NASA Astrophysics Data System (ADS)
Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang
2009-05-01
For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.
A Spherical Aerial Terrestrial Robot
NASA Astrophysics Data System (ADS)
Dudley, Christopher J.
This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.
The dynamics and control of a spherical robot with an internal omniwheel platform
NASA Astrophysics Data System (ADS)
Karavaev, Yury L.; Kilin, Alexander A.
2015-03-01
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui
2017-05-28
Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.
Design and control of compliant tensegrity robots through simulation and hardware validation
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity (‘tensile–integrity’) structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. PMID:24990292
Design and control of compliant tensegrity robots through simulation and hardware validation.
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-09-06
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Edwin, Lionel E.; Mazzoleni, Andre P.
2016-03-01
All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.
Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid
NASA Astrophysics Data System (ADS)
Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub
2015-02-01
This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.
A deformable spherical planet exploration robot
NASA Astrophysics Data System (ADS)
Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun
2013-03-01
In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.
Patanè, Fabrizio; Cappa, Paolo
2011-04-01
In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
GoQBot: a caterpillar-inspired soft-bodied rolling robot.
Lin, Huai-Ti; Leisk, Gary G; Trimmer, Barry
2011-06-01
Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.
Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor
NASA Astrophysics Data System (ADS)
Ponce Wong, Ruben D.; Hellman, Randall B.; Santos, Veronica J.
2014-06-01
Haptic perception remains a grand challenge for artificial hands. Dexterous manipulators could be enhanced by "haptic intelligence" that enables identification of objects and their features via touch alone. Haptic perception of local shape would be useful when vision is obstructed or when proprioceptive feedback is inadequate, as observed in this study. In this work, a robot hand outfitted with a deformable, bladder-type, multimodal tactile sensor was used to replay four human-inspired haptic "exploratory procedures" on fingertip-sized geometric features. The geometric features varied by type (bump, pit), curvature (planar, conical, spherical), and footprint dimension (1.25 - 20 mm). Tactile signals generated by active fingertip motions were used to extract key parameters for use as inputs to supervised learning models. A support vector classifier estimated order of curvature while support vector regression models estimated footprint dimension once curvature had been estimated. A distal-proximal stroke (along the long axis of the finger) enabled estimation of order of curvature with an accuracy of 97%. Best-performing, curvature-specific, support vector regression models yielded R2 values of at least 0.95. While a radial-ulnar stroke (along the short axis of the finger) was most helpful for estimating feature type and size for planar features, a rolling motion was most helpful for conical and spherical features. The ability to haptically perceive local shape could be used to advance robot autonomy and provide haptic feedback to human teleoperators of devices ranging from bomb defusal robots to neuroprostheses.
Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration
NASA Astrophysics Data System (ADS)
Edwin, Lionel Ernest
All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the rolling mode, i.e. when the rover is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. Case studies that demonstrate the capabilities of the rover in rolling mode and parametric analyses that investigate the dependence of the rover's mobility on its design are presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future. It represents an important step toward developing a rover capable of traversing a variety of terrains that are impassible by the current fleet of rover designs, and thus has the potential to revolutionize planetary surface exploration.
SU-F-P-31: Dosimetric Effects of Roll and Pitch Corrections Using Robotic Table
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamalui, M; Su, Z; Flampouri, S
Purpose: To quantify the dosimetric effect of roll and pitch corrections being performed by two types of robotic tables available at our institution: BrainLabTM 5DOF robotic table installed at VERO (BrainLab&MHI) dedicated SBRT linear accelerator and 6DOF robotic couch by IBA Proton Therapy with QFixTM couch top. Methods: Planning study used a thorax phantom (CIRSTM), scanned at 4DCT protocol; targets (IGTV, PTV) were determined according to the institutional lung site-specific standards. 12 CT sets were generated with Pitch and Roll angles ranging from −4 to +4 degrees each. 2 table tops were placed onto the scans according to the modality-specificmore » patient treatment workflows. The pitched/rolled CT sets were fused to the original CT scan and the verification treatment plans were generated (12 photon SBRT plans and 12 proton conventional fractionation lung plans). Then the CT sets were fused again to simulate the effect of patient roll/pitch corrections by the robotic table. DVH sets were evaluated for all cases. Results: The effect of not correcting the phantom position for roll/pitch in photon SBRT cases was reducing the target coverage by 2% as maximum; correcting the positional errors by robotic table varied the target coverage within 0.7%. in case of proton treatment, not correcting the phantom position led to the coverage loss up to 4%, applying the corrections using robotic table reduced the coverage variation to less than 2% for PTV and within 1% for IGTV. Conclusion: correcting the patient position by using robotic tables is highly preferable, despite the small dosimetric changes introduced by the devices.« less
NASA Astrophysics Data System (ADS)
Edwin, L.; Mazzoleni, A.; Gemmer, T.; Ferguson, S.
2017-03-01
Planetary surface exploration technology over the past few years has seen significant advancements on multiple fronts. Robotic exploration platforms are becoming more sophisticated and capable of embarking on more challenging missions. More unconventional designs, particularly transforming architectures that have multiple modes of locomotion, are being studied. This work explores the capabilities of one such novel transforming rover called the Transforming Roving-Rolling Explorer (TRREx). Biologically inspired by the armadillo and the golden-wheel spider, the TRREx has two modes of locomotion: it can traverse on six wheels like a conventional rover on benign terrain, but can transform into a sphere when necessary to negotiate steep rugged slopes. The ability to self-propel in the spherical configuration, even in the absence of a negative gradient, increases the TRREx's versatility and its concept value. This paper describes construction and testing of a prototype cylindrical TRREx that demonstrates that "actuated rolling" can be achieved, and also presents a dynamic model of this prototype version of the TRREx that can be used to investigate the feasibility and value of such self-propelled locomotion. Finally, we present results that validate our dynamic model by comparing results from computer simulations made using the dynamic model to experimental results acquired from test runs using the prototype.
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.
Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface
Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235
2009-07-17
International Space University (ISU - 2009) students participated in a Robotic Competition at NASA'A Ames Research Center, Moffett Field, Calif. This panel featured astronauts from four different space agencies with different areas of expertice and diverse perspectives. A student-built robot rolls across the obstacle course. A student-built robot rolls across the obstacle course.
Use of spring-roll EAP actuator applied as end-effector of a hyper-redundant robot
NASA Astrophysics Data System (ADS)
Errico, Gianmarco; Fava, Victor; Resta, Ferruccio; Ripamonti, Francesco
2015-04-01
This paper presents a hyper-redundant continuous robot used to perform work in places which humans can not reach. This type of robot is generally a bio-inspired solution, it is composed by a lot of flexible segments driven by multiple actuators and its dynamics is described by a lot degrees of freedom. In this paper a model composed of some rigid links connected to each other by revolution joint is presented. In each link a torsional spring is added in order to simulate the resistant torque between the links and the interactions among the cables and the robot during the relative rotation. Moreover a type of EAP actuator, called spring roll, is used as the end-effector of the robot. Through a suitable sensor, such as a camera, the spring roll allows to track a target and it closes the control loop on the robot to follow it.
Finite-element modeling of soft tissue rolling indentation.
Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D
2011-12-01
We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a soft tissue sample using the ABAQUS FE software package. The aim of this work is to more precisely locate abnormalities within soft tissue organs using RFEM and hence aid surgeons to improve diagnostic ability. The soft tissue is modeled as a nonlinear hyperelastic material with geometrical nonlinearity. The proposed RFEM was validated on a silicone phantom and a porcine kidney sample. The results show that the proposed method can predict the wheel-tissue interaction forces of rolling indentation with good accuracy and can also accurately identify the location and depth of simulated tumors.
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
NASA Technical Reports Server (NTRS)
Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.
1978-01-01
Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.
Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun
2014-10-07
We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.
Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings
NASA Astrophysics Data System (ADS)
Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri
2018-05-01
This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.
