Sample records for spherical primary optical

  1. Hybrid RF / Optical Communication Terminal with Spherical Primary Optics for Optical Reception

    NASA Technical Reports Server (NTRS)

    Charles, Jeffrey R.; Hoppe, Daniel H.; Sehic, Asim

    2011-01-01

    Future deep space communications are likely to employ not only the existing RF uplink and downlink, but also a high capacity optical downlink. The Jet Propulsion Laboratory (JPL) is currently investigating the benefits of a ground based hybrid RF and deep space optical terminal based on limited modification of existing 34 meter antenna designs. The ideal design would include as large an optical aperture as technically practical and cost effective, cause minimal impact to RF performance, and remain cost effective even when compared to a separate optical terminal of comparable size. Numerous trades and architectures have been considered, including shared RF and optical apertures having aspheric optics and means to separate RF and optical signals, plus, partitioned apertures in which various zones of the primary are dedicated to optical reception. A design based on the latter is emphasized in this paper, employing spherical primary optics and a new version of a "clamshell" corrector that is optimized to fit within the limited space between the antenna sub-reflector and the existing apex structure that supports the subreflector. The mechanical design of the hybrid accommodates multiple spherical primary mirror panels in the central 11 meters of the antenna, and integrates the clamshell corrector and optical receiver modules with antenna hardware using existing attach points to the maximum extent practical. When an optical collection area is implemented on a new antenna, it is possible to design the antenna structure to accommodate the additional weight of optical mirrors providing an equivalent aperture of several meters diameter. The focus of our near term effort is to use optics with the 34 meter DSS-13 antenna at Goldstone to demonstrate spatial optical acquisition and tracking capability using an optical system that is temporarily integrated into the antenna.

  2. Inverting Image Data For Optical Testing And Alignment

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

    1993-01-01

    Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

  3. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration

    PubMed Central

    Lukes, Sarah J.; Downey, Ryan D.; Kreitinger, Seth T.; Dickensheets, David L.

    2017-01-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15 μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  4. Spherical primary optical telescope (SPOT) segments

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hagopian, John; DeMarco, Michael

    2012-09-01

    The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.

  5. Single-axis four-mirror system: large spherical primary and small fields

    NASA Astrophysics Data System (ADS)

    Baranne, Andre

    1998-08-01

    A catoptric corrector of modest size can be used for large spherical primaries, easily integrated at the prime focus, this corrector gives back to the system, aspect and properties of 2-mirrors classical telescopes. In the last few years, progress in active and adaptative optics makes possible a lot of things, progress in measuring distances, new ideas on optical coatings, new materials and so on in a near future, all that makes the instrumentalist dreamy It is said that nobody knows today if the size of 3rd millennium telescopes will be limited or not by a theoretical, physical or technical phenomenon, thus let us imagine but with thoughtfulness because our projects will be surely restricted by financial considerations

  6. Saving SALT: repairs to the spherical aberration corrector of the Southern African Large Telescope (SALT)

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; O'Connor, James; Crause, Lisa A.; Strumpfer, Francois; Strydom, Ockert J.; Brink, Janus D.; Sass, Craig; Wiid, Eben; Atad-Ettedgui, Eli

    2010-07-01

    The construction of the Southern African Large Telescope (SALT) was largely completed by the end of 2005. At the beginning of 2006, it was realized that the telescope's image quality suffered from optical aberrations, chiefly a focus gradient across the focal plane, but also accompanied by astigmatism and higher order aberrations. In the previous conference in this series, a paper was presented describing the optical system engineering investigation which had been conducted to diagnose the problem. This investigation exonerated the primary mirror as the cause, as well as the science instruments, and was isolated to the interface between the telescope and a major optical sub-system, the spherical aberration corrector (SAC). This is a complex sub-system of four aspheric mirrors which corrects the spherical aberration of the 11-m primary mirror. In the last two years, a solution to this problem was developed which involved removing the SAC from the telescope, installing a modification of the SAC/telescope interface, re-aligning and testing the four SAC mirrors and re-installation on the telescope. This paper describes the plan, discusses the details and shows progress to date and the current status.

  7. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  8. Faint Object Spectrograph (FOS) early performance

    NASA Technical Reports Server (NTRS)

    Harms, Richard; Fitch, John

    1991-01-01

    The on-orbit performance of the HST + FOS instrument is described and illustrated with examples of initial scientific results. The effects of the spherical aberration from the misfiguring of the HST primary mirror upon isolated point sources and in complex fields such as the nuclei of galaxies are analyzed. Possible means for eliminating the effects of spherical aberration are studied. Concepts include using image enhancement software to extract maximum spatial and spectral information from the existing data as well as several options to repair or compensate for the HST's optical performance. In particular, it may be possible to install corrective optics into the HST which will eliminate the spherical aberration for the FOS and some of the other instruments. The more promising ideas and calculations of the expected improvements in performance are briefly described.

  9. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  10. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  11. Resolving the Southern African Large Telescope's image quality problems

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; Crause, Lisa A.; O'Connor, James; Strümpfer, Francois; Strydom, Ockert J.; Sass, Craig; Brink, Janus D.; Plessis, Charl du; Wiid, Eben; Love, Jonathan

    2013-08-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase in 2006 showed degradation due to a large focus gradient, astigmatism, and higher order optical aberrations. An extensive forensic investigation exonerated the primary mirror and the science instruments before pointing to the mechanical interface between the telescope and the spherical aberration corrector, the complex optical subassembly which corrects the spherical aberration introduced by the 11-m primary mirror. Having diagnosed the problem, a detailed repair plan was formulated and implemented when the corrector was removed from the telescope in April 2009. The problematic interface was replaced, and the four aspheric mirrors were optically tested and re-aligned. Individual mirror surface figures were confirmed to meet specification, and a full system test after the re-alignment yielded a root mean square wavefront error of 0.15 waves. The corrector was reinstalled in August 2010 and aligned with respect to the payload and primary mirror. Subsequent on-sky tests revealed spurious signals being sent to the tracker by the auto-collimator, the instrument that maintains the alignment of the corrector with respect to the primary mirror. After rectifying this minor issue, the telescope yielded uniform 1.1 arcsec star images over the full 10-arcmin field of view.

  12. Modeling H2O and CO2 in Optically Thick Comets Using Asymmetric Spherical Coupled Escape Probability and Application to Comet C/2009 P1 Garradd Observations of CO, H2O, and CO2

    NASA Astrophysics Data System (ADS)

    Gersch, Alan M.; Feaga, Lori M.; A’Hearn, Michael F.

    2018-02-01

    We have adapted Coupled Escape Probability, a new exact method of solving radiative transfer problems, for use in asymmetrical spherical situations for use in modeling optically thick cometary comae. Here we present the extension of our model and corresponding results for two additional primary volatile species of interest, H2O and CO2, in purely theoretical comets. We also present detailed modeling and results for the specific examples of CO, H2O, and CO2 observations of C/2009 P1 Garradd by the Deep Impact flyby spacecraft.

  13. Development of large aperture telescope technology (LATT): test results on a demonstrator bread-board

    NASA Astrophysics Data System (ADS)

    Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.

    2017-11-01

    The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.

  14. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  15. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  16. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  17. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  18. Spherical Primary Optical Telescope (SPOT) Segment Fabrication

    DTIC Science & Technology

    2010-06-07

    of Pyrex. One mirror (segment) was figured at GSFC and final figured at QED using Magnetorheological Finishing . Two other segments are in process...point) have been cast • Segment 1 was figured at GSFC completed at QED using magnetorheological finishing (MRF) • New GSFC figuring facility brought on

  19. Scalable MWIR and LWIR optical system designs employing a large spherical primary mirror and small refractive aberration correctors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2001-12-01

    Design variants of a recently developed optical imaging system have been computed for the thermal infrared spectral bands, which offer some advantages for long-range surveillance and astronomy. Only the spherical primary mirror has the full pupil diameter, all other components being sub-diameter, so scaling is possible up to relatively large pupils. Low-cost fabrication is enabled by the prevalence of spherical optical surfaces. Both MWIR and LWIR spectral transmissions are enabled by the choice of corrector materials, the examples given employing germanium and sapphire for 3.5 - 5.5 micrometers and germanium and zinc selenide for 3.5 - 5.5 micrometers and 8 - 12 micrometers passbands. Diffraction at these wavelengths is the main contributor to resolution constraints, so high numerical aperture values are preferred to enable a better match of blur spot diameter to generally available pixel dimensions. The systems described can routinely be designed to have speeds of f/0.8 or faster, while maintaining diffraction-limited performance over useful angular fields. Because the new design system employs a relayed catadioptric, it is possible to make the aperture stop of the system coincident with the window of the detector cryostat, enabling precise radiometric geometry. The central obscuration provides a convenient location for a calibration source, and both this and a mask for secondary spider supports can be included within the detector cold screen structure. Dual-band operation could be enabled by inclusion of a spectral beam splitter prior to a dual relay/imager system.

  20. Hubble Space Telescope: SRM/QA observations and lessons learned

    NASA Technical Reports Server (NTRS)

    Rodney, George A.

    1990-01-01

    The Hubble Space Telescope (HST) Optical Systems Board of Investigation was established on July 2, 1990 to review, analyze, and evaluate the facts and circumstances regarding the manufacture, development, and testing of the HST Optical Telescope Assembly (OTA). Specifically, the board was tasked to ascertain what caused the spherical aberration and how it escaped notice until on-orbit operation. The error that caused the on-orbit spherical aberration in the primary mirror was traced to the assembly process of the Reflective Null Corrector, one of the three Null Correctors developed as special test equipment (STE) to measure and test the primary mirror. Therefore, the safety, reliability, maintainability, and quality assurance (SRM&QA) investigation covers the events and the overall product assurance environment during the manufacturing phase of the primary mirror and Null Correctors (from 1978 through 1981). The SRM&QA issues that were identified during the HST investigation are summarized. The crucial product assurance requirements (including nonconformance processing) for the HST are examined. The history of Quality Assurance (QA) practices at Perkin-Elmer (P-E) for the period under investigation are reviewed. The importance of the information management function is discussed relative to data retention/control issues. Metrology and other critical technical issues also are discussed. The SRM&QA lessons learned from the investigation are presented along with specific recommendations. Appendix A provides the MSFC SRM&QA report. Appendix B provides supplemental reference materials. Appendix C presents the findings of the independent optical consultants, Optical Research Associates (ORA). Appendix D provides further details of the fault-tree analysis portion of the investigation process.

  1. Impact of Primary Spherical Aberration, Spatial Frequency and Stiles Crawford Apodization on Wavefront determined Refractive Error: A Computational Study

    PubMed Central

    Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.

    2013-01-01

    Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093

  2. The relationship between central corneal thickness and optic disc size in patients with primary open-angle glaucoma in a hospital-based population.

    PubMed

    Terai, Naim; Spoerl, Eberhard; Pillunat, Lutz E; Kuhlisch, Eberhard; Schmidt, Eckart; Boehm, Andreas G

    2011-09-01

    To investigate the relationship between central corneal thickness (CCT) and optic disc size in patients with primary open-angle glaucoma (POAG) in a hospital-based population. Data for the right eyes of 1435 White patients with POAG were included in a retrospective hospital-based study. All eyes underwent optic nerve head imaging using Heidelberg Retina Tomograph II (HRT II; Heidelberg Engineering, Heidelberg, Germany) and CCT measurement by ultrasound corneal pachymetry. Eyes with prior intraocular or corneal surgery were excluded. Low-quality HRT II images were also excluded. The impact of age, gender, CCT, intraocular pressure, cylindrical and spherical refractive error as independent factors on optic disc size was investigated in a multiple linear regression analysis. The data for 1104 right eyes qualified for participation in the study. The median age of these patients was 65 years. The median CCT was 547 μm (25th-75th percentile 522-575 μm). The median optic disc size was 2.21 mm(2) (25th-75th percentile 1.89-2.60 mm(2)). Multiple linear regression analysis revealed that age (p = 0.001), CCT (p = 0.001) and spherical equivalent (p = 0.049) were correlated to disc size according to the following formula: disc area = -0.004 × age - 0.001 × CCT - 0.014 × spherical equivalent +3.290. R(2) of the whole model was 0.021. Univariate regression analysis between age and disc area provided R(2) = 0.008 with p = 0.002. Univariate regression analysis between disc area and CCT provided R(2) = 0.005 with p = 0.02. In this retrospective hospital-based study we could not detect a clinically relevant correlation between optic disc size and CCT. The correlation between CCT and disc size and between age and disc size were statistically significant, but the R(2) values were very low. The results of the study are biased because of its hospital-based design, so the results of the study need to be confirmed in a large population-based study. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  3. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of

  4. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  5. Accommodation and age-dependent eye model based on in vivo measurements.

    PubMed

    Zapata-Díaz, Juan F; Radhakrishnan, Hema; Charman, W Neil; López-Gil, Norberto

    2018-03-21

    To develop a flexible model of the average eye that incorporates changes with age and accommodation in all optical parameters, including entrance pupil diameter, under photopic, natural, environmental conditions. We collated retrospective in vivo measurements of all optical parameters, including entrance pupil diameter. Ray-tracing was used to calculate the wavefront aberrations of the eye model as a function of age, stimulus vergence and pupil diameter. These aberrations were used to calculate objective refraction using paraxial curvature matching. This was also done for several stimulus positions to calculate the accommodation response/stimulus curve. The model predicts a hyperopic change in distance refraction as the eye ages (+0.22D every 10 years) between 20 and 65 years. The slope of the accommodation response/stimulus curve was 0.72 for a 25 years-old subject, with little change between 20 and 45 years. A trend to a more negative value of primary spherical aberration as the eye accommodates is predicted for all ages (20-50 years). When accommodation is relaxed, a slight increase in primary spherical aberration (0.008μm every 10 years) between 20 and 65 years is predicted, for an age-dependent entrance pupil diameter ranging between 3.58mm (20 years) and 3.05mm (65 years). Results match reasonably well with studies performed in real eyes, except that spherical aberration is systematically slightly negative as compared with the practical data. The proposed eye model is able to predict changes in objective refraction and accommodation response. It has the potential to be a useful design and testing tool for devices (e.g. intraocular lenses or contact lenses) designed to correct the eye's optical errors. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  6. Equal-Curvature X-ray Telescope Designs for Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Content, David A.; Zhang, William W.

    2003-01-01

    We study grazing incidence Equal-Curvature telescope designs for the Constellation-X mission. These telescopes have nearly spherical axial surfaces. The telescopes are designed so that the axial curvature is the same on the primary and secondary. The optical performance of these telescopes is for all practical purposes identical to the equivalent Wolter telescopes.

  7. Comparative analysis of methods and optical-electronic equipment to control the form parameters of spherical mirrors

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander N.; Baryshnikov, Nikolay; Denisov, Dmitrii; Karasik, Valerii; Sakharov, Alexey; Romanov, Pavel; Sheldakova, Julia; Kudryashov, Alexis

    2018-02-01

    In this paper we consider two approaches widely used in testing of spherical optical surfaces: Fizeau interferometer and Shack-Hartmann wavefront sensor. Fizeau interferometer that is widely used in optical testing can be transformed to a device using Shack-Hartmann wavefront sensor, the alternative technique to check spherical optical components. We call this device Hartmannometer, and compare its features to those of Fizeau interferometer.

  8. Axisymmetric Optical Membrane Modeling Based on Experimental Results

    DTIC Science & Technology

    2004-03-01

    polymers; one such was NASA’s Inflatable Antenna Experiment (IAE), which is a pressurized lenticular about 14 meters in diameter. It was designed...2cos2θ Astigmatism with axis at +/- 45 deg 5 ρ 2sin2θ Astigmatism with axis at +/- 0 or 90 deg 6 (3 ρ 2-2) ρ cosθ Primary coma along y axis...7 (3 ρ 2-2) ρ sinθ Primary coma along x axis 51 8 6 ρ 4-6 ρ 2+1 Primary spherical aberration 9 ρ 3cos(3θ ) Triangular astigmatism , base on y axis

  9. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu; Shen, Jianqi

    2006-07-10

    On the basis of our previous work on the extension of the geometrical-optics approximation to Gaussian beam scattering by a spherical particle, we present a further extension of the method to the scattering of a transparent or absorbing spheroidal particle with the same symmetric axis as the incident beam. As was done for the spherical particle, the phase shifts of the emerging rays due to focal lines, optical path, and total reflection are carefully considered. The angular position of the geometric rainbow of primary order is theoretically predicted. Compared with our results, the Möbius prediction of the rainbow angle has a discrepancy of less than 0.5 degrees for a spheroidal droplet of aspect radio kappa within 0.95 and 1.05 and less than 2 degrees for kappa within 0.89 and 1.11. The flux ratio index F, which qualitatively indicates the effect of a surface wave, is also studied and found to be dependent on the size, refractive index, and surface curvature of the particle.

  10. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  11. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  12. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  13. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  14. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  15. Optical instruments

    NASA Technical Reports Server (NTRS)

    Abel, I. R. (Inventor)

    1974-01-01

    A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.

  16. Modelling of influence of spherical aberration coefficients on depth of focus of optical systems

    NASA Astrophysics Data System (ADS)

    Pokorný, Petr; Šmejkal, Filip; Kulmon, Pavel; Mikš, Antonín.; Novák, Jiří; Novák, Pavel

    2017-06-01

    This contribution describes how to model the influence of spherical aberration coefficients on the depth of focus of optical systems. Analytical formulas for the calculation of beam's caustics are presented. The conditions for aberration coefficients are derived for two cases when we require that either the Strehl definition or the gyration radius should be the identical in two symmetrically placed planes with respect to the paraxial image plane. One can calculate the maximum depth of focus and the minimum diameter of the circle of confusion of the optical system corresponding to chosen conditions. This contribution helps to understand how spherical aberration may affect the depth of focus and how to design such an optical system with the required depth of focus. One can perform computer modelling and design of the optical system and its spherical aberration in order to achieve the required depth of focus.

  17. Modeling the Deep Impact Near-nucleus Observations of H2O and CO2 in Comet 9P/Tempel 1 Using Asymmetric Spherical Coupled Escape Probability

    NASA Astrophysics Data System (ADS)

    Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.

    2018-04-01

    We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).

  18. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  19. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  20. Calcitic microlenses as part of the photoreceptor system in brittlestars

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna; Tkachenko, Alexei; Weiner, Steve; Addadi, Lia; Hendler, Gordon

    2001-08-01

    Photosensitivity in most echinoderms has been attributed to `diffuse' dermal receptors. Here we report that certain single calcite crystals used by brittlestars for skeletal construction are also a component of specialized photosensory organs, conceivably with the function of a compound eye. The analysis of arm ossicles in Ophiocoma showed that in light-sensitive species, the periphery of the labyrinthic calcitic skeleton extends into a regular array of spherical microstructures that have a characteristic double-lens design. These structures are absent in light-indifferent species. Photolithographic experiments in which a photoresist film was illuminated through the lens array showed selective exposure of the photoresist under the lens centres. These results provide experimental evidence that the microlenses are optical elements that guide and focus the light inside the tissue. The estimated focal distance (4-7µm below the lenses) coincides with the location of nerve bundles-the presumed primary photoreceptors. The lens array is designed to minimize spherical aberration and birefringence and to detect light from a particular direction. The optical performance is further optimized by phototropic chromatophores that regulate the dose of illumination reaching the receptors. These structures represent an example of a multifunctional biomaterial that fulfills both mechanical and optical functions.

  1. Alignment and use of the optical test for the 8.4-m off-axis primary mirrors of the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    West, S. C.; Burge, J. H.; Cuerden, B.; Davison, W.; Hagen, J.; Martin, H. M.; Tuell, M. T.; Zhao, C.; Zobrist, T.

    2010-07-01

    The Giant Magellan Telescope has a 25 meter f/0.7 near-parabolic primary mirror constructed from seven 8.4 meter diameter segments. Several aspects of the interferometric optical test used to guide polishing of the six off-axis segments go beyond the demonstrated state of the art in optical testing. The null corrector is created from two obliquelyilluminated spherical mirrors combined with a computer-generated hologram (the measurement hologram). The larger mirror is 3.75 m in diameter and is supported at the top of a test tower, 23.5 m above the GMT segment. Its size rules out a direct validation of the wavefront produced by the null corrector. We can, however, use a reference hologram placed at an intermediate focus between the two spherical mirrors to measure the wavefront produced by the measurement hologram and the first mirror. This reference hologram is aligned to match the wavefront and thereby becomes the alignment reference for the rest of the system. The position and orientation of the reference hologram, the 3.75 m mirror and the GMT segment are measured with a dedicated laser tracker, leading to an alignment accuracy of about 100 microns over the 24 m dimensions of the test. In addition to the interferometer that measures the GMT segment, a separate interferometer at the center of curvature of the 3.75 m sphere monitors its figure simultaneously with the GMT measurement, allowing active correction and compensation for residual errors. We describe the details of the design, alignment, and use of this unique off-axis optical test.

  2. Wide-angle imaging system with fiberoptic components providing angle-dependent virtual material stops

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1993-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  3. Ultrafast all-optical technologies for bidirectional optical wireless communications.

    PubMed

    Jin, Xian; Hristovski, Blago A; Collier, Christopher M; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F

    2015-04-01

    In this Letter, a spherical retro-modulator architecture is introduced for operation as a bidirectional transceiver in passive optical wireless communication links. The architecture uses spherical retroreflection to enable retroreflection with broad directionality (2π steradians), and it uses all-optical beam interaction to enable modulation on ultrafast timescales (120 fs duration). The spherical retro-modulator is investigated from a theoretical standpoint and is fabricated for testing with three glasses, N-BK7, N-LASF9, and S-LAH79. It is found that the S-LAH79 structure provides the optimal refraction and nonlinearity for the desired retroreflection and modulation capabilities.

  4. Electron Optics for Biologists: Physical Origins of Spherical Aberrations

    ERIC Educational Resources Information Center

    Geissler, Peter; Zadunaisky, Jose

    1974-01-01

    Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)

  5. Hubble Space Telescope COSTAR asphere verification with a modified computer-generated hologram interferometer. [Corrective Optics Space Telescope Axial Replacement

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Wilson, M.

    1993-01-01

    To correct for the spherical aberration in the Hubble Space Telescope primary mirror, five anamorphic aspheric mirrors representing correction for three scientific instruments have been fabricated as part of the development of the corrective-optics space telescope axial-replacement instrument (COSTAR). During the acceptance tests of these mirrors at the vendor, a quick and simple method for verifying the asphere surface figure was developed. The technique has been used on three of the aspheres relating to the three instrument prescriptions. Results indicate that the three aspheres are correct to the limited accuracy expected of this test.

  6. The total spectral radiant flux calibration using a spherical spectrometer at National Institute of Metrology China

    NASA Astrophysics Data System (ADS)

    Zhao, Weiqiang; Liu, Hui; Liu, Jian

    2016-11-01

    At present day, in the field of lighting the incandescent lamps are phasing out. The solid state lighting products, i.e. LED, and the related market are developing very fast in China for its promising application, due to the energy-saving and the colorful features. For the quality control and the commercial trade purpose, it is highly necessary to measure the optical parameters of LED light sources with a fast, easy and affordable facility. Therefore, more test labs use the spherical spectrometer to measure LED. The quasi- monochrome of LED and the V(lambda) of silicon photodetector mismatch problem is reduced or avoided, because the total spectral radiant flux (TSRF) is measured, and all the optical parameters are calculate from the TSRF. In such a way, the spherical spectrometer calibration requires TSRF standard lamps instead of the traditional total flux standard lamps. National Institute of Metrology China (NIM) has studied and developed the facilities for TSRF measurement and provides related calibration services. This paper shows the TSRF standard lamp calibration procedure using a spherical spectrometer in every-day calibration and its traceable link to the primary SI unit at NIM. The sphere is of 1.5 m diameter, and installed with a spectrometer and a silicon photodetector. It also shows the detail of data process, such as the spectral absorption correction method and the calculation of the result derived from the spectral readings. The TSRF calibration covers the spectra range of 350 nm to 1050 nm, with a measurement uncertainty of 3.6% 1.8% (k=2).

  7. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  8. Theoretical model for design and analysis of protectional eyewear.

