order rainbow.

  9. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    PubMed

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.

  10. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  11. Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

    PubMed Central

    Deshmukh, Ruchi; Mehra, Anurag

    2017-01-01

    Aggregation and self-assembly are influenced by molecular interactions. With precise control of molecular interactions, in this study, a wide range of nanostructures ranging from zero-dimensional nanospheres to hierarchical nanoplates and spindles have been successfully synthesized at ambient temperature in aqueous solution. The nanostructures reported here are formed by aggregation of spherical seed particles (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed based on a electron microscopy studies. The growth mechanism is generalized for rods, spindles, and nearly spherical nanostructures, obtained by varying the cation group in the quaternary ammonium hydroxides. Electron diffraction shows different predominant lattice planes on the edge and on the surface of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics. PMID:28326240

  12. Study of a spherical Xenon gas TPC for neutrinoless double beta detection

    NASA Astrophysics Data System (ADS)

    Meregaglia, A.; Busto, J.; Cerna, C.; Chauveau, M.; Dastgheibi-Fard, A.; Jollet, C.; Jullian, S.; Katsioulas, I.; Giomataris, I.; Gros, M.; Lautridou, P.; Marquet, C.; Navick, X. F.; Perrot, F.; Piquemal, F.; Simard, L.; Zampaolo, M.

    2018-01-01

    Several efforts are ongoing for the development of spherical gaseous time projection chamber detectors for the observation of rare phenomena such as weakly interacting massive particles or neutrino interactions. The proposed detector, thanks to its simplicity, low energy threshold and energy resolution, could be used to observe the ββ0ν process i.e. the neutrinoless double beta decay. In this work, a specific setup is presented for the measurement of ββ0ν on 50 kg of 136Xe. The different backgrounds are studied, demonstrating the possibility to reach a total background per year in the detector mass at the level of 2 events per year. The obtained results are competitive with the present generation of experiments and could represent the first step of a more ambitious roadmap including the ββ0ν search with different gases with the same detector and therefore the same background sources. The constraints in terms of detector constructions and material purity are also addressed, showing that none of them represents a show stopper for the proposed experimental setup.

  13. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jimiao; Song, Min

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less

  14. Nanoparticle interaction potentials constructed by multiscale computation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.

    2010-06-01

    The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and macroscopic objects by introducing molecular models coarse-grained at a similar level so that the interactions between these two can be treated in a consistent and faithful way.

  15. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  16. Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, N.; Song, S.G.; Gray, G.T., III

    1996-05-01

    Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less

  17. Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid

    NASA Astrophysics Data System (ADS)

    Keshav, Yashas Mudlapur Phaneesh

    Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to become negligible when Ac reaches 80.

  18. The importance of media roughness considerations for describing particle deposition in porous media

    NASA Astrophysics Data System (ADS)

    Jin, C.; Emelko, M.

    2016-12-01

    The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.

  19. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Park, J; Hong, YK

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less

  20. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  1. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  2. A Comparative Study of Production of Glass Microspheres by using Thermal Process

    NASA Astrophysics Data System (ADS)

    Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher

    2017-06-01

    Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.

  3. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  4. Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.

  5. The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.

    DTIC Science & Technology

    1986-07-30

    means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the...photodecomposition of water (e.g. see (32-41)). It should be noted that the size range of the particles which will be most frequently used in dispersion

  6. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szegedi, A., E-mail: szegedi@chemres.h; Popova, M.; Goshev, I.

    2011-05-15

    MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choicemore » of mesoporous material with the appropriate structural characteristics and surface functionality. -- Graphical Abstract: Ibuprofen delivery from the parent and amino-modified spherical MCM-41 materials with 100 nm (small) and 500 nm (large) particle sizes. Display Omitted Highlights: {yields} Spherical type MCM-41 and SBA-15 with different particle sizes were modified by APTES. {yields} Adsorption and release rate of ibuprofen were compared. {yields} High degree of ibuprofen loading, slow release rate for MCM-41, the opposite for SBA-15. {yields} MCM-41 with 100 nm particles was more stable and showed slower release rate« less

  7. Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla

    2017-09-01

    Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative humidity. Interestingly, it is found that on several days non-spherical particles were dispersed from the ground into the atmosphere.

  8. Optical properties of non-spherical desert dust particles in the terrestrial infrared - An asymptotic approximation approach

    NASA Astrophysics Data System (ADS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-07-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.

  9. Charging and shielding of a non-spherical dust grain in a plasma

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delzanno, G.

    2013-12-01

    The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.

  10. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    PubMed

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  11. Startup of electrophoresis in a suspension of colloidal spheres.

    PubMed

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds

    NASA Astrophysics Data System (ADS)

    Menon, Suresh

    2015-06-01

    Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.

  13. Sedimentation of athermal particles in clay suspensions

    NASA Astrophysics Data System (ADS)

    Clotet, Xavier; Kudrolli, Arshad

    2015-03-01

    We discuss sedimentation of athermal particles in dense clay suspensions which appear liquid-like to glass-like. These studies are motivated by the physics important to a diverse range of problems including remediation of oil sands after the extraction of hydrocarbons, and formation of filter cakes in bore wells. We approach this problem by first considering collective sedimentation of athermal spherical particles in a viscous liquid in quasi-two dimensional and three dimensional containers. We examine the system using optical and x-ray tomography techniques which gives particle level information besides global information on the evolution of the volume fraction. Unlike sediments in the dilute limit - which can be modeled as isolated particles that sediment with a constant velocity and slow down exponentially as they approach the bottom of the container - we find interaction between the particles through the viscous fluids leads to qualitatively differences. We find significant avalanching behavior and cooperative motion as the grains collectively settle, and non-exponential increase in settling time. We discuss the effect of stirring caused by the sedimenting particles on their viscosity and consequently the sedimentation rates as a function of particle concentration. Supported by Petroleum Research Fund Grant PRF # 54045-ND9.

  14. Inertial migration of elastic particles in a pressure-driven power-law fluid

    NASA Astrophysics Data System (ADS)

    Bowie, Samuel; Alexeev, Alexander

    2016-11-01

    Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.

  15. Assembling oppositely charged lock and key responsive colloids: A mesoscale analog of adaptive chemistry

    PubMed Central

    Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.

    2017-01-01

    We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133

  16. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  17. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  18. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  19. A Simple Model for Immature Retrovirus Capsid Assembly

    NASA Astrophysics Data System (ADS)

    Paquay, Stefan; van der Schoot, Paul; Dragnea, Bogdan

    In this talk I will present simulations of a simple model for capsomeres in immature virus capsids, consisting of only point particles with a tunable range of attraction constrained to a spherical surface. We find that, at sufficiently low density, a short interaction range is sufficient for the suppression of five-fold defects in the packing and causes instead larger tears and scars in the capsid. These findings agree both qualitatively and quantitatively with experiments on immature retrovirus capsids, implying that the structure of the retroviral protein lattice can, for a large part, be explained simply by the effective interaction between the capsomeres. We thank the HFSP for funding under Grant RGP0017/2012.

  20. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  1. Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Lamy, Xavier

    2018-03-01

    We consider a nematic liquid crystal occupying the exterior region in R^3 outside of a spherical particle, with radial strong anchoring. Within the context of the Landau-de Gennes theory, we study minimizers subject to an external field, modeled by an additional term which favors nematic alignment parallel to the field. When the external field is high enough, we obtain a scaling law for the energy. The energy scale corresponds to minimizers concentrating their energy in a boundary layer around the particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect around the particle, rather than a dipolar director field typical of a point defect.

  2. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  3. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers--due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation.

  4. Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration

    PubMed Central

    Barreda, Ángela I.; Saleh, Hassan; Litman, Amelie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2017-01-01

    Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale. PMID:28051061

  5. An Active Approach to Colloidal Self-Assembly

    NASA Astrophysics Data System (ADS)

    Mallory, Stewart A.; Valeriani, Chantal; Cacciuto, Angelo

    2018-04-01

    In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.