A power-autonomous self-rolling wheel using ionic and capacitive actuators
NASA Astrophysics Data System (ADS)
Must, Indrek; Kaasik, Toomas; Baranova, Inna; Johanson, Urmas; Punning, Andres; Aabloo, Alvo
2015-04-01
Ionic electroactive polymer (IEAP) laminates are often considered as perspective actuator technology for mobile robotic appliances; however, only a few real proof-of-concept-stage robots have been built previously, a majority of which are dependent on an off-board power supply. In this work, a power-autonomous robot, propelled by four IEAP actuators having carbonaceous electrodes, is constructed. The robot consists of a light outer section in the form of a hollow cylinder, and a heavy inner section, referred to as the rim and the hub, respectively. The hub is connected to the rim using IEAP actuators, which form `spokes' of variable length. The effective length of the spokes is changed via charging and discharging of the capacitive IEAP actuators and a change in the effective lengths of the spokes eventuate in a rolling motion of the robot. The constructed IEAP robot takes advantage of the distinctive properties of the IEAP actuators. The IEAP actuators transform the geometry of the whole robot, while being soft and compliant. The low-voltage IEAP actuators in the robot are powered directly from an embedded single-cell lithium-ion battery, with no voltage regulation required; instead, only the input current is regulated. The charging of the actuators is commuted correspondingly to the robot's transitory position using an on-board control electronics. The constructed robot is able to roll for an extended period on a smooth surface. The locomotion of the IEAP robot is analyzed using video recognition.
Humpal, H.H.
1987-11-10
A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.
Humpal, H.H.
1986-03-21
A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-01-01
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-06-12
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
Andreasen Struijk, Lotte N S; Egsgaard, Line Lindhardt; Lontis, Romulus; Gaihede, Michael; Bentsen, Bo
2017-11-06
For an individual with tetraplegia assistive robotic arms provide a potentially invaluable opportunity for rehabilitation. However, there is a lack of available control methods to allow these individuals to fully control the assistive arms. Here we show that it is possible for an individual with tetraplegia to use the tongue to fully control all 14 movements of an assistive robotic arm in a three dimensional space using a wireless intraoral control system, thus allowing for numerous activities of daily living. We developed a tongue-based robotic control method incorporating a multi-sensor inductive tongue interface. One abled-bodied individual and one individual with tetraplegia performed a proof of concept study by controlling the robot with their tongue using direct actuator control and endpoint control, respectively. After 30 min of training, the able-bodied experimental participant tongue controlled the assistive robot to pick up a roll of tape in 80% of the attempts. Further, the individual with tetraplegia succeeded in fully tongue controlling the assistive robot to reach for and touch a roll of tape in 100% of the attempts and to pick up the roll in 50% of the attempts. Furthermore, she controlled the robot to grasp a bottle of water and pour its contents into a cup; her first functional action in 19 years. To our knowledge, this is the first time that an individual with tetraplegia has been able to fully control an assistive robotic arm using a wireless intraoral tongue interface. The tongue interface used to control the robot is currently available for control of computers and of powered wheelchairs, and the robot employed in this study is also commercially available. Therefore, the presented results may translate into available solutions within reasonable time.
NASA Astrophysics Data System (ADS)
Dima, M.; Francu, C.
2016-08-01
This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.
A Rolling Pendulum Bob: Conservation of Energy and Partitioning of Kinetic Energy.
ERIC Educational Resources Information Center
Helrich, Carl; Lehman, Thomas
1979-01-01
Describes a pendulum in which the spherical bob can roll on a track of the same arc as it swings when suspended by a cord. Comparison of the motion in the two mentioned cases shows the effect of rotational kinetic energy when the bob rolls. (GA)
International Assessment of Unmanned Ground Vehicles
2008-02-01
research relevant to ground robotics include • Multi-sensor data fusion • Stereovision • Dedicated robots, including legged robots, tracked robots...Technology Laboratory has developed several mobile robots with leg - ged, wheeled, rolling, rowing, and hybrid locomotion. Areas of particular emphasis...117 UK Department of Trade and Industry ( DTI ) Global Watch Mission. November 2006. Mechatronics in Russia. 118 CRDI Web Site: http
NASA Technical Reports Server (NTRS)
Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay
1994-01-01
There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.
2007-01-06
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
NASA Technical Reports Server (NTRS)
2007-01-01
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
Humpal, Harold H.
1987-01-01
A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).
Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet
Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion. PMID:24592154
Foot placement modification for a biped humanoid robot with narrow feet.
Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.
NASA Technical Reports Server (NTRS)
Peeples, Steven
2015-01-01
A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.
Digital Pitch-And-Roll Monitor
NASA Technical Reports Server (NTRS)
Finley, Tom D.; Brown, Jeff; Campbell, Ryland
1991-01-01
Highly accurate inclinometer developed. Monitors both pitch and roll simultaneously and provides printed output on demand. Includes three mutually perpendicular accelerometers and signal-conditioning circuitry converting outputs of sensors to digital values of pitch and roll. In addition to wind-tunnel applications, system useful in any application involving steady-state, precise sensing of angles, such as calibration of robotic devices and positioners.
ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS
Patton, G. Jr.; Zirinsky, S.
1961-06-01
A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Li, Lanfei; Sun, Hanxu
2017-12-01
Spherical flying robot can perform various tasks in the complex and varied environment to reduce labor costs. However, it is difficult to guarantee the stability of the spherical flying robot in the case of strong coupling and time-varying disturbance. In this paper, an artificial neural network controller (ANNC) based on MPSO-BFGS hybrid optimization algorithm is proposed. The MPSO algorithm is used to optimize the initial weights of the controller to avoid the local optimal solution. The BFGS algorithm is introduced to improve the convergence ability of the network. We use Lyapunov method to analyze the stability of ANNC. The controller is simulated under the condition of nonlinear coupling disturbance. The experimental results show that the proposed controller can obtain the expected value in shoter time compared with the other considered methods.
A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
Malosio, Matteo; Negri, Simone Pio; Pedrocchi, Nicola; Vicentini, Federico; Caimmi, Marco; Molinari Tosatti, Lorenzo
2012-01-01
The ankle represents a fairly complex bone structure, resulting in kinematics that hinders a flawless robot-assisted recovery of foot motility in impaired subjects. The paper proposes a novel device for ankle-foot neuro-rehabilitation based on a mechatronic redesign of the remarkable Agile Eye spherical robot on the basis of clinical requisites. The kinematic design allows the positioning of the ankle articular center close to the machine rotation center with valuable benefits in term of therapy functions. The prototype, named PKAnkle, Parallel Kinematic machine for Ankle rehabilitation, provides a 6-axes load cell for the measure of subject interaction forces/torques, and it integrates a commercial EMG-acquisition system. Robot control provides active and passive therapeutic exercises.
Design of a high-mobility multi-terrain robot based on eccentric paddle mechanism.
Sun, Yi; Yang, Yang; Ma, Shugen; Pu, Huayan
Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented. Several locomotion modes, including wheeled rolling, legged crawling, legged race-walking, rotational paddling, oscillating paddling, and paddle-aided rolling, are experimentally verified on testbeds with fabricated prototypes. Experimental results confirm that paddle's motion is useful in all the locomotion modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jimiao; Song, Min
2016-11-15
The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less
Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.
Abusomwan, Uyiosa A; Sitti, Metin
2014-10-14
Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.
NASA Astrophysics Data System (ADS)
Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel
2015-07-01
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.
A soft biomimetic tongue: model reconstruction and motion tracking
NASA Astrophysics Data System (ADS)
Lu, Xuanming; Xu, Weiliang; Li, Xiaoning
2016-04-01
A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.
Configuration Synthesis and Efficient Motion Programming of Robot Manipulators
1991-03-15
Gupta and Ma 90- Robotica 8:81-84]. When a set of discrete stations are specified along a robot task path, it becomes necessary to find a related...velocity Jacobian relations for the manipulator [Singh 87-MS Thesis][Gupta and Singh 89- Robotica 7:159-1641 and [Cheng 89-PhD Thesis][Cheng and Gupta...1987; Robotica 7:159-164, 1989 (revised). K. C. Gupta, "Kinematics of a Robot with Continuous Roll Wrist," IEEE J. Robotics and Automation 4(4):440-443
NASA Astrophysics Data System (ADS)
Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan
2018-03-01
A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly < {101} > for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.