    PubMed

    Zelzer, B; Speck, A; Langenbucher, A; Eppig, T

    2013-05-01

    Protectional eyewear has to fulfill both mechanical and optical stress tests. To pass those optical tests the surfaces of safety spectacles have to be optimized to minimize optical aberrations. Starting with the surface data of three measured safety spectacles, a theoretical spectacle model (four spherical surfaces) is recalculated first and then optimized while keeping the front surface unchanged. Next to spherical power, astigmatic power and prism imbalance we used the wavefront error (five different viewing directions) to simulate the optical performance and to optimize the safety spectacle geometries. All surfaces were spherical (maximum global deviation 'peak-to-valley' between the measured surface and the best-fit sphere: 0.132mm). Except the spherical power of the model Axcont (-0.07m(-1)) all simulated optical performance before optimization was better than the limits defined by standards. The optimization reduced the wavefront error by 1% to 0.150 λ (Windor/Infield), by 63% to 0.194 λ (Axcont/Bolle) and by 55% to 0.199 λ (2720/3M) without dropping below the measured thickness. The simulated optical performance of spectacle designs could be improved when using a smart optimization. A good optical design counteracts degradation by parameter variation throughout the manufacturing process. Copyright © 2013. Published by Elsevier GmbH.

  9. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    PubMed

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  10. Spherical aberration of an optical system and its influence on depth of focus.

    PubMed

    Mikš, Antonín; Pokorný, Petr

    2017-06-10

    This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for imaging of axial points. A calculation of a beam's caustics is discussed using ray equations in the image plane and considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gyration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal depth of focus of the optical system respecting the aforementioned conditions.

  11. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Technical Reports Server (NTRS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  12. Spherical aberration yielding optimum visual performance: Evaluation of intraocular lenses using adaptive optics simulation

    PubMed Central

    Werner, John S.; Elliott, Sarah L.; Choi, Stacey S.; Doble, Nathan

    2009-01-01

    PURPOSE To evaluate the influence of spherical aberration on contrast sensitivity using adaptive optics. SETTING Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology & Vision Science, University of California, Davis Medical Center, Sacramento, California, USA. METHODS Contrast sensitivity at 8 cycles per degree was evaluated using an adaptive optics system that permitted aberrations to be measured with a Shack-Hartman wavefront sensor and controlled by a 109 actuator continuous-surface deformable mirror that was at a plane conjugate to the observer’s pupil. Vertical Gabor patches were viewed through a 6.3 mm diameter pupil conjugate aperture. Contrast sensitivity was measured with the deformable mirror set to produce 1 of 5 spherical aberration profiles (−0.2 to +0.2 μm). Contrast sensitivity over the range of spherical aberration was fitted with a polynomial function. RESULTS Three observers (age 21 to 24 years) participated. The measured total mean spherical aberration resulting from the spherical aberration profiles produced by the deformable mirror was between −0.15 μm and +0.25 μm. The peak contrast sensitivity of this function for the 3 observers combined occurred at +0.06 μm of spherical aberration. The peak contrast sensitivity was also achieved with positive spherical aberration for observer (mean 0.09). CONCLUSION There was intersubject variability in the measurements; however, the average visual performance was best with the introduction of a small positive spherical aberration. PMID:19545813

  13. Analysis of scattering by a linear chain of spherical inclusions in an optical fiber

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis D.; Uzunoglu, Nikolaos K.

    2006-12-01

    The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE11 mode, are presented for several cases.

  14. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  15. Local scattering stress distribution on surface of a spherical cell in optical stretcher

    NASA Astrophysics Data System (ADS)

    Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur

    2006-12-01

    We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.

  16. Optical double-slit particle measuring system

    DOEpatents

    Tichenor, D.A.; Wang, J.C.F.; Hencken, K.R.

    1982-03-25

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3..mu..m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  17. Optical double-slit particle measuring system

    DOEpatents

    Hencken, Kenneth R.; Tichenor, Daniel A.; Wang, James C. F.

    1984-01-01

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3 .mu.m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  18. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  19. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  20. Minimum change in spherical aberration that can be perceived

    PubMed Central

    Manzanera, Silvestre; Artal, Pablo

    2016-01-01

    It is important to know the visual sensitivity to optical blur from both a basic science perspective and a practical point of view. Of particular interest is the sensitivity to blur induced by spherical aberration because it is being used to increase depth of focus as a component of a presbyopic solution. Using a flicker detection-based procedure implemented on an adaptive optics visual simulator, we measured the spherical aberration thresholds that produce just-noticeable differences in perceived image quality. The thresholds were measured for positive and negative values of spherical aberration, for best focus and + 0.5 D and + 1.0 D of defocus. At best focus, the SA thresholds were 0.20 ± 0.01 µm and −0.17 ± 0.03 µm for positive and negative spherical aberration respectively (referred to a 6-mm pupil). These experimental values may be useful in setting spherical aberration permissible levels in different ophthalmic techniques. PMID:27699113

  1. In vitro comparative optical bench analysis of a spherical and aspheric optic design of the same IOL model.

    PubMed

    Tandogan, Tamer; Auffarth, Gerd U; Choi, Chul Y; Liebing, Stephanie; Mayer, Christian; Khoramnia, Ramin

    2017-02-08

    To analyse objective optical properties of the spherical and aspheric design of the same intraocular lens (IOL) model using optical bench analysis. This study entailed a comparative analysis of 10 spherical C-flex 570 C and 10 aspheric C-flex 970 C IOLs (Rayner Intraocular Lenses Ltd., Hove, UK) of 26 diopters [D] using an optical bench (OptiSpheric, Trioptics, Germany). In all lenses, we evaluated the modulation transfer function (MTF) at 50 lp/mm and 100 lp/mm and the Strehl Ratio using a 3-mm (photopic) and 4.5-mm (mesopic) aperture. At 50 lp/mm, the MTF values were 0.713/0.805 (C-flex 570 C/C-flex 970 C) for a 3-mm aperture and 0.294/0.591 for a 4.5-mm aperture. At 100 lp/mm, the MTF values were 0.524/0.634 for a 3-mm aperture and 0.198/0.344 for a 4.5-mm aperture. The Strehl Ratio was 0.806/0.925 and 0.237/0.479 for a 3-mm and 4.5-mm aperture respectively. A Mann-Whitney U test revealed all intergroup differences to be statistically significant (p < 0.01). The aspheric IOL design achieved higher MTF values than the spherical design of the same IOL for both apertures. Moreover, the differences between the two designs of the IOL were more prominent for larger apertures. This suggests that the evaluated IOL provides enhanced optical quality to patients with larger pupils or working under mesopic conditions.

  2. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  3. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  4. Electromagnetic Scattering by Spheroidal Volumes of Discrete Random Medium

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    We use the superposition T-matrix method to compare the far-field scattering matrices generated by spheroidal and spherical volumes of discrete random medium having the same volume and populated by identical spherical particles. Our results fully confirm the robustness of the previously identified coherent and diffuse scattering regimes and associated optical phenomena exhibited by spherical particulate volumes and support their explanation in terms of the interference phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equations. We also show that increasing non-sphericity of particulate volumes causes discernible (albeit less pronounced) optical effects in forward and backscattering directions and explain them in terms of the same interference/multiple-scattering phenomenon.

  5. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  6. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor L.; Sebring, Thomas A.; Ray, Frank B.; Fowler, James R.

    1998-08-01

    The Hobby Eberly Telescope features a unique eleven-meter spherical primary mirror consisting of a single steel truss populated with 91 Zerodur(superscript TM) mirror segments. The 1 meter hexagonal segments are fabricated to 0.033 micron RMS spherical surfaces with matched radii to 0.5 mm. Silver coatings are applied to meet reflectance criteria for wavelengths from 0.35 to 2.5 micron. To support the primary spectroscopic uses of the telescope the mirror must provide a 0.52 arc sec FWHM point spread function. Mirror segments are co-aligned to within 0.0625 ar sec and held to 25 microns of piston envelope using a segment positioning system that consists of 273 actuators (3 per mirror), a distributed population of controllers, and custom developed software. A common path polarization shearing interferometer was developed to provide alignment sensing of the entire array from the primary mirror's center of curvature. Performance of the array is being tested with an emphasis on alignment stability. Distributed temperature measurements throughout the truss are correlated to pointing variances of the individual mirror segments over extended periods of time. Results are very encouraging and indicate that this mirror system approach will prove to be a cost-effective solution for large optical collecting apertures.

  7. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  8. Joint optimization of source, mask, and pupil in optical lithography

    NASA Astrophysics Data System (ADS)

    Li, Jia; Lam, Edmund Y.

    2014-03-01

    Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.

  9. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.

  10. Thomas Young's investigations in gradient-index optics.

    PubMed

    Atchison, David A; Charman, W Neil

    2011-05-01

    James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some 50 years earlier, Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young's contributions. We attempted to derive Young's equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. We did not confirm Young's equation for the axial gradient to provide aberration-free optics but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index toward the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Young's theoretical work in gradient-index optics received no acknowledgment from either his contemporaries or later authors. Although his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young's work deserves wider recognition.

  11. Asymmetric Spherical Coupled Escape Probability: Model and Results for Optically Thick Cometary Comae

    NASA Astrophysics Data System (ADS)

    Gersch, Alan; A'Hearn, M. F.

    2012-05-01

    We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.

  12. A tunable refractive index matching medium for live imaging cells, tissues and model organisms

    PubMed Central

    Boothe, Tobias; Hilbert, Lennart; Heide, Michael; Berninger, Lea; Huttner, Wieland B; Zaburdaev, Vasily; Vastenhouw, Nadine L; Myers, Eugene W; Drechsel, David N; Rink, Jochen C

    2017-01-01

    In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus substantially improves image quality in live-imaged primary cell cultures, planarians, zebrafish and human cerebral organoids. DOI: http://dx.doi.org/10.7554/eLife.27240.001 PMID:28708059

  13. Low-cost method for producing extreme ultraviolet lithography optics

    DOEpatents

    Folta, James A [Livermore, CA; Montcalm, Claude [Fort Collins, CO; Taylor, John S [Livermore, CA; Spiller, Eberhard A [Mt. Kisco, NY

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  14. Unconventional imaging with contained granular media

    NASA Astrophysics Data System (ADS)

    Quadrelli, Marco B.; Basinger, Scott; Sidick, Erkin

    2017-09-01

    Typically, the cost of a space-borne imaging system is driven by the size and mass of the primary aperture. The solution that we propose uses a method to construct an imaging system in space in which the nonlinear optical properties of a cloud of micron-sized particles, shaped into a specific surface by electromagnetic means, and allows one to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Recent work at JPL has investigated the feasibility of a granular imaging system, concluding that such a system could be built and controlled in orbit. We conducted experiments and simulation of the optical response of a granular lens. In all cases, the optical response, measured by the Modulation Transfer Function, of hexagonal reflectors was closely comparable to that of a conventional spherical mirror. We conducted some further analyses by evaluating the sensitivity to fill factor and grain shape, and found a marked sensitivity to fill factor but no sensitivity to grain shape. We have also found that at fill factors as low as 30%, the reflection from a granular lens is still excellent. Furthermore, we replaced the monolithic primary mirror in an existing integrated model of an optical system (WFIRST Coronagraph) with a granular lens, and found that the granular lens that can be useful for exoplanet detection provides excellent contrast levels. We will present our testbed and simulation results in this paper.

  15. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    NASA Astrophysics Data System (ADS)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  16. Tailoring the chirality of light emission with spherical Si-based antennas.

    PubMed

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  17. The glass spherical hollow orbital implant: a prospective study.

    PubMed

    Stephen, B E

    1999-06-01

    Various types of orbital implants are in use in the rehabilitation of anophthalmic patients. The latest is the expensive hydroxyapatite implant. The study objective was to evaluate the effectiveness of low cost glass spherical hollow implants, as primary and secondary implants. St Michaels and Frazer Private Hospitals, Colombo. 65 patients had glass sphere orbital implants between 1987 and 1995; 51 primary (evisceration 46, enucleation 5) and 14 secondary (evisceration 2, enucleation 12). At 9 to 12 months follow up, patients were evaluated for mobility of implant, prosthesis mobility, lid sulcus deformity, cosmetic results and complications. Primary glass spherical hollow implants provide excellent mobility of the implant (92%), cosmesis (88%), prosthesis mobility (67%), with a low rate of complications (9.5%). Results of primary implant was superior to that of secondary (p < 0.001). Excellent results were obtained with spherical glass spheres as primary implants following evisceration.

  18. Numerical simulation of the trajectory of a light ray propagating through an optic system with non-centered spherical diopters and broken optic axis

    NASA Astrophysics Data System (ADS)

    Bacescu, D.; Ivanov, I.

    2006-03-01

    The present paper is devoted to the elaboration of a strategy for the design of some practical focusing devices for the radiation emitted by a high-power laser used in thermal treatment processes. Usually, technological solutions employ spherical mirrors. Because spherical mirrors introduce a certain astigmatism, it is necessary to get an energetically efficient configuration which reduces as much as possible the astigmatic difference, thus concentrating the laser radiation energy which is distributed within the area between the sagital and meridional foci.

  19. Upper limit set for level of lightning activity on Titan

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  20. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  1. A happy conclusion to the SALT image quality saga

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; O'Donoghue, Darragh E.; O'Connor, James E.; Strumpfer, Francois; Strydom, Ockert J.; Sass, Craig; du Plessis, Charl A.; Wiid, Eben; Love, Jonathan; Brink, Janus D.; Wilkinson, Martin; Coetzee, Chris

    2012-09-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase showed degradation due to a large focus gradient and a variety of other optical aberrations. An extensive forensic investigation eventually traced the problem to the mechanical interface between the telescope and the secondary optics that form the Spherical Aberration Corrector (SAC). The SAC was brought down from the telescope in 2009 April, the problematic interface was replaced and the four corrector mirrors were optically tested and re-aligned. The surface figures of the SAC mirrors were confirmed to be within specification and a full system test following the re-alignment process yielded a RMS wavefront error of just 0.15 waves. The SAC was re-installed on the tracker in 2010 August and aligned with respect to the payload and primary mirror. Subsequent on-sky tests produced alarming results which were due to spurious signals being sent to the tracker by the auto-collimator, the instrument responsible for controlling the attitude of the SAC with respect to the primary mirror. Once this minor issue was resolved, we obtained uniform 1.1 arcsecond star images over the full 10 arcminute field of view of the telescope.

  2. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens

    PubMed Central

    Evans, Geoffrey J.; Kirkby, Paul A.; Nadella, K. M. Naga Srinivas; Marin, Bóris; Silver, R. Angus

    2016-01-01

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region. PMID:26368449

  3. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens.

    PubMed

    Evans, Geoffrey J; Kirkby, Paul A; Naga Srinivas Nadella, K M; Marin, Bóris; Angus Silver, R

    2015-09-07

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region.

  4. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  5. 2D XAFS-XEOL Spectroscopy - Some recent developments

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.

    2013-03-01

    The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.

  6. Optimal secondary source position in exterior spherical acoustical holophony

    NASA Astrophysics Data System (ADS)

    Pasqual, A. M.; Martin, V.

    2012-02-01

    Exterior spherical acoustical holophony is a branch of spatial audio reproduction that deals with the rendering of a given free-field radiation pattern (the primary field) by using a compact spherical loudspeaker array (the secondary source). More precisely, the primary field is known on a spherical surface surrounding the primary and secondary sources and, since the acoustic fields are described in spherical coordinates, they are naturally subjected to spherical harmonic analysis. Besides, the inverse problem of deriving optimal driving signals from a known primary field is ill-posed because the secondary source cannot radiate high-order spherical harmonics efficiently, especially in the low-frequency range. As a consequence, a standard least-squares solution will overload the transducers if the primary field contains such harmonics. Here, this is avoided by discarding the strongly decaying spherical waves, which are identified through inspection of the radiation efficiency curves of the secondary source. However, such an unavoidable regularization procedure increases the least-squares error, which also depends on the position of the secondary source. This paper deals with the above-mentioned questions in the context of far-field directivity reproduction at low and medium frequencies. In particular, an optimal secondary source position is sought, which leads to the lowest reproduction error in the least-squares sense without overloading the transducers. In order to address this issue, a regularization quality factor is introduced to evaluate the amount of regularization required. It is shown that the optimal position improves significantly the holophonic reconstruction and maximizes the regularization quality factor (minimizes the amount of regularization), which is the main general contribution of this paper. Therefore, this factor can also be used as a cost function to obtain the optimal secondary source position.

  7. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Hamano, T.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less

  8. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  9. Resonant inelastic scattering by use of geometrical optics.

    PubMed

    Schulte, Jörg; Schweiger, Gustav

    2003-02-01

    We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.

  10. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  11. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  12. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  13. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun

    2018-07-01

    A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at  ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.

  14. OPTICS OF CONDUCTIVE KERATOPLASTY: IMPLICATIONS FOR PRESBYOPIA MANAGEMENT

    PubMed Central

    Hersh, Peter S

    2005-01-01

    Purpose To define the corneal optics of conductive keratoplasty (CK) and assess the clinical implications for hyperopia and presbyopia management. Methods Four analyses were done. (1) Multifocal effects: In a prospective study of CK, uncorrected visual acuity (UCVA) for a given refractive error in 72 postoperative eyes was compared to control eyes. (2) Surgically induced astigmatism (SIA): 203 eyes were analyzed for magnitude and axis of SIA. (3) Higher-order optical aberrations: Corneal higher-order optical aberrations were assessed for 36 eyes after CK and a similar patient population after hyperopic laser in situ keratomileusis (LASIK). (4) Presbyopia clinical trial: Visual acuity, refractive result, and patient questionnaires were analyzed for 150 subjects in a prospective, multicenter clinical trial of presbyopia management with CK. Results (1) 63% and 82% of eyes after CK had better UCVA at distance and near, respectively, than controls. (2) The mean SIA was 0.23 diopter (D) steepening at 175° (P < .001); mean magnitude was 0.66 D (SD, 0.43 D). (3) After CK, composite fourth- and sixth-order spherical aberration increased; change in (Z12) spherical aberration alone was not statistically significant. When compared to hyperopic LASIK, there was a statistically significant increase in composite fourth- and sixth-order spherical aberration (P < .01) and spherical aberration (Z12) alone (P < .02); spherical aberration change was more prolate after CK. (4) After the CK monovision procedure, 80% of patients had J3 or better binocular UCVA at near; 84% of patients were satisfied. Satisfaction was associated with near UCVA of J3 or better in the monovision eye (P = .001) and subjectively good postoperative depth perception (P = .038). Conclusions CK seems to produce functional corneal multifocality with definable introduction of SIA and higher-order optical aberrations, and development of a more prolate corneal contour. These optical factors may militate toward improved near vision function. PMID:17057812

  15. All-reflective optical target illumination system with high numerical aperture

    DOEpatents

    Sigler, Robert D.

    1978-01-01

    An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.

  16. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  17. Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

  18. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.

    PubMed

    Iwaniuk, Daniel; Rastogi, Pramod; Hack, Erwin

    2011-09-26

    In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5. © 2011 Optical Society of America

  19. Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.

    PubMed

    Wei, Xin; Van Heugten, Tony; Thibos, Larry

    2009-08-03

    Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurement. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument's full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.

  20. Spherical transceivers for ultrafast optical wireless communications

    NASA Astrophysics Data System (ADS)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  1. Rotation of single live mammalian cells using dynamic holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Bin Cao; Kelbauskas, Laimonas; Chan, Samantha; Shetty, Rishabh M.; Smith, Dean; Meldrum, Deirdre R.

    2017-05-01

    We report on a method for rotating single mammalian cells about an axis perpendicular to the optical system axis through the imaging plane using dynamic holographic optical tweezers (HOTs). Two optical traps are created on the opposite edges of a mammalian cell and are continuously transitioned through the imaging plane along the circumference of the cell in opposite directions, thus providing the torque to rotate the cell in a controlled fashion. The method enables a complete 360° rotation of live single mammalian cells with spherical or near-to spherical shape in 3D space, and represents a useful tool suitable for the single cell analysis field, including tomographic imaging.

  2. Zoom system without moving element by using two liquid crystal lenses with spherical electrode

    NASA Astrophysics Data System (ADS)

    Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.

    2017-08-01

    A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.

  3. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  4. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  5. Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Zhong-can, Ou-Yang

    2012-11-01

    With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters (0⩽l⩽L) is presented. Comprehensive formulas of L=1,2 have been obtained and the latter explains the optical activity and spontaneous splay texture observed in bent-core PLC. The expression of L=3 specifies for the molecules with D2 symmetry which can be applied to analyze the nonlinear optical second harmonic generation (SHG) observed in proteins, peptides, and double-stranded DNA at interfaces.

  6. Calibration of optical particle-size analyzer

    DOEpatents

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  7. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  8. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  9. Method of increasing power within an optical cavity with long path lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leen, John Brian; Bramall, Nathan E.

    A cavity-enhanced absorption spectroscopy instrument has an optical cavity with two or more cavity mirrors, one mirror of which having a hole or other aperture for injecting a light beam, and the same or another mirror of which being partially transmissive to allow exit of light to a detector. A spherical-spherical configuration with at least one astigmatic mirror or a spherical-cylindrical configuration where the spherical mirror could also be astigmatic prevents a reentrant condition wherein the injected beam would prematurely exit the cavity through the aperture. This combination substantially increases the number of passes of the injected beam through amore » sample volume for sensitive detection of chemical species even in less than ideal conditions including low power laser or LED sources, poor mirror reflectivity or detector noise at the wavelengths of interest, or cavity alignment issues such as vibration or temperature and pressure changes.« less

  10. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    NASA Astrophysics Data System (ADS)

    Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.

    2017-07-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.

  11. ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector

    NASA Technical Reports Server (NTRS)

    Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.

    2013-01-01

    We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.

  12. Effect of the internal optics on the outcome of custom-LASIK in an eye model

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2004-07-01

    Purpose. The purpose of this study was to evaluate if changes in the aberration-contribution of the internal optics of the eye have a significant effect on the outcome of wavefront-guided corneal reshaping. Methods. The Navarro-Escudero eye model was simulated using optical analysis software. The eye was rendered myopic by shifting the plane of the retina. Custom-LASIK was simulated by changing the radius of curvature and asphericity of the anterior corneal surface of the eye model. The radius of curvature was adjusted to provide a retinal conjugate at infinity. Three approaches were used to determine the postoperative corneal asphericity: minimizing third-order spherical aberration, minimizing third-order coma, and maximizing the Strehl ratio. The aberration contribution of the anterior corneal surface and internal optics was calculated before and after each simulated customized correction. Results. For a 5.2mm diameter pupil, the contribution of the anterior corneal surface to third-order spherical aberration and coma (in micrometers) was 2.22 and 2.49 preop, -0.36 and 2.83 postop when spherical aberration is minimized, 5.88 and 1.10 postop when coma is minimized, and -0.63 and 2.91 postop when Strehl ratio is maximized. The contribution of the internal optics of the eye to spherical aberration and coma for the same four conditions was: 0.43 and -1.13, 0.37 and -1.10, 0.37 and -1.10 and 0.37 and -1.10, respectively. Conclusion. In the model eye, the contribution of the internal optics of the eye to the change in the ocular aberration state is negligible.

  13. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot

    PubMed Central

    2014-01-01

    Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results show that the DC Kerr effect in this case is much larger than that in the bulk case. Finally, it is observed that QEOEs and EA susceptibilities decrease and broaden with the decrease of relaxation time. PMID:24646318

  14. Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry.

    PubMed

    Choux, Alexandre; Busvelle, Eric; Gauthier, Jean Paul; Pascal, Ghislain

    2007-11-20

    Our work is in the context of the French "laser mégajoule" project, about fusion by inertial confinement. The project leads to the problem of characterizing the inner surface, of the approximately spherical target, by optical shadowgraphy techniques. Our work is entirely based on the basic idea that optical shadowgraphy produces "caustics" of systems of optical rays, which contain a great deal of 3D information about the surface to be characterized. We develop a method of 3D reconstruction based upon this idea plus a "small perturbations" technique. Although computations are made in the special "spherical" case, the method is in fact general and may be extended to several other situations.

  15. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  16. Vertical interferometer workstation for testing large spherical optics

    NASA Astrophysics Data System (ADS)

    Truax, B.