  6. The linear Boltzmann equation in slab geometry - Development and verification of a reliable and efficient solution

    NASA Technical Reports Server (NTRS)

    Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.

    1991-01-01

    The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.

  7. A Neutral Particle Analyser Proposed On Board Bepicolombo Planetary Orbiter: Serena (searching For Exospheric Refilling and Emitted Neutral Abundances)

    NASA Astrophysics Data System (ADS)

    Orsini, S.; Npa-Serena Team

    The Neutral Particle Analyser SERENA, proposed on board the BepiColombo Mer- cury Planetary Orbiter (MPO), has the purpose of investigating the Hermean exo- spheric and energetic neutral populations. Local and detailed analysis of the exo- spheric composition will be performed by a ram-pointing sensor (MAIA), while en- ergetic neutrals produced through sputtering and charge-exchange processes will be collected by two nadir-pointing sensors (L-ENA, MH-ENA). A central problem in the understanding of the evolution of solar system bodies is the role played by the so- lar wind, solar radiation and micro-meteorite bombardment in controlling mass losses. The direct in situ detection of the Hermean exosphere, the gas evolving from the planet as a product of the different physical processes acting onto the surface, is of crucial importance to understand the past and present evolution of the crust. Current knowl- edge of the origin and evolution of the solar system is based on detailed measurement of chemical, elemental, and isotopic composition of matter. The proposed instrument suite is unique in its capability to perform quantitative analysis and resolve exospheric gas composition under all these three aspects. The value of neutral particles mea- surements for getting a comprehensive picture of the solar wind-planets interaction has been appreciated since the late eighties. Comparison of the measurements in the Mercury environment with those achieved by neutral particle imagers already flying around Earth (IMAGE), Mars (Mars Express), Jupiter and Saturn (Cassini) will allow comparative investigations of evolution and dynamics of planetary magnetospheres.

  8. Laser diffraction of acicular particles: practical applications

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Matsuyama, Tatsushi

    2014-08-01

    Commercial laser diffraction instruments are widely used to measure particle size distribution (PSD), but the results are distorted for non-spherical (acicular) particles often encountered in practical applications. Consequently the distribution, which is reported in terms of equivalent spherical diameter, requires interpretation. For rod-like and plate-like particles, the PSD tends to be bi-modal, with the two modal sizes closely related to the median length and width, or width and thickness, of the particles. Furthermore, it is found that the bi-modal PSD for at least one instrument can typically be approximated by a bi-lognormal distribution. By fitting such a function to the reported distribution, one may extract quantitative information useful for process or product development. This approach is illustrated by examples of such measurement on industrial samples of polymer particles, crystals, bacteria, and clays.

  9. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    NASA Astrophysics Data System (ADS)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  10. Absorption and scattering of light by nonspherical particles. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Bohren, C. F.

    1986-01-01

    Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.

  11. Glassy dynamics of dense particle assemblies on a spherical substrate.

    PubMed

    Vest, Julien-Piera; Tarjus, Gilles; Viot, Pascal

    2018-04-28

    We study by molecular dynamics simulation a dense one-component system of particles confined on a spherical substrate. We more specifically investigate the evolution of the structural and dynamical properties of the system when changing the control parameters, the temperature and the curvature of the substrate. We find that the dynamics become glassy at low temperature, with a strong slowdown of the relaxation and the emergence of dynamical heterogeneity. The prevalent local 6-fold order is frustrated by curvature and we analyze in detail the role of the topological defects in the statics and the dynamics of the particle assembly.

  12. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  13. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  14. Exact Green's functions for a Brownian particle reversibly binding to a fixed target in a finite, two-dimensional, circular domain

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2012-06-01

    Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.

  15. Phoretic forces on convex particles from kinetic theory and nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Kröger, Martin

    2006-01-01

    In this article we derive the phoretic forces acting on a tracer particle, which is assumed to be small compared to the mean free path of the surrounding nonequilibrium gas, but large compared to the size of the surrounding gas molecules. First, we review and extend the calculations of Waldmann [Z. Naturforsch. A 14A, 589 (1959)] using half-sphere integrations and an accommodation coefficient characterizing the collision process. The presented methodology is applied to a gas subject to temperature, pressure, and velocity gradients. Corresponding thermophoretic, barophoretic, and rheophoretic forces are derived, and explicit expressions for spherical particles are compared to known results. Second, nonequilibrium thermodynamics is used to join the diffusion equation for the tracer particle with the continuum equations of nonisothermal hydrodynamics of the solvent. So doing, the distinct origin of the thermophoretic and barophoretic forces is demonstrated. While the latter enters similarly to an interaction potential, the former is given by flux-flux correlations in terms of a Green-Kubo relation, as shown in detail.

  16. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Małecki, P.; Królewicz, M.; Hiptmair, F.; Krzak, J.; Kaleta, J.; Major, Z.; Pigłowski, J.

    2016-10-01

    In this paper, the influence of encapsulating carbonyl iron particles with various silica coatings on the properties of magnetorheological elastomers (MREs) was investigated. A soft styrene-ethylene-butylene-styrene thermoplastic elastomer was used as the composite’s polymer matrix. Spherical carbonyl iron powder (CIP) acted as the ferromagnetic filler. In order to improve the metal-polymer interaction, carbonyl iron particles were coated with two types of single and six types of double silica layers. The first layer was created through a TMOS or TEOS hydrolysis whereas the second one was composed of organosilanes. The mechanical properties of MREs containing 38.5 vol% of CIP were analysed under dynamic loading conditions. To investigate the magnetorheological effect in these composites, a 430 mT magnetic field, generated by an array of permanent magnets, was applied during testing. The results revealed that the magnetomechanical response of the MREs differs substantially, depending on the kind of particle coating.

  17. A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers

    NASA Astrophysics Data System (ADS)

    Daghooghi, Mohsen; Borazjani, Iman

    2016-11-01

    We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.

  18. Altered combustion characteristics of metallized energetics due to stable secondary material inclusion

    NASA Astrophysics Data System (ADS)

    Terry, Brandon C.