NASA Technical Reports Server (NTRS)
Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)
2011-01-01
A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.
Kim, Ki-Young; Lee, Jung-Ju
2012-12-01
As there is a shortage of scrub nurses in many hospitals, automatic surgical tool exchanging mechanism without human labour has been studied. Minimally invasive robotic surgeries (MIRS) also require scrub nurses. A surgical tool loading mechanism without a scrub nurse's assistance for MIRS is proposed. Many researchers have developed minimally invasive surgical instruments with a wrist joint that can be movable inside the abdomen. However, implementation of a distal rolling joint on a gripper is rare. To implement surgical tool exchanging without a scrub nurse's assistance, a slave manipulator and a tool loader were developed to load and unload a surgical tool unit. A surgical tool unit with a roll-pitch-roll wrist was developed. Several experiments were performed to validate the effectiveness of the slave manipulator and the surgical tool unit. The slave manipulator and the tool loader were able to successfully unload and load the surgical tool unit without human assistance. The total duration of unloading and loading the surgical tool unit was 97 s. Motion tracking experiments of the distal rolling joint were performed. The maximum positioning error of the step input response was 2°. The advantage of the proposed slave manipulator and tool loader is that other robotic systems or human labour are not needed for surgical tool loading. The feasibility of the distal rolling joint in MIS is verified. Copyright © 2012 John Wiley & Sons, Ltd.
Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.
A small, cheap, and portable reconnaissance robot
NASA Astrophysics Data System (ADS)
Kenyon, Samuel H.; Creary, D.; Thi, Dan; Maynard, Jeffrey
2005-05-01
While there is much interest in human-carriable mobile robots for defense/security applications, existing examples are still too large/heavy, and there are not many successful small human-deployable mobile ground robots, especially ones that can survive being thrown/dropped. We have developed a prototype small short-range teleoperated indoor reconnaissance/surveillance robot that is semi-autonomous. It is self-powered, self-propelled, spherical, and meant to be carried and thrown by humans into indoor, yet relatively unstructured, dynamic environments. The robot uses multiple channels for wireless control and feedback, with the potential for inter-robot communication, swarm behavior, or distributed sensor network capabilities. The primary reconnaissance sensor for this prototype is visible-spectrum video. This paper focuses more on the software issues, both the onboard intelligent real time control system and the remote user interface. The communications, sensor fusion, intelligent real time controller, etc. are implemented with onboard microcontrollers. We based the autonomous and teleoperation controls on a simple finite state machine scripting layer. Minimal localization and autonomous routines were designed to best assist the operator, execute whatever mission the robot may have, and promote its own survival. We also discuss the advantages and pitfalls of an inexpensive, rapidly-developed semi-autonomous robotic system, especially one that is spherical, and the importance of human-robot interaction as considered for the human-deployment and remote user interface.
Environmental Data Collection Using Autonomous Wave Gliders
2014-12-01
Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll
Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J
2015-06-22
Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand interaction with 3D, multi-component terrain.
NASA Astrophysics Data System (ADS)
Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa
2017-05-01
This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.
Spiral lead platen robotic end effector
NASA Technical Reports Server (NTRS)
Beals, David C. (Inventor)
1990-01-01
A robotic end effector is disclosed which makes use of a rotating platen with spiral leads used to impact lateral motion to gripping fingers. Actuation is provided by the contact of rolling pins with the walls of the leads. The use of the disclosed method of actuation avoids jamming and provides excellent mechanical advantage while remaining light in weight and durable. The entire end effector is compact and easily adapted for attachment to robotic arms currently in use.
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.
Robotic vehicle with multiple tracked mobility platforms
Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.
2012-07-24
A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.
NASA Technical Reports Server (NTRS)
Bachelder, Aaron
2003-01-01
A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.
Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism
NASA Astrophysics Data System (ADS)
Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin
2015-01-01
The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.
A Practical Comparison of Motion Planning Techniques for Robotic Legs in Environments with Obstacles
NASA Technical Reports Server (NTRS)
Smith, Tristan B.; Chavez-Clemente, Daniel
2009-01-01
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently, any motion involving steps is cumbersome - each step can require multiple commands and take many minutes to complete. In this paper, we consider four different algorithms that generate a sequence of commands to take a step. We consider a baseline heuristic, a randomized motion planning algorithm, and two variants of A* search. Results for a variety of terrains are presented, and we discuss the quantitative and qualitative tradeoffs between the approaches.
NASA Technical Reports Server (NTRS)
Hovland, H. J.; Mitchell, J. K.
1971-01-01
The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.
Characterization of a Robotic Manipulator for Dynamic Wind Tunnel Applications
2015-03-26
further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll ...Measurement Unit ( IMU ), was used to validate the Euler angle output calculated by the MTA Computer using forward kinematics. Additionally, fast-response...61 3.7 Modeling the Wrist Roll Motor and Controller . . . . . . . . . . . . . . . . . . . . . 64 3.8 Proportional Control for Improved Performance
Navigation strategies for multiple autonomous mobile robots moving in formation
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1991-01-01
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.
Digitalization in roll forming manufacturing
NASA Astrophysics Data System (ADS)
Sedlmaier, A.; Dietl, T.; Ferreira, P.
2017-09-01
Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.
Small Business Innovations (Robotic Wrist)
NASA Technical Reports Server (NTRS)
1991-01-01
Under a Langley Research Center Small Business Innovation Research (SBIR) contract, Ross-Hime Designs, Inc. Minneapolis, MN, developed the Omni-Wrist actuator, which has a 25-pound capacity, 180 degrees of pitch/yaw, and 360 degrees of roll. Company literature calls it "the first successful singularity-free high-precision (robotic) wrist." Applications include spray painting, sealing, ultrasonic testing, welding and a variety of nuclear industry, aerospace and military uses.
TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research
2015-09-01
inferred roll angles that are found with the IMU . This is usually done with UNCLASSIFIED UNCLASSIFIED linear potentiometers, which have an electrical...wire electric, Electric traction control. Suspension Styles: Suspension is what keeps the vehicle off the ground and mechanically isolated from the...lot” maneuvers. Because of this, they roll with no slip angles. This means that the steering angles of the front wheels must be calibrated perfectly
NASA Astrophysics Data System (ADS)
Sait, Usha; Muthuswamy, Sreekumar
2016-05-01
Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.
Closure behavior of spherical void in slab during hot rolling process
NASA Astrophysics Data System (ADS)
Cheng, Rong; Zhang, Jiongming; Wang, Bo
2018-04-01
The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..
State Estimation for Tensegrity Robots
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas
2016-01-01
Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.
Surrogate Poster Artist Concept
2015-03-11
This artist's concept shows Surrogate, a robot that could one day assist in disasters or hazardous situations such as a dangerous chemical laboratory. Surrogate was designed and built at the Jet Propulsion Laboratory in Pasadena, California. Its components came from RoboSimian, another JPL-built robot designed for disaster relief and mitigation (see PIA19313). Surrogate rolls on a track rather than moving on its limbs. http://photojournal.jpl.nasa.gov/catalog/PIA19314
Inorganic fullerene-like nanoparticles of TiS 2
NASA Astrophysics Data System (ADS)
Margolin, Alexander; Popovitz-Biro, Ronit; Albu-Yaron, Ana; Rapoport, Lev; Tenne, Reshef
2005-08-01
Inorganic closed-cage nanoparticles of TiS 2 were synthesized using gas-phase synthesis. The reported nanoparticles are perfectly spherical with diameters centered between 60 and 80 nm, consisting from up to 80-100 concentric layers. The nucleation and growth mechanism was proposed for the formation of these nanoparticles. Tribological experiments emphasized the important role played by the spherical shape of the nanoparticles in providing rolling friction with a reduced friction coefficient and wear.
Rolling motion of an elastic cylinder induced by elastic strain gradients
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Shaohua
2014-10-01
Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.
Are pitch and roll compensations required in all pathologies? A data analysis of 2945 fractions.