    2013-09-01

    The design of an interferometer workstation for the testing of large concave and convex spherical optics is presented. The workstation handles optical components and mounts up to 425 mm in diameter with mass of up to 40 kg with 6 axes of adjustment. A unique method for the implementation of focus, roll and pitch was used allowing for extremely precise adjustment. The completed system includes transmission spheres with f-numbers from f/1.6 to f/0.82 incorporating reference surface diameters of up to 306 mm and surface accuracies of better than 63 nm PVr. The design challenges and resulting solutions are discussed. System performance results are presented.

  17. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Integrated-optical spectrum analyzer based on Ti:LiNbO3 with an optimized system of interdigital transducers and spherical geodesic lenses

    NASA Astrophysics Data System (ADS)

    Golovanova, T. M.; Gryaznov, Yu M.; Dianov, Evgenii M.; Dobryakova, N. G.; Kiselev, A. V.; Prokhorov, A. M.; Shcherbakov, E. A.

    1989-08-01

    An investigation was made of the parameters of an integrated-optical spectrum analyzer consisting of a Ti:LiNbO3 crystal and a semiconductor laser with a built-in microobjective, spherical geodesic lenses, and an optimized system of interdigital (opposed-comb) transducers. The characteristics of this spectrum analyzer were as follows: the band of operating frequencies was 181 MHz (at the 3 dB level); the resolution was 2.8 MHz; the signal/noise ratio (under a control voltage of 4 V) was 20 dB.

  18. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  19. Optimization of spherical facets for parabolic solar concentrators

    NASA Technical Reports Server (NTRS)

    White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.

    1986-01-01

    Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.

  20. Correction-free pyrometry in radiant wall furnaces

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W. (Inventor)

    1994-01-01

    A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.

  1. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  2. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    PubMed Central

    Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui

    2013-01-01

    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745

  3. Large aspheric optics for high-power, high-energy laser

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Houbre, Francois

    2001-12-01

    SAGEM, within its REOSC high performance optics product line, has developed through the years a specific knowledge in large plano, spherical and aspherical optics for high energy or high power laser. This paper is aimed to illustrate the application of aspheric optics for such laser application with several examples of increasing optical surface complexity.

  4. Resonant Optical Circuits Based on Coupling Between Whispering Gallery Modes in Dielectric Microresonators

    DTIC Science & Technology

    2007-12-30

    111111 (2006). 2. S.P. Ashili , V.N. Astratov, and E.C.H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres...chains of coupled spherical cavities,” Opt. Lett. 32, 409-411 (2007). 4. V.N. Astratov, and S.P. Ashili , “Percolation of light through whispering...Propagation via Whispering Gallery Modes in 3-D Networks of Coupled Spherical Cavities (Talk), V.N. Astratov, S.P. Ashili , and A.M. Kapitonov, in Frontiers in

  5. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    NASA Astrophysics Data System (ADS)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  6. Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana

    2018-04-01

    In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.

  7. Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh-Gans-Debye and anomalous diffraction approximations and its consequences

    NASA Astrophysics Data System (ADS)

    Paramonov, L. E.

    2012-05-01

    Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.

  8. Optofluidic lens with tunable focal length and asphericity

    PubMed Central

    Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851

  9. Expressions for the spherical-wave-structure function based on a bump spectrum model for the index of refraction

    NASA Astrophysics Data System (ADS)

    Richardson, Christina E.; Andrews, Larry C.

    1991-07-01

    New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.

  10. Optical and Biometric Characteristics of Anisomyopia in Human Adults

    PubMed Central

    Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.

    2011-01-01

    Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915

  11. Aplanatic double reflection system for thermophotovoltaic applications: design.

    PubMed

    Demichelis, F; Ferrari, G; Minetti-Mezzetti, E

    1981-12-15

    The design of a solar concentrator is presented; it consists of a spherical mirror and a field of Fresnel mirror facets deployed on a spherical surface so that sine condition is satisfied, eliminating both spherical aberration and coma. This particular easy to construct optical system yields high concentration ratios and has the distinct advantage of having a narrow beam aperture near the receiver. These design features make the concentrator particularly suitable for thermophotovoltaic applications.

  12. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  13. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  14. Potential Sources of Polarized Light from a Plant Canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  15. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  16. The effects of a geometrical size, external electric fields and impurity on the optical gain of a quantum dot laser with a semi-parabolic spherical well potential

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2017-03-01

    In this paper, a GaAs / Alx Ga1-x As quantum dot laser with a semi-parabolic spherical well potential is assumed. By using Runge-Kutta method the eigenenergies and the eigenstates of valence and conduct bands are obtained. The effects of geometrical sizes, external electric fields and hydrogen impurity on the different electronic transitions of the optical gain are studied. The results show that the optical gain peak increases and red-shifts, by increasing the width of well or barrier, while more increasing of the width causes blue-shift and decreases it. The hydrogen impurity decreases the optical gain peak and blue-shifts it. Also, the increasing of the external electric fields cause to increase the peak of the optical gain, and (blue) red shift it. Finally, the optical gain for 1s-1s and 2s-1s transitions is prominent, while it is so weak for other transitions.

  17. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  18. Optical aberration correction for simple lenses via sparse representation

    NASA Astrophysics Data System (ADS)

    Cui, Jinlin; Huang, Wei

    2018-04-01

    Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed. However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study, we propose a set of computational photography techniques based on sparse signal representation to remove optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary advantage of the proposed method is that many prior point spread functions calibrated at different depths are successfully used for restoring visual images in a short time, which can be generally applied to nonblind deconvolution methods for solving the problem of the excessive processing time caused by the number of point spread functions. The optical software CODE V is applied for examining the reliability of the proposed method by simulation. The simulation results reveal that the suggested method outperforms the traditional methods. Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually. Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of single-lens cameras.

  19. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  20. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  1. Micrometric Control of the Optics of the Human Eye: Environment or Genes?

    PubMed

    Tabernero, Juan; Hervella, Lucía; Benito, Antonio; Colodro-Conde, Lucía; Ordoñana, Juan R; Ruiz-Sanchez, Marcos; Marín, José María; Artal, Pablo

    2017-04-01

    The human eye has typically more optical aberrations than conventional artificial optical systems. While the lower order modes (defocus and astigmatism) are well studied, our purpose is to explore the influence of genes versus the environment on the higher order aberrations of the optical components of the eye. We have performed a classical twin study in a sample from the Region of Murcia (Spain). Optical aberrations using a Hartmann-Shack sensor (AOnEye Voptica SL, Murcia, Spain) and corneal aberrations (using corneal topography data) were measured in 138 eyes corresponding to 69 twins; 36 monozygotic (MZ) and 33 dizygotic (DZ) pairs (age 55 years, SD 7 years). Intraclass correlation coefficients (ICCs) were used to estimate how strongly aberrations of twins resemble each other, and genetic models were fitted to quantify heritability in the selected phenotypes. Genes had a significant influence in the variance of most of the higher order aberration terms (heritability from 40% to 70%). This genetic influence was observed similarly in both cornea and complete eye aberrations. Additionally, the compensation factor of spherical aberration in the eye (i.e., how much corneal spherical aberration was compensated by internal spherical aberration) was found under genetic influence (heritability of 68%). There is a significant genetic contribution to the variance of aberrations of the eye, not only at macroscopic levels, as in myopia or astigmatism, but also at microscopic levels, where a few micrometers changes in surface topography can produce a large difference in the value of the optical aberrations.

  2. Wide Angle, Color, Holographic Infinity Optics Display. Final Report.

    ERIC Educational Resources Information Center

    Magarinos, Jose R.; Coleman, Daniel J.

    The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…

  3. Optical performance of toric intraocular lenses in the presence of decentration.

    PubMed

    Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian

    2015-01-01

    To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position.

  4. Optical performance of toric intraocular lenses in the presence of decentration

    PubMed Central

    Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian

    2015-01-01

    AIM To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. METHODS Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. RESULTS Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. CONCLUSIONS Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position. PMID:26309871

  5. In Vitro Aberrometric Assessment of a Multifocal Intraocular Lens and Two Extended Depth of Focus IOLs

    PubMed Central

    Tolosa, Angel; de Fez, Dolores; Caballero, María T.; Miret, Juan J.

    2017-01-01

    Purpose To analyze the “in vitro” aberrometric pattern of a refractive IOL and two extended depth of focus IOLs. Methods A special optical bench with a Shack-Hartmann wavefront sensor (SH) was designed for the measurement. Three presbyopia correction IOLs were analyzed: Mini WELL (MW), TECNIS Symfony ZXR00 (SYM), and Lentis Mplus X LS-313 MF30 (MP). Three different pupil sizes were used for the comparison: 3, 4, and 4.7 mm. Results MW generated negative primary and positive secondary spherical aberrations (SA) for the apertures of 3 mm (−0.13 and +0.12 μm), 4 mm (−0.12 and +0.08 μm), and 4.7 mm (−0.11 and +0.08 μm), while the SYM only generated negative primary SA for 4 and 4.7 mm apertures (−0.12 μm and −0.20 μm, resp.). The MP induced coma and trefoil for all pupils and showed significant HOAs for apertures of 4 and 4.7 mm. Conclusions In an optical bench, the MW induces negative primary and positive secondary SA for all pupils. The SYM aberrations seem to be pupil dependent; it does not produce negative primary SA for 3 mm but increases for higher pupils. Meanwhile, the HOAs for the MW and SYM were not significant. The MP showed in all cases the highest HOAs. PMID:29318040

  6. In Vitro Aberrometric Assessment of a Multifocal Intraocular Lens and Two Extended Depth of Focus IOLs.

    PubMed

    Camps, Vicente J; Tolosa, Angel; Piñero, David P; de Fez, Dolores; Caballero, María T; Miret, Juan J

    2017-01-01

    To analyze the "in vitro" aberrometric pattern of a refractive IOL and two extended depth of focus IOLs. A special optical bench with a Shack-Hartmann wavefront sensor (SH) was designed for the measurement. Three presbyopia correction IOLs were analyzed: Mini WELL (MW), TECNIS Symfony ZXR00 (SYM), and Lentis Mplus X LS-313 MF30 (MP). Three different pupil sizes were used for the comparison: 3, 4, and 4.7 mm. MW generated negative primary and positive secondary spherical aberrations (SA) for the apertures of 3 mm (-0.13 and +0.12  μ m), 4 mm (-0.12 and +0.08  μ m), and 4.7 mm (-0.11 and +0.08  μ m), while the SYM only generated negative primary SA for 4 and 4.7 mm apertures (-0.12  μ m and -0.20  μ m, resp.). The MP induced coma and trefoil for all pupils and showed significant HOAs for apertures of 4 and 4.7 mm. In an optical bench, the MW induces negative primary and positive secondary SA for all pupils. The SYM aberrations seem to be pupil dependent; it does not produce negative primary SA for 3 mm but increases for higher pupils. Meanwhile, the HOAs for the MW and SYM were not significant. The MP showed in all cases the highest HOAs.

  7. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor.

    PubMed

    López-Miguel, Alberto; Martínez-Almeida, Loreto; González-García, María J; Coco-Martín, María B; Sobrado-Calvo, Paloma; Maldonado, Miguel J

    2013-02-01

    To assess the intrasession and intersession precision of ocular, corneal, and internal higher-order aberrations (HOAs) measured using an integrated topographer and Hartmann-Shack wavefront sensor (Topcon KR-1W) in refractive surgery candidates. IOBA-Eye Institute, Valladolid, Spain. Evaluation of diagnostic technology. To analyze intrasession repeatability, 1 experienced examiner measured eyes 9 times successively. To study intersession reproducibility, the same clinician obtained measurements from another set of eyes in 2 consecutive sessions 1 week apart. Ocular, corneal, and internal HOAs were obtained. Coma and spherical aberrations, 3rd- and 4th-order aberrations, and total HOAs were calculated for a 6.0 mm pupil diameter. For intrasession repeatability (75 eyes), excellent intraclass correlation coefficients (ICCs) were obtained (ICC >0.87), except for internal primary coma (ICC = 0.75) and 3rd-order (ICC = 0.72) HOAs. Repeatability precision (1.96 × S(w)) values ranged from 0.03 μm (corneal primary spherical) to 0.08 μm (ocular primary coma). For intersession reproducibility (50 eyes), ICCs were good (>0.8) for ocular primary spherical, 3rd-order, and total higher-order aberrations; reproducibility precision values ranged from 0.06 μm (corneal primary spherical) to 0.21 μm (internal 3rd order), with internal HOAs having the lowest precision (≥0.12 μm). No systematic bias was found between examinations on different days. The intrasession repeatability was high; therefore, the device's ability to measure HOAs in a reliable way was excellent. Under intersession reproducibility conditions, dependable corneal primary spherical aberrations were provided. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. A simple model for studying rotation errors of gimbal mount axes in laser tracking system based on spherical mirror as a reflection unit

    NASA Astrophysics Data System (ADS)

    Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang

    2018-01-01

    This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.

  9. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  10. Power profiles of single vision and multifocal soft contact lenses.

    PubMed

    Wagner, Sandra; Conrad, Fabian; Bakaraju, Ravi C; Fedtke, Cathleen; Ehrmann, Klaus; Holden, Brien A

    2015-02-01

    The purpose of this study was to investigate the optical zone power profile of the most commonly prescribed soft contact lenses to assess their potential impact on peripheral refractive error and hence myopia progression. The optical power profiles of six single vision and ten multifocal contact lenses of five manufacturers in the powers -1.00 D, -3.00 D, and -6.00 D were measured using the SHSOphthalmic (Optocraft GmbH, Erlangen, Germany). Instrument repeatability was also investigated. Instrument repeatability was dependent on the distance from the optical centre, manifesting unreliable data for the central 1mm of the optic zone. Single vision contact lens measurements of -6.00 D lenses revealed omafilcon A having the most negative spherical aberration, lotrafilcon A having the least. Somofilcon A had the highest minus power and lotrafilcon A the biggest deviation in positive direction, relative to their respective labelled powers. Negative spherical aberration occurred for almost all of the multifocal contact lenses, including the centre-distance designs etafilcon A bifocal and omafilcon A multifocal. Lotrafilcon B and balafilcon A seem to rely predominantly on the spherical aberration component to provide multifocality. Power profiles of single vision soft contact lenses varied greatly, many having a negative spherical aberration profile that would exacerbate myopia. Some lens types and powers are affected by large intra-batch variability or power offsets of more than 0.25 dioptres. Evaluation of power profiles of multifocal lenses was derived that provides helpful information for prescribing lenses for presbyopes and progressing myopes. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  12. Continuous-feed optical sorting of aerosol particles

    PubMed Central

    Curry, J. J.; Levine, Zachary H.

    2016-01-01

    We consider the problem of sorting, by size, spherical particles of order 100 nm radius. The scheme we analyze consists of a heterogeneous stream of spherical particles flowing at an oblique angle across an optical Gaussian mode standing wave. Sorting is achieved by the combined spatial and size dependencies of the optical force. Particles of all sizes enter the flow at a point, but exit at different locations depending on size. Exiting particles may be detected optically or separated for further processing. The scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. We performed detailed Monte Carlo simulations of particle trajectories through the optical field under the influence of convective air flow. We also developed a method for deriving effective velocities and diffusion constants from the Fokker-Planck equation that can generate equivalent results much more quickly. With an optical wavelength of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, for which the optical force vanishes, may be sorted with a resolution below 1 nm. PMID:27410570

  13. Optical system

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R. (Inventor)

    1985-01-01

    Disclosed is an otpical system used in a spacecraft to observe a remote surface and provide a spatial and spectral image of this surface. The optical system includes aspheric and spherical mirrors aligned to focus at a first focal plane an image of the surface, and a mirror at this first focal plane which reflects light back on to the spherical mirror. This spherical mirror collimates the light and directs it through a prism which disperses it. The dispersed light is then focused on an array of light responsive elements disposed at a second focal plane. The prism is designed such that it disperses light into components of different wavelengths, with the components of shorter wavelengths being dispersed more than the components of longer wavelengths to present at the second focal plane a distribution pattern in which preselected groupings of the components are dispersed over essentially equal spacing intervals.

  14. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  15. Synthesis and Study of Optical Characteristics of Ti0.91O2/CdS Hybrid Sphere Structures

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xu, Qinfeng; Zhang, Meng; Wang, Dehua; Liu, Mingliang; Zhang, Lei; Jiao, Mengmeng; Wang, Honggang; Yang, Chuanlu

    2018-03-01

    The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.

  16. Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1993-01-01

    The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.

  17. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.

    PubMed

    Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana

    2013-06-28

    The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to the aberrations in a mammal lens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Second-order spherical optoelectronic detector for 3D multi-particles wave emission and propagation in space time domains

    NASA Astrophysics Data System (ADS)

    Romano, Francesco; Cimmino, Rosario F.

    2017-09-01

    This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very innovative, it shows a very good adherence with results obtained with the conventional techniques in current usage.

  19. Structured light stereo catadioptric scanner based on a spherical mirror

    NASA Astrophysics Data System (ADS)

    Barone, S.; Neri, P.; Paoli, A.; Razionale, A. V.

    2018-08-01

    The present paper describes the development and characterization of a structured light stereo catadioptric scanner for the omnidirectional reconstruction of internal surfaces. The proposed approach integrates two digital cameras, a multimedia projector and a spherical mirror, which is used to project the structured light patterns generated by the light emitter and, at the same time, to reflect into the cameras the modulated fringe patterns diffused from the target surface. The adopted optical setup defines a non-central catadioptric system, thus relaxing any geometrical constraint in the relative placement between optical devices. An analytical solution for the reflection on a spherical surface is proposed with the aim at modelling forward and backward projection tasks for a non-central catadioptric setup. The feasibility of the proposed active catadioptric scanner has been verified by reconstructing various target surfaces. Results demonstrated a great influence of the target surface distance from the mirror's centre on the measurement accuracy. The adopted optical configuration allows the definition of a metrological 3D scanner for surfaces disposed within 120 mm from the mirror centre.

  20. Thermal stability tests of CFRP sandwich panels for far infrared astronomy

    NASA Technical Reports Server (NTRS)

    Hoffmann, W. F.; Helwig, G.; Scheulen, D.

    1986-01-01

    An account is given of fabrication methods and low temperature figure tests for CFRP sandwich panels, in order to ascertain their applicability to ultralightweight 3-m aperture primary mirrors for balloon-borne sub-mm and far-IF telescopes that must maintain a 1-2 micron rms surface figure accuracy at -40 to -50 C. Optical figure measurements on the first two of a series of four 0.5-m test panels, replicated to a spherical surface, show a radius-of-curvature change and astigmatism down to -60 C; this approximately follows the composite's theoretical predictions and implies that material and process control is excellent, so that the large scale changes observed can be compensated for.

  1. Recent developments for Astronomy at SAGEM

    NASA Astrophysics Data System (ADS)

    Geyl, Roland

    2003-02-01

    SAGEM, through its REOSC product line, is offering a high skill of optics design fabrication and assembly to the astronomical community. Beside large projects like ESO VLT, SOFIA or the Spain GTC, SAGEM is continuously active with smaller projects. In this paper, we will present our recent work in the field of thin films with mirror broadband and durable coating and large area filters for multimegapixel camera. Latest results of Sofia primary mirror integration will be presented. Work on large prime focus correctors like the one of CFHT MegaPrime and the SALT Spherical Aberration Corrector. For space astronomy it is our new activity of mold smoothing for large telecom antenna or submillimeter reflectors that will be presented.

  2. Testing large flats with computer generated holograms

    NASA Astrophysics Data System (ADS)

    Pariani, Giorgio; Tresoldi, Daniela; Spanò, Paolo; Bianco, Andrea

    2012-09-01

    We describe the optical test of a large flat based on a spherical mirror and a dedicated CGH. The spherical mirror, which can be accurately manufactured and tested in absolute way, allows to obtain a quasi collimated light beam, and the hologram performs the residual wavefront correction. Alignment tools for the spherical mirror and the hologram itself are encoded in the CGH. Sensitivity to fabrication errors and alignment has been evaluated. Tests to verify the effectiveness of our approach are now under execution.

  3. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  4. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    NASA Astrophysics Data System (ADS)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  5. Optical design with Wood lenses

    NASA Astrophysics Data System (ADS)

    Caldwell, J. Brian

    1991-01-01

    Spherical aberration in a flat surfaced radial gradient-index lens (a Wood lens) with a parabolic index profile can be corrected by altering the profile to Include higher order terms. However this results in a large amowfl of third order coma. This paper presents an alternative method of aberration correction similar to that used in the catadiopthc Schmidtsystem. A Wood lens with a parabolic profile is used to provide all or most of the optical power. Coma is corrected by stop shifting and Spherical aberration is corrected by placing a powerless Wood lens corrector plate at the stop. 1.

  6. Plasmonic nanoparticles for a bottom-up approach to fabricate optical metamaterials

    NASA Astrophysics Data System (ADS)

    Dintinger, José; Scharf, Toralf

    2012-03-01

    We investigate experimentally metallic nanoparticle composites fabricated by bottom-up techniques as potential candidates for optical metamaterials. Depending on the plasmonic resonances sustained by individual NPs and their nanoscale organization into larger meta-atoms, various properties might emerge. Here, the focus of our contribution is on the fabrication and optical characterization of silver NP clusters with a spherical shape. We start with the characterisation of the "bulk" dielectric constants of silver NP inks by spectroscopic ellipsometry for different nanoparticle densities (i.e from strongly diluted dispersions to solid randomly packed films). The inks are then used to prepare spherical nanoparticle clusters by an oil-in water emulsion technique. The study of their optical properties demonstrates their ability to support Mie resonances in the visible. These resonances are associated with the excitation of a magnetic dipole, which constitutes a prerequisite to the realization of metamaterials with negative permeability.

  7. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu

    2006-07-10

    The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.

  8. Optical design of a high radiative flux solar furnace for Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riveros-Rosas, D.; Perez-Rabago, C.A.; Arancibia-Bulnes, C.A.

    2010-05-15

    In the present work, the optical design of a new high radiative flux solar furnace is described. Several optical configurations for the concentrator of the system have been considered. Ray tracing simulations were carried out in order to determine the concentrated radiative flux distributions in the focal zone of the system, for comparing the different proposals. The best configuration was chosen in terms of maximum peak concentration, but also in terms of economical and other practical considerations. It consists of an arrangement of 409 first surface spherical facets with hexagonal shape, mounted on a spherical frame. The individual orientation ofmore » the facets is corrected in order to compensate for aberrations. The design considers an intercepted power of 30 kW and a target peak concentration above 10,000 suns. The effect of optical errors was also considered in the simulations. (author)« less

  9. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  10. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  11. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  12. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  13. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  14. Using radiance predicted by the P3 approximation in a spherical geometry to predict tissue optical properties

    NASA Astrophysics Data System (ADS)

    Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John

    2001-01-01

    For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.

  15. Precision production: enabling deterministic throughput for precision aspheres with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Entezarian, Navid; Dumas, Paul

    2017-10-01

    Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.

  16. Effect of anisotropy on intensity fluctuations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2018-04-01

    For an optical spherical wave propagating in an oceanic turbulent medium, the effect of anisotropy on the received intensity fluctuations is investigated. For different anisotropy factors, the variations of the scintillation index vs. the ratio that determines the relative strength of temperature and salinity in the index fluctuations, the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, viscosity, link length and the wavelength are plotted. It is found that, for all the oceanic turbulence and the link parameters of interest, as the medium becomes more anisotropic, the intensity of the optical spherical wave fluctuates less. It is concluded that the performance of an optical wireless communication systems (OWCS) operating in anisotropic oceanic turbulence is better than the performance of OWCS operating in isotropic oceanic turbulence.