    Though metals and metalloids have been widely considered as reactive fuels, the ability to tune their ignition and combustion characteristics remains challenging. One means to accomplish this may be through low-level inclusion of secondary materials into the metallized fuel. While there are several potential methods to stably introduce secondary inclusion materials, this work focuses on the use of mechanical activation (MA) and metal alloys. Recent work has shown that low-level inclusion of fluoropolymers into aluminum particles can have a substantial effect on their combustion characteristics. The reflected shock ignition of mechanically activated aluminum/polytetrafluoroethylene (MA Al/PTFE) is compared to a physical mixture (PM) of Al/PTFE, neat spherical aluminum, and flake aluminum. It was found that the powders with higher specific surface areas ignited faster than the spherical particles of the same size, and had ignition delay times comparable to agglomerates of aluminum particles that were two orders of magnitude smaller in size. Flake aluminum powder had the same ignition delay as MA Al/PTFE, indicating that any initial aluminum/fluoropolymer reactions did not yield an earlier onset of aluminum oxidation. However, MA Al/PTFE did have a shorter total burn time. The PM of Al/PTFE powder had a shorter ignition delay than neat spherical aluminum due to the rapid decomposition of PTFE into reactive fluorocarbon compounds, but the subsequent fluorocarbon reactions also created a secondary luminosity profile that significantly increased the total burn time of the system. The explosive shock ignition of aluminum and aluminum-silicon eutectic alloy compacts was evaluated with and without polymer inclusions. A statistical analysis was completed, investigating the effects of: detonation train orientation (into or not into a hard surface); the high explosive driver; whether the metal/polymer system is mechanically activated; particle size; particle morphology (spherical or flake); metal type (Al or Al-Si); and whether the inclusion material is interacting or non-interacting with the parent metal. It was found that mechanically activated particles with an interacting inclusion material (polytetrafluoroethylene) and smaller particle sizes yielded increased blast wave strength, and more complete metal combustion. It was also found that orientation of the detonation train has a substantial effect on the completeness of combustion. While aluminum alloys are generally employed for their structural and mechanical properties, the low-level inclusion of secondary metals and metalloids may make such materials advantageous in propellant formulations and have not been fully considered. The aluminum-silicon (Al-Si) eutectic alloy was evaluated as a potential solid composite propellant fuel. Equilibrium calculations showed that Al-Si based propellants had comparable theoretical performance to equivalent aluminum based propellants, though at a typical specific impulse (ISP) reduction of roughly 2.5 seconds for most mixture ratios of interest. Interacting (polytetrafluoroethylene, PTFE) and non-interacting inclusion materials were mechanically activated (MA) with Al-Si (70/30 wt.% Al-Si/PTFE and 90/10 wt.% Al-Si/LDPE), which were shown to increase the powder reactivity. Neat and MA Al-Si powders were used in 15/71/14 wt.% (fuel additive)/(ammonium perchlorate)/binder propellant formulations. Environmentally cleaner solid composite propellants have been widely investigated as a means to reduce hydrochloric acid (HCl) formation. Past efforts to scavenge the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., salt). While this technique can potentially reduce HCl formation, it also results in reduced theoretical specific impulse. Thermochemical calculations show that using aluminum-lithium (Al-Li) binary alloy can reduce HCl formation to less than 5% and increase the theoretical ISP by roughly 7 seconds compared to neat aluminum. Two solid propellants were made using 80/20 Al-Li alloy and neat aluminum as fuel additives. It was observed that the propellant combustion with neat aluminum formed large molten droplets at the surface, which is a well-known problem with aluminized propellants. In contrast, the Al-Li propellant formed an Al-Li melt-layer on the propellant surface during combustion. Droplets that were ejected from the melt-layer would typically undergo dispersive boiling or a shattering microexplosion, due to the large disparity in volatility (i.e., boiling points) between the aluminum and the lithium in the molten alloy. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments. Additionally, no HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. (Abstract shortened by UMI.).

  19. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  20. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  1. Hydrogels in endovascular embolization. III. Radiopaque spherical particles, their preparation and properties.

    PubMed

    Horák, D; Metalová, M; Svec, F; Drobník, J; Kálal, J; Borovicka, M; Adamyan, A A; Voronkova, O S; Gumargalieva, K Z

    1987-03-01

    The synthesis and properties of spherical radiopaque hydrogel particles designed for endovascular occlusion are reported. These particles were prepared by the hydroxyl acylation of low crosslinked poly (2-hydroxyethyl methacrylate) beads with a nontoxic radiopaque compound based on triiodobenzoic acid, without affecting their properties which are advantages in medical practice. The effect of the iodine content on the size of dry and swollen particles is discussed. It has been found that an iodine content of about 25-30 wt% is desirable in order to obtain an easily recognizable X-ray image. These particles make the immediate control of embolus application easy and enable periodical inspection of the polymer to check the successful blockage of the vessel. They also open up the method of endovascular occlusion to further improvement.

  2. Protein-Nanoparticle Interactions: Improving Immobilized Lytic Enzyme Activity and Surface Energy Effects

    NASA Astrophysics Data System (ADS)

    Downs, Emily Elizabeth

    Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.

  3. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  4. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Ray, William Johnstone (Inventor); Shotton, Neil O. (Inventor); Frazier, Donald Odell (Inventor); Lowenthal, Mark D. (Inventor); Lewandowski, Mark Allan (Inventor)

    2013-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.

  5. Feedback Controlled Colloidal Assembly at Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Bevan, Michael

    The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.

  6. Effect of particle size distribution on 3D packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang

    2017-06-01

    We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.

  7. Brownian dynamics simulations of simplified cytochrome c molecules in the presence of a charged surface

    NASA Astrophysics Data System (ADS)

    Gorba, C.; Geyer, T.; Helms, V.

    2004-07-01

    Simulations were performed for up to 150 simplified spherical horse heart cytochrome c molecules in the presence of a charged surface, which serves as an approximate model for a lipid membrane. Screened electrostatic and short-ranged attractive as well as repulsive van der Waals forces for interparticle and particle-membrane interactions are utilized in the simulations. At a distance from the membrane, where particle-membrane interactions are negligible, the simulation is coupled to a noninteraction continuum analogous to a heat bath [Geyer et al., J. Chem. Phys. 120, 4573 (2004)]. From the particles' density profiles perpendicular to the planar surface binding isotherms are derived and compared to experimental results [Heimburg et al. (1999)]. Using a negatively charged structureless membrane surface a saturation effect was found for relatively large particle concentrations. Since biological membranes often contain membrane proteins, we also studied the influence of additional charges on our model membrane mimicking bacterial reaction centers. We find that the onset of the saturation occurs for much lower concentrations and is sensitive to the detailed implementation. Therefore we suggest that local distortion of membrane planarity (undulation), or lipid demixing, or the presence of charged integral membrane proteins create preferential binding sites on the membrane. Only then do we observe saturation at physiological concentrations.

  8. Phononic crystals of spherical particles: A tight binding approach

    NASA Astrophysics Data System (ADS)

    Mattarelli, M.; Secchi, M.; Montagna, M.

    2013-11-01

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  9. Calibration of discrete element model parameters: soybeans

    NASA Astrophysics Data System (ADS)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  10. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  11. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements

    NASA Astrophysics Data System (ADS)

    Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.

    2017-12-01

    The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.

  12. Out-of-Equilibrium Dynamics of Colloidal Particles at Interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Anna

    It is widely assumed that when colloidal particles adsorb to a fluid-fluid interface, they reach equilibrium rapidly. Recently, however, Kaz et al. [Nature Materials, 11, 138-142 (2012)] found that a variety of functionalised latex microspheres breaching an aqueous phase-oil interface relax logarithmically with time toward equilibrium. The relaxation is so slow that the time projected for the particles to reach the equilibrium contact angle of 110° is months--far longer than typical experimental timescales. In this thesis, we seek to understand the out-of-equilibrium behaviour of particles near interfaces. Because contact line pinning is likely an extra source of dissipation at interfaces, we start with experiments to elucidate the origins of contact-line pinning and find that polymer hairs on aqueous dispersed polymer particles strongly pin the contact-line. For particles without polymer hairs, nanoscale surface roughness can also pin the contact-line, though with a lower energy. We then extend our digital holography capabilities to track non-spherical particles. We demonstrate that we can track the centre-of-mass of a colloidal spherocylinder to a precision of 35 nm in all three dimensions and its orientation to a precision of 1.5°. Furthermore, the measured translational and rotational diffusion coefficients for the spherocylinders agree with hydrodynamic predictions to within 0.3%. This new functionality enables us to track colloidal ellipsoids and spherocylinders as they breach interfaces. By comparing the adsorption trajectories of the non-spherical particles to what is predicted from energy minimisation, we learn that contact-line pinning affects not just the timescales of breaching, but also the pathway to equilibrium. In fact, a particle's path to equilibrium can have complications even before the particle breaches the interface. Some particles are attracted to the interface, but stay within a few nanometers without ever breaching. We refer to this binding-mode as 'non-capillary binding', and we investigate when this binding mode is present, what causes it, and how interparticle interactions depend on the binding mode. The last few chapters in this thesis are extensions of ideas developed in the first part. We track the run and tumble of E.coli to demonstrate the potential of digital holographic microscopy as an imaging tool for active particles. Taking all of the particle-interface literature into account, we also outline some simple design principles for making particle-stabilised Pickering emulsions.

  13. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  15. Sum rules and the role of pressure on the excitation spectrum of a confined hydrogen atom by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.