Mancosu, Pietro; Reggiori, Giacomo; Gaudino, Anna; Lobefalo, Francesca; Paganini, Lucia; Palumbo, Valentina; Stravato, Antonella; Tomatis, Stefano; Scorsetti, Marta
2015-01-01
New linear accelerators can be equipped with a 6D robotic couch, providing two additional rotational motion axes: pitch and roll. These shifts in kilo voltage-cone beam CT (kV-CBCT) image-guided radiotherapy (IGRT) were evaluated over the first 6 months of usage of a 6D robotic couch-top, ranking the treatment sites for which the two compensations are larger for patient set-up. The couch compensations of 2945 fractions for 376 consecutive patients treated on the PerfectPitch™ 6D couch (Varian(®) Medical Systems, Palo Alto, CA) were analysed. Among these patients, 169 were treated for brain, 111 for lung, 54 for liver, 26 for pancreas and 16 for prostate tumours. During the set-up, patient anatomy from planning CT was aligned to kV-CBCT, and 6D movements were executed. Information related to pitch and roll were extracted by proper querying of the Microsoft(®) SQL server (Microsoft Corporation, Redmond, WA) ARIA database (Varian Medical Systems). Mean values and standard deviations were calculated for all sites. Kolmogorov-Smirnov (KS) test was performed. Considering all the data, mean pitch and roll adjustments were -0.10° ± 0.92° and 0.12° ± 0.96°, respectively; mean absolute values for both adjustments were 0.58° ± 0.69° and 0.69° ± 0.72°, respectively. Brain treatments showed the highest mean absolute values for pitch and roll rotations (0.73° ± 0.69° and 0.80° ± 0.78°, respectively); the lowest values of 0.36° ± 0.47° and 0.49° ± 0.58° were found for pancreas. KS test was significant for brain vs liver, pancreas and prostate. Collective corrections (pitch + roll) >0.5°, >1.0° and >2.0° were observed in, respectively, 79.8%, 61.0% and 29.1% for brain and 56.7%, 39.4% and 6.7% for pancreas. Adjustments in all six dimensions, including unconventional pitch and roll rotations, improve the patient set-up in all treatment sites. The greatest improvement was observed for patients with brain tumours. To our knowledge, this is the first systematic evaluation of the clinical efficacy of a 6D Robotic couch-top in CBCT IGRT over different tumour regions.
System Design and Locomotion of Superball, an Untethered Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas
2015-01-01
The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.
Development of a 6DOF robotic motion phantom for radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary
Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronizedmore » motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced cranial trajectories over 15 min, with a maximal RMSE of 0.04 mm translationally and 0.04° rotationally, and a prostate trajectory over 2 min, with a maximal RMSE of 0.06 mm translationally and 0.04° rotationally. Conclusions: This 6D robotic phantom has proven to be accurate under clinical standards and capable of reproducing tumor motion in 6D. Such functionality makes the robotic phantom usable for either quality assurance or research purposes.« less
2015-08-28
for the scene, and effectively isolates the points on buildings. We are now able to accurately filter in buildings, and filter out the ground, but...brushing hair and hugging. Time Action running kids Agent Motion rolling ball panning camera waves crashing Figure 3: Our work distinguishes inten- tional...action of an unknown agent (the kids in this example) from various other motions, such as the rolling ball, the crashing waves and the background mo
A method for the determination of the coefficient of rolling friction using cycloidal pendulum
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.
Rotary high power transfer apparatus
NASA Technical Reports Server (NTRS)
Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)
1987-01-01
An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.
Induced vibrations facilitate traversal of cluttered obstacles
NASA Astrophysics Data System (ADS)
Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen
When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P <0.0001, ANOVA). Traversal probability increased with and traversal time decreased with beam separation. These results confirmed our hypothesis and support the plausibility of locomotion energy landscapes for understanding the formation of locomotor pathways in complex 3-D terrains.
A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-01-01
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331
A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-04-08
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.
Shape-assisted body reorientation enhances trafficability through cluttered terrain
NASA Astrophysics Data System (ADS)
Li, Chen; Pullin, Andrew; Haldane, Duncan; Fearing, Ronald; Full, Robert
2014-11-01
Many birds and fishes have slender, streamlined bodies that reduce fluid dynamic drag and allow fast and efficient locomotion. Similarly, numerous terrestrial animals run through cluttered terrain where 3-D, multi-component obstacles like grass, bushes, trees, walls, doors, and pillars also resist motion, but it is unknown whether their body shape plays a major role. Here, we challenged discoid cockroaches that possess a rounded, thin, nearly ellipsoidal body to run through tall, narrowly spaced, grass-like beams. The animals primarily rolled their body to the side to maneuver through the obstacle gaps. Reduction of body roundness by artificial shells inhibited this side roll maneuver, resulting in a lower traversal probability and a longer traversal time (P < 0.001, ANOVA). Inspired by this discovery, we added a cockroach-like, rounded exoskeleton shell to a legged robot of a nearly cuboidal body. The rounded shell enabled the robot to use passive side rolling to maneuver through beams. To explain the mechanism, we developed a simple physics model to construct an energy landscape of the body-terrain interaction, which allowed estimation of body forces and torques exerted by the beams. Our model revealed that, by passive interaction with the terrain, a rounded body (ellipsoid) rolled more easily than an angular body (cuboid) to access energy valleys between energy barriers caused by obstacles. Our study is the first to demonstrate that a terradynamically ``streamlined'' shape can reduce terrain resistance and enhance trafficability by assisting body reorientation.
Dynamics of non-holonomic systems with stochastic transport
NASA Astrophysics Data System (ADS)
Holm, D. D.; Putkaradze, V.
2018-01-01
This paper formulates a variational approach for treating observational uncertainty and/or computational model errors as stochastic transport in dynamical systems governed by action principles under non-holonomic constraints. For this purpose, we derive, analyse and numerically study the example of an unbalanced spherical ball rolling under gravity along a stochastic path. Our approach uses the Hamilton-Pontryagin variational principle, constrained by a stochastic rolling condition, which we show is equivalent to the corresponding stochastic Lagrange-d'Alembert principle. In the example of the rolling ball, the stochasticity represents uncertainty in the observation and/or error in the computational simulation of the angular velocity of rolling. The influence of the stochasticity on the deterministically conserved quantities is investigated both analytically and numerically. Our approach applies to a wide variety of stochastic, non-holonomically constrained systems, because it preserves the mathematical properties inherited from the variational principle.
An Exploratory Investigation into the Effects of Adaptation in Child-Robot Interaction
NASA Astrophysics Data System (ADS)
Salter, Tamie; Michaud, François; Létourneau, Dominic
The work presented in this paper describes an exploratory investigation into the potential effects of a robot exhibiting an adaptive behaviour in reaction to a child’s interaction. In our laboratory we develop robotic devices for a diverse range of children that differ in age, gender and ability, which includes children that are diagnosed with cognitive difficulties. As all children vary in their personalities and styles of interaction, it would follow that adaptation could bring many benefits. In this abstract we give our initial examination of a series of trials which explore the effects of a fully autonomous rolling robot exhibiting adaptation (through changes in motion and sound) compared to it exhibiting pre-programmed behaviours. We investigate sensor readings on-board the robot that record the level of ‘interaction’ that the robot receives when a child plays with it and also we discuss the results from analysing video footage looking at the social aspect of the trial.
Perspectives on mobile robots as tools for child development and pediatric rehabilitation.
Michaud, François; Salter, Tamie; Duquette, Audrey; Laplante, Jean-François
2007-01-01
Mobile robots (i.e., robots capable of translational movements) can be designed to become interesting tools for child development studies and pediatric rehabilitation. In this article, the authors present two of their projects that involve mobile robots interacting with children: One is a spherical robot deployed in a variety of contexts, and the other is mobile robots used as pedagogical tools for children with pervasive developmental disorders. Locomotion capability appears to be key in creating meaningful and sustained interactions with children: Intentional and purposeful motion is an implicit appealing factor in obtaining children's attention and engaging them in interaction and learning. Both of these projects started with robotic objectives but are revealed to be rich sources of interdisciplinary collaborations in the field of assistive technology. This article presents perspectives on how mobile robots can be designed to address the requirements of child-robot interactions and studies. The authors also argue that mobile robot technology can be a useful tool in rehabilitation engineering, reaching its full potential through strong collaborations between roboticists and pediatric specialists.