  17. Highly curved image sensors: a practical approach for improved optical performance

    NASA Astrophysics Data System (ADS)

    Guenter, Brian; Joshi, Neel; Stoakley, Richard; Keefe, Andrew; Geary, Kevin; Freeman, Ryan; Hundley, Jake; Patterson, Pamela; Hammon, David; Herrera, Guillermo; Sherman, Elena; Nowak, Andrew; Schubert, Randall; Brewer, Peter; Yang, Louis; Mott, Russell; McKnight, Geoff

    2017-06-01

    The significant optical and size benefits of using a curved focal surface for imaging systems have been well studied yet never brought to market for lack of a high-quality, mass-producible, curved image sensor. In this work we demonstrate that commercial silicon CMOS image sensors can be thinned and formed into accurate, highly curved optical surfaces with undiminished functionality. Our key development is a pneumatic forming process that avoids rigid mechanical constraints and suppresses wrinkling instabilities. A combination of forming-mold design, pressure membrane elastic properties, and controlled friction forces enables us to gradually contact the die at the corners and smoothly press the sensor into a spherical shape. Allowing the die to slide into the concave target shape enables a threefold increase in the spherical curvature over prior approaches having mechanical constraints that resist deformation, and create a high-stress, stretch-dominated state. Our process creates a bridge between the high precision and low-cost but planar CMOS process, and ideal non-planar component shapes such as spherical imagers for improved optical systems. We demonstrate these curved sensors in prototype cameras with custom lenses, measuring exceptional resolution of 3220 line-widths per picture height at an aperture of f/1.2 and nearly 100% relative illumination across the field. Though we use a 1/2.3" format image sensor in this report, we also show this process is generally compatible with many state of the art imaging sensor formats. By example, we report photogrammetry test data for an APS-C sized silicon die formed to a 30$^\\circ$ subtended spherical angle. These gains in sharpness and relative illumination enable a new generation of ultra-high performance, manufacturable, digital imaging systems for scientific, industrial, and artistic use.

  18. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  19. Determining spherical lens correction for astronaut training underwater.

    PubMed

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of <0.25 D between values. We devised a model to calculate the spherical spectacle lens correction needed to be worn underwater by National Aeronautics and Space Administration astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  20. Determining spherical lens correction for astronaut training underwater

    PubMed Central

    Porter, Jason; Gibson, C. Robert; Strauss, Samuel

    2013-01-01

    Purpose To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration (NASA) astronauts while training underwater. The replica space suit’s helmet contains curved visors that induce refractive power when submersed in water. Methods Anterior surface powers and thicknesses were measured for the helmet’s protective and inside visors. The impact of each visor on the helmet’s refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet’s total induced spherical power underwater and the astronaut’s manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. Results The helmet visors induced a total power of −2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (R = 0.971) with 70% of eyes having a difference in magnitude of < 0.25 D between values. Conclusions We devised a model to calculate the spherical spectacle lens correction needed to be worn underwater by National Aeronautics and Space Administration astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater. PMID:21623249

  1. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  2. Electromagnetic cloaking in higher order spherical cloaks

    NASA Astrophysics Data System (ADS)

    Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.

    2017-06-01

    The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.

  3. Measurement of spatio-temporal field distribution of THz pulses in electro-optic crystal by interferometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chizhov, P A; Ushakov, A A; Bukin, V V

    2015-05-31

    We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)

  4. Interferometric analysis of polishing surface with a petal tool

    NASA Astrophysics Data System (ADS)

    Salas-Sánchez, Alfonso; Leal-Cabrera, Irce; Percino Zacarias, Elizabeth; Granados-Agustín, Fermín S.

    2011-09-01

    In this work, we describe a phase shift interferometric monitoring of polishing processes produced by a petal tool over a spherical surface to obtain a parabolic surface. In the process, we used a commercial polishing machine; the purpose of this work is to have control of polishing time. To achieve this analysis, we used a Fizeau interferometer of ZYGO Company for optical shop testing, and the Durango software from Diffraction International Company. For data acquisition, simulation and evaluation of optical surfaces, we start polishing process with a spherical surface with 15.46 cm of diameter; a 59.9 cm of radius curvature and, with f/# 1.9.

  5. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  7. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-12-01

    All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.

  8. New spherical optical cavities with non-degenerated whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Kumagai, Tsutaru; Palma, Giuseppe; Prudenzano, Francesco; Kishi, Tetsuo; Yano, Tetsuji

    2017-02-01

    New spherical resonators with internal defects are introduced to show anomalous whispering gallery modes (WGMs). The defect induces a symmetry breaking spherical cavity and splits the WGMs. A couple of defects, a hollow sphere (bubble), and a hollow ring, have been studied. The hollow sphere was fabricated and the splitting of WGM was observed. In this paper, this "non-degenerated WGMs (non-DWGMs) resonance" in a microsphere with hollow defect structure is reviewed based on our research. The resonance of WGMs in a sphere is identified by three integer parameters: the angular mode number, l, azimuthal mode number m, and radial mode number, n. The placement of the defect such as a hollow ring or single bubble is shown to break symmetry and resolve the degeneracy concerning m. This induces a variety of resonant wavelengths of the spherical cavity. A couple of simulations using the eigenmode and transient analyses propose how the placed defects affect the WGM resonance in the spherical cavity. For the sphere with a single bubble defect, the experimentally observed resonances in Nd-doped tellurite glass microsphere with a single bubble are clarified to be due to the splitting of resonance modes, i.e., the existence of "non-DWGMs" in the sphere. The defect bubble plays a role of opening the optically wide gate to introduce excitation light for Nd3+ pumping using non-DWGMs in the sphere efficiently.

  9. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  10. Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  11. Results and Validation of MODIS Aerosol Retrievals over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  12. Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A type of telescope, invented by the Estonian optician Bernhard Schmidt (1879-1935), that is used to photograph large areas of the sky. Because, in its original design, it was useable only for photography, the instrument is also known as the Schmidt camera. The Schmidt uses a concave spherical mirror as its light collector and corrects for the optical defect, known as spherical aberration, that i...

  13. Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus

    PubMed Central

    Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung

    2016-01-01

    Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630

  14. Measurements of refractive index and size of a spherical drop from Gaussian beam scattering in the primary rainbow region

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron

    2018-03-01

    The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.

  15. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    PubMed Central

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  16. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    PubMed

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  17. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.

    PubMed

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-09-11

    To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.

  18. Multi-optical-axis measurement of freeform progressive addition lenses using a Hartmann-Shack wavefront sensor

    NASA Astrophysics Data System (ADS)

    Xiang, Huazhong; Guo, Hang; Fu, Dongxiang; Zheng, Gang; Zhuang, Songlin; Chen, JiaBi; Wang, Cheng; Wu, Jie

    2018-05-01

    To precisely measure the whole-surface characterization of freeform progressive addition lenses (PALs), considering the multi-optical-axis conditions is becoming particularly important. Spherical power and astigmatism (cylinder) measurements for freeform PALs, using a Hartmann-Shack wavefront sensor (HSWFS) are proposed herein. Conversion formulas for the optical performance results were provided as HSWFS Zernike polynomial expansions. For each selected zone, the studied PALs were placed and tilted to simulate the multi-optical-axis conditions. The results of two tested PALs were analyzed using MATLAB programs and represented as contour plots of the spherical equivalent and cylinder of the whole-surface. The proposed experimental setup can provide a high accuracy as well as a possibility of choosing 12 lines and positions of 193 measurement zones on the entire surface. This approach to PAL analysis is potentially an efficient and useful method to objectively evaluate the optical performances, in which the full lens surface is defined and expressed as the contour plots of power in different regions (i.e., the distance region, progressive region, and near region) of the lens for regions of interest.

  19. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1994-01-01

    A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.

  1. Employing the conventional edge-lighting technology into ultraviolet-range: a preliminary study by optical simulation

    NASA Astrophysics Data System (ADS)

    Ye, Linchao; Belloni, Paola; Möller, Knut

    2011-10-01

    Within the framework of a project conducted together with an industrial partner, a self-disinfecting operation interface with a glass panel is being developed. The concept of self-disinfection is based on the exploitation of the photocatalytical effect induced by a TiO2-coating on the glass surface under UV(A) light, which would make the touch screen antimicrobial. High-power UV-LEDs instead of conventional UV-lamps have been employed as light source. The main goal and challenge of the optical design is to generate an efficient and preferably homogeneous UV field on the TiO2-coated side while keeping the UV-LEDs concealed, i.e. invisible to the user. Therefore common backlighting systems have been used as reference and modified to meet the concrete requirements. Primary analysis and optical simulations have been performed with the software LightTools®. Several patterns for light redirection (i.e. 3D-spherical texture, 3D-rectangular texture and 2D-circular serigraph) have been investigated, compared and evaluated. Finally the pattern design which both fulfills all the predefined boundary conditions and simultaneously reduces the costs has been chosen.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-25

    In this photograph, the Hubble Space Telescope (HST) was being deployed on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery (STS-31 mission). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four spacewalks, new instruments were installed into the HST that had optical corrections. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. Photo Credit: NASA/Smithsonian Institution/Lockheed Corporation.

  3. Ultra-Light Precision Membrane Optics

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)

    2001-01-01

    SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.

  4. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1988-01-01

    A fiber-optic microphobe was used to analyze the spectral light gradients in benthic cyanobacterial mats with 50-micrometer depth resolution and 10-nm spectral resolution. Microcoleus chthononplastes mats were collected from hypersaline, coastal ponds at Guerrero Negro, Baja California. Gradients of spectral radiance, L, were measured at different angles through the mats and the spherically integrated scalar irradiance, Eo, was calculated. Maximal spectral light attenuation was found at the absorption peaks for the dominant photosynthetic pigments: chlorophyll a at 430 and 670 nm, carotenoids at 450-500 nm, phycocyanin at 620 nm, and bacteriochlorophyll a at 800-900 nm. Scattered light had a marked spectral effect on the scalar irradiance which near the mat surface reached up to 190% of the incident irradiance. The spherically integrated irradiance thus differed strongly from the incident irradiance both in total intensity and in spectral composition. These basic optical properties are important for the understanding of photosynthesis and light harvesting in benthic and epiphytic communities.

  5. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  6. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  7. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhauer, A. P.

    1989-07-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (/lambda/=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 /mu/m with a spherical mirror, and 25 /mu/m with an elliptical one. Elliptical mirrors have been acquiredmore » and are now being installed in the two grasshoppers at SSRL.« less

  8. Non-astigmatic imaging with matched pairs of spherically bent reflectors

    DOEpatents

    Bitter, Manfred Ludwig [Princeton, NJ; Hill, Kenneth Wayne [Plainsboro, NJ; Scott, Steven Douglas [Wellesley, MA; Feder, Russell [Newton, PA; Ko, Jinseok [Cambridge, MA; Rice, John E [N. Billerica, MA; Ince-Cushman, Alexander Charles [New York, NY; Jones, Frank [Manalapan, NJ

    2012-07-10

    Arrangements for the point-to-point imaging of a broad spectrum of electromagnetic radiation and ultrasound at large angles of incidence employ matched pairs of spherically bent reflectors to eliminate astigmatic imaging errors. Matched pairs of spherically bent crystals or spherically bent multi-layers are used for X-rays and EUV radiation; and matched pairs of spherically bent mirrors that are appropriate for the type of radiation are used with microwaves, infrared and visible light, or ultrasound. The arrangements encompass the two cases, where the Bragg angle--the complement to the angle of incidence in optics--is between 45.degree. and 90.degree. on both crystals/mirrors or between 0.degree. and 45.degree. on the first crystal/mirror and between 45.degree. and 90.degree. on the second crystal/mirror, where the angles of convergence and divergence are equal. For x-rays and EUV radiation, also the Bragg condition is satisfied on both spherically bent crystals/multi-layers.

  9. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.

    PubMed

    Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi

    2017-01-01

    We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.

  10. Off-axis mirror fabrication from spherical surfaces under mechanical stress

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon

    2013-09-01

    The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.

  11. Short spatial filters with spherical lenses for high-power pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdonov, K F; Soloviev, A A; Shaikin, A A

    We report possible employment of short spatial filters based on spherical lenses in a pulsed laser source (neodymium glass, 300 J, 1 ns). The influence of the spherical aberration on the quality of output radiation and coefficient of conversion to the second harmonics is studied. The ultra-short aberration spatial filter of length 1.9 m with an aperture of 122 mm is experimentally tested. A considerable shortening of multi-cascade pump lasers for modern petawatt laser systems is demonstrated by the employment of short spatial filters without expensive aspherical optics. (elements of laser systems)

  12. Ideal form of optical plasma lenses

    NASA Astrophysics Data System (ADS)

    Gordon, D. F.; Stamm, A. B.; Hafizi, B.; Johnson, L. A.; Kaganovich, D.; Hubbard, R. F.; Richardson, A. S.; Zhigunov, D.

    2018-06-01

    The canonical form of an optical plasma lens is a parabolic density channel. This form suffers from spherical aberrations, among others. Spherical aberration is partially corrected by adding a quartic term to the radial density profile. Ideal forms which lead to perfect focusing or imaging are obtained. The fields at the focus of a strong lens are computed with high accuracy and efficiency using a combination of eikonal and full Maxwell descriptions of the radiation propagation. The calculations are performed using a new computer propagation code, SeaRay, which is designed to transition between various solution methods as the beam propagates through different spatial regions. The calculations produce the full Maxwell vector fields in the focal region.

  13. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhao, Jian

    2014-06-25

    A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

  14. Optical properties of non-spherical desert dust particles in the terrestrial infrared - An asymptotic approximation approach

    NASA Astrophysics Data System (ADS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-07-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.

  15. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    NASA Astrophysics Data System (ADS)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  16. An algorithm for localization of optical disturbances in turbid media using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.

  17. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  18. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  19. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  20. Near re-entrant dense pattern optical multipass cell

    NASA Technical Reports Server (NTRS)

    Silver, Joel A. (Inventor)

    2007-01-01

    A multiple pass optical cell and method comprising providing a pair of opposed mirrors, one cylindrical and one spherical, introducing light into the cell via an entrance mechanism, and extracting light from the cell via an exit mechanism, wherein the entrance mechanism and exit mechanism are coextensive or non-coextensive.

  1. Optical aberrations measurement with a low cost optometric instrument

    NASA Astrophysics Data System (ADS)

    Furlan, Walter D.; Muñoz-Escrivá, L.; Pons, A.; Martínez-Corral, M.

    2002-08-01

    A simple experimental method for measuring optical aberrations of a single lens is proposed. The technique is based on the use of an optometric instrument employed for the assessment of the refractive state of the eye: the retinoscope. Experimental results for spherical aberration and astigmatism are obtained.

  2. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-08-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  3. A new Schwarzschild optical system for two-dimensional EUV imaging of MRX plasmas

    NASA Astrophysics Data System (ADS)

    Bolgert, P.; Bitter, M.; Efthimion, P.; Hill, K. W.; Ji, H.; Myers, C. E.; Yamada, M.; Yoo, J.; Zweben, S.

    2013-10-01

    This poster describes the design and construction of a new Schwarzschild optical system for two-dimensional EUV imaging of plasmas. This optical system consists of two concentric spherical mirrors with radii R1 and R2, and is designed to operate with certain angles of incidence θ1 and θ2. The special feature of this system resides in the fact that all the rays passing through the system are tangential to a third concentric circle; it assures that the condition for Bragg reflection is simultaneously fulfilled at each point on the two reflecting surfaces if the spherical mirrors are replaced by spherical multi-layer structures. A prototype of this imaging system will be implemented in the Magnetic Reconnection Experiment (MRX) at PPPL to obtain two-dimensional EUV images of the plasma in the energy range from 18 to 62 eV; the relative intensity of the emitted radiation in this energy range was determined from survey measurements with a photodiode. It is thought that the radiation at these energies is due to Bremsstrahlung and line emission caused by suprathermal electrons. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO).

  4. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  5. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  6. Influence of Shape and Gradient Refractive Index in the Accommodative Changes of Spherical Aberration in Nonhuman Primate Crystalline Lenses

    PubMed Central

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-01-01

    Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893

  7. Comparison of three techniques in measuring progressive addition lenses.

    PubMed

    Huang, Ching-Yao; Raasch, Thomas W; Yi, Allen Y; Sheedy, James E; Andre, Brett; Bullimore, Mark A

    2012-11-01

    To measure progressive addition lenses (PALs) by three techniques and to compare the differences across techniques. Five contemporary PALs (Varilux Comfort Enhanced, Varilux Physio Enhanced, Hoya Lifestyle, Shamir Autograph, and Zeiss individual) with plano distance power and a +2.00 diopters (D) add were evaluated under the condition of lateral displacement of the lens (no rotation and no tilt) using three methods. A Hartmann-Shack wavefront sensor (HSWFS) on a custom-built optical bench was used to capture and measure wavefront aberrations. A Rotlex Class Plus lens analyzer operating as a moiré interferometer was used to measure spherical and cylindrical powers. A coordinate measuring machine (CMM) was used to measure front and back surfaces of PALs and converted to desired optical properties. The data were analyzed with MATLAB programs. Contour plots of spherical equivalent power, cylindrical power, and higher-order aberrations (HOAs) in all PALs were generated to compare their differences. The differences in spherical equivalent and cylinder at distance, near, and progressive corridor areas among the HSWFS, Rotlex, and CMM methods were close to zero in all five PALs. The maximum differences are approximately 0.50 D and located below the near power zone and the edge areas of the lens when comparing the HSWFS and CMM with the Rotlex. HOAs measured both by the HSWFS and CMM were highest in the corridor area and the area surrounding the near zone in all PALs. The HOAs measured by the CMM were lower than those from the HSWFS by 0.02 to 0.04 μm. The three measurement methods are comparable for measuring spherical and cylindrical power across PALs. The non-optical method, CMM, can be used to evaluate the optical properties of a PAL by measuring front and back surface height measurements, although its estimates of HOAs are lower than those from the HSWFS.

  8. CORONAL PROPERTIES OF THE SEYFERT 1.9 GALAXY MCG-05-23-016 DETERMINED FROM HARD X-RAY SPECTROSCOPY WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baloković, M.; Harrison, F. A.; Esmerian, C. J.

    2015-02-10

    Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence.more » Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.« less

  9. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after myopic LASIK. [J Refract Surg. 2018;34(2):121-130.]. Copyright 2018, SLACK Incorporated.

  10. Nuclear matter parameters and optical model analysis of proton elastic scattering on the doubly magic nucleus 40Ca

    NASA Astrophysics Data System (ADS)

    Khalaf, A. M.; Khalifa, M. M.; Solieman, A. H. M.; Comsan, M. N. H.

    2018-01-01

    Owing to its doubly magic nature having equal numbers of protons and neutrons, the 40Ca nuclear scattering can be successfully described by the optical model that assumes a spherical nuclear potential. Therefore, optical model analysis was employed to calculate the elastic scattering cross section for p +40Ca interaction at energies from 9 to 22 MeV as well as the polarization at energies from 10 to 18.2 MeV. New optical model parameters (OMPs) were proposed based on the best fitting to experimental data. It is found that the best fit OMPs depend on the energy by smooth relationships. The results were compared with other OMPs sets regarding their chi square values (χ2). The obtained OMP's set was used to calculate the volume integral of the potentials and the root mean square (rms) value of nuclear matter radius of 40Ca. In addition, 40Ca bulk nuclear matter properties were discussed utilizing both the obtained rms radius and the Thomas-Fermi rms radius calculated using spherical Hartree-Fock formalism employing Skyrme type nucleon-nucleon force. The nuclear scattering SCAT2000 FORTRAN code was used for the optical model analysis.

  11. Morphology, topography, and optics of the orthokeratology cornea

    NASA Astrophysics Data System (ADS)

    Faria-Ribeiro, Miguel; Belsue, Rafael Navarro; López-Gil, Norberto; González-Méijome, José Manuel

    2016-07-01

    The goal of this work was to objectively characterize the external morphology, topography, and optics of the cornea after orthokeratology (ortho-k). A number of 24 patients between the ages of 17 and 30 years (median=24 years) were fitted with Corneal Refractive Therapy® contact lenses to correct myopia between -2.00 and -5.00 diopters (D) (median=-3.41 D). A classification algorithm was applied to conduct an automatic segmentation based on the mean local curvature. As a result, three zones (optical zone, transition zone, and peripheral zone) were delimited. Topographical analysis was provided through global and zonal fit to a general ellipsoid. Ray trace on partially customized eye models provided wave aberrations and retinal image quality. Monozone topographic description of the ortho-k cornea loses accuracy when compared with zonal description. Primary (C40) and secondary (C60) spherical aberration (SA) coefficients for a 5-mm pupil increased 3.68 and 19 times, respectively, after the treatments. The OZ area showed a strong correlation with C40 (r=-0.49, p<0.05) and a very strong correlation with C60 (r=0.78, p<0.01). The OZ, as well as the TZ, areas did not correlate with baseline refraction. The increase in the eye's positive SA after ortho-k is the major factor responsible for the decreased retinal optical quality of the unaccommodated eye.

  12. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  13. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  14. Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Lu, Ming; Zhang, Xiao-Xiao

    2018-05-01

    We solve the Weyl electron scattered by a spherical step potential barrier. Tuning the incident energy and the potential radius, one can enter both quasiclassical and quantum regimes. Transport features related to far-field currents and integrated cross sections are studied to reveal the preferred forward scattering. In the quasiclassical regime, a strong focusing effect along the incident spherical axis is found in addition to optical caustic patterns. In the quantum regime, at energies of successive angular momentum resonances, a polar aggregation of electron density is found inside the potential. The findings will be useful in transport studies and electronic lens applications in Weyl systems.

  15. Influence of spherical aberration, stimulus spatial frequency, and pupil apodisation on subjective refractions

    PubMed Central

    Bradley, Arthur; Xu, Renfeng; Thibos, Larry; Marin, Gildas; Hernandez, Martha

    2014-01-01

    Purpose To test competing hypotheses (Stiles Crawford pupil apodising or superior imaging of high spatial frequencies by the central pupil) for the pupil size independence of subjective refractions in the presence of primary spherical aberration. Methods Subjective refractions were obtained with a variety of test stimuli (high contrast letters, urban cityscape, high and low spatial frequency gratings) while modulating pupil diameter, levels of primary spherical aberration and pupil apodisation. Subjective refractions were also obtained with low-pass and high-pass stimuli and using “darker” and “sharper” subjective criteria. Results Subjective refractions for stimuli containing high spatial frequencies focus a near paraxial region of the pupil and are affected only slightly by level of Seidel spherical aberration, degree of pupil apodisation and pupil diameter, and generally focused a radius of about 1 to 1.5 mm from the pupil centre. Low spatial frequency refractions focus a marginal region of the pupil, and are significantly affected by level of spherical aberration, amount of pupil apodisation, and pupil size. Clinical refractions that employ the “darker” or “sharper” subjective criteria bias the patient to use lower or higher spatial frequencies respectively. Conclusions In the presence of significant levels of spherical aberration, the pupil size independence of subjective refractions occurs with or without Stiles Crawford apodisation for refractions that optimise high spatial frequency content in the image. If low spatial frequencies are optimised by a subjective refraction, spherical refractive error varies with spherical aberration, pupil size, and level of apodisation. As light levels drop from photopic to scotopic, therefore, we expect a shift from pupil size independent to pupil size dependent subjective refractions. Emphasising a “sharper” criterion during subjective refractions will improve image quality for high spatial frequencies and generate pupil size independent refractions. PMID:24397356

  16. Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Paspalakis, E.

    2018-05-01

    We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.

  17. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  18. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  19. Accounting for optical errors in microtensiometry.

    PubMed

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Spherical Model of Interests in Croatia

    ERIC Educational Resources Information Center

    Sverko, Iva

    2008-01-01

    In order to analyze the validity of spherical model of interests in Croatia, three Croatian samples of primary school students (N = 437), secondary school students (N = 540) and university students (N = 630) were administered a translated version of the Personal Globe Inventory (PGI, [Tracey, T.J.G. (2002). Personal Globe Inventory: Measurement of…

  1. Treating presbyopia without spectacles

    NASA Astrophysics Data System (ADS)

    Xu, Renfeng

    Both multifocal optics and small pupils can increase the depth of focus (DoF) of presbyopes. This thesis will evaluate some of the unique challenges faced by each of these two strategies. First, there is no single spherical refracting lens that can focus all parts of the pupil of an aberrated eye. What is the objective and subjective spherical refractive error (Rx) for such an eye, and does it vary with the amount of primary SA? Using both computational modeling and psychophysical methods, we found that high levels of positive Seidel SA caused both objective and subjective refractions to become myopic. Significantly, this refractive shift varied with stimulus spatial frequency and subjective criterion. Second, although secondary SA can dramatically expand DoF, we show that this is mostly due to the lower order components within this polynomial, which can also change spherical Rx. Also, the r6 term that defines secondary SA actually narrows rather than expands DoF, when in the presence of the r4 term within Z60. Finally, as retinal illuminance drops, neural thresholds are elevated due to increased problems of photon noise. We asked if the gains in near and distant vision of presbyopes anticipated at high light levels would be cancelled or even reversed at low light levels because of the additional reduction in retinal illuminance contributed by small pupils. We found that when light levels are > 2 cd/m2, a small pupil with a diameter of 2--3mm improves near image quality, near visual acuity, and near reading speed without significant loss of distance image quality and distance vision. This result gains added significance because we also showed that low light level text in the urban environment always has luminance levels > 2 cd/m2. In conclusion, both small pupils and multifocal optics face significant challenges as near vision aids for presbyopes. However, some of the confounding effects of elevated SA levels are avoided by using small pupils to expand DoF, which can provide improved near and distance vision at most light levels encountered while reading.