    2017-08-01

    Sum rule relations over the excitation spectrum of a quantum system contain information about both the energy spectrum and eigenfunctions of the system in a compact form, particularly regarding closure relations. In this work, the effects of pressure induced by a spherical cavity on an atomic hydrogen impurity on the dipole oscillator strength (DOS) sum rule, S k , and its logarithmic version, L k , are studied by means of a numerical approach based on a finite-difference solution to the Schrödinger equation. Pressure effects are accounted for by means of a spherical cavity of radius R 0 immersed in a medium characterized by a penetrable potential height V 0. The DOS sum rules S k and L k are investigated as a function of these cavity parameters and thus directly related to the impurity static pressure and surrounding material. One finds that the sum rules are fulfilled within the numerical precision for low pressure conditions. However, when the barrier height is large or infinite (a non-penetrable cavity), the sum rule, for positive k, differs from its closure relation. One finds that this occurs for a cavity radius {R}0< 6 au, corresponding to a pressure such that the first p-state that contributes to the sum rule has positive energy and it is due to the fact that the spherical confinement cavity potential dominates over the Coulombic interaction for the hydrogenic impurity. Thus, as pressure increases, the excitation spectrum approaches that of a particle confined by a spherical cavity while the ground state is slightly affected by the cavity and more closely resembles a hydrogenic atom. Therefore, the sum rule over the excitation spectrum tends to a particle confined by a spherical cavity, while the closure relation gives that of a confined hydrogen atom in the ground state. For negative k, low excitations are the most important and this behavior is not presented. As the {S}-2 sum rule is the static dipole polarizability, the results are compared to available data in the literature, showing excellent agreement. This behavior in the sum rule and oscillator strength in electron-impurity excitations affects optical transitions of importance in semiconductor nanostructures.

  16. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  17. Monte Carlo computer simulation of sedimentation of charged hard spherocylinders.

    PubMed

    Viveros-Méndez, P X; Gil-Villegas, Alejandro; Aranda-Espinoza, S

    2014-07-28

    In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e(2)/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions Lx ≈ Ly and Lz = 5Lx, where Lx, Ly, and Lz are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.

  18. A study of sedimentation and aggregation of volcanic particles based on experiments carried out with a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Bagheri, G.; Bonadonna, C.; Manzella, I.; Pontelandolfo, P.; Haas, P.

    2012-12-01

    A complete understanding and parameterization of both particle sedimentation and particle aggregation require systematic and detailed laboratory investigations performed in controlled conditions. For this purpose, a dedicated 4-meter-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques (CMEFE). Final design is a result of Computational Fluid Dynamics simulations combined with laboratory tests. With its diverging test section, the tunnel is designed to suspend particles of different shapes and sizes in order to study the aero-dynamical behavior of volcanic particles and their collision and aggregation. In current set-up, velocities between 5.0 to 27 ms-1 can be obtained, which correspond to typical volcanic particles with diameters between 10 to 40 mm. A combination of Particle Tracking Velocimetry (PTV) and statistical methods is used to derive particle terminal velocity. The method is validated using smooth spherical particles with known drag coefficient. More than 120 particles of different shapes (i.e. spherical, regular and volcanic) and compositions are 3D-scanned and almost 1 million images of their suspension in the test section of wind tunnel are recorded by a high speed camera and analyzed by a PTV code specially developed for the wind tunnel. Measured values of terminal velocity for tested particles are between 3.6 and 24.9 ms-1 which corresponds to Reynolds numbers between 8×103 and 1×105. In addition to the vertical wind tunnel, an apparatus with height varying between 0.5 and 3.5 m has been built to measure terminal velocity of micrometric particles in Reynolds number between 4 and 100. In these experiments, particles are released individually in the air at top of the apparatus and their terminal velocities are measured at the bottom of apparatus by a combination of high-speed camera imaging and PTV post-analyzing. Effects of shape, porosity and orientation of the particles on their terminal velocity are studied. Various shape factors are measured based on different methods, such as 3D-scanning, 2D-image processing, SEM image analysis, caliper measurements, pycnometer and buoyancy tests. Our preliminary experiments on non-smooth spherical particles and irregular particles reveal some interesting aspects. First, the effect of surface roughness and porosity is more important for spherical particles than for regular non-spherical and irregular particles. Second, results underline how, the aero-dynamical behavior of individual irregular particles is better characterized by a range of values of drag coefficients instead of a single value. Finally, since all the shape factors are calculated precisely for each individual particle, the resulted database can provide important information to benchmark and improve existing terminal-velocity models. Modifications of the wind tunnel, i.e. very low air speed (0.03-5.0 ms-1) for suspension of micrometric particles, and of the PTV code, i.e. multiple particle tracking and collision counting, have also been performed in combination to the installation of a particle charging device, a controlled humidifier and a high-power chiller (to reach values down to -20 °C) in order to investigate both wet and dry aggregation of volcanic particles.

  19. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  20. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  1. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  2. Electrohydrodynamic interaction of spherical particles under Quincke rotation.

    PubMed

    Das, Debasish; Saintillan, David

    2013-04-01

    Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions up to order O(R(-5)), where R is the separation distance between the spheres. A linear stability analysis of this system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity magnitude depends on the configuration of the spheres and electric field strength and agrees very well with an asymptotic estimate derived for corotating spheres. In the case of freely-suspended spheres, dipolar interactions are observed to lead to a number of distinct behaviors depending on the initial relative configuration of the spheres and on any infinitesimal initial perturbation introduced in the system: in some cases the spheres slowly separate in space while steadily rotating, while in other cases they pair up and either corotate or counterrotate depending on their orientation relative to the field.

  3. Electrohydrodynamic interaction of spherical particles under Quincke rotation

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2013-04-01

    Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions up to order O(R-5), where R is the separation distance between the spheres. A linear stability analysis of this system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity magnitude depends on the configuration of the spheres and electric field strength and agrees very well with an asymptotic estimate derived for corotating spheres. In the case of freely-suspended spheres, dipolar interactions are observed to lead to a number of distinct behaviors depending on the initial relative configuration of the spheres and on any infinitesimal initial perturbation introduced in the system: in some cases the spheres slowly separate in space while steadily rotating, while in other cases they pair up and either corotate or counterrotate depending on their orientation relative to the field.

  4. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    PubMed

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  5. Photonic polymer-blend structures and method for making

    DOEpatents

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  6. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    NASA Astrophysics Data System (ADS)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  7. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew

    PubMed Central

    2018-01-01

    Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research. PMID:29470397

  8. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  9. Dielectric response of a nondegenerate electron gas in semiconductor nanocrystallites

    NASA Astrophysics Data System (ADS)

    van Faassen, E.

    1998-12-01

    We investigate the low-frequency dielectric response of a dilute electron gas in a small spherical semiconductor particle. The flow of the electrons is described by hydrodynamic equations which incorporate the electrostatic interactions between the electrons in a self-consistent fashion. In the low-frequency regime, the dielectric loss is small and proportional to the frequency, despite substantial field penetration into the semiconductor. The loss remains small even for high doping levels due to effective cancellation between field-induced drift and diffusion. The model is used to estimate the complex dielectric constant of a system of weakly conducting nanosized semiconductor particles. The most prominent manifestation of spatial dispersion is that photoinduced changes in the real and imaginary parts of the dielectric constant are positive and of comparable magnitude.

  10. Explosively Driven Particle Fields Imaged Using a High-Speed Framing Camera and Particle Image Velocimetry

    DTIC Science & Technology

    2011-08-01

    inert steel particles and by Frost et al. (2005, 2007) with reactive aluminum and magnesium particles. All used sensitized nitromethane and were...particles in a spherical or cylindrical charge case was used with sensitized nitromethane . Frost et al. (2002), determined that for a given charge

  11. Plasma coating of nanoparticles in the presence of an external electric field

    NASA Astrophysics Data System (ADS)

    Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein

    2018-04-01

    Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.