A curved ultrasonic actuator optimized for spherical motors: design and experiments.
Leroy, Edouard; Lozada, José; Hafez, Moustapha
2014-08-01
Multi-degree-of-freedom angular actuators are commonly used in numerous mechatronic areas such as omnidirectional robots, robot articulations or inertially stabilized platforms. The conventional method to design these devices consists in placing multiple actuators in parallel or series using gimbals which are bulky and difficult to miniaturize. Motors using a spherical rotor are interesting for miniature multidegree-of-freedom actuators. In this paper, a new actuator is proposed. It is based on a curved piezoelectric element which has its inner contact surface adapted to the diameter of the rotor. This adaptation allows to build spherical motors with a fully constrained rotor and without a need for additional guiding system. The work presents a design methodology based on modal finite element analysis. A methodology for mode selection is proposed and a sensitivity analysis of the final geometry to uncertainties and added masses is discussed. Finally, experimental results that validate the actuator concept on a single degree-of-freedom ultrasonic motor set-up are presented. Copyright © 2014 Elsevier B.V. All rights reserved.
Small-scale soft-bodied robot with multimodal locomotion.
Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin
2018-02-01
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.
Small-scale soft-bodied robot with multimodal locomotion
NASA Astrophysics Data System (ADS)
Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin
2018-02-01
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.
STS-111 Flight Day 09 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 flight crew consists of Kenneth D. Cockrell, Commander, Paul S. Lockhart, Pilot, Franklin R. Chang-Diaz, Mission Specialist, Philippe Perrin, (CNES), Mission Specialist, Valery G. Korzun, (RSA), ISS Up, Peggy A. Whitson, ISS Up , Sergei Y. Treschev (RSC), ISS Up, Yuri I. Onufriyenko (RSA), ISS Down, Carl E. Walz, and Daniel W. Bursch (ISS) Down. The main goal on this ninth day of flight STS-111, is to replace the wrist roll joint of the Robotic Arm on the International Space Station. Live footage of the wrist roll joint replacement is presented. Paul Lockhart is the spacewalk coordinator for this mission. Franklin Chang-Diaz and Philippe Perrin, are responsible for replacing the wrist roll joint and performing maintenance activities. The spacewalk to repair this joint occurs outside the Space Station's Quest Airlock. The wrist roll joint was replaced successfully. The spacewalk took approximately 7 hours and 17 minutes to complete.
NASA Astrophysics Data System (ADS)
Jones, Nicola
2017-01-01
Robots, DNA and electricity bask in the limelight, as Blade Runner reboots, Kazakhstan gets energetic and a 'space tapestry' rolls out. It's quite a year -- and key anniversaries hit, too, for Canada, the anthropology dynamo the Peabody Museum and architect Frank Lloyd Wright. Nicola Jones reports.
High-speed DNA-based rolling motors powered by RNase H
Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.
2016-01-01
DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152
NASA Astrophysics Data System (ADS)
Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk
2016-10-01
This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
ERIC Educational Resources Information Center
Mamber, Stephen W.; Gantenbein, Alice
2017-01-01
Tootsie Pops, manufactured by Tootsie Roll Industries of Chicago, Illinois, are spherical hard-candy lollipops with a chocolate-flavoured, chewy center. While Tootsie Pops have been around since 1931, it was a television commercial made in 1969 that captured the attention of many. The commercial, an amusing animated cartoon, posed the following…
Determination of pitch rotation in a spherical birefringent microparticle
NASA Astrophysics Data System (ADS)
Roy, Basudev; Ramaiya, Avin; Schäffer, Erik
2018-03-01
Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.
A portable back massage robot based on Traditional Chinese Medicine.
Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai
2018-05-30
A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.
Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet
NASA Astrophysics Data System (ADS)
Iwata, Y.; Miyashita, S.; Iwase, E.
2017-12-01
This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.
ERIC Educational Resources Information Center
Szekely, George
2011-01-01
This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…
Moro, Federico L; Spröwitz, Alexander; Tuleu, Alexandre; Vespignani, Massimo; Tsagarakis, Nikos G; Ijspeert, Auke J; Caldwell, Darwin G
2013-06-01
This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.
A reconfigurable robot with tensegrity structure using nylon artificial muscle
NASA Astrophysics Data System (ADS)
Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.
2016-04-01
This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.
Controlling Tensegrity Robots Through Evolution
NASA Technical Reports Server (NTRS)
Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan
2013-01-01
Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.
Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.
2014-01-01
We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.
Eddy-Current Inspection of Ball Bearings
NASA Technical Reports Server (NTRS)
Bankston, B.
1985-01-01
Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2010-01-01
A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.
Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert
2015-04-01
Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.
Raven-II: an open platform for surgical robotics research.
Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee
2013-04-01
The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.
NASA Astrophysics Data System (ADS)
Zheng, Li; Yi, Ruan
2009-11-01
Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.
ATHLETE's Feet: Mu1ti-Resolution Planning for a Hexapod Robot
NASA Technical Reports Server (NTRS)
Smith, Tristan B.; Barreiro, Javier; Smith, David E.; SunSpiral, Vytas; Chavez-Clemente, Daniel
2008-01-01
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently with a single command, any motion involving steps is cumbersome - walking a few meters through difficult terrain can take hours. Our goal is to improve operator efficiency by automatically generating sequences of motion commands. There is increasing uncertainty regarding ATHLETE s actual configuration over time and decreasing quality of terrain data farther away from the current position. This, combined with the complexity that results from 36 degrees of kinematic freedom, led to an architecture that interleaves planning and execution at multiple levels, ranging from traditional configuration space motion planning algorithms for immediate moves to higher level task and path planning algorithms for overall travel. The modularity of the architecture also simplifies the development process and allows the operator to interact with and control the system at varying levels of autonomy depending on terrain and need.
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics
Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.
2017-01-01
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H
2017-02-06
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
Collision-based energetic comparison of rolling and hopping over obstacles
Iida, Fumiya
2018-01-01
Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals’ preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally. PMID:29538459
2003-06-08
KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
NASA Astrophysics Data System (ADS)
Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei
2018-07-01
Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.
Vertical interferometer workstation for testing large spherical optics
NASA Astrophysics Data System (ADS)
Truax, B.
2013-09-01
The design of an interferometer workstation for the testing of large concave and convex spherical optics is presented. The workstation handles optical components and mounts up to 425 mm in diameter with mass of up to 40 kg with 6 axes of adjustment. A unique method for the implementation of focus, roll and pitch was used allowing for extremely precise adjustment. The completed system includes transmission spheres with f-numbers from f/1.6 to f/0.82 incorporating reference surface diameters of up to 306 mm and surface accuracies of better than 63 nm PVr. The design challenges and resulting solutions are discussed. System performance results are presented.
Development of a Biomedical Micro/Nano Robot for Drug Delivery.
Zhang, Zhenhai; Li, Zhifei; Yu, Wei; Li, Kejie; Xie, Zhihong
2015-04-01
Flagellated bacteria have been utilized as potential swimming micro-robotic bodies for propulsion of spherical liposome by attaching several bacteria on their surface. Liposome as a drug delivery vehicle can contain biologically active compounds. In this work, the antibody binding technique is developed to attach bacteria to liposome's surface. Consequently, the stochastic effect of bacterial propulsion of liposome is investigated analytically and experimentally. It is shown that the mobility of liposome with bacteria was higher than that of liposome without bacteria. Experimental data matches well with statistical calculation.
Kinetic Shapes: Analysis, Verification, and Applications.