  2. Retrieval of Aerosol Optical Properties from Ground-Based Remote Sensing Measurements: Aerosol Asymmetry Factor and Single Scattering Albedo

    NASA Astrophysics Data System (ADS)

    Qie, L.; Li, Z.; Li, L.; Li, K.; Li, D.; Xu, H.

    2018-04-01

    The Devaux-Vermeulen-Li method (DVL method) is a simple approach to retrieve aerosol optical parameters from the Sun-sky radiance measurements. This study inherited the previous works of retrieving aerosol single scattering albedo (SSA) and scattering phase function, the DVL method was modified to derive aerosol asymmetric factor (g). To assess the algorithm performance at various atmospheric aerosol conditions, retrievals from AERONET observations were implemented, and the results are compared with AERONET official products. The comparison shows that both the DVL SSA and g were well correlated with those of AERONET. The RMSD and the absolute value of MBD deviations between the SSAs are 0.025 and 0.015 respectively, well below the AERONET declared SSA uncertainty of 0.03 for all wavelengths. For asymmetry factor g, the RMSD deviations are smaller than 0.02 and the absolute values of MBDs smaller than 0.01 at 675, 870 and 1020 nm bands. Then, considering several factors probably affecting retrieval quality (i.e. the aerosol optical depth (AOD), the solar zenith angle, and the sky residual error, sphericity proportion and Ångström exponent), the deviations for SSA and g of these two algorithms were calculated at varying value intervals. Both the SSA and g deviations were found decrease with the AOD and the solar zenith angle, and increase with sky residual error. However, the deviations do not show clear sensitivity to the sphericity proportion and Ångström exponent. This indicated that the DVL algorithm is available for both large, non-spherical particles and spherical particles. The DVL results are suitable for the evaluation of aerosol direct radiative effects of different aerosol types.

  3. The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas

    DTIC Science & Technology

    2013-06-01

    GEO) satellite data are imported into STK and plotted to visualize the regions of the sky that the spherical reflector must have line of sight for...Magnetic Conductor PO Physical Optics STK Systems Tool Kit TE Transverse Electric xvii Acronym Definition TLE Two Line Element TM Transverse Magnetic...study for the spherical reflector, Systems Tool Kit ( STK ) software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped

  4. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  5. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  6. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  7. Numerical analysis of electrically tunable aspherical optofluidic lenses.

    PubMed

    In this work, we use the numerical simulation platform Zemax to investigate the optical properties of electrically tunable aspherical liquid lenses, as we recently reported in an experimental study [ K. Mishra C. Murade B. Carreel I. Roghair J. M. Oh G. Manukyan D. van den Ende F. Mugele , "Optofluidic lens with tunable focal length and asphericity," Sci. Rep.4, 6378 (2014)]. Based on the measured lens profiles in the presence of an inhomogeneous electric field and the geometry of the optical device, we calculate the optical aberrations, focusing in particular on the Z11 Zernike coefficient of spherical aberration obtained at zero defocus (Z4). Focal length and spherical aberrations are calculated for a wide range of control parameters (fluid pressure and electric field), parallel with the experimental results. Similarly, the modulation transfer function (MTF), image spot diagrams, Strehl's ratio, and peak-to-valley (P-V) and root mean square (RMS) wavefront errors are calculated to quantify the performance of our aspherical liquid lenses. We demonstrate that the device concept allows compensation for a wide range of spherical aberrations encountered in optical systems.; Mishra, Kartikeya; Mugele, Frieder

    2016-06-27

    In this work, we use the numerical simulation platform Zemax to investigate the optical properties of electrically tunable aspherical liquid lenses, as we recently reported in an experimental study [ K. Mishra C. Murade B. Carreel I. Roghair J. M. Oh G. Manukyan D. van den Ende F. Mugele , "Optofluidic lens with tunable focal length and asphericity," Sci. Rep.4, 6378 (2014)]. Based on the measured lens profiles in the presence of an inhomogeneous electric field and the geometry of the optical device, we calculate the optical aberrations, focusing in particular on the Z11 Zernike coefficient of spherical aberration obtained at zero defocus (Z4). Focal length and spherical aberrations are calculated for a wide range of control parameters (fluid pressure and electric field), parallel with the experimental results. Similarly, the modulation transfer function (MTF), image spot diagrams, Strehl's ratio, and peak-to-valley (P-V) and root mean square (RMS) wavefront errors are calculated to quantify the performance of our aspherical liquid lenses. We demonstrate that the device concept allows compensation for a wide range of spherical aberrations encountered in optical systems.

  8. Investigation on plasmonic responses in multilayered nanospheres including asymmetry and spatial nonlocal effects

    NASA Astrophysics Data System (ADS)

    Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj

    2017-12-01

    In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.

  9. Fish Tank Optics.

    ERIC Educational Resources Information Center

    McCausland, Stuart; Allard, Brian

    1997-01-01

    Describes procedures for a demonstration of the focal length of spherical lenses and mirrors using an aquarium, a flashlight, and nondairy creamer. Enables nonquantitative three-dimensional observation of these phenomena. (DDR)

  10. Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2006-01-01

    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.

  11. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  12. Bragg x-ray optics for imaging spectroscopy of plasma microsources.

    PubMed

    Pikuz, T A; Ya Faenov, A; Pikuz, S A; Romanova, V M; Shelkovenko, T A

    1995-01-01

    Bragg x-ray optics based on crystals with transmission and reflection properties bent on cylindrical or spherical surfaces are discussed. Applications of such optics for obtaining one- and two-dimensional monochromatic images of different plasma sources in the wide spectral range 1-20 Å are described. Samples of spectra obtained with spectral resolution of up to λ/Δλ ~ 10,000 and spatial resolution of up to 18 μm are presented.

  13. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis)more » spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.« less

  14. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology.

    PubMed

    Benard, Yohann; Lopez-Gil, Norberto; Legras, Richard

    2010-12-01

    To study the impact on the subjective depth of field of 4th-order spherical aberration and its combination with 6th-order spherical aberration and analyze the accuracy of image-quality metrics in predicting the impact. Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France. Case series. Subjective depth of field was defined as the range of defocus at which the target (3 high-contrast letters at 20/50) was perceived acceptable. Depth of field was measured using 0.18 diopter (D) steps in young subjects with the addition of the following spherical aberration values: ±0.3 μm and ±0.6 μm 4th-order spherical aberration with 3.0 mm and 6.0 mm pupils and ±0.3 μm 4th-order spherical aberration with ±0.1 μm 6th-order spherical aberration for 6.0 mm pupils. The addition of ±0.3 and ±0.6 μm 4th-order spherical aberration increased depth of field by 30% and 45%, respectively. The combination of 4th-order spherical aberration and 6th-order spherical aberration of opposite signs increased depth of field more than 4th-order spherical aberration alone (ie, 63%), while the combination of 4th-order spherical aberration and 6th-order spherical aberration of the same signs did not (ie, 24%). Whereas the midpoint of the depth of field could be predicted by image-quality metrics, none was found a good predictor of objectionable depth of field. Subjective depth of field increased when 4th-order spherical aberration and 6th-order spherical aberration of opposite signs were added but could not be predicted with image-quality metrics. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. 3D optical tomography in the presence of void regions

    NASA Astrophysics Data System (ADS)

    Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel

    2000-12-01

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  16. 3D optical tomography in the presence of void regions.

    PubMed

    Riley, J; Dehghani, H; Schweiger, M; Arridge, S; Ripoll, J; Nieto-Vesperinas, M

    2000-12-18

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  17. The Geometrical Optics PSF with Third Order Aberrations

    NASA Astrophysics Data System (ADS)

    Díaz-Uribe, Rufino; Campos-García, Manuel

    2008-04-01

    In this paper the calculation of the GPSF from the Geometrical Optics Irradiance Law (GOIL) is recalled, including some details not found in other references. Also it is explored an alternative solution based on the Irradiance Transport Equation (ITE). Some simulations of images of an extended object produced by an image forming instrument affected by spherical aberration are shown.

  18. Nanoshells as a high-pressure gauge

    NASA Astrophysics Data System (ADS)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  19. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  20. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  1. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  2. Application of close-packed structures in dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-03-01

    The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Spectrally controlled interferometry for measurements of flat and spherical optics

    NASA Astrophysics Data System (ADS)

    Salsbury, Chase; Olszak, Artur G.

    2017-10-01

    Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.

  4. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study.

    PubMed

    Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio

    2013-09-09

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.

  5. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  6. Optical trapping performance of dielectric-metallic patchy particles

    PubMed Central

    Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.

    2015-01-01

    We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054

  7. AERONET-Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping

    2017-10-01

    Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

  8. Exact optics - III. Schwarzschild's spectrograph camera revised

    NASA Astrophysics Data System (ADS)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  9. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.

    PubMed

    Marcos, Susana; Rosales, Patricia; Llorente, Lourdes; Barbero, Sergio; Jiménez-Alfaro, I

    2008-01-01

    It is well known that the aberrations of the cornea are partially compensated by the aberrations of the internal optics of the eye (primarily the crystalline lens) in young subjects. This effect has been found not only for the spherical aberration, but also for horizontal coma. It has been debated whether the compensation of horizontal coma is the result of passive mechanism [Artal, P., Benito, A., & Tabernero, J. (2006). The human eye is an example of robust optical design. Journal of Vision, 6 (1), 1-7] or through an active developmental feedback process [Kelly, J. E., Mihashi, T., & Howland, H. C. (2004). Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. Journal of Vision, 4 (4), 262-271]. In this study we investigate the active or passive nature of the horizontal coma compensation using eyes with artificial lenses, where no active developmental process can be present. We measured total and corneal aberrations, and lens tilt and decentration in a group of 38 eyes implanted with two types of intraocular lenses designed to compensate the corneal spherical aberration of the average population. We found that spherical aberration was compensated by 66%, and horizontal coma by 87% on average. The spherical aberration is not compensated at an individual level, but horizontal coma is compensated individually (coefficients of correlation corneal/internal aberration: -0.946, p<0.0001). The fact that corneal (but not total) horizontal coma is highly correlated with angle lamda (computed from the shift of the 1st Purkinje image from the pupil center, for foveal fixation) indicates that the compensation arises primarily from the geometrical configuration of the eye (which generates horizontal coma of opposite signs in the cornea and internal optics). The amount and direction of tilts and misalignments of the lens are comparable to those found in young eyes, and on average tend to compensate (rather than increase) horizontal coma. Computer simulations using customized model eyes and different designs of intraocular lenses show that, while not all designs produce a compensation of horizontal coma, a wide range of aspheric biconvex designs may produce comparable compensation to that found in young eyes with crystalline lenses, over a relatively large field of view. These findings suggest that the lens shape, gradient index or foveal location do not need to be fine-tuned to achieve a compensation of horizontal coma. Our results cannot exclude a fine-tuning for the orientation of the crystalline lens, since cataract surgery seems to preserve the position of the capsule.

  10. A strategy for recovery: Report of the HST Strategy Panel

    NASA Technical Reports Server (NTRS)

    Brown, R. A. (Editor); Ford, H. C. (Editor)

    1991-01-01

    The panel met to identify and assess strategies for recovering the Hubble Space Telescope (HST) capabilities degraded by a spherical aberration. The panels findings and recommendations to correct the problem with HST are given. The optical solution is a pair of mirrors for each science instrument field of view. The Corrective Optics Space Telescope Axial Replacement (COSTAR) is the proposed device to carry and deploy the corrective optics. A 1993 servicing mission is planned.

  11. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  12. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  13. Wave front engineering by means of diffractive optical elements for applications in microscopy

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo

    2006-05-01

    We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.

  14. Impact of spherical nanoparticles on nematic order parameters

    NASA Astrophysics Data System (ADS)

    Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.

    2018-04-01

    We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.

  15. Polarization-resolved simulations of multiple-order rainbows using realistic raindrop shapes

    NASA Astrophysics Data System (ADS)

    Haußmann, Alexander

    2016-05-01

    This paper presents selected results of a simulation study of the first five (primary-quinary) rainbow orders based on a realistic, size-dependent shape model for falling raindrops, taking into account that the drops' bottom part is flattened to higher degree than the dome-like top part. Moreover, broad drop size distributions are included in the simulations, as it is one goal of this paper to analyze, whether the predicted amplification and attenuation patterns for higher-order rainbows, as derived from previous simulations with monodisperse drop sizes, will still be pronounced under the conditions of natural rainfall. Secondly, deviations of the multiple rainbow orders' polarization state from the reference case of spherical drops are discussed. It is shown that each rainbow order may contain a small amount of circularly polarized light due to total internal reflections. Thirdly, it is investigated, how the conditions that generate twinned primary rainbows will affect the higher orders. For the simulations, geometric-optic ray tracing of the full Stokes vector as well as an approximate approach using appropriately shifted Debye series data is applied.

  16. Evaluation of image quality in a Cassegrain-type telescope with an oscillating secondary mirror

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Matthews, S.

    1975-01-01

    A ray-trace analysis is described of aberrations and extreme rays of a Cassegrain-type telescope with a tilted secondary mirror. The work was motivated by the need to understand the factors limiting image quality and to assist in the design of secondary mirrors for three telescopes with oscillating secondary mirrors (OSM) used at Ames Research Center for high altitude infrared astronomy. The telescopes are a 31-cm-diameter Dall-Kirkham (elliptical primary, spherical secondary) flown aboard a Lear jet, a 71-cm balloon-borne Dall-Kirkham flown on the AIROscope gondola, and a 91-cm true Cassegrain (parabolic primary, hyperbolic secondary) flown aboard a C-141 jet transport. The optics for these telescopes were not designed specifically for OSM operation, but all have OSM's and all must be used with various detector configurations; therefore, a facility that evaluates the performance of a telescope for a given configuration is useful. The analytical expressions are summarized and results for the above systems are discussed. Details of the calculation and a discussion of the computer program are given in the appendices.

  17. Multiple-port valve

    DOEpatents

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  18. New machining method of high precision infrared window part

    NASA Astrophysics Data System (ADS)

    Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin

    2016-10-01

    Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.

  19. Ocular higher-order aberrations in a school children population.

    PubMed

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K; Pallikaris, Ioannis G; Plainis, Sotiris

    2015-01-01

    The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. A sample of 557 children aged 10-15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7±0.5 years), group II (12.4±0.5 years) and group III (14.5±0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4lux). Wavefront analysis was achieved for a 5mm pupil. Statistical analysis was carried out for the right eye only. The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076μm) and horizontal (0.018μm) coma, oblique trefoil (-0.055μm) and spherical aberration (0.018μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007μm (SE 0.005) in group I to 0.011μm (SE 0.004) in group II and 0.030μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  20. Ocular higher-order aberrations in a school children population

    PubMed Central

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K.; Pallikaris, Ioannis G.; Plainis, Sotiris

    2014-01-01

    Purpose The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. Methods A sample of 557 children aged 10–15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7 ± 0.5 years), group II (12.4 ± 0.5 years) and group III (14.5 ± 0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4 lux). Wavefront analysis was achieved for a 5 mm pupil. Statistical analysis was carried out for the right eye only. Results The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076 μm) and horizontal (0.018 μm) coma, oblique trefoil (−0.055 μm) and spherical aberration (0.018 μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007 μm (SE 0.005) in group I to 0.011 μm (SE 0.004) in group II and 0.030 μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Conclusions Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. PMID:25288226

  1. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  2. Spherical loudspeaker array for local active control of sound.

    PubMed

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  3. Paraboloid-aspheric lenses free of spherical aberration

    NASA Astrophysics Data System (ADS)

    Lozano-Rincón, Ninfa del C.; Valencia-Estrada, Juan Camilo

    2017-07-01

    A method to design singlet paraboloid-aspheric lenses free of all orders of spherical aberration with maximum aperture is described. This work includes all parametric formulas to describe paraboloid-aspheric or aspheric-paraboloid lenses for any finite conjugated planes. It also includes the Schwarzchilds approximations (which can be used to calculate one rigorous propagation of light waves in physic optics) to design convex paraboloid-aspheric lenses for imaging an object at infinity, with explicit formulas to calculate thicknesses easily. The results were verified with software through ray tracing.

  4. High spectral resolution lidar using spherical Fabry-Perot to measure aerosol and atmospheric molecular density

    NASA Astrophysics Data System (ADS)

    Yann, Caraty; Alain, Hauchecorne; Philippe, Keckhut; Jean-François, Mariscal; Eric, Dalmeida

    2018-04-01

    In theory, the HSRL method should expand the validity range of the atmospheric molecular density and temperature profiles of the Rayleigh LIDAR in the UTLS below 30 km, with an accuracy of 1 K, while suppressing the particle contribution. We tested a Spherical Fabry-Perot which achieves these performances while keeping a big flexibility in optical alignment. However, this device has some limitations (thermal drift and a possible partial depolarisation of the backscattered signal).

  5. Autonomous omnidirectional spacecraft antenna system

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.

    1983-01-01

    The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.

  6. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  7. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  8. Technology Applications Report 1993

    DTIC Science & Technology

    1994-01-01

    Companies Find Riches in Acousto-Optics 39 BMD Research Spurs Growth of Optics Start-Up 40 Improved Mirror Shaping Techniques to Correct Hubble...without destroying spectral bands along the horizon- tal axis. By developing toroidal mirrors that correct the vertical image, Chromex, Inc. was...which provide better image resolution and wider field-of-view than standard spherical-shaped mirrors , but are more difficult to make. PACE can

  9. Optical Synchrotron Precursors of Radio Hypernovae

    NASA Astrophysics Data System (ADS)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nagakura, Hiroki; Suwa, Yudai; Nakamura, Takashi

    2015-06-01

    We examine the bright radio synchrotron counterparts of low-luminosity gamma-ray bursts and relativistic supernovae (SNe) and find that they can be powered by spherical hypernova (HN) explosions. Our results imply that radio-bright HNe are driven by relativistic jets that are choked deep inside the progenitor stars or quasi-spherical magnetized winds from fast-rotating magnetars. We also consider the optical synchrotron counterparts of radio-bright HNe and show that they can be observed as precursors several days before the SN peak with an r-band absolute magnitude of {{M}r}∼ -14 mag. While previous studies suggested that additional trans-relativistic components are required to power the bright radio emission, we find that they overestimated the energy budget of the trans-relativistic component by overlooking some factors related to the minimum energy of non-thermal electrons. If an additional trans-relativistic component exists, then a much brighter optical precursor with {{M}r}∼ -20 mag can be expected. Thus, the scenarios of radio-bright HNe can be distinguished by using optical precursors, which can be detectable from ≲ 100 Mpc by current SN surveys like the Kiso SN Survey, Palomar Transient Factory, and Panoramic Survey Telescope & Rapid Response System.

  10. One-dimensional ion-beam figuring for grazing-incidence reflective optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Lin; Idir, Mourad; Bouet, Nathalie

    2016-01-01

    One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experimentsmore » of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. In conclusion, the surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.« less

  11. Aberration-free intraocular lenses - What does this really mean?

    PubMed

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  12. A Practical Guide to Experimental Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  13. Comparisons between geometrical optics and Lorenz-Mie theory

    NASA Technical Reports Server (NTRS)

    Ungut, A.; Grehan, G.; Gouesbet, G.

    1981-01-01

    Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.

  14. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    PubMed

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  15. Determination of pitch rotation in a spherical birefringent microparticle

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  16. Controllable Planar Optical Focusing System

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    An optical device has a first metasurface disposed over a substrate. A high-contrast pattern of the first metasurface is operable for modifying, over a first phase profile, a phase front of an incident light beam. A second metasurface, is disposed over a plane parallel to the first metasurface with a second high-contrast pattern and operable for shaping, over a second phase profile, the modified phase front of the incident light beam into a converging spherical phase front. A spacer layer, in which the modified phase front of the incident light beam diffracts, is disposed in a controllably changeable separation between the first and second metasurfaces. Controllably changing the separation between the first and the second metasurfaces by a first distance correspondingly changes the position of the focus point of the converging spherical phase front by a second distance significantly greater than the first distance.

  17. Coherent and incoherent combination of Gaussian beams employing lens array distributed on the spherical chamber.

    PubMed

    Huang, Zhihua; Wei, Xiaofeng; Li, Mingzhong; Wang, Jianjun; Lin, Honghuan; Xu, Dangpeng; Deng, Ying; Zhang, Rui

    2012-04-01

    Coherent and incoherent combination of Gaussian beams employing a lens array distributed on the spherical chamber is theoretically analyzed. The output field of each source in the array is coupled through an individual optical system whose local optical axis coincides with the radial direction of the chamber. The resulting intensity profile near the origin is derived. The intensity profile and power in the bucket on the target for rectangular and hexagonal arrangement are numerically calculated. The influences of the center-to-center separation and the ring number of the focusing lens array are given. The synthetic intensity profile of incoherent combination changes little for a lens array scale much smaller than the chamber size. In contrast, the synthetic intensity profile of coherent combination shows an interference pattern with a sharp central peak and sidelobes.

  18. Power Profiles of Commercial Multifocal Soft Contact Lenses.

    PubMed

    Kim, Eon; Bakaraju, Ravi C; Ehrmann, Klaus

    2017-02-01

    To evaluate the optical power profiles of commercially available soft multifocal contact lenses and compare their optical designs. The power profiles of 38 types of multifocal contact lenses-three lenses each-were measured in powers +6D, +3D, +1D, -1D, -3D, and -6D using NIMO TR1504 (Lambda-X, Belgium). All lenses were measured in phosphate buffered saline across 8 mm optic zone diameter. Refractive index of each lens material was measured using CLR 12-70 (Index Instruments, UK), which was used for converting measured power in the medium to in-air radial power profiles. Three basic types of power profiles were identified: center-near, center-distance, and concentric-zone ring-type designs. For most of the lens types, the relative plus with respect to prescription power was lower than the corresponding spectacle add. For some lens types, the measured power profiles were shifted by up to 1D across the power range relative to their labeled power. Most of the lenses were designed with noticeable amounts of spherical aberration. The sign and magnitude of spherical aberration can either be power dependent or consistent across the power range. Power profiles can vary widely between the different lens types; however, certain similarities were also observed between some of the center-near designs. For the more recently released lens types, there seems to be a trend emerging to reduce the relative plus with respect to prescription power, include negative spherical aberration, and keep the power profiles consistent across the power range.

  19. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.

    PubMed

    Lee, Shong-Leih; Yang, Chao-Fu

    2008-11-24

    It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0-45 V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.

  20. Direct comparison of extinction coefficients derived from Mie-scattering lidar and number concentrations of particles, subjective weather report in Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki

    2015-03-01

    Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.

  1. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    PubMed

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  2. Cryogenic Optical Performance of a Light-weight Mirror Assembly for Future Space Astronomical Telescopes: Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William; Baker, Markus A.; Bevan, Ryan M.; Carpenter, James R.; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Kegley, Jeffrey R.; Hogue, William D.; hide

    2013-01-01

    A 40 cm diameter mirror assembly was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5 m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two face sheets. The 93% lightweighted Corning ULE mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  3. Large-aperture focusing of x rays with micropore optics using dry etching of silicon wafers.