  12. Eulerian formulation of the interacting particle representation model of homogeneous turbulence

    DOE PAGES

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2016-10-21

    The Interacting Particle Representation Model (IPRM) of homogeneous turbulence incorporates information about the morphology of turbulent structures within the con nes of a one-point model. In the original formulation [Kassinos & Reynolds, Center for Turbulence Research: Annual Research Briefs, 31{51, (1996)], the IPRM was developed in a Lagrangian setting by evolving second moments of velocity conditional on a given gradient vector. In the present work, the IPRM is re-formulated in an Eulerian framework and evolution equations are developed for the marginal PDFs. Eulerian methods avoid the issues associated with statistical estimators used by Lagrangian approaches, such as slow convergence. Amore » specific emphasis of this work is to use the IPRM to examine the long time evolution of homogeneous turbulence. We first describe the derivation of the marginal PDF in spherical coordinates, which reduces the number of independent variables and the cost associated with Eulerian simulations of PDF models. Next, a numerical method based on radial basis functions over a spherical domain is adapted to the IPRM. Finally, results obtained with the new Eulerian solution method are thoroughly analyzed. The sensitivity of the Eulerian simulations to parameters of the numerical scheme, such as the size of the time step and the shape parameter of the radial basis functions, is examined. A comparison between Eulerian and Lagrangian simulations is performed to discern the capabilities of each of the methods. Finally, a linear stability analysis based on the eigenvalues of the discrete differential operators is carried out for both the new Eulerian solution method and the original Lagrangian approach.« less

  13. Order and Jamming on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.

    Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays an important role in determining their mechanical properties.

  14. Degradation of experimental composite materials and in vitro wear simulation

    NASA Astrophysics Data System (ADS)

    Givan, Daniel Allen

    2001-12-01

    The material, mechanical, and clinical aspects of surface degradation of resin composite dental restorative materials by in vitro wear simulation continues to be an area of active research. To investigate wear mechanisms, a series of experimental resin composites with variable and controlled filler particle shape and loading were studied by in vitro wear simulation. The current investigation utilized a simulation that isolated the wear environment, entrapped high and low modulus debris, and evaluated the process including machine and fluid flow dynamics. The degradation was significantly affected by filler particle shape and less by particle loading. The spherical particle composites demonstrated wear loss profiles suggesting an optimized filler loading may exist. This was also demonstrated by the trends in the mechanical properties. Very little difference in magnitude was noted for the wear of irregular particle composites as a function of particulate size; and as a group they were more wear resistant than spherical particle composites. This was the result of different mechanisms of wear that were correlated with the three-dimensional particle shape. The abrasive effects of the aggregate particles and the polymeric stabilization of the irregular shape versus the destabilization and "plucking" of the spherical particles resulted in an unprotected matrix that accounted for significantly greater wear of spherical composite. A model and analysis was developed to explain the events associated with the progressive material wear loss. The initial phase was explained by fatigue-assisted microcracking and loss of material segments in a zone of high stress immediately beneath a point of high stress contact. The early phase was characterized by the development of a small facet primarily by fatigue-assisted microcracking. Although the translation effects were minimal, some three-body and initial two-body wear events were also present. In the late phases, the abrasive effects of the debris aggregate predominated the wear process. The non-linear rate of wear loss was accelerated as the facet deepened. Physical effects, such as thermal fatigue, and chemical effects were less important but contributed to the degradation process. This study provides new insight into the role(s) of high modulus third body debris in the wear of dental composites.

  15. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  16. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  17. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  18. Binary colloidal structures assembled through Ising interactions

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.

    2012-04-01

    New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.

  19. Investigating Aerosol Morphology Using Scattering Phase Functions Measured with a Laser Imaging Nephelometer

    NASA Astrophysics Data System (ADS)

    Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.

  20. Effective friction of granular flows made of non-spherical particles

    NASA Astrophysics Data System (ADS)

    Somfai, Ellák; Nagy, Dániel B.; Claudin, Philippe; Favier, Adeline; Kálmán, Dávid; Börzsönyi, Tamás

    2017-06-01

    Understanding the rheology of dense granular matter is a long standing problem and is important both from the fundamental and the applied point of view. As the basic building blocks of granular materials are macroscopic particles, the nature of both the response to deformations and the dissipation is very different from that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal elements of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated particles. We measured how the shape of the particles affects the effective friction, volume fraction and first normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in particle size in order to keep the systems of the more elongated particles disordered.

  1. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    PubMed

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  2. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification

    NASA Astrophysics Data System (ADS)

    Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M.

    2013-06-01

    The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.

  3. Fabrication of Polyhedral Particles from Spherical Colloids and Their Self-Assembly into Rotator Phases**

    PubMed Central

    Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869

  4. Evaporation effects in a shock-driven multiphase instability with a spherical interface

    NASA Astrophysics Data System (ADS)

    Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob

    2017-11-01

    This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.

  5. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    PubMed

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  6. Saltation movement of large spherical particles

    NASA Astrophysics Data System (ADS)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  7. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE PAGES

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    2016-06-27

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  8. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  9. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    PubMed

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  10. Optical detection and characterization of ice crystals in LACIS

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank

    2010-05-01

    Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.

  11. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    USGS Publications Warehouse

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  12. a Truncated Spherical Shell Model for Nuclear Collective Excitations: Applications to the Odd Mass Systems, Neutron-Proton Systems and Other Topics.

    NASA Astrophysics Data System (ADS)

    Wu, Hua

    One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but "intelligent" truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated turncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, we find that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDU0 was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a al Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves "chaotically". This information is certainly crucial to understanding quantum "chaotic" behavior. Also, some of the primitive assumptions of the FDSM are investigated and we concluded that the assumption of the quasi-spin behavior for the so-called abnormal parity particles is inadequate and needs to be extended. Suggestions of extensions are made. Finally, the newly developed physical quantity, the collective spin, is explored in terms of dynamical symmetries in the FDSM.

  13. Micromechanics-based magneto-elastic constitutive modeling of particulate composites

    NASA Astrophysics Data System (ADS)

    Yin, Huiming

    Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.

  14. Luminescence studies of CdS spherical particles via hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming

    2000-06-01

    The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.

  15. The generation and morphology of single-crystal silicon carbide wear particles under adhesive conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were performed in vacuum at room temperature on a plane-type SiC surface in contact with iron-based binary alloys. Multiangular and spherical wear particles were found to form as a result of multipass sliding. The multiangular particles were produced by primary and secondary cracking of the 0001, 10(-)10, and 11(-)20 plane-type cleavage planes under the Hertzian stress field or local inelastic deformation zone. When alloy surfaces are in contact with silicon carbide under a load of 0.2 N, the alloy around the contact area is subjected to stresses that are close to the elastic limit in the elastic deformation region and/or exceed it. It was also found that spherical wear particles may be produced by two mechanisms: a penny-shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and the attrition and fatigue of wear particles.

  16. Multiple Scattering in Planetary Regoliths Using Incoherent Interactions

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Markkanen, J.; Vaisanen, T.; Penttilä, A.

    2017-12-01

    We consider scattering of light by a planetary regolith using novel numerical methods for discrete random media of particles. Understanding the scattering process is of key importance for spectroscopic, photometric, and polarimetric modeling of airless planetary objects, including radar studies. In our modeling, the size of the spherical random medium can range from microscopic to macroscopic sizes, whereas the particles are assumed to be of the order of the wavelength in size. We extend the radiative transfer and coherent backscattering method (RT-CB) to the case of dense packing of particles by adopting the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path. Furthermore, we replace the far-field interactions of the RT-CB method with rigorous interactions facilitated by the Superposition T-matrix method (STMM). This gives rise to a new RT-RT method, radiative transfer with reciprocal interactions. For microscopic random media, we then compare the new results to asymptotically exact results computed using the STMM, succeeding in the numerical validation of the new methods.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.

  17. CUBE: Information-optimized parallel cosmological N-body simulation code

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin

    2018-05-01

    CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.