Handz̆ić, Ismet; Reed, Kyle B
2014-06-01
A circular shape placed on an incline will roll; similarly, an irregularly shaped object, such as the Archimedean spiral, will roll on a flat surface when a force is applied to its axle. This rolling is dependent on the specific shape and the applied force (magnitude and location). In this paper, we derive formulas that define the behavior of irregular 2D and 3D shapes on a flat plane when a weight is applied to the shape's axle. These kinetic shape (KS) formulas also define and predict shapes that exert given ground reaction forces when a known weight is applied at the axle rotation point. Three 2D KS design examples are physically verified statically with good correlation to predicted values. Motion simulations of unrestrained 2D KS yielded expected results in shape dynamics and self-stabilization. We also put forth practical application ideas and research for 2D and 3D KS such as in robotics and gait rehabilitation.
SU-F-BRE-05: Development and Evaluation of a Real-Time Robotic 6D Quality Assurance Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, AH; Liu, X; Grelewicz, Z
Purpose: A 6 degree-of-freedom robotic phantom capable of reproducing dynamic tumor motion in 6D was designed to more effectively match solid tumor movements throughout pre-treatment scanning and radiation therapy. With the abundance of optical and x-ray 6D real-time tumor tracking methodologies clinically available, and the substantial dosimetric consequences of failing to consider tumor rotation as well as translation, this work presents the development and evaluation of a 6D instrument with the facility to improve quality assurance. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the so-called Stewart-Gough parallel kinematics platform archetype. The device was thenmore » controlled using an inverse kinematics formulation, and precise movements in all six degrees of freedom (X, Y, Z, pitch, roll, and yaw) as well as previously obtained cranial motion, were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system (Polaris, NDI), and quantitatively compared to the input trajectory. Thus, the accuracy and repeatability of 6D motion was investigated and the phantom performance was characterized. Results: Evaluation of the 6D platform demonstrated translational RMSE values of 0.196 mm, 0.260 mm, and 0.101 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.068 degrees, 0.0611 degrees, and 0.095 degrees over 10 degrees of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced cranial trajectories over 15 minutes, with a maximal RMSE of 0.044 mm translationally and 0.036 degrees rotationally. Conclusion: This 6D robotic phantom has proven to be accurate under clinical standards and capable of reproducing tumor motion in 6D. Consequently, such a robotics device has the potential to serve as a more effective system for IGRT QA that involves both translational and rotational dimensions. Research was partially funded by NIH Grant T32 EB002103-21 from NIBIB. Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIBIB or NIH.« less
STELLA: 10 years of robotic observations on Tenerife
NASA Astrophysics Data System (ADS)
Weber, Michael; Granzer, Thomas; Strassmeier, Klaus G.
2016-07-01
STELLA is a robotic observatory on Tenerife housing two 1.2m robotic telescopes. One telescope is fibre-feeding a high-resolution (R=55,000) échelle spectrograph (SES), while the other telescope is equipped with a visible wide- field (FOV=22' x 22') imaging instrument (WiFSIP). Robotic observations started mid 2006, and the primary scientific driver is monitoring of stellar-activity related phenomena. The STELLA Control System (SCS) software package was originally tailored to the STELLA roll-off style building and high-resolution spectroscopy, but was extended over the years to support the wide-field imager, an off-axis guider for the imager, separate acquisition telescopes, classical domes, and targets-of-opportunity. The SCS allows for unattended, off-line operation of the observatory, targets can be uploaded at any time and are selected based on merit-functions in real-time (dispatch scheduling). We report on the current status of the observatory and the current capabilities of the SCS.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
3-D World Modeling For An Autonomous Robot
NASA Astrophysics Data System (ADS)
Goldstein, M.; Pin, F. G.; Weisbin, C. R.
1987-01-01
This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into "objects" that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition.
Robot-Powered Reliability Testing at NREL's ESIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Kevin
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested-and currently costly-component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle-all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle'smore » onboard storage tank.« less
Robot-Powered Reliability Testing at NREL's ESIF
Harrison, Kevin
2018-02-14
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested-and currently costly-component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle-all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle's onboard storage tank.
Robot-Powered Reliability Testing at NREL's ESIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Kevin
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested—and currently costly—component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle—all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle'smore » onboard storage tank.« less
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan
2018-01-10
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il “Dan”
2018-01-01
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively. PMID:29320414
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
Spherical, rolling magnet generators for passive energy harvesting from human motion
NASA Astrophysics Data System (ADS)
Bowers, Benjamin J.; Arnold, David P.
2009-09-01
In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.
A Numerical Study of Cavitation Inception in Complex Flow Fields
2007-12-01
field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18
Noncontact manipulation using a transversely magnetized rolling robot
NASA Astrophysics Data System (ADS)
Tung, Hsi-Wen; Peyer, Kathrin E.; Sargent, David F.; Nelson, Bradley J.
2013-09-01
A type of magnetic, wireless microrobot has been designed for non-contact manipulation of micro-objects in liquids. The agent, named the RodBot, has typical dimensions of 300 μm × 60 μm × 50 μm. The RodBot is transversely magnetized and rolls around its long axis on a surface in a rotating external magnetic field. In liquid environments, the RodBot generates a rising flow in front of it and a vortex above its body. The flow and vortex are efficient for picking-up and trapping micro-objects of sizes ranging from microns to one millimeter. In viscous solutions, a RodBot can transport objects many times its own size and weight.
Soft mobile robots driven by foldable dielectric elastomer actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjie; Liu, Fan; Ma, Ziqi
A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less
A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints
NASA Technical Reports Server (NTRS)
Divelbiss, Adam; Seereeram, Sanjeev; Wen, John T.
1993-01-01
Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima.
NASA Astrophysics Data System (ADS)
Li, Chen; Fearing, Ronald; Full, Robert
Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.
Dynamics of a spherical tippe top
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the inversion of a spherical tippe top. It was found that the top rises quickly while it is sliding and then more slowly when it starts rolling, in a manner similar to that observed previously with a spinning egg. As the top rises it rotates about the horizontal Y axis, an effect that is closely analogous to rotation of the top about the vertical Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction.
An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.
Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François
2017-11-24
We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.
International Space Station (ISS)
2002-06-01
Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.
Krings, Markus; Nyakatura, John A; Boumans, Mark L L M; Fischer, Martin S; Wagner, Hermann
2017-07-01
Owls are known for their outstanding neck mobility: these birds can rotate their heads more than 270°. The anatomical basis of this extraordinary neck rotation ability is not well understood. We used X-ray fluoroscopy of living owls as well as forced neck rotations in dead specimens and computer tomographic (CT) reconstructions to study how the individual cervical joints contribute to head rotation in barn owls (Tyto furcata pratincola). The X-ray data showed the natural posture of the neck, and the reconstructions of the CT-scans provided the shapes of the individual vertebrae. Joint mobility was analyzed in a spherical coordinate system. The rotational capability was described as rotation about the yaw and roll axes. The analyses suggest a functional division of the cervical spine into several regions. Most importantly, an upper region shows high rolling and yawing capabilities. The mobility of the lower, more horizontally oriented joints of the cervical spine is restricted mainly to the roll axis. These rolling movements lead to lateral bending, effectively resulting in a side shift of the head compared with the trunk during large rotations. The joints in the middle of the cervical spine proved to contribute less to head rotation. The analysis of joint mobility demonstrated how owls might maximize horizontal head rotation by a specific and variable combination of yawing and rolling in functionally diverse regions of the neck. © 2017 Anatomical Society.
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.
Robot-Powered Reliability Testing at NREL's ESIF
Harrison, Kevin
2018-02-14
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untestedâand currently costlyâcomponent of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicleâall under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle's onboard storage tank.
Experimental Semiautonomous Vehicle
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.;
1993-01-01
Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.
An Overview of Wind-Driven Rovers for Planetary Exploration
NASA Technical Reports Server (NTRS)
Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal
2005-01-01
The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic characteristics of the Tumbleweed Rovers. Bare structures, structures carrying sails and a tumbleweed plant (of the Salsola genus) were tested in Langley's wind tunnels. Thomas Estier of the Swiss Federal Institute of Technology developed a memory metal collapsible structure, the Windball. Numerous other researchers have also suggested spherical rovers.