    PubMed

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Aoki, Tatsuhiko; Morishita, Kohei; Nakajima, Kazuo

    2012-03-01

    Large-aperture focusing of Al K(α) 1.49 keV x-ray photons using micropore optics made from a dry-etched 4 in. (100 mm) silicon wafer is demonstrated. Sidewalls of the micropores are smoothed with high-temperature annealing to work as x-ray mirrors. The wafer is bent to a spherical shape to collect parallel x rays into a focus. Our result supports that this new type of optics allows for the manufacturing of ultralight-weight and high-performance x-ray imaging optics with large apertures at low cost. © 2012 Optical Society of America

  4. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  5. Review of optical freeform surface representation technique and its application

    NASA Astrophysics Data System (ADS)

    Ye, Jingfei; Chen, Lu; Li, Xinhua; Yuan, Qun; Gao, Zhishan

    2017-11-01

    Modern advanced manufacturing and testing technologies allow the application of freeform optical elements. Compared with traditional spherical surfaces, an optical freeform surface has more degrees of freedom in optical design and provides substantially improved imaging performance. In freeform optics, the representation technique of a freeform surface has been a fundamental and key research topic in recent years. Moreover, it has a close relationship with other aspects of the design, manufacturing, testing, and application of optical freeform surfaces. Improvements in freeform surface representation techniques will make a significant contribution to the further development of freeform optics. We present a detailed review of the different types of optical freeform surface representation techniques and their applications and discuss their properties and differences. Additionally, we analyze the future trends of optical freeform surface representation techniques.

  6. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced by straightforwardly utilizing Mie theory in dust aerosol retrieval. As expected we find that the uncertainties mainly result from the obvious difference of phase functions (Pspheric and Pspheroid). Errors may be positive or negative, depending on the specific geometry. In scattering angle (θ) regions where Psphericis greater (30°~85° & 145°~180°), we generally get positive Δ?TOA and negative Δ?, and vice versa (85°~145°). For low aerosol loading (? ~0.25) and black surface, |Δ?TOA| could be greater than 0.004 and 0.012 around θ ~120° and θ ~170°, with |Δ?| of ~0.04 and ~0.12 respectively. In most back scattering cases (θ >100°), the magnitude of Δ? is about ten times that of Δ?TOA, while this ratio (|Δ?|/|Δ?TOA|) significantly reduces to as low as ~0.5 for forward scattering, and can reach ~20 at θ ~145°. Moreover, this errors and |Δ?|/|Δ?TOA| can increase more than ten times as aerosol loading gets higher and surface gets brighter. Therefore we conclude that the neglect of non-sphericity introduces substantial errors on radiative transfer simulation and AOD retrieval. As a result of this study, a representative aspheric aerosol model other than Mie calculation is recommended for inversion algorithms related with dust-like non-spherical aerosols. References Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., and Slutsker, I. (2002). Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophyscal Research Letters, 29(10), 1415, doi:10.1029/2001GL014506. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208, doi:10.1029/2005JD006619. Mishchenko, M. I., Lacis, A. A., Carlson, B. E., and Travis, L. D. (1995). Nonsphericity of dust-like aerosols: Implications for aerosol remote sensing and climate modeling, Geophyscal Research Letters, 22, 1077- 1080. Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A. (1997). Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, Journal of Geophysical Research, 102, 16831- 16847.

  7. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  8. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA.

    PubMed

    Katz, J; Boni, R; Sorce, C; Follett, R; Shoup, M J; Froula, D H

    2012-10-01

    A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical mirrors coupled to a Pfund objective provides diffraction-limited imaging across all reflected wavelengths. This enables the operator to perform Thomson-scattering measurements of ultraviolet (0.263 μm) light scattered from electron plasma waves.

  9. Design and production of the digital optical module of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Leonora, Emanuele; Giordano, Valentina

    2017-03-01

    The KM3NeT collaboration is building the ARCA and ORCA neutrino telescopes in the depths of the Mediterranean Sea. They will consist of 3-dimensional arrays of photodetectors, called digital optical modules, suspended in the sea by means of vertical string structures, called detection units. The optical modules are composed of a pressure-resistant 17-inch spherical glass vessel, which contains 31 small photomultiplier tubes and all the associated electronics. The multi- photomultiplier solution represents an innovative design with respect to optical modules of all currently operated neutrino telescopes comprising a single large photomultipliers.

  10. Fractal scaling laws of black carbon aerosol and their influence on spectral radiative properties

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Chakrabarty, R. K.; Heinson, W.

    2016-12-01

    Current estimates of the direct radiative forcing for Black Carbon (BC) aerosol span over a poorly constrained range between 0.2 and 1 W.m-2. To improve this large uncertainty, tighter constraints need to be placed on BC's key wavelength-dependent optical properties, namely, the absorption (MAC) and scattering (MSC) cross sections per unit mass and hemispherical upscatter fraction (β; a dimensionless scattering directionality parameter). These parameters are very sensitive to changes in particle morphology and complex refractive index nindex. Their interplay determines the magnitude of net positive or negative radiative forcing efficiencies. The current approach among climate modelers for estimating MAC and MSC values of BC is from their optical cross-sections calculated assuming spherical particle morphology with homogeneous, constant-valued refractive index in the visible solar spectrum. The β values are typically assumed to be a constant across this spectrum. This approach, while being computationally inexpensive and convenient, ignores the inherent fractal morphology of BC and its scaling behaviors, and resulting optical properties. In this talk, I will present recent results from my laboratory on determination of the fractal scaling laws of BC aggregate packing density and its complex refractive index for size spanning across three orders of magnitude, and their effects on spectral (Visible-infrared wavelength) scaling of MAC, MSC, and β values. Our experiments synergistically combined novel BC generation techniques, aggregation models, contact-free multi-wavelength optical measurements, and electron microscopy analysis. The scale dependence of nindex on aggregate size followed power-law exponents of -1.4 and -0.5 for sub- and super-micron size aggregates, respectively. The spherical Rayleigh-optics approximation limits, used by climate models for spectral extrapolation of BC optical cross-sections and deconvolution of multi-species mixing ratios, are redefined using the concept of phase shift parameter. I will highlight the importance of size-dependent β values and its role in offsetting the strong light absorbing nature of BC. Finally, the errors introduced in forcing efficiency calculations of BC by assuming spherical homogeneous morphology will be evaluated.

  11. Models for randomly distributed nanoscopic domains on spherical vesicles

    NASA Astrophysics Data System (ADS)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  12. [Eyeglasses].

    PubMed

    Reiner, J

    1990-01-01

    Spectacles belong to the most ancient inventions in cultural history. Their development, however, cannot be regarded as final. New impetus has resulted in the creation of non-spherical lenses and, through the development of refractive lenses, in a more progressive optic effort.

  13. In-flight performance of the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.

    1991-01-01

    An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.

  14. Three-dimensional spherical models of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.

    1989-01-01

    Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.

  15. Telephoto axicon

    NASA Astrophysics Data System (ADS)

    Burvall, Anna; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    The axicon is an optical element which creates a narrow focal line along the optical axis, unlike the single focal point produced by a lens. The long and precisely defined axicon focal line is used e.g. in alignment, or to extend the depth of focus of existing methods such as optical coherence tomography or light sectioning. Axicons are generally manufactured as refractive cones or diffractive circular gratings. They are also made as lens systems or doublet lenses, which are easier to produce. We present a design in the form of a reflective-refractive single-element device with annular aperture. This very compact system has only two surfaces, which can be spherical or aspheric depending on the quality required of the focal line. Both surfaces have reflective coatings at specific zones, providing an annular beam suitable for generating extended focal lines. One draw-back of a normal axicon is its sensitivity to the angle of illumination. Even for relatively small angles, astigmatism will broaden the focus and give it an asteroid shape. For our design, with spherical surfaces concentric about the center of the entrance pupil, the focal line remains unchanged in off-axis illumination.

  16. The Influence of the Aspheric Profiles for Transition Zone on Optical Performance of Human Eye After Conventional Ablation

    NASA Astrophysics Data System (ADS)

    Fang, L.

    2014-12-01

    The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.

  17. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    NASA Astrophysics Data System (ADS)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  18. Influence of image charge effect on impurity-related optical absorption coefficients and refractive index changes in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.

    2017-03-01

    We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.

  19. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  20. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    PubMed Central

    Mammeri, Fayna; Ammar, Souad

    2018-01-01

    Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969

  1. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  2. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  3. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory.

    PubMed

    Zhong, Yi; Gross, Herbert

    2017-05-01

    Freeform surfaces play important roles in improving the imaging performance of off-axis optical systems. However, for some systems with high requirements in specifications, the structure of the freeform surfaces could be very complicated and the number of freeform surfaces could be large. That brings challenges in fabrication and increases the cost. Therefore, to achieve a good initial system with minimum aberrations and reasonable structure before implementing freeform surfaces is essential for optical designers. The already existing initial system design methods are limited to certain types of systems. A universal tool or method to achieve a good initial system efficiently is very important. In this paper, based on the Nodal aberration theory and the system design method using Gaussian Brackets, the initial system design method is extended from rotationally symmetric systems to general non-rotationally symmetric systems. The design steps are introduced and on this basis, two off-axis three-mirror systems are pre-designed using spherical shape surfaces. The primary aberrations are minimized using the nonlinear least-squares solver. This work provides insight and guidance for initial system design of off-axis mirror systems.

  4. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2004-07-01

    Seven years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The forthcoming Swift satellite will report few-arcsecond localizations for short-hard bursts in minutes, however, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then the short-hard bursts are signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding their observations.

  5. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  6. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE PAGES

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul; ...

    2017-03-28

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  7. Multifunctionality of chiton biomineralized armor with an integrated visual system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Connors, Matthew; Kolle, Mathias

    2015-11-20

    Nature provides a multitude of examples of multifunctional structural materials. There are often trade-offs in these materials because few of them are equally well suited for multiple tasks. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lens. Here, we used optical experiments to demonstrate directly, for the first time, that these microscopic, mineralized lenses are able to form images. Furthermore, our experiments revealed that the optical performance of these polycrystalline lenses is enhanced by the reduction of spherical aberration through the shape ofmore » the lens and that birefringence scattering is minimized by the use of relatively large, co-aligned grains (~10 μm as compared to ~1 μm in the non-eye regions). Additionally, we used multi-scale mechanical testing techniques to show that A. granulata’s lenses are an integral component of its biomineralized armor, but that both the intrinsic and overall mechanical properties of the lenses are compromised as compared to the primary solid regions of the armor plates. Our results demonstrate that as the size, complexity, and functionality of the integrated sensory elements increases, the local mechanical performance of the armor decreases. But, A. granulata has evolved several strategies to compensate for its local mechanical vulnerabilities to form a multifunctional system with co-optimized overall optical and structural functions.« less

  8. Numerical investigation on the Ångström exponent of black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Li, Ji; Liu, Chao; Yin, Yan; Kumar, K. Raghavendra

    2016-04-01

    Black carbon (BC) plays an important role on the global and regional climate, whereas there are significant uncertainties on its optical properties. Among various optical properties, the Ångström exponent (AE) indicates the spectral variation of the particle-optic interaction and is widely used to understand the aerosol properties. We consider the influence of BC geometry on its optical properties and assess the sensitivity of the AE to particle geometry and size distribution. The fractal aggregates with different fractal dimensions are used to represent realistic BC particles, and popular equivalent volume spherical and spheroidal models are also considered for comparison. Even if the fractal aggregates become highly compact and spherical, their optical properties are still significantly different from those of equivalent volume spheres or spheroids. Meanwhile, the Rayleigh-Debye-Gans approximation can hardly provide accurate results for all optical quantities of aggregates with different dimensions. The extinction Ångström exponent (EAE) and absorption Ångström exponent (AAE) are sensitive to both particle geometry and size distribution. With BC becoming more compact (from fractal aggregate to spheroid and to sphere), the AE becomes more sensitive to particle size distribution. The EAE and AAE of aggregates with different size distributions vary between 1.10-1.63 and 0.87-1.50, respectively, whereas those of the spheres or spheroids have wider ranges. Furthermore, the AE at smaller wavelengths (between 0.35 µm and 0.55 µm) is more sensitive to geometry and size distribution than that given by optical properties at larger wavelengths (between 0.55 µm and 0.88 µm).

  9. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  10. Development of a three-mirror anastigmat telescope for the GERB experiment

    NASA Astrophysics Data System (ADS)

    Gloesener, Pierre; Quertemont, Eric; Flebus, Carlo

    2017-11-01

    The GERB experiment, on-board Meteosat Second Generation, aims at monitoring the Earth radiation budget within a broad spectral range (0.32 -30 ‡m). This paper outlines the development of the GERB imaging subsystem, a f/2 three-mirror anastigmat telescope with a 18° x 0,28° rectangular field-of-view. The telescope is an all-aluminium design, comprising a primary off-axis elliptical mirror and two spherical ones, with a largest size of 100 mm. After integration and environmental testing, its global on-axis imaging performance reached 0,45 ‡ rms at 633 nm for an optical design value of 0,27 ‡ rms. The global opto-mechanical tolerance analysis of the design phase defined an integration sequence able to keep the individual alignment of each mirror within the accuracy needed to ascertain the whole telescope quality.

  11. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  12. Radiative transfer in spherical shell atmospheres. 2: Asymmetric phase functions

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Adams, C. N.

    1977-01-01

    The effects are investigated of sphericity on the radiation reflected from a planet with a homogeneous, conservative scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 is considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle.

  13. A Fast and Accurate Method of Radiation Hydrodynamics Calculation in Spherical Symmetry

    NASA Astrophysics Data System (ADS)

    Stamer, Torsten; Inutsuka, Shu-ichiro

    2018-06-01

    We develop a new numerical scheme for solving the radiative transfer equation in a spherically symmetric system. This scheme does not rely on any kind of diffusion approximation, and it is accurate for optically thin, thick, and intermediate systems. In the limit of a homogeneously distributed extinction coefficient, our method is very accurate and exceptionally fast. We combine this fast method with a slower but more generally applicable method to describe realistic problems. We perform various test calculations, including a simplified protostellar collapse simulation. We also discuss possible future improvements.

  14. Goos-Hänchen effect on Si thin films with spherical and cylindrical pores

    NASA Astrophysics Data System (ADS)

    Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel

    2018-02-01

    We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.

  15. Baseline Design of a 5-7 kJ KrF Laser Facility for Direct Illumination ICF Experiments.

    DTIC Science & Technology

    1985-12-31

    energies of 5-7 kJ, pulsewidths 5 ns, and broadband (> 20 45) capabilities, the proposed sys - tem is intended primarily for laser-plasma experiments...optics with mounts and align- ment hardware, (3) building, (4) chamber system, (5) oscillator, (6) I.S.I. array, and (7) control sys - tem. Each component...hence, for a spherical mirror, 2 - COA 3pDG (B14) NABE - NOMA 16f2?( Astigmatisnr~ (78)MAx 2CID92 -- (VL8)mlN; hence, for either a spherical mirror or

  16. High-resolution monochromatic x-ray imaging system based on spherically bent crystals.

    PubMed

    Aglitskiy, Y; Lehecka, T; Obenschain, S; Bodner, S; Pawley, C; Gerber, K; Sethian, J; Brown, C M; Seely, J; Feldman, U; Holland, G

    1998-08-01

    We have developed an improved x-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (d = .?, R = mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 mum in selected places and 2-3 mum over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 mum in selected places and 5 mum over the focal spot of the Nike laser.

  17. Extended Area Exit Pupil Viewer.

    DTIC Science & Technology

    1985-08-01

    viewing to normal Zoom-500 stereomicroscope viewing. Previous EAEP viewers typically have incorporated a spinning lenticular screen and associated...is uncorrected spherical aberration and astigmatism that limit image resolution. The complex optical path in the microscope also makes it inefficient

  18. Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations

    PubMed Central

    Domínguez, Jorge Bouza; Bérubé-Lauzière, Yves

    2011-01-01

    We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging. PMID:21483606

  19. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    PubMed

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  20. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    NASA Astrophysics Data System (ADS)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  1. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  2. Derivative matrices of a skew ray for spherical boundary surfaces and their applications in system analysis and design.

    PubMed

    Lin, Psang Dain

    2014-05-10

    In a previous paper [Appl. Opt.52, 4151 (2013)], we presented the first- and second-order derivatives of a ray for a flat boundary surface to design prisms. In this paper, that scheme is extended to determine the Jacobian and Hessian matrices of a skew ray as it is reflected/refracted at a spherical boundary surface. The validity of the proposed approach as an analysis and design tool is demonstrated using an axis-symmetrical system for illustration purpose. It is found that these two matrices can provide the search direction used by existing gradient-based schemes to minimize the merit function during the optimization stage of the optical system design process. It is also possible to make the optical system designs more automatic, if the image defects can be extracted from the Jacobian and Hessian matrices of a skew ray.

  3. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  4. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  5. Compact adaptive optic-optical coherence tomography system

    DOEpatents

    Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA

    2012-02-28

    Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.

  6. Compact adaptive optic-optical coherence tomography system

    DOEpatents

    Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA

    2011-05-17

    Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.

  7. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  8. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2009-01-01

    1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05

  9. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2010-09-30

    4271—4282 (1996). Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi... Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, T.J. Smyth, W.M. Balch, and G.C. Boynton, Light scattering by coccoliths...detached from Emiliania huxleyi, Applied Optics, 48, 6059–6073 (2009). [published, refereed] 5 H.R. Gordon, Some Reflections on 35 Years of

  10. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses.

    PubMed

    Lima, N C; Mishra, K; Mugele, F

    2017-03-20

    By means of numerical simulations, using a computational fluid dynamics software together with an optical ray tracing analysis platform, we show that we can tune various optical aberrations by electrically manipulating the shape of liquid lenses using one hundred individually addressable electrodes. To demonstrate the flexibility of our design, we define electrode patterns based on specific Zernike modes and show that aspherical, cylindrical and decentered shapes of liquid lenses can be produced. Using different voltages, we evaluate the tuning range of spherical aberration (Z11), astigmatism (Z5 and Z6) and coma (Z7), while a hydrostatic pressure is applied to control the average curvature of a microlens with a diameter of 1mm. Upon activating all electrodes simultaneously spherical aberrations of 0.15 waves at a pressure of 30Pa can be suppressed almost completely for the highest voltages applied. For astigmatic and comatic patterns, the values of Z5, Z6 and Z7 increase monotonically with the voltage reaching values up to 0.06, 0.06 and 0.2 waves, respectively. Spot diagrams, wavefront maps and modulation transfer function are reported to quantify the optical performance of each lens. Crosstalk and independence of tunability are discussed in the context of possible applications of the approach for general wavefront shaping.

  11. Variations on a theme: novel immersed grating based spectrometer designs for space

    NASA Astrophysics Data System (ADS)

    Agócs, T.; Navarro, R.; Venema, L.

    2017-11-01

    We present novel immersed grating (IG) based spectrometer designs that can be used in space instrumentation. They are based on the design approach that aims to optimize the optical design using the expanded parameter space that the IG technology offers. In principle the wavefront error (WFE) of any optical system the most conveniently can be corrected in the pupil, where in the case of the IG based spectrometer, the IG itself is positioned. By modifying existing three-mirror based optical systems, which can form the main part of double pass spectrometer designs, a large portion of the WFE of the optical system can be transferred to the pupil and to the IG. In these cases the IG can compensate simple low order aberrations of the system and consequently the main benefit is that the mirrors that tend to be off-axis conical sections can be substituted by spherical mirrors. The WFE budget of such designs has only a minor contribution from the very high quality spherical mirrors and the majority of the WFE can be then allocated to the most complex part of the system, the IG. The latter can be designed so that the errors are compensated by a special grating pattern that in turn can be manufactured using the expertise and experience of the semiconductor industry.

  12. Cryogenic Optical Performance of a Lightweighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William R.; Baker, Marcus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; hide

    2013-01-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  13. Advanced figure sensor operations and maintenance manual

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    This manual contains procedures for installing, operating, and maintaining the optical figure sensor and its associated electronic controls. The optical figure sensor, a system of integrated components, comprises: (1) a phase measuring modified interferometer employing a single frequency 6328 A laser, and a Vidissector; (2) a two-axis automatic thermal compensation control mount; (3) a five degree of freedom manual adjustment stand; and (4) a control console. This instrument provides real time output data of optical figure errors for spherical mirrors, and is also capable of measuring aspherical mirrors if a null corrector is added.

  14. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  15. Prospects for the Thomson scattering system on NSTX-Upgrade.

    PubMed

    Diallo, A; LeBlanc, B P; Labik, G; Stevens, D

    2012-10-01

    The paper discusses the projected configuration of the Thomson system on the National Spherical Torus Experiment (NSTX-U). In this paper, we discuss the projected configuration of the Thomson system on NSTX-U. More specifically, we determine, through both optical modeling of the collection optics and in-vessel measurements, that the collecting fibers are to be displaced by at most 1 cm toward the imaging plane along the optical axis. Finally, we estimate the performance of the Thomson system in measuring the electron temperature for NSTX-U discharges.

  16. Subjective Visual Performance and Objective Optical Quality With Intraocular Lens Glistening and Surface Light Scattering.

    PubMed

    Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing

    2018-06-01

    To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.

  17. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE PAGES

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; ...

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  18. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  19. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  20. Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators

    NASA Astrophysics Data System (ADS)

    Freeman, Lindsay M.; Li, Su; Dayani, Yasaman; Choi, Hong-Seok; Malmstadt, Noah; Armani, Andrea M.

    2011-04-01

    Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for self-assembling lipid bilayers on spherical microresonators is developed and the bilayer-nature is verified. Subsequently, the microcavity is used to excite a Cy5-conjugated lipid located within the bilayer while the optical performance of the microcavity is characterized. The emission wavelength of the dye and the optical behavior of the microcavity agree with theoretical predictions.

  1. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  2. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  3. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  4. Extended depth of focus adaptive optics spectral domain optical coherence tomography.

    PubMed

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-10-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

  5. Development of optical WGM resonators for biosensors

    NASA Astrophysics Data System (ADS)

    Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.

    2017-12-01

    Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.

  6. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    PubMed

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  7. Application of optical interferometry in focused acoustic field measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing; Sun, Min; Cao, Yonggang; Zhu, Jiang

    2018-07-01

    Optical interferometry has been successfully applied in measuring acoustic pressures in plane-wave fields and spherical-wave fields. In this paper, the "effective" refractive index for focused acoustic fields was developed, through numerical simulation and experiments, the feasibility of the optical method in measuring acoustic fields of focused transducers was proved. Compared with the results from a membrane hydrophone, it was concluded that the optical method has good spatial resolution and is suitable for detecting focused fields with fluctuant distributions. The influences of a few factors (the generated lamb wave, laser beam directivity, etc.) were analyzed, and corresponding suggestions were proposed for effective application of this technology.

  8. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.

    PubMed

    Yamaguchi, Takashi; Hinata, Takashi

    2007-09-03

    The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.

  9. Trace-transform invariants of tracks of high-velocity jets from the surface of tungsten droplets in the plasma flow

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Jordan, V.; Gulyaev, I.; Dolmatov, A.

    2017-05-01

    The paper presents the analysis of the recorded tracks of high-velocity emission in the air-argon plasma flow during breaking up of tungsten microdroplets. This new physical effect of optical emission involves two stages. The first one includes thermionic emission of electrons from the surface of the melted tungsten droplet of 100-200 μm size and formation of the charged sphere of 3-5 mm diameter. After it reaches the breakdown electric potential, it collapses and produces a spherical shock wave and luminous radiation. The second stage includes previously unknown physical phenomenon of narrowly directed energy jet with velocity exceeding 4000 m/s from the surface of the tungsten droplet. The luminous spherical collapse and high-velocity jets were recorded using CMOS photo-array operating in a global shutter charge storage mode. Special features of the CMOS array scanning algorithm affect formation of distinctive signs of the recorded tracks, which stay invariant to trace transform (TT) with specific functional. The series of concentric circles were adopted as primitive object models (patterns) used in TT at the spherical collapse stage and linear segment of fixed thickness - at the high-velocity emission stage. The two invariants of the physical object, motion velocity and optical brightness distribution in the motion front, were adopted as desired identification features of tracks. The analytical expressions of the relation of 2D TT parameters and physical object motion invariants were obtained. The equations for spherical collapse stage correspond to Radon-Nikodym transform.

  10. Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry.