  18. Dynamic stability of rolling particles between elastic plates

    NASA Astrophysics Data System (ADS)

    Guzev, Mikhail; Dmitriev, Aleksandr; Dyskin, Arcady; Pasternak, Elena

    2017-04-01

    Mechanical behaviour of a large class of engineering materials from granular materials and interlocking structures to damaged rock and fragmented rock masses is controlled by rotations of the constituents leading to the necessity to introduce internal rotations and rotational degrees of freedom into the constitutive laws. An important (and underappreciated) factor in these cases is the shape of rotating elements as it imposes, in the presence of compressive stress, kinematic constraints that provide additional resistance to rotations. (Despite the universal acknowledgement that the particles in geomaterial and concrete are far from being spherical, the vast majority of models, from the Cosserat continuum to the very recent are still based on spherical or circular elements, e.g. [1]). In the presence of high compressive loading the combination of rotation and non-sphericity of the constituents produces qualitatively new effects: the effect of apparent negative stiffness and a possibility of instability [2]. In order to simplify the analysis we investigate the stability of interacting rotating particles is a sympathetic oscillator [3]. A modified model of the oscillating system, given their rods slide without friction relative to each other was proposed in [4]. An important property of the system is the possibility of bifurcations depending on the distance between the suspension points. Here we study the stability of two linearly - interacting oscillators in a uniform gravity field. The simplest models pertinent to the analysis of stability of such systems is a system of two linked oscillators (masses on rods) with a modification that allows the rods to intersect and slide without friction relative to each other thus providing a simplified modelling of 3D situations. We demonstrate that the analysis of the system trajectories is the most convenient in a 2D parametric space which is generated by the initial relative distance between the masses and the potential energy of the oscillator normalised by the spring's effective energy. We found that the system has symmetrical and asymmetrical equilibrium solutions. In the dynamical case, the asymmetric solutions ensue when the system is deviated from its symmetrical equilibrium. We point out a few features of the global dynamics of the system: 1) at the symmetric equilibrium, the stability region of the sympathetic oscillators does not intersect the stability region of the modified oscillator system below the horizontal suspension line; 2) at the asymmetric equilibrium, the stability region of the sympathetic oscillators intersect the stability region of the modified oscillator system below the suspension line. References [1] Kun, F., I. Varga, S. Lennartz-Sassinek & I.G. Main, 2014. Rupture cascades in a discrete element model of a porous sedimentary rock. Phys. Rev. Lett. 112, 065501. [2] Dyskin, A.V. & E. Pasternak, 2012. Mechanical effect of rotating non-spherical particles on failure in compression. Phil. Mag. 92, 3451-3473. [3] A. Sommerfeld, Vorlesungen uber Theoretische Physik, Band 1: Mechanik, Verlag Harri Deutsch, Thun, 1994. [4] P. Ramachandran, S. G. Krishna, Y. M. Ram, Instability of a constrained pendulum system, Am. J. Phys. 79 (4) (2011) 395-400.

  19. Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence

    NASA Technical Reports Server (NTRS)

    Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.

  20. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system

    PubMed Central

    2011-01-01

    Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid. PMID:21711753

  1. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  2. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.

  3. Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer

    NASA Astrophysics Data System (ADS)

    Hu, Yufang

    2005-03-01

    We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.

  4. Anomalous thermomechanical properties of a self-propelled colloidal fluid

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Šarić, A.; Valeriani, C.; Cacciuto, A.

    2014-05-01

    We use numerical simulations to compute the equation of state of a suspension of spherical self-propelled nanoparticles in two and three dimensions. We study in detail the effect of excluded volume interactions and confinement as a function of the system's temperature, concentration, and strength of the propulsion. We find a striking nonmonotonic dependence of the pressure on the temperature and provide simple scaling arguments to predict and explain the occurrence of such anomalous behavior. We explicitly show how our results have important implications for the effective forces on passive components suspended in a bath of active particles.

  5. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  6. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  7. Buckling in armored droplets.

    PubMed

    Sicard, François; Striolo, Alberto

    2017-06-29

    The buckling mechanism in droplets stabilized by solid particles (armored droplets) is tackled at a mesoscopic level using dissipative particle dynamics simulations. We consider one spherical water droplet in a decane solvent coated with nanoparticle monolayers of two different types: Janus (particles whose surface shows two regions with different wetting properties) and homogeneous. The chosen particles yield comparable initial three-phase contact angles, selected to maximize the adsorption energy at the interface. We study the interplay between the evolution of droplet shape, layering of the particles, and their distribution at the interface when the volume of the droplets is reduced. We show that Janus particles affect strongly the shape of the droplet with the formation of a crater-like depression. This evolution is actively controlled by a close-packed particle monolayer at the curved interface. In contrast, homogeneous particles follow passively the volume reduction of the droplet, whose shape does not deviate too much from spherical, even when a nanoparticle monolayer/bilayer transition is detected at the interface. We discuss how these buckled armored droplets might be of relevance in various applications including potential drug delivery systems and biomimetic design of functional surfaces.

  8. Continuous-feed optical sorting of aerosol particles

    PubMed Central

    Curry, J. J.; Levine, Zachary H.

    2016-01-01

    We consider the problem of sorting, by size, spherical particles of order 100 nm radius. The scheme we analyze consists of a heterogeneous stream of spherical particles flowing at an oblique angle across an optical Gaussian mode standing wave. Sorting is achieved by the combined spatial and size dependencies of the optical force. Particles of all sizes enter the flow at a point, but exit at different locations depending on size. Exiting particles may be detected optically or separated for further processing. The scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. We performed detailed Monte Carlo simulations of particle trajectories through the optical field under the influence of convective air flow. We also developed a method for deriving effective velocities and diffusion constants from the Fokker-Planck equation that can generate equivalent results much more quickly. With an optical wavelength of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, for which the optical force vanishes, may be sorted with a resolution below 1 nm. PMID:27410570

  9. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.

  10. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    PubMed

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Fully Resolved Simulations of Particle-Bed-Turbulence Interactions in Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Apte, S.; Ghodke, C.

    2017-12-01

    Particle-resolved direct numerical simulations (DNS) are performed to investigate the behavior of an oscillatory flow field over a bed of closely packed fixed spherical particles for a range of Reynolds numbers in transitional and rough turbulent flow regime. Presence of roughness leads to a substantial modification of the underlying boundary layer mechanism resulting in increased bed shear stress, reduction in the near-bed anisotropy, modification of the near-bed sweep and ejection motions along with marked changes in turbulent energy transport mechanisms. Characterization of such resulting flow field is performed by studying statistical descriptions of the near-bed turbulence for different roughness parameters. A double-averaging technique is employed to reveal spatial inhomogeneities at the roughness scale that provide alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Spatio-temporal characteristics of unsteady particle forces by studying their spatial distribution, temporal auto-correlations, frequency spectra, cross-correlations with near-bed turbulent flow variables and intermittency intermittency in the forces using the concept of impulse are investigated in detail. These first principle simulations provide substantial insights into the modeling of incipient motion of sediments.

  12. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  13. Charged particle capturing in air flow by linear Paul trap

    NASA Astrophysics Data System (ADS)

    Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.

    2018-01-01

    The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.

  14. An experimental investigation of the effect of walls on gas-liquid flows through fixed particle beds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert

    The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less

  15. Shape Modification and Size Classification of Microcrystalline Graphite Powder as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Gai, Guosheng; Yang, Yufen

    2018-03-01

    Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.

  16. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.

    PubMed

    Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu

    2009-06-15

    Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.