Shock imprint and rolling direction influence upon the breaking tenacity for 2P armor steel
NASA Astrophysics Data System (ADS)
Zichil, V.; Coseru, A.; Schnakovszky, C.; Herghelegiu, E.; Radu, C.
2016-08-01
The state of art in present literature shows that the breaking tenacity of a material is influenced by the integrity of the structure. Since armors used in aviation and to protect military vehicles are frequently impact loaded, through the contact between armor sheet and projectiles, or other foreign bodies, the authors have proposed to study the dependence between the breaking tenacity of 2P armor steel depending on the direction of the rolling of the armor plate, of the geometry (spherical imprint, pyramidal and linear imprint) and the depth of the deformation that results after impact. Tests were conducted upon CT (ASTM E- 399) specimen type, using the critical factor of stress intensity during the state of planar strain.
Generalized formulation of the interactions between soft spheres
NASA Astrophysics Data System (ADS)
Alonso-Marroquín, F.; McNamara, S.
2014-10-01
The goal of this paper is to identify the most general formulation that consistently links the different degrees of freedom in a contact between spherical soft particles. These contact laws have two parts: a set of "generalized contact velocities" that characterize the relative motion of the two particles, and a set of "generalized contact forces" that characterize the interparticle forces. One well known constraint on contact models is that the contact velocities must be objective. This requirement fixes the number of linearly independent contact velocities. We also present a previously unnoticed (in this context) constraint, namely, that the velocities and forces must be related in such a way that the stiffness matrix is symmetric. This constraint also places restrictions on the coupling between the contact forces. Within our generalized contact model, we discuss the expression for rolling velocity that need to be used in the calculation of rolling resistance, and the risk or producing perpetual mobile when other expressions of rolling velocity are using instead.
Smolock, Amanda R; Cristescu, Mircea M; Vlaisavljevich, Eli; Gendron-Fitzpatrick, Annette; Green, Chelsey; Cannata, Jonathan; Ziemlewicz, Timothy J; Lee, Fred T
2018-05-01
Purpose To determine the feasibility of creating a clinically relevant hepatic ablation (ie, an ablation zone capable of treating a 2-cm liver tumor) by using robotically assisted sonic therapy (RAST), a noninvasive and nonthermal focused ultrasound therapy based on histotripsy. Materials and Methods This study was approved by the institutional animal use and care committee. Ten female pigs were treated with RAST in a single session with a prescribed 3-cm spherical treatment region and immediately underwent abdominal magnetic resonance (MR) imaging. Three pigs (acute group) were sacrificed immediately following MR imaging. Seven pigs (chronic group) were survived for approximately 4 weeks and were reimaged with MR imaging immediately before sacrifice. Animals underwent necropsy and harvesting of the liver for histologic evaluation of the ablation zone. RAST ablations were performed with a 700-kHz therapy transducer. Student t tests were performed to compare prescribed versus achieved ablation diameter, difference of sphericity from 1, and change in ablation zone volume from acute to chronic imaging. Results Ablation zones had a sphericity index of 0.99 ± 0.01 (standard deviation) (P < .001 vs sphericity index of 1). Anteroposterior and transverse dimensions were not significantly different from prescribed (3.4 ± 0.7; P = .08 and 3.2 ± 0.8; P = .29, respectively). The craniocaudal dimension was significantly larger than prescribed (3.8 ± 1.1; P = .04), likely because of respiratory motion. The central ablation zone demonstrated complete cell destruction and a zone of partial necrosis. A fibrous capsule surrounded the ablation zone by 4 weeks. On 4-week follow-up images, ablation zone volumes decreased by 64% (P < .001). Conclusion RAST is capable of producing clinically relevant ablation zones in a noninvasive manner in a porcine model. © RSNA, 2018.
Study on spherical stator for multidegree-of-freedom ultrasonic motor
NASA Astrophysics Data System (ADS)
Nakajima, Shuta; Kajiwara, Hidekazu; Aoyagi, Manabu; Tamura, Hideki; Takano, Takehiro
2016-07-01
A multidegree-of-freedom ultrasonic motor (MDOF-USM) has excellent features such as high torque at a low speed and a self-holding force, compared with other types of MDOF motor. Therefore, the MDOF-USM has been considered for applications in robot joints, multidimensional systems, and spacecraft. In previous research, the MDOF-USM consisting of a spherical rotor and a stator vibrator of various shapes has been mainly studied. In contrast, the MDOF-USM consisting of a spherical stator and a rotor of various shapes is proposed in this paper. The excitation methods for vibration modes and mode rotation using piezoelectric plates and multilayered piezoelectric actuators were examined. Furthermore, a stator support method that does not significantly affect the vibration of the sphere was devised. From the results of experiments using the fabricated prototype stator, the generation of vibration mode and mode rotation were confirmed. Therefore, the possibility of the realization of the MDOF-USM using a spherical stator was indicated.
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.
Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-08-23
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor
Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-01-01
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields. PMID:28832520
On the impact of rolling direction and tool orientation angle in Rotary Peen Forming
NASA Astrophysics Data System (ADS)
Gottschalk, M.; Hirt, G.
2016-10-01
Shot Peen Forming processes are suitable to produce surface curvatures that are commonly required for aircraft fuselage as well as structural components. The so called Rotary Peen Forming is an alternative process for manufacturing sheet metals with slight curvature. The forming tool consists of impactors which are connected flexibly to a rotating hub and thus moving on a circular trajectory. An industrial robot guides the Rotary Peen Forming tools. As a result, the machine design is more compact compared to traditional Shot Peen Forming. In the present work, the impact of both, the tool orientation angle and the rolling direction, on the curvature of aluminum AA5083 samples is examined. By means of a point laser measurement, the set-up enables a distance control to adjust a determined indentation depth. It can be shown, that the highest curvature is achieved when the tool is orientated parallel and when the rolling direction of the sheet metal is transversal to the curvature plane.
Intelligent Robotic Systems Study (IRSS), phase 2
NASA Technical Reports Server (NTRS)
1990-01-01
Under the Intelligent Robotics System Study (IRSS) contract, a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). The controller built for the PFMA provides localized position based force control, teleoperation and advanced path recording and playback capabilities. Various hand controllers can be used with the system in conjunction with a synthetic time delay capability to provide a realistic test bed for typical satellite servicing tasks. The configuration of the IRSS system is illustrated and discussed. The PFMA has six computer controllable degrees of freedom (DOF) plus a seventh manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Because the PFMA was not developed to operate in a gravity field, but rather in space, it is counter balanced at the shoulder, elbow and wrist and a spring counterbalance has been added near the wrist to provide additional support. Built with long slender intra-joint linkages, the PFMA has a workspace nearly 2 meters deep and possesses sufficient dexterity to perform numerous satellite servicing tasks. The manipulator is arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration, with an indexable shoulder roll joint. Digital control of the PFMA is implemented using a variety of single board computers developed by Heurikon Corporation and other manufacturers. The IRSS controller is designed to be a multi-rate, multi-tasking system. Independent joint servos run at a 134 Hz rate and position based impedance control functions at 67 Hz. Autonomous path generation and hand controller inputs are processed at a 33 Hz.
2003-05-10
KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-05-10
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
Jumping robots: a biomimetic solution to locomotion across rough terrain.
Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard
2007-09-01
This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.
Rolling-element bearings in China: From ancient times to the 20th century
NASA Astrophysics Data System (ADS)
Sun, Lie; Li, Ang
2016-03-01
The development of rolling-element bearings in China has spanned a long period. Based on several typical and important cases, the present article reconstructs the history of rolling-element bearings in China by dividing it into four stages according to the various characteristics of the bearings. The first stage represents the origin of rolling bearings in China, which remains controversial because of several suspected races and cages that were likely the components of bearings more than a millennium ago. At the second stage, a type of simple roller bearing was used for astronomical instruments not later than the 13th century based on clear philological and physical evidence. A similar bearing was also applied to an abridged armillary in the 17th century. Another type of spherical thrust bearings with rolling elements, which is a key component of a traditional Chinese windmill, could support a rotating shaft that moves rotationally and at an angle. At the third stage, the Chinese began studying and using the so-called Europeanstyle bearing since the 17th century. Moreover, over the last 100 years, the modern rolling bearing industry was gradually established in China, particularly because of the technology transfer from the Soviet Union in the 1950s. At the fourth stage, the Chinese government initiated the relatively rapid development of bearing technology. The government launched the "bearing movement" from the 1950s to the 1960s to establish the modern bearing industry and to promote rolling bearings as replacement for traditional sliding bearings. Furthermore, a number of large professional factories and institutions in China have continually introduced advanced technology and equipment. At present, these companies and institutions play a significant role in the international bearing industry.