    PubMed

    Mahdy, M R C; Danesh, Md; Zhang, Tianhang; Ding, Weiqiang; Rivy, Hamim Mahmud; Chowdhury, Ariful Bari; Mehmood, M Q

    2018-02-16

    The stimulating connection between the reversal of near-field plasmonic binding force and the role of symmetry-breaking has not been investigated comprehensively in the literature. In this work, the symmetry of spherical plasmonic heterodimer-setup is broken forcefully by shining the light from a specific side of the set-up instead of impinging it from the top. We demonstrate that for the forced symmetry-broken spherical heterodimer-configurations: reversal of lateral and longitudinal near-field binding force follow completely distinct mechanisms. Interestingly, the reversal of longitudinal binding force can be easily controlled either by changing the direction of light propagation or by varying their relative orientation. This simple process of controlling binding force may open a novel generic way of optical manipulation even with the heterodimers of other shapes. Though it is commonly believed that the reversal of near-field plasmonic binding force should naturally occur for the presence of bonding and anti-bonding modes or at least for the Fano resonance (and plasmonic forces mostly arise from the surface force), our study based on Lorentz-force dynamics suggests notably opposite proposals for the aforementioned cases. Observations in this article can be very useful for improved sensors, particle clustering and aggregation.

  11. Optical aberrations induced by subclinical decentrations of the ablation pattern

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo

    2000-06-01

    Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.

  12. Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs

    NASA Astrophysics Data System (ADS)

    Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo

    2016-01-01

    Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.

  13. Influence of the Doppler effect on radiative transfer in a spherical plasma under macroscopic motion of substance

    NASA Astrophysics Data System (ADS)

    Kosarev, N. I.

    2018-03-01

    The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.

  14. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  15. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation

    PubMed Central

    Einighammer, Jens; Oltrup, Theo; Bende, Thomas; Jean, Benedikt

    2010-01-01

    Purpose To describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery. Methods The model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated. Results The more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device. Conclusions The individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs.

  17. Broadband, Achromatic Twyman-Green Interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J.

    1991-01-01

    Improved Twyman-Green interferometer used in wave-front testing optical components at wavelengths from 200 to 1,100 nm, without having to readjust focus when changing wavelength. Built to measure aberrations of light passing through optical filters. Collimating and imaging lenses of classical Twyman-Green configuration replaced by single spherical mirror. Field lens replaced by field mirror. Mirrors exhibit no axial chromatic aberration and made to reflect light efficiently over desired broad range of wavelengths.

  18. Generating high-quality single droplets for optical particle characterization with an easy setup

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  19. Determination of Graphite-Liquid-Vapor Triple Point by Laser Heating

    DTIC Science & Technology

    1976-01-30

    difficulties in the temperature measure- ments, which were made with an optical pyrometer . He considered that the failure of graphite rod was caused by...temperature measurements were made with a calibrated optical pyrometer . Spherical shiny frozen droplets of graphite, 1 to 3 mm in diameter, indicated...0.8 mm in diameter and 10 mm long in argon until failure by rupture occurred. They measured the tempera- ture with a two-color pyrometer . The

  20. Bio-optical sensor for brain activity measurement based on whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Massoud, Yasmin M.

    2017-05-01

    In this paper, a high-resolution bio-optical sensor is developed for brain activity measurement. The aim is to develop an optical sensor with enough sensitivity to detect small electric field perturbations caused by neuronal action potential. The sensing element is a polymeric dielectric micro-resonator fabricated in a spherical shape with a few hundred microns in diameter. They are made of optical quality polymers that are soft which make them mechanically compatible with tissue. The sensors are attached to or embedded in optical fibers which serve as input/output conduits for the sensors. Hundreds or even thousands of spheres can be attached to a single fiber to detect and transmit signals at different locations. The high quality factor for the optical resonator makes it significantly used in such bio-medical applications. The sensing phenomenon is based on whispering gallery modes (WGM) shifts of the optical sensor. To mimic the brain signals, the spherical resonator is immersed in a homogeneous electrical field that is created by applying potential difference across two metallic plates. One of the plates has a variable voltage while the volt on the other plate kept fixed. Any small perturbations of the potential difference (voltage) lead to change in the electric field intensity. In turn the sensor morphology will be affected due to the change in the electrostriction force acting on it causing change in its WGM. By tracking these WGM shift on the transmission spectrum, the induced potential difference (voltage change) could be measured. Results of a mathematical model simulation agree well with the preliminary experiments. Also, the results show that the brain activity could be measured using this principle.

  1. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  2. Partial Wave Analysis of Coupled Photonic Structures

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.

  3. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.

    PubMed

    Pustovalov, V; Astafyeva, L; Jean, B

    2009-06-03

    Recently, several groups of investigators (Anderson, Halas, Zharov, El-Sayed and their co-workers (Pitsillides et al 2003 Biophys. J. 84 4023-31, Zharov et al 2003 Appl. Phys. Lett. 83 4897-9, Zharov et al 2004 Proc. SPIE 5319 291-9, Loo et al 2005 Nano Lett. 5 709-11, Gobin et al 2007 Nano Lett. 7 1929-34, Fu et al 2008 Nanotechnology 19 045103, Huang et al 2006 J. Am. Chem. Soc. 128 2115-20, Jain et al 2006 J. Phys. Chem. B 110 7238-48, Jain et al 2007 Nano Today 2 18-29)) demonstrated, through pioneering results, the great potential of laser thermal therapy of cells and tissues conjugated with gold nanoparticles. It was also proposed to use combined diagnostics and therapy on the basis of nanoparticle selection for achievement of efficient contrast for laser imaging applications, as well as for photothermal therapy. However, the current understanding of the relationship between optical properties (absorption, backscattering) of nanoparticles, the efficiency of nanoparticle heating and the possibility to use them for combined imaging and therapy is limited. Here, we report the results of computer modeling of optical absorption and backscattering properties and laser heating of gold and silica-gold spherical nanoparticles for laser combined imaging and photothermal treatment of cells and tissues conjugated with nanoparticles. The efficiencies of nanoparticle heating and backscattering by nanoparticles, depending upon their radii, structure and optical properties of the metal, were investigated. This paper focuses on the analysis and determination of appropriate ranges of nanoparticle sizes for the purposes of laser combined imaging and photothermal treatment. The possibility to use spherical gold and silica-gold nanoparticles in determined ranges of radii for these purposes for laser wavelengths 532 and 800 nm is investigated.

  4. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.

  5. Jetting from impact of a spherical drop with a deep layer

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration

    2011-11-01

    We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.

  6. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  7. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  8. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.

    PubMed

    Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu

    2016-05-16

    Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.

  9. Aberration correction considering curved sample surface shape for non-contact two-photon excitation microscopy with spatial light modulator.

    PubMed

    Matsumoto, Naoya; Konno, Alu; Inoue, Takashi; Okazaki, Shigetoshi

    2018-06-18

    In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones. Consequently, the fluorescence intensity and resolution of the obtained image are degraded in the deep regions. To improve them, we designed a pre-distortion wavefront for correcting the aberration caused by the curved sample surface shape by using a novel, simple optical path length difference calculation method. The excitation light wavefront is modulated to the pre-distortion wavefront by a spatial light modulator incorporated in the TPM system before passing through the interface, where the RI mismatch occurs. Thus, the excitation light is condensed without aberrations. Blood vessels were thereby observed up to an optical depth of 2,000 μm in a cleared mouse brain by using a dry objective lens.

  10. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.« less

  11. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  12. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  13. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  14. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.

  15. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.

    PubMed

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-08

    Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.

  16. The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.

    PubMed

    Marko, Michael; Rose, Harald

    2010-08-01

    Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.

  17. Structure and physics of solar faculae

    NASA Astrophysics Data System (ADS)

    Pecker, J.-C.; Dumont, S.; Mouradian, Z.

    1992-04-01

    The optical depths of layers in the chromosphere-corona transition (CCT) zone, which is responsible for resolved structures in CII, CIII, OIV, and OVI lines, were determined using a new method that takes into account the effect of roughness (or local departures from sphericity) of the emitting layers in the CCT zone. The method allows determination of the angle alpha typical of the roughness (in case of availability of resolved data) and the two optical depths tau-1 and tau-2. It is shown that, even in unresolved cases, the new method gives a more realistic determination of the optical depths than previously determined.

  18. Improved Electrostatic Optical System

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.

    1984-01-01

    Device suitable for molecular epitaxial formation of semiconductor components. Improved electrostatic lens system uses cylindrical mirror as central element between two tubular lenses. Abberations introduced by mirror tend to cancel those introduced by tubular lenses. Result is order-of-magnitude improvement in chromatic or spherical compensation.

  19. Optical Model and Cross Section Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  20. Graded-index optical dimer formed by optical force

    DOE PAGES

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria; ...

    2016-05-30

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  1. Graded-index optical dimer formed by optical force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  2. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  3. Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN.

    PubMed

    Sheil, Conor J; Goncharov, Alexander V

    2017-09-01

    The accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline lens is used to explore the age-related changes in ocular power and spherical aberration. The additional parameter m in the GRIN lens model allows decoupling of the axial and radial GRIN profiles, and is used to stabilise the age-related change in ocular power. Data for age-related changes in ocular geometry and lens parameter P in the axial GRIN profile were taken from published experimental data. In our age-dependent eye model, the ocular refractive power shows behaviour similar to the previously unexplained "lens paradox". Furthermore, ocular spherical aberration agrees with the data average, in contrast to the proposed "spherical aberration paradox". The additional flexibility afforded by parameter m , which controls the ratio of the axial and radial GRIN profile exponents, has allowed us to study the restructuring of the lens GRIN medium with age, resulting in a new interpretation of the origin of the power and spherical aberration paradoxes. Our findings also contradict the conceptual idea that the ageing eye is similar to the accommodating eye.

  4. The Etiology of Presbyopia, Contributing Factors, and Future Correction Methods

    NASA Astrophysics Data System (ADS)

    Hickenbotham, Adam Lyle

    Presbyopia has been a complicated problem for clinicians and researchers for centuries. Defining what constitutes presbyopia and what are its primary causes has long been a struggle for the vision and scientific community. Although presbyopia is a normal aging process of the eye, the continuous and gradual loss of accommodation is often dreaded and feared. If presbyopia were to be considered a disease, its global burden would be enormous as it affects more than a billion people worldwide. In this dissertation, I explore factors associated with presbyopia and develop a model for explaining the onset of presbyopia. In this model, the onset of presbyopia is associated primarily with three factors; depth of focus, focusing ability (accommodation), and habitual reading (or task) distance. If any of these three factors could be altered sufficiently, the onset of presbyopia could be delayed or prevented. Based on this model, I then examine possible optical methods that would be effective in correcting for presbyopia by expanding depth of focus. Two methods that have been show to be effective at expanding depth of focus include utilizing a small pupil aperture or generating higher order aberrations, particularly spherical aberration. I compare these two optical methods through the use of simulated designs, monitor testing, and visual performance metrics and then apply them in subjects through an adaptive optics system that corrects aberrations through a wavefront aberrometer and deformable mirror. I then summarize my findings and speculate about the future of presbyopia correction.

  5. Refraction and the axial length of the eyeball in patients with the optic disc drusen.

    PubMed

    Obuchowska, Iwona; Mariak, Zofia

    2009-01-01

    The aim of the study was to demonstrate the relationship between the optic disc drusen (ODD) and the axial length of the eyeball as well as refractive error. We examined prospectively 40 patients with ODD, 18 men and 22 women, age range from 34 to 69 years. All subjects underwent full ophthalmic examination, visual field testing and color-coded duplex sonography of the ocular vessels. Refraction was determined with an autorefractometer (Topcon RM-8000B) and further refined subjectively. Spherical equivalent refraction was calculated as the spherical dioptre plus one half of the cylindrical dioptre. Axial lengths were measured with a Sonomed ultrasound scanner model E-Z Scan AB5500. Clinical signs were observed in 65% of the eyes with drusen, among them, 38% had symptoms of visual acuity loss and all had visual fields defects. There were 21 eyes (18 eyes with and 3 without drusen), with a recorded refractive error. Significant differences in hyperopia were observed between the eyes with and without drusen (p = 0.048). The rate of occurrence of myopia did not differ significantly between affected and unaffected eyes (p = 0.06). The mean spherical equivalent refraction and axial dimensions of the eye differed significantly among the groups of eyes with and without drusen (p < 0.05). Significant differences in mean values of peak-systolic and end-diastolic velocities (p < 0.001) as well as in the resistivity index (p = 0.047) were observed between eyes with and without drusen. The optic disc drusen are often associated with shorter and hyperopic eyes. This anatomical conditions and vascular factors may contribute to pathogenesis of drusen.

  6. ComPAQS: a compact concentric UV/visible spectrometer, providing a new tool for air quality monitoring from space

    NASA Astrophysics Data System (ADS)

    Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.

    2017-11-01

    Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.

  7. Wave aberrations in rhesus monkeys with vision-induced ametropias

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  8. Correlation of spectral domain optical coherence tomography findings in sub-silicone oil foveal depression space and visual outcome in eyes undergoing silicone oil removal

    PubMed Central

    Nagpal, Manish; Bhatt, Kalyani J.; Jain, Pravin; Taleb, Eman Abo; Goswami, Sangeeta; Verma, Amrita

    2016-01-01

    Background/Purpose: To describe small hyper-reflective spherical bodies in sub-silicone oil-foveal depression (SSO-FD) space using spectral domain optical coherence tomography (SD-OCT) and its effect on visual outcomes in eyes undergoing silicone oil removal (SOR). Methods: This was a prospective interventional comparative study comprising 42 eyes undergoing SOR with clear media. All patients underwent detailed clinical examination and SD-OCT scan of fovea pre-operatively and at 30 days and 90 days postoperatively. Patients were divided into Group A (n = 21) and Group B (n = 21) depending on presence or absence, respectively, of small hyper-reflective spherical bodies in the SSO-FD space in preoperative scans. The findings between SD-OCT and best-corrected visual acuity were correlated and analyzed. Results: The mean age of patients was 41.9 years (range, 23–60 years) in Group A and 45.6 years (range, 23–60 years) in Group B. Twenty-one eyes showed small hyper-reflective spherical bodies on SD-OCT imaging. These were thought to represent emulsified silicone oil globules trapped in the potential space created by silicone oil meniscus and foveal pit, which is the SSO-FD space. These bodies were absent in all post SOR scans of Group A and Group B. Group A had significant visual improvement (p = 0.0001) after SOR with clearance of these hyper-reflective bodies as compared to Group B(p = 0.356). Conclusion: We conclude that these small hyper-reflective spherical bodies in the SSO-FD space were most likely emulsified silicone oil globules and correlated with significant visual improvement with their clearance after silicone oil removal. PMID:29018705

  9. Primary aberrations in focused radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  10. Design, fabrication and space suitability tests of wide field of view, ultra-compact, and high resolution telescope for space application.

    PubMed

    Tumarina, M; Ryazanskiy, M; Jeong, S; Hong, G; Vedenkin, N; Park, I H; Milov, A

    2018-02-05

    We report on the design, manufacture, and testing of an ultra-compact telescope for 16 unit (16U) CubeSats for Earth and space observation. This telescope provides 1 arcsec resolution at a 2.9 degree field of view. Dimensions are optimized to 230 × 230 × 330mm 3 with a mass of less than 6kg including support structure. Our catadioptric 5-element design consists of a full-aperture corrector, a Mangin primary mirror (PM), a secondary mirror (SM), and a 2-lens field corrector. The focal length is 745mm, and squared-circular aperture has an equivalent diameter of 241mm. The designed modulation transfer function (MTF) is 0.275 for the entire unit including baffles at a Nyquist frequency of 161 cycles/mm for the 450-800nm band. As one of the distinguishing features of our state-of-the-art design, all optical surfaces are spherical to simplify adjustment. For the best thermal stability, all optical elements are produced from fused silica. We describe the details of design, adjustment, and laboratory performance tests for space environments in accordance with the requirements for in-orbit operation onboard Earth-observation micro-satellites to be launched in 2018.

  11. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2005-07-01

    Eight years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The Swift satellite, expected to be in full operation throughout Cycle 14, will report few-arcsecond localizations for short-hard bursts in minutes, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then they will serve as signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding those observations.

  12. Stress Measurement by Geometrical Optics

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1986-01-01

    Fast, simple technique measures stresses in thin films. Sample disk bowed by stress into approximately spherical shape. Reflected image of disk magnified by amount related to curvature and, therefore, stress. Method requires sample substrate, such as cheap microscope cover slide, two mirrors, laser light beam, and screen.

  13. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  14. Linearized T-Matrix and Mie Scattering Computations

    NASA Technical Reports Server (NTRS)

    Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.

    2011-01-01

    We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.

  15. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  16. PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, Colin P.; Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org

    2015-11-20

    We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysicalmore » application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.« less

  17. High-precision double-frequency interferometric measurement of the cornea shape

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Smirnov, Eugene M.; Ilchenko, Leonid M.; Goncharov, Vadym O.

    1996-11-01

    To measure the shape of the cornea and its declinations from the necessary values before and after PRK operation, s well as the shape of other spherical objects like artificial pupil, a technique was used of double-frequency dual-beam interferometry. The technique is based on determination of the optical path difference between two neighboring laser beams, reflected from the cornea or other surface under investigation. Knowing the distance between the beams on the investigated shape. The shape itself is reconstructed by along-line integration. To adjust the wavefront orientation of the laser beam to the spherical shape of the cornea or artificial pupil in the course of scanning, additional lens is involved. Signal-to-noise ratio is ameliorated excluding losses in the acousto-optic deflectors. Polarization selection is realized for choosing the signal needed for measurement. 2D image presentation is accompanied by convenient PC accessories, permitting precise cross-section measurements along selected directions. Sensitivity of the order of 10-2 micrometers is achieved.

  18. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  19. Design of refractive fore-optics with wide field of view and waveband for miniature imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mao, Jingchao; Xu, Minyi; Liu, Qinghan; Shen, Weimin

    2016-10-01

    With the development of unmanned airborne vehicle (UAV) remote sensing technology, miniature high-resolution imaging spectrometers are greatly needed. In order to improve remote sensing efficiency and get wider coverage, it's urgent to design and develop fore-optics with wide field of view and waveband for imaging spectrometer. As the refractive system has no central obscuration and it's conducive to manufacture and assemble, so it's used for our fore-optics. The key is the correction of secondary spectrum of systems working in broad waveband and meeting the requirement of imagery telecentricity to be appropriate for linear pushbroom imaging system. Suitable glasses are selected on the Glass Map, from where each glass has an Abbe number υd and Partial Dispersion. Based on the theory of Gaussian Optics and Seidel third-order aberration theory, the paper derives apochromatic formula, and the power of individual lenses can be calculated. Then with a required value of spherical aberration and coma, this paper derives equations to calculate the initial structure of apochromatic optical systems. Finally, optimized refractive SWIR fore-optics working in 1μm-2.5μm with effective focal length (EFFL) of 11mm is reported. Its full field and F-number are respectively 40°, F/2.8. The system has many advantages such as simple and compact structure, small size, near diffraction-limited imaging quality, small secondary spectrum and imagery telecentricity. Especially it consists of spherical surfaces that can greatly reduce the difficulty and the cost of manufacture as well as test, which is applicable for SWIR imaging spectrometer with wide field of view.

  20. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    NASA Astrophysics Data System (ADS)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  1. Tunability and stability of gold nanoparticles obtained from chloroauric acid and sodium thiosulfate reaction

    PubMed Central

    2012-01-01

    In the quest for producing an effective, clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near-infrared (NIR) absorption are synthesized by a single-step reaction of HAuCl4 and Na2S2O3 without assistance of additional templates, capping reagents, or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption, making it therapeutically relevant. The synthesized products consist of GNPs with different shapes and sizes, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR-absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR-absorbing nanoparticles. PMID:22726762

  2. Light scattering by nonspherical particles: Remote sensing and climatic implications

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.

    Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.

  3. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  4. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    PubMed Central

    Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio

    2010-01-01

    Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  5. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  6. Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Qu, Y.; Ban, S. L.

    2017-02-01

    The intersubband optical absorption between multi energy levels of electrons in InxGa1-xN/GaN spherical core-shell quantum dots (CSQDs) and ternary mixed crystal and size effects have been investigated by using the principle of density matrix. Electronic eigenstates under the effect of built-in electric field (BEF) have been calculated by a finite element method. The results show that optical absorption between intersubbands with main quantum numbers n = 1 and n = 2 are as important as that between ones with n = 1 and different angular quantum numbers when the BEF is taken into account. In consideration of BEF, the saturation of total optical absorption coefficients (ACs) and secondary peaks of refractive index changes (RICs) appear when incident light intensity I surpasses a certain value. For a given I, the maximum ACs and zero RICs positions in InxGa1-xN/GaN CSQDs with a fixed shell size have a blue-shift when x increases or the core InxGa1-xN radius R1 decreases from 5 nm. However, when R1 > 5 nm, ACs and RICs tend to be stable. The results indicate that effective adjustment of ACs and RICs in CSQDs with BEFs by size is in a limited scale range. The saturation of ACs or secondary peaks of RICs appear more likely in CSQDs with smaller x or larger R1. These results are expected to be helpful both in the further theoretical and experimental study on optic devices consisting of CSQDs.

  7. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  8. Photonic polymer-blend structures and method for making

    DOEpatents

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  9. Radiative transfer in spherical shell atmospheres. II - Asymmetric phase functions

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Adams, C. N.

    1978-01-01

    This paper investigates the effects of sphericity on the radiation reflected from a planet with a homogeneous conservative-scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 was considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also, large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle. These results will be useful to researchers in the field of remote sensing and planetary spectroscopy.

  10. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  11. Light-weight spherical mirrors for Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Cisbani, E.; Colilli, S.; Crateri, R.; Cusanno, F.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Iodice, M.; Iommi, R.; Lucentini, M.; Mostarda, A.; Pierangeli, L.; Santavenere, F.; Urciuoli, G. M.; De Leo, R.; Lagamba, L.; Nappi, E.; Braem, A.; Vernin, P.

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  12. Methods of and apparatus for recording images occurring just prior to a rapid, random event

    DOEpatents

    Kelley, Edward F.

    1994-01-01

    An apparatus and a method are disclosed for recording images of events in a medium wherein the images that are recorded are of conditions existing just prior to and during the occurrence of an event that triggers recording of these images. The apparatus and method use an optical delay path that employs a spherical focusing mirror facing a circular array of flat return mirrors around a central flat mirror. The image is reflected in a symmetric pattern which balances astigmatism which is created by the spherical mirror. Delays on the order of hundreds of nanoseconds are possible.

  13. Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile

    NASA Astrophysics Data System (ADS)

    M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki

    2015-12-01

    In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.

  14. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2011-09-30

    coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454, 2001. Gordon, H.R., T.J. Smyth, W.M. Balch, and G.C. Boynton...Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, Light scattering by randomly

  15. Optical nulling apparatus and method for testing an optical surface

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)

    2008-01-01

    An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.

  16. Design and experimental verification for optical module of optical vector-matrix multiplier.

    PubMed

    Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin

    2013-06-20

    Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.

  17. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  18. The OSIRIS-REx Radio Science Experiment at Bennu

    NASA Astrophysics Data System (ADS)

    McMahon, J. W.; Scheeres, D. J.; Hesar, S. G.; Farnocchia, D.; Chesley, S.; Lauretta, D.

    2018-02-01

    The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.

  19. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  20. A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander; Stewart, Ron T.

    1993-01-01

    Results of a high-sensitivity VLA/Australia Telescope survey of radio continuum emission from the 57 Herbig Ae/Be stars and candidates in the 1984 catalog of Finkenzeller and Mundt are presented. Twelve stars were detected at the primary observing wavelength of 3.6 cm, on the basis that not less than 4 sigma radio sources lie within 1 arcsec of the optical positions. It is suggested that the radio emission is predominantly thermal and in many cases wind-related. The unusual eclipsing binary TY CrA is an exception and is classified as a nonthermal radio source on the basis of its decidedly negative spectral index (alpha = -1.2). A simple spherically symmetric free-fall accretion model is used to show that the predicted radio fluxes due to accretion at rates, estimated in the literature, of about 10 exp -6 to 10 exp -5 solar mass/yr are one to four orders of magnitude larger than observed.

  1. Progress in manufacturing the first 8.4 m off-axis segment for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Kingsley, J. S.; Kittrell, W. C.; Lutz, R. D.; Miller, S. M.; Zhao, C.; Zobrist, T.