  17. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Interaction of bilirubin with Ag and Au ions: green synthesis of bilirubin-stabilized nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, Shashi P.; Roy, Mainak; Mukherjee, Poulomi; Tyagi, A. K.; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2012-07-01

    We report a simple green chemistry to synthesize and stabilize monodispersed silver and gold nanoparticles sols by reducing aqueous solution of the respective metal salts in the presence of bilirubin (BR). No additional capping agent was used in the process of stabilization of the nanoparticles. As a completely new finding, we have observed that BR known to be toxic at higher concentration in one hand and conversely an antioxidant at physiological concentration reduces these metal ions to form the respective metal nanoparticles. Moreover, BR and its oxidized products also serve as capping agents to the nanoparticles. The particles were characterized by transmission electron microscopy. BR and its oxidized products capped nanoparticles are stable for months. The UV-Vis absorption spectra of the silver sol show the plasmon peak of symmetric spherical particles which was further reflected in the TEM images. The sizes of the silver particles were about 5 nm. These silver particles showed reasonably high antibacterial activity in Gram negative wild type E. coli. In the case of interaction of BR with gold ions, we could obtain cubic gold nanoparticles of average sizes 20-25 nm. Possible modes of anchorage of BR and/its oxidized products to silver nanoparticles were demonstrated by surface-enhanced resonance Raman spectroscopy (SERS) that in turn demonstrated the feasibility of using these nanoparticles as SERS substrates.

  19. High-temperature LDV seed particle development

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Pierce, Vicky G.

    1989-01-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.

  20. High-temperature LDV seed particle development

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.

  1. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  2. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  3. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  4. Development of starch-gelatin complex microspheres as sustained release delivery system

    PubMed Central

    Hari, B. N. Vedha; Praneetha, T.; Prathyusha, T.; Mounika, K.; Devi, D. Ramya

    2012-01-01

    The starch was isolated from jackfruit seeds and evaluated for its preformulation properties, like tapped density, bulk density, and particle size. The fourier transform infrared (FTIR) analysis was done and compared with that of the commercially available starch which confirmed the properties. Using the various concentrations of jackfruit seed starch, the microspheres were prepared, combining with gelatin by ionotropic gelation technique. The developed microspheres were subjected to analysis of particle size, drug content, entrapment efficiency, and percentage yield. The spectral analysis confirmed the presence of drug and absence of interactions. Scanning electron microscope image showed that the particles were in spherical shape with a rough surface. The in vitro drug release in water for 12 hours proved to be in the range of 89 to 100%. The various kinetic models were applied using release data to confirm the mechanism of drug. It was concluded that the jackfruit starch-gelatin microspheres gave satisfactory results and met pharmacopieal limits. PMID:23057005

  5. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    PubMed Central

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  6. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-04-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.

  7. Synthesis of nanoparticle emulsion collector HNP and its application in microfine chalcopyrite flotation

    NASA Astrophysics Data System (ADS)

    He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.

    2018-01-01

    Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.

  8. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    PubMed

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  9. A restricted proof that the weak equivalence principle implies the Einstein equivalence principle

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Lee, D. L.

    1973-01-01

    Schiff has conjectured that the weak equivalence principle (WEP) implies the Einstein equivalence principle (EEP). A proof is presented of Schiff's conjecture, restricted to: (1) test bodies made of electromagnetically interacting point particles, that fall from rest in a static, spherically symmetric gravitational field; (2) theories of gravity within a certain broad class - a class that includes almost all complete relativistic theories that have been found in the literature, but with each theory truncated to contain only point particles plus electromagnetic and gravitational fields. The proof shows that every nonmentric theory in the class (every theory that violates EEP) must violate WEP. A formula is derived for the magnitude of the violation. It is shown that WEP is a powerful theoretical and experimental tool for constraining the manner in which gravity couples to electromagnetism in gravitation theories.

  10. Boundary integral equation analysis for suspension of spheres in Stokes flow

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Veerapaneni, Shravan

    2018-06-01

    We show that the standard boundary integral operators, defined on the unit sphere, for the Stokes equations diagonalize on a specific set of vector spherical harmonics and provide formulas for their spectra. We also derive analytical expressions for evaluating the operators away from the boundary. When two particle are located close to each other, we use a truncated series expansion to compute the hydrodynamic interaction. On the other hand, we use the standard spectrally accurate quadrature scheme to evaluate smooth integrals on the far-field, and accelerate the resulting discrete sums using the fast multipole method (FMM). We employ this discretization scheme to analyze several boundary integral formulations of interest including those arising in porous media flow, active matter and magneto-hydrodynamics of rigid particles. We provide numerical results verifying the accuracy and scaling of their evaluation.

  11. Inertial effects in suspension dynamics

    NASA Astrophysics Data System (ADS)

    Subramanian, Ganesh

    2002-04-01

    This work analyses the role of small but finite particle inertia on the microstructure of suspensions of heavy particles subjected to an external flow. The magnitude of particle inertia is characterized by the Stokes number (St), defined as the ratio of the inertial relaxation time of a particle to the flow time scale. Fluid inertia is neglected so that the fluid motion satisfies the quasi-steady Stokes equations. The statistics of the particles is governed by a Fokker-Planck equation in position and velocity space. For small St, a multiple scales formalism is developed to solve for the phase-space probability density of a single spherical Brownian particle in a linear flow. Though valid for an arbitrary flow field, the method fails for a spatially varying mass and drag coefficient. In all cases, however, a Chapman-Enskog-like formulation provides a valid multi-scale description of the dynamics both for a single Brownian particle and a suspension of interacting particles. For long times, the leading order solution simplifies to the product of a local Maxwellian in velocity space and a spatial density satisfying the Smoluchowski equation. The higher order corrections capture both short-time momentum relaxations and long-time deviations from the Maxwellian. The inertially corrected Smoluchowski equation includes a non-Fickian term at O( St). The pair problem is solved to O(St) for non-Brownian spherical particles in simple shear flow. In contrast to the zero inertia case, the relative trajectories of two particles are asymmetric. Open trajectories in the plane of shear suffer a downward displacement in the velocity gradient direction. The surface of the reference sphere 'repels' nearby trajectories that spiral out onto a new stable limit cycle in the shearing plane. This limit cycle acts as a local attractor and all in-plane trajectories from an initial offset of O(St½ ) or less approach the limit cycle. The topology of the off-plane trajectories is more complicated because the gradient displacement changes sign away from the plane of shear. The 'neutral' off-plane trajectory with zero net gradient displacement acts to separate trajectories spiralling onto contact from those that go off to infinity. The aforementioned asymmetry leads to a non-Newtonian rheology and self-diffusivities in the gradient and vorticity directions that scale as St2ln St and St2, respectively.

  12. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.

    PubMed

    Wang, J; Flanagan, D R

    1999-07-01

    Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.

  13. Density profile and breathing mode of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Henning, Christian; Fujioka, Kenji; Ludwig, Patrick; Bonitz, Michael

    2007-11-01

    The structure of ``Yukawa balls,'' i.e. spherical 3D dust crystals, which recently have been produced [1], is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Dynamical properties (e.g. breathing mode) of these systems were investigated by experiment, simulations as well as theoretically by using the ansatz of a uniform ground state density [3]. Here we show analytically that screening has a dramatic effect on the density profile which decreases away from the center [4,5] and which is in excellent agreement with MD simulations of Yukawa balls. This result is used to improve former calculations of the breathing mode [6].References[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] T. E. Sheridan, Phys. Plasmas 13, 022106 (2006)[4] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[5] C. Henning at al., Phys. Rev. E (2007)[6] C. Henning at al., submitted for publication

  14. Theoretical approach to the ground state of spherically confined Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Henning, Christian; Bonitz, Michael; Piel, Alexander; Ludwig, Patrick; Baumgartner, Henning

    2007-11-01

    Recently spherical 3D dust crystals (aka Yukawa balls) were discovered [1], which allow direct observation of strong correlation phenomena and the structure of which is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Here we present an analytical approach to the ground state of these systems using the minimization of the system's energy. Applying the non-local mean-field approximation we show that screening has a dramatic effect on the density profile, which can be derived explicitly [3]. In addition the local density approximation allows for the inclusion of correlations, which further improves the results in the regime of large screening [4]. Comparisons with MD simulations of Yukawa balls show excellent agreement.[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[4] C. Henning at al., Phys. Rev. E (2007)

  15. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    PubMed Central

    Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui

    2013-01-01

    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745

  17. Isotropic stochastic rotation dynamics

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  18. MISR Global Aerosol Product Assessment by Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Garay, Michael J.; Diner, David J.; Eck, Thomas F.; Smirnov, Alexander; Holben, Brent N.