Microradiographic microsphere manipulator
Singleton, R.M.
A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.
Microradiographic microsphere manipulator
Singleton, Russell M.
1980-01-01
A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.
Multipurpose surgical robot as a laparoscope assistant.
Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry
2010-07-01
This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.
Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet
Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo
2016-01-01
Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766
The NIST SPIDER, A Robot Crane
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439
The NIST SPIDER, A Robot Crane.
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, the overhead crane rolls along the ceiling with the pallet and Canadian robotic arm, SSRMS, toward the payload canister, at right. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Driewer, J; Wang, S
Purpose The accuracy of Varian PerfectPitch six degree of freedom (DOF) robotic couch was examined using Varian Isocal phantom and cone-beam CT (CBCT) system. Methods CBCT images of the Isocal phantom were taken at different pitch and roll angles. The pitch and roll angles were varied from 357 to 3 degrees in one degree increments by input from service console, generating a total of 49 combinations with couch angle (yaw) zero. The center positions of the 16 tungsten carbide BBs contained in the Isocal were determined with in-house image processing software. Expected BBs positions at different rotation angles were determinedmore » mathematically by applying a combined translation/rotation operator to BB positions at zero pitch and roll values. A least square method was used to minimize the difference between the expected BB positions and their measured positions. In this way rotation angles were obtained and compared with input values from the console. Results A total of 49 CBCT images with voxel sizes 0.51 mm × 0.51 mm × 1 mm were used in analysis. Among the 49 calculations, the maximum rotation angle differences were 0.1 degree, 0.15 degree, and 0.09 degree, for pitch, roll, and couch rotation, respectively. The mean ± standard-deviation angle differences were 0.028±0.001 degree, −0.043±0.003 degree, and −0.009±0.001 degree, for pitch, roll, and couch rotation, respectively. The maximum isocenter shifts were 0.3 mm, 0.5 mm, 0.4 mm in x, y, z direction respectively following IEC6127 convention. The mean isocenter shifts were 0.07±0.02 mm, −0.05±0.06 mm, and −0.12±0.02 mm in x, y and z directions. Conclusion The accuracy of the Varian PerfectPitch six DOF couch was studied with CBCTs of the Isocal phantom. The rotational errors were less than 0.15 degree and isocenter shifts were less than 0.5 mm in any direction. This accuracy is sufficient for stereotactic radiotherapy clinical applications.« less
A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.
Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining
2017-12-01
Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.
A Summary of the Naval Postgraduate School Research Programs and Recent Publications.
1991-09-01
publication by the ASNE accepted on an international basis as an effective Naval Engineering Journal after final editing, means of reducing ship roll...Teleoperator," SUMMARY: A non-anthropomorphic, force International Journal of Robotics and Autlonomouts reflecting telemanipulator was procured in FY91...and From 22-24 May 1991. Centrifugal Instabilities," International Journal of Heat and Fluid Flow, forthcoming. THESES DIRECTED: Hughes, R.E., LT, USN
An Overview of the National Shipbuilding Industrial Base,
1982-04-01
increased use of modular construction. In the near future, laser welding and alignment, plasma cutting, air-cushion and water bearing materials handling...of computer graphics for design and lofting, laser alignment and welding , and robotization also will be adoptable by shipyards in the near future...introduced the "roll over" ship construction technique to maximize the use of down-hand welding with smooth production flow; modular construction
Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot
NASA Astrophysics Data System (ADS)
Zakeri, M.; Faraji, J.
2014-12-01
In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.
Pre-shaping of the Fingertip of Robot Hand Covered with Net Structure Proximity Sensor
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Suzuki, Yosuke; Hasegawa, Hiroaki; Ming, Aiguo; Ishikawa, Masatoshi; Shimojo, Makoto
To achieve skillful tasks with multi-fingered robot hands, many researchers have been working on sensor-based control of them. Vision sensors and tactile sensors are indispensable for the tasks, however, the correctness of the information from the vision sensors decreases as a robot hand approaches to a grasping object because of occlusion. This research aims to achieve seamless detection for reliable grasp by use of proximity sensors: correcting the positional error of the hand in vision-based approach, and contacting the fingertip in the posture for effective tactile sensing. In this paper, we propose a method for adjusting the posture of the fingertip to the surface of the object. The method applies “Net-Structure Proximity Sensor” on the fingertip, which can detect the postural error in the roll and pitch axes between the fingertip and the object surface. The experimental result shows that the postural error is corrected in the both axes even if the object dynamically rotates.
Progress in the development of shallow-water mapping systems
Bergeron, E.; Worley, C.R.; O'Brien, T.
2007-01-01
The USGS (US Geological Survey) Coastal and Marine Geology has deployed an advance autonomous shallow-draft robotic vehicle, Iris, for shallow-water mapping in Apalachicola Bay, Florida. The vehicle incorporates a side scan sonar system, seismic-reflection profiler, single-beam echosounder, and global positioning system (GPS) navigation. It is equipped with an onboard microprocessor-based motor controller, delivering signals for speed and steering to hull-mounted brushless direct-current thrusters. An onboard motion sensor in the Sea Robotics vehicle control system enclosure has been integrated in the vehicle to measure the vehicle heave, pitch, roll, and heading. Three water-tight enclosures are mounted along the vehicle axis for the Edgetech computer and electronics system including the Sea Robotics computer, a control and wireless communications system, and a Thales ZXW real-time kinematic (RTK) GPS receiver. The vehicle has resulted in producing high-quality seismic reflection and side scan sonar data, which will help in developing the baseline oyster habitat maps.
Comparative analysis of ROS-based monocular SLAM methods for indoor navigation
NASA Astrophysics Data System (ADS)
Buyval, Alexander; Afanasyev, Ilya; Magid, Evgeni
2017-03-01
This paper presents a comparison of four most recent ROS-based monocular SLAM-related methods: ORB-SLAM, REMODE, LSD-SLAM, and DPPTAM, and analyzes their feasibility for a mobile robot application in indoor environment. We tested these methods using video data that was recorded from a conventional wide-angle full HD webcam with a rolling shutter. The camera was mounted on a human-operated prototype of an unmanned ground vehicle, which followed a closed-loop trajectory. Both feature-based methods (ORB-SLAM, REMODE) and direct SLAMrelated algorithms (LSD-SLAM, DPPTAM) demonstrated reasonably good results in detection of volumetric objects, corners, obstacles and other local features. However, we met difficulties with recovering typical for offices homogeneously colored walls, since all of these methods created empty spaces in a reconstructed sparse 3D scene. This may cause collisions of an autonomously guided robot with unfeatured walls and thus limits applicability of maps, which are obtained by the considered monocular SLAM-related methods for indoor robot navigation.
Design of a 7-DOF haptic master using a magneto-rheological devices for robot surgery
NASA Astrophysics Data System (ADS)
Kang, Seok-Rae; Choi, Seung-Bok; Hwang, Yong-Hoon; Cha, Seung-Woo
2017-04-01
This paper presents a 7 degrees-of-freedom (7-DOF) haptic master which is applicable to the robot-assisted minimally invasive surgery (RMIS). By utilizing a controllable magneto-rheological (MR) fluid, the haptic master can provide force information to the surgeon during surgery. The proposed haptic master consists of three degrees motions of X, Y, Z and four degrees motions of the pitch, yaw, roll and grasping. All of them have force feedback capability. The proposed haptic master can generate the repulsive forces or torques by activating MR clutch and MR brake. Both MR clutch and