    2008-07-01

    The first of the 8.4 m off-axis segments for the primary mirror of the Giant Magellan Telescope is being manufactured at the Steward Observatory Mirror Lab. In addition to the manufacture of the segment, this project includes the development of a complete facility to make and measure all seven segments. We have installed a new 28 m test tower and designed a set of measurements to guide the fabrication and qualify the finished segments. The first test, a laser-tracker measurement of the ground surface, is operational. The principal optical test is a full-aperture interferometric test with a null corrector that includes a 3.75 m spherical mirror, a smaller sphere, and a computer-generated hologram. We have also designed a scanning pentaprism test to validate the measurement of low-order aberrations. The first segment has been cast and generated, and is in the process of loose-abrasive grinding.

  2. Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Zhao, Chunyu; Dubin, Matt

    2010-07-01

    Large aspheric primary mirrors are proposed that use hundreds segments that all must be aligned and phased to approximate the desired continuous mirror. We present a method of measuring these concave segments with a Fizeau interferometer where a spherical convex reference surface is held a few millimeters from the aspheric segment. The aspheric shape is accommodated by a small computer generated hologram (CGH). Different segments are measured by replacing the CGH. As a Fizeau test, nearly all of the optical elements and air spaces are common to both the measurement and reference wavefront, so the sensitivities are not tight. Also, since the reference surface of the test plate is common to all tests, this system achieves excellent control for the radius of curvature variation from one part to another. This paper describes the test system design and analysis for such a test, and presents data from a similar 1.4-m test performed at the University of Arizona.

  3. Robust source and mask optimization compensating for mask topography effects in computational lithography.

    PubMed

    Li, Jia; Lam, Edmund Y

    2014-04-21

    Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.

  4. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  5. Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions.

    PubMed

    Soto-Crespo, J M; Grelu, Philippe; Akhmediev, Nail

    2006-05-01

    We demonstrate the existence of stable optical light bullets in nonlinear dissipative media for both cases of normal and anomalous chromatic dispersion. The prediction is based on direct numerical simulations of the (3+1)-dimensional complex cubic-quintic Ginzburg-Landau equation. We do not impose conditions of spherical or cylindrical symmetry. Regions of existence of stable bullets are determined in the parameter space. Beyond the domain of parameters where stable bullets are found, unstable bullets can be transformed into "rockets" i.e. bullets elongated in the temporal domain. A few examples of the interaction between two optical bullets are considered using spatial and temporal interaction planes.

  6. Inorganic optical taggant and method of making

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.

    2005-05-31

    Sintered, translucent ceramic microbeads, preferably alumina, titania, zirconia, yttria, zirconium phosphate, or yttrium aluminum garnet (YAG) are doped with one or more optically active species. The beads may be added to substances such as explosives in order to create a distinctive optical signature that identifies a manufacturer, lot number, etc. in the event of the need for forensic analysis. Because the beads have a generally spherical surface, the radius of curvature provides an additional distinguishing characteristic by which a particular sample may be identified. The beads could also be formulated into paints if needed to create distinctive optical signatures for camouflage, decoys, or other countermeasures and could also be applied as a dust to track the movement of personnel, vehicles, etc.

  7. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2010-01-01

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549

  8. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  9. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  10. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  11. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    PubMed

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  12. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  13. Role of preoperative cycloplegic refraction in LASIK treatment of hyperopia.

    PubMed

    Frings, Andreas; Steinberg, Johannes; Druchkiv, Vasyl; Linke, Stephan J; Katz, Toam

    2016-07-01

    Previous studies have suggested that, to improve refractive predictability in hyperopic LASIK treatments, preoperative cycloplegic or manifest refraction, or a combination of both, could be used in the laser nomogram. We set out to investigate (1) the prevalence of a high difference between manifest and cycloplegic spherical equivalent in hyperopic eyes preoperatively, and (2) the related predictability of postoperative keratometry. Retrospective cross-sectional data analysis of consecutive treated 186 eyes from 186 consecutive hyperopic patients (mean age 42 [±12] years) were analyzed. Excimer ablation for all eyes was performed using a mechanical microkeratome (SBK, Moria, France) and an Allegretto excimer laser platform. Two groups were defined according to the difference between manifest and cycloplegic spherical equivalent which was defined as ≥1.00 diopter (D); the data was analyzed according to refractive outcome in terms of refractive predictability, efficacy, and safety. In 24 eyes (13 %), a preoperative difference of ≥1.00D between manifest spherical equivalent and cycloplegic spherical equivalent (= MCD) occurred. With increasing preoperative MCD, the postoperative achieved spherical equivalent showed hyperopic regression after 3 months. There was no statistically significant effect of age (accommodation) or optical zone size on the achieved spherical equivalent. A difference of ≥1.00D occurs in about 13 % of hyperopia cases. We suggest that hyperopic correction should be based on the manifest spherical equivalent in eyes with preoperative MCD <1.00D. If the preoperative MCD is ≥1.00D, treatment may produce manifest undercorrection, and therefore we advise that the patient should be warrned about lower predictability, and suggest basing conclusions on the arithmetic mean calculated from the preoperative manifest and cycloplegic spheres.

  14. Primary angle closure glaucoma in a myopic kinship.

    PubMed

    Hagan, J C; Lederer, C M

    1985-03-01

    Three related myopic individuals with primary angle closure glaucoma are reported. They had true myopia and not pseudomyopia secondary to increased lenticular index of refraction. We believe one of these individuals (-8.62 spherical equivalent) to have the most myopic case of primary angle closure glaucoma reported in the literature. Although myopia is associated with anatomical factors that offer considerable protection from primary angle closure glaucoma, its presence does not eliminate the possibility of this disease. Laser iridectomy was effective in the treatment of these patients.

  15. Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge

    NASA Astrophysics Data System (ADS)

    El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh

    2018-02-01

    In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.

  16. Relationship between lenticular power and refractive error in children with hyperopia.

    PubMed

    Tomomatsu, Takeshi; Kono, Shinjiro; Arimura, Shogo; Tomomatsu, Yoko; Matsumura, Takehiro; Takihara, Yuji; Inatani, Masaru; Takamura, Yoshihiro

    2013-01-01

    To evaluate the contribution of axial length, and lenticular and corneal power to the spherical equivalent refractive error in children with hyperopia between 3 and 13 years of age, using noncontact optical biometry. There were 62 children between 3 and 13 years of age with hyperopia (+2 diopters [D] or more) who underwent automated refraction measurement with cycloplegia, to measure spherical equivalent refractive error and corneal power. Axial length was measured using an optic biometer that does not require contact with the cornea. The refractive power of the lens was calculated using the Sanders-Retzlaff-Kraff formula. Single regression analysis was used to evaluate the correlation among the optical parameters. There was a significant positive correlation between age and axial length (P = 0.0014); however, the degree of hyperopia did not decrease with aging (P = 0.59). There was a significant negative correlation between age and the refractive power of the lens (P = 0.0001) but not that of the cornea (P = 0.43). A significant negative correlation was observed between the degree of hyperopia and lenticular power (P < 0.0001). Although this study is small scale and cross sectional, the analysis, using noncontact biometry, showed that lenticular power was negatively correlated with refractive error and age, indicating that lower lens power may contribute to the degree of hyperopia.

  17. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  18. Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Castelain, Mickaël; Rouxhet, Paul G.; Pignon, Frédéric; Magnin, Albert; Piau, Jean-Michel

    2012-06-01

    A facile method of using optical trapping to measure cell adhesion forces is presented and applied to the adhesion of Saccharomyces cerevisiae on glass, in contact with solutions of different compositions. Trapping yeast cells with optical tweezers (OT) is not perturbed by cell wall deformation or cell deviation from a spherical shape. The trapping force calibration requires correction not only for the hydrodynamic effect of the neighboring wall but also for spherical aberrations affecting the focal volume and the trap stiffness. Yeast cells trapped for up to 5 h were still able to undergo budding but showed an increase of doubling time. The proportion of adhering cells showed the expected variation according to the solution composition. The detachment force varied in the same way. This observation and the fact that the detachment stress was exerted parallel to the substrate surface point to the role of interactions involving solvated macromolecules. Both the proportion of adhering cells and the removal force showed a distribution which, in our experimental conditions, must be attributed to a heterogeneity of surface properties at the cell level or at the subcellular scale. As compared with magnetic tweezers, atomic force microscopy, and more conventional ways of studying cell adhesion (shear-flow cells), OT present several advantages that are emphasized in this paper.

  19. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  20. Chalcogenide glass microlenses by inkjet printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Eric A.; Waldmann, Maike; Arnold, Craig B.

    We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10-350 {mu}m and focal lengths of 10-700 {mu}m have been fabricated. The baking conditions can be used to tune the precise focal length.

  1. Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System

    NASA Astrophysics Data System (ADS)

    Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill

    2006-08-01

    An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.

  2. Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing

    NASA Astrophysics Data System (ADS)

    Lin, Psang Dain; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  3. Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing

    NASA Astrophysics Data System (ADS)

    Dain Lin, Psang; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  4. Optical and biometric relationships of the isolated pig crystalline lens.

    PubMed

    Vilupuru, A S; Glasser, A

    2001-07-01

    To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.

  5. Optical testing of the LSST combined primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Gressler, William J.; Zhao, Chunyu

    2010-07-01

    The Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona's Steward Observatory Mirror Lab. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper describes the basic metrology systems for each surface, with particular attention to the alignment of the two surfaces. These surfaces are aspheric enough to require null correctors for each wavefront. Both M1 and M3 are concave surfaces with both non-zero conic constants and higher-order terms (6th order for M1 and both 6th and 8th orders for M3). M1 is hyperboloidal and can utilize a standard Offner null corrector. M3 is an oblate ellipsoid, so has positive spherical aberration. We have chosen to place a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature (CoC), whereas the M1 null lens is beyond the CoC. One relatively new metrology tool is the laser tracker, which is relied upon to measure the alignment and spacings. A separate laser tracker system will be used to measure both surfaces during loose abrasive grinding and initial polishing.

  6. Evaluation of possible factors affecting contrast sensitivity function in patients with primary Sjögren's syndrome.

    PubMed

    Arikan, Sedat; Gokmen, Ferhat; Comez, Arzu Taskiran; Gencer, Baran; Kara, Selcuk; Akbal, Ayla

    2015-01-01

    The contrast sensitivity (CS) function in patients with primary Sjögren's syndrome (pSS) may be impaired either frequently as a result of dry eye diseases or rarely as a result of optic neuropathy. In this study, we aimed to evaluate the CS function in pSS patients as well as to assess corneal aberrations and thickness of the peripapillary retinal nerve fiber layer (pRNFL). Fourteen eyes of 14 pSS patients (pSS group) and 14 eyes of 14 healthy participants (control group) were subjected to assessment of CS at the spatial frequencies of 1.5, 3.0, 6.0, 12, and 18 cycles/degree (cpd) using a functional visual acuity contrast test (FACT); measurement of corneal high-order aberrations (HOAs) in terms of coma-like, spherical-like, and total HOAs using Scheimpflug corneal topography; and measurement of the thickness of both the macular ganglion cell-inner plexiform layer (mGCIPL) and pRNFL in all quadrants using optical coherence tomography. None of the participants were under treatment with artificial tears. The results of the CS test did not differ between the 2 groups at all spatial frequencies (p>0.05). In addition, there were no statistically significant differences between the 2 groups in terms of corneal HOAs (p>0.05) and thickness of mGCIPL (p>0.05). However, among all quadrants, only the inferior quadrant of pRNFL in pSS patients was statistically significantly thinner than that in the healthy participants (p=0.04). The CS function in pSS patients can be maintained with normal thickness of both pRNFL and mGCIPL and with lack of increased corneal HOAs, which may be present even in the absence of artificial tear usage.

  7. Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.

    PubMed

    Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji

    2017-09-01

    To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  9. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  10. Optical properties of soot particles: measurement - model comparison

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.

  11. A new generation of IC based beam steering devices for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Bedi, Vijit

    Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as part of my PhD work. The design tool created for the research of the fly eye is then used to study different applications that may be implemented with the concept. Research is done on the mathematical feasibility, modeling, design, application of the technology, and its characterization in a simulation environment. In addition, effects of atmospheric turbulence on beam propagation in free space, and applying data security using optical encryption are also researched.

  12. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  13. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771

  14. Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench

    NASA Astrophysics Data System (ADS)

    Hsieh, Jerwei; Hsiao, Sheng-Yi; Lai, Chun-Feng; Fang, Weileun

    2007-08-01

    This work presents the design concept of integrating a polymer lens, poly-Si MUMPs and single-crystal-silicon HARM structures on a SOI wafer to form a silicon optical bench. This approach enables the monolithic integration of various optical components on the wafer so as to improve the design flexibility of the silicon optical bench. Fabrication processes, including surface and bulk micromachining on the SOI wafer, have been established to realize bi-convex spherical polymer lenses with in-plane as well as out-of-plane optical axes. In addition, a micro device consisting of an in-plane polymer lens, a thick fiber holder and a mechanical shutter driven by an electrothermal actuator is also demonstrated using the present approach. In summary, this study significantly improves the design flexibility as well as the functions of SiOBs.

  15. Total ocular, anterior corneal and lenticular higher order aberrations in hyperopic, myopic and emmetropic eyes.

    PubMed

    Philip, Krupa; Martinez, Aldo; Ho, Arthur; Conrad, Fabian; Ale, Jit; Mitchell, Paul; Sankaridurg, Padmaja

    2012-01-01

    Total ocular higher order aberrations and corneal topography of myopic, emmetropic and hyperopic eyes of 675 adolescents (16.9 ± 0.7 years) were measured after cycloplegia using COAS aberrometer and Medmont videokeratoscope. Corneal higher order aberrations were computed from the corneal topography maps and lenticular (internal) higher order aberrations derived by subtraction of corneal aberrations from total ocular aberrations. Aberrations were measured for a pupil diameter of 5mm. Multivariate analysis of variance followed by multiple regression analysis found significant difference in the fourth order aberrations (SA RMS, primary spherical aberration coefficient) between the refractive error groups. Hyperopic eyes (+0.083 ± 0.05 μm) had more positive total ocular primary spherical aberration compared to emmetropic (+0.036 ± 0.04 μm) and myopic eyes (low myopia=+0.038 ± 0.05 μm, moderate myopia=+0.026 ± 0.06 μm) (p<0.05). No difference was observed for the anterior corneal spherical aberration. Significantly less negative lenticular spherical aberration was observed for the hyperopic eyes (-0.038 ± 0.05 μm) than myopic (low myopia=-0.088 ± 0.04 μm, moderate myopia=-0.095 ± 0.05 μm) and emmetropic eyes (-0.081 ± 0.04 μm) (p<0.05). These findings suggest the existence of differences in the characteristics of the crystalline lens (asphericity, curvature and gradient refractive index) of hyperopic eyes versus other eyes. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Lenticular accommodation in relation to ametropia: the chick model.

    PubMed

    Choh, Vivian; Sivak, Jacob G

    2005-03-04

    Our goal was to determine whether experimentally induced ametropias have an effect on lenticular accommodation and spherical aberration. Form-deprivation myopia and hyperopia were induced in one eye of hatchling chicks by application of a translucent goggle and +15 D lens, respectively. After 7 days, eyes were enucleated and lenses were optically scanned prior to accommodation, during accommodation, and after accommodation. Accommodation was induced by electrical stimulation of the ciliary nerve. Lenticular focal lengths for form-deprived eyes were significantly shorter than for their controls and accommodation-associated changes in focal length were significantly smaller in myopic eyes compared to their controls. For eyes imposed with +15 D blur, focal lengths were longer than those for their controls and accommodative changes were greater. Spherical aberration of the lens increased with accommodation in both form-deprived and lens-treated birds, but induction of ametropia had no effect on lenticular spherical aberration in general. Nonmonotonicity from lenticular spherical aberration increased during accommodation but effects of refractive error were equivocal. The crystalline lens contributes to refractive error changes of the eye both in the case of myopia and hyperopia. These changes are likely attributable to global changes in the size and shape of the eye.

  17. A discrete spherical harmonics method for radiative transfer analysis in inhomogeneous polarized planar atmosphere

    NASA Astrophysics Data System (ADS)

    Tapimo, Romuald; Tagne Kamdem, Hervé Thierry; Yemele, David

    2018-03-01

    A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \\vert μ \\vert ≥0.1 is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.

  18. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi

    2016-12-01

    We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non-sphericity of clusters in X-ray and optical observations.

  19. Comparison of primary optics in amonix CPV arrays

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya; Kinsey, Geoffrey S.; Liu, Mingguo; Bagienski, William; Garboushian, Vahan

    2012-10-01

    The Amonix CPV system utilizes an acrylic Fresnel lens Primary Optical Element (POE) and a reflective Secondary Optical Element (SOE). Improvements in the optical design have contributed to more than 10% increase in rated power last year. In order to further optimize the optical power path, Amonix is looking at various trade-offs in optics, including, concentration, optical materials, reliability, and cost. A comparison of optical materials used for manufacturing the primary optical element and optical design trade off's used to maximize power output will be presented. Optimization of the power path has led to the demonstration of a module lens-area efficiency of 35% in outdoor testing at Amonix.

  20. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  1. Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

  2. Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness.

    PubMed

    Biswas, Sayantan; Lin, Chen; Leung, Christopher K S

    2016-09-01

    Analysis of retinal nerve fiber layer (RNFL) abnormalities with optical coherence tomography in eyes with high myopia has been complicated by high rates of false-positive errors. An understanding of whether the application of a myopic normative database can improve the specificity for detection of RNFL abnormalities in eyes with high myopia is relevant. To evaluate the diagnostic performance of a myopic normative database for detection of RNFL abnormalities in eyes with high myopia (spherical equivalent, -6.0 diopters [D] or less). In this cross-sectional study, 180 eyes with high myopia (mean [SD] spherical equivalent, -8.0 [1.8] D) from 180 healthy individuals were included in the myopic normative database. Another 46 eyes with high myopia from healthy individuals (mean [SD] spherical equivalent, -8.1 [1.8] D) and 74 eyes from patients with high myopia and glaucoma (mean [SD] spherical equivalent, -8.3 [1.9] D) were included for evaluation of specificity and sensitivity. The 95th and 99th percentiles of the mean and clock-hour circumpapillary RNFL thicknesses and the individual superpixel thicknesses of the RNFL thickness map measured by spectral-domain optical coherence tomography were calculated from the 180 eyes with high myopia. Participants were recruited from January 2, 2013, to December 30, 2015. The following 6 criteria of RNFL abnormalities were examined: (1) mean circumpapillary RNFL thickness below the lower 95th or (2) the lower 99th percentile; (3) one clock-hour or more for RNFL thickness below the lower 95th or (4) the lower 99th percentile; and (5) twenty contiguous superpixels or more of RNFL thickness in the RNFL thickness map below the lower 95th or (6) the lower 99th percentile. Specificities and sensitivities for detection of RNFL abnormalities. Of the 46 healthy eyes and 74 eyes with glaucoma studied (from 39 men and 38 women), the myopic normative database showed a higher specificity (63.0%-100%) than did the built-in normative database of the optical coherence tomography instrument (8.7%-87.0%) for detection of RNFL abnormalities across all the criteria examined (differences in specificities between 13.0% [95% CI, 1.1%-24.9%; P = .01] and 54.3% [95% CI, 37.8%-70.9%; P < .001]) except for the criterion of mean RNFL thickness below the lower 99th percentile, in which both normative databases had the same specificities (100%) but the myopic normative database exhibited a higher sensitivity (71.6% vs 86.5%; difference in sensitivities, 14.9% [95% CI, 4.6%-25.1%; P = .002]). The application of a myopic normative database improved the specificity without compromising the sensitivity compared with the optical coherence tomography instrument's built-in normative database for detection of RNFL abnormalities in eyes with high myopia. Inclusion of myopic normative databases should be considered in optical coherence tomography instruments.

  3. Enhanced control of light and sound trajectories with three-dimensional gradient index lenses

    NASA Astrophysics Data System (ADS)

    Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.

    2012-03-01

    We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.

  4. Nonlinear optical susceptibility described with a spherical formalism applied to coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Cleff, Carsten; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2017-07-01

    We describe coherent Raman scattering in a complete spherical formalism allowing a better understanding of the coherent Raman process with respect to its symmetry properties, which is especially helpful in polarized coherent Raman microscopy. We describe how to build the coherent Raman tensor from spontaneous Raman tensor for crystalline and disordered media. We introduce a distribution function for molecular bonds and show how this distribution function results in a new macroscopic symmetry which can be very different from the symmetry of vibrational modes. Finally, we explicitly show polarization configurations for coherent anti-Stokes Raman scattering to probe specific vibration symmetries in crystalline samples and lipid layers.

  5. Photoacoustic Effect Generated from an Expanding Spherical Source

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Diebold, Gerald J.

    2018-02-01

    Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.

  6. Polarization from Thomson scattering of the light of a spherical, limb-darkened star

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.

    1979-01-01

    The polarized flux produced by the Thomson scattering of the light of a spherical, limb-darkened star by optically thin, extrastellar regions of electrons is calculated and contrasted to previous models which treated the star as a point source. The point-source approximation is found to be valid for scattering by particles more than a stellar radius from the surface of the star but is inappropriate for those lying closer. The specific effect of limb darkening on the fractional polarization of the total light of a system is explored. If the principal source of light is the unpolarized flux of the star, the polarization is nearly independent of limb darkening.

  7. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  8. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    PubMed

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Park, J; Hong, YK

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less

  10. Preparation of CuO nanoparticles by laser ablation in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulateef, Sinan A., E-mail: sinan1974@yahoo.com; MatJafri, M. Z.; Omar, A. F., E-mail: thinker-academy@yahoo.com

    2016-07-06

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm–10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  11. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-09-12

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.

  12. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-05

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  13. The large-area hybrid-optics RICH detector for the CLAS12 spectrometer

    NASA Astrophysics Data System (ADS)

    Mirazita, M.; Angelini, G.; Balossino, I.; Barion, L.; Bailey, K.; Benmokhtar, F.; Brooks, W.; Cisbani, E.; Contalbrigo, M.; Cuevas, C.; Hafidi, K.; Kim, A.; Kubarovsky, V.; Lucherini, V.; Malaguti, R.; Montgomery, R.; Movsisyan, A.; Musico, P.; O'Connor, T.; Orecchini, D.; Pappalardo, L.; Perrino, R.; Pisano, S.; Raydo, B.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.

    2017-12-01

    A large area imaging Cherenkov detector is under construction to provide hadron identification in the momentum range between 3 and 8 GeV/c for the CLAS12 exeperiment at the new 12 GeV electron beam of the Jefferson Laboratory (JLab). The detector adopts a hybrid optics solution with aerogel radiator, light planar and spherical mirrors and highly-segmented photon detectors. Cherenkov photons will be imaged either directly (for forward tracks) or after two mirror reflections (large angle tracks). The status of the detector construction is here reported.

  14. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOEpatents

    Viswanathan, Vriddhachalam K.; Newnam, Brian E.

    1993-01-01

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 .mu.m, and preferably less than 100 .mu.m. An image resolution of features less than 0.05-0.1 .mu.m, is obtained over a large area field; i.e., 25.4 mm .times.25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  15. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOEpatents

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  16. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  17. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  18. Optics outreach in Irish context

    NASA Astrophysics Data System (ADS)

    McHugh, Emer; Smith, Arlene

    2009-06-01

    The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.

  19. Methods for estimating the optical constants of atmospheric hazes based on complex optical measurements

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Kostin, B. S.; Naats, I. E.

    1986-01-01

    The methods of multifrequency laser sounding (MLS) are the most effective remote methods for investigating the atmospheric aerosols, since it is possible to obtain complete information on aerosol microstructure and the effective methods for estimating the aerosol optical constants can be developed. The MLS data interpretation consists in the solution of the set of equations containing those of laser sounding and equations for polydispersed optical characteristics. As a rule, the laser sounding equation is written in the approximation of single scattering and the equations for optical characteristics are written assuming that the atmospheric aerosol is formed by spherical and homogeneous particles. To remove the indeterminacy of equations, the method of optical sounding of atmospheric aerosol, consisting in a joint use of a mutifrequency lidar and a spectral photometer in common geometrical scheme of the optical experiment was suggested. The method is used for investigating aerosols in the cases when absorption by particles is small and indicates the minimum necessary for interpretation of a series of measurements.

  20. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

Top