    2010-01-01

    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product.

  19. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions imply thought if whistler mode waves are to interact with the synchrotron emitting electrons.

  20. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  1. Modeling Anisotropic Self-Assembly of Isotropic Objects: from Hairy Nanoparticles to Methylcellulose Fibrils

    NASA Astrophysics Data System (ADS)

    Ginzburg, Valeriy

    Spontaneous symmetry breaking and formation of anisotropic structures from apparently isotropic building blocks is an exciting and not fully understood topic. I will discuss two examples of such self-assembly. The first example is related to the assembly of ``hairy'' nanoparticles in homopolymer matrices. The particles can assemble into long strings (they can also form other morphologies, as well) even though the shape of each particle and the distribution of ligands on the particle surface is spherically symmetric. Using the approach developed by Thompson, Ginzburg, Matsen, and Balazs, we show that presence of other particles can re-distribute the ligands and effectively ``polarize'' the particle-particle interaction, giving rise to the formation of 1d particle strings. In the second example, we consider aqueous solutions of methylcellulose (MC) polymers. It has been shown recently that at high temperature, the polymers form high-aspect ratio ``fibrils'' with diameter ~15 nm and length in the hundreds on nanometers. Using coarse-grained Molecular Dynamics (CG-MD), we propose that the ``fibrils'' are result of one-dimensional self-assembly of single molecule ``rings''. Each MC polymer chain is forced into a ring because of the balance between internal chain rigidity (favoring more expanded configuration) and unfavorable polymer-water interactions (favoring more collapsed conformation). We also develop a theory predicting rheology and phase behavior of aqueous MC, and validate it against experimental data. Both examples show that anisotropic self-assembly can show up in unexpected places, and various theoretical tools are needed to successfully model it. Funded by The Dow Chemical Company through Grant 223278AF. Collaborators: R. L. Sammler (Dow), W. Huang and R. Larson (U. of Michigan).

  2. Accurate thermodynamics for short-ranged truncations of Coulomb interactions in site-site molecular models

    NASA Astrophysics Data System (ADS)

    Rodgers, Jocelyn M.; Weeks, John D.

    2009-12-01

    Coulomb interactions are present in a wide variety of all-atom force fields. Spherical truncations of these interactions permit fast simulations but are problematic due to their incorrect thermodynamics. Herein we demonstrate that simple analytical corrections for the thermodynamics of uniform truncated systems are possible. In particular, results for the simple point charge/extended (SPC/E) water model treated with spherically truncated Coulomb interactions suggested by local molecular field theory [J. M. Rodgers and J. D. Weeks, Proc. Natl. Acad. Sci. U.S.A. 105, 19136 (2008)] are presented. We extend the results developed by Chandler [J. Chem. Phys. 65, 2925 (1976)] so that we may treat the thermodynamics of mixtures of flexible charged and uncharged molecules simulated with spherical truncations. We show that the energy and pressure of spherically truncated bulk SPC/E water are easily corrected using exact second-moment-like conditions on long-ranged structure. Furthermore, applying the pressure correction as an external pressure removes the density errors observed by other research groups in NPT simulations of spherically truncated bulk species.

  3. Corrosion Experiments Using Spherical Uranium Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G. L.; Siekhaus, W. J.; Teslich, N. E.

    2017-02-01

    Corrosion experiments using spherical U powders are continuing with scanning electron microscopy (SEM) showing that the particles are highly textured, 5 m to 25 m diameters with 4% larger particles that are fused smaller particles. This U has a high specific surface area with no corners or back-sides, is well annealed with no machining work, and coated with a coherent oxide film, 30 nm to 300 nm thick. Exposure of this powder to low vapor pressure H 2O in the absence of O 2, i.e., a vacuum desiccator, resulted in a coherent oxide film growth of ~1 m/y, ~ 10Xmore » the growth rate in ambient air, displaying fracture along the growth plane at ~300 nm.« less

  4. Hexagonal spherical Ln3+-doped NaGdF4: A facile double solvent hydrothermal synthesis and luminescent properties

    NASA Astrophysics Data System (ADS)

    Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long

    2017-04-01

    Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.

  5. An approach for automated analysis of particle holograms

    NASA Technical Reports Server (NTRS)

    Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.

    1984-01-01

    A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.

  6. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    PubMed

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Toward automated analysis of particle holograms

    NASA Technical Reports Server (NTRS)

    Caulfield, H. J.

    1987-01-01

    A preliminary study of approaches for extracting and analyzing data from particle holograms is discussed. It concludes that: (1) for thin spherical particles, out-of-focus methods are optimum; (2) for thin nonspherical particles, out-of-focus methods are useful but must be supplemented by in-focus methods; (3) a complex method of projection and back projection can remove out-of-focus data for deep particles.

  8. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    ERIC Educational Resources Information Center

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  9. Close packing of rods on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-01

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  10. Development and evaluation of spherical molecularly imprinted polymer beads.

    PubMed

    Kempe, Henrik; Kempe, Maria

    2006-06-01

    The majority of studies on molecularly imprinted polymers has until now been carried out on irregularly shaped particles prepared by grinding of polymer monoliths. The preparation procedures are time- and labor-consuming and produce particles of wide size distributions. To answer the need for fast and straightforward routes to spherical molecularly imprinted polymer beads, we have developed a method comprising the formation of droplets of pre-polymerization solution directly in mineral oil by vigorous mixing followed by transformation of the droplets into solid spherical beads by photoinduced free-radical polymerization. No detergents or stabilizers were required for the droplet formation. Factors influencing the bead synthesis have been investigated and are detailed here. The beads were evaluated in parallel with corresponding irregularly shaped particles prepared from polymer monoliths. Conditions for the synthesis of propranolol-imprinted poly(methacrylic acid-co-trimethylolpropane trimethacrylate) beads in the size range of 1-100 microm in almost quantitative yield are described. The beads were applied as the recognition element in a 96-well plate format radioligand assay of propranolol in human serum.

  11. Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.

  12. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  13. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    PubMed

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  14. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles

    PubMed Central

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-01-01

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701

  15. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golwala, Sunil Ramanlal

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weakmore » interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.« less

  16. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    PubMed

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  17. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  18. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  19. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  20. Computational analysis of sedimentation of two particles in a narrow channel

    NASA Astrophysics Data System (ADS)

    Aidun, Cyrus K.; Ding, Ejiang

    1998-11-01

    The motion and interaction of two spherical bodies of diameter d in a narrow channel (width 4d) is simulated by Lattice-Boltzmann method at Reynolds numbers between 0 and 10. The initial positions of the particles are midway between the centerline of the channel and the side wall while one particle is 2d above the other. At low Reynolds numbers, the particles oscillate around the centerline of the channel while they approach each other, and eventually settle in contact. At higher Reynolds numbers, the trailing particle approaches the leading one; jointly, the particles enter into a damping oscillation without contacting each other. This motion has been described as drafting, kissing and tumbling (Hu, Joseph, and Crochet, Theoret. Comput. Fluid Dyn. 3 1992; Feng, Hu, and Joseph, J. Fluid Mech. 261 1994). In the phase space, constructed by the distances between each particle and the side wall, the attractor is a fixed point, representing a steady state. At even higher Reynolds number the dynamics changes into a stable limit cycle. The amplitude of the limit cycle increases as the Reynolds number increases in value. As Reynolds number increases further the motion becomes more complex. The trajectory in the phase space suggests the existence of a strange attractor. The dynamics of two particle sedimentation at this range of Reynolds number will be presented.

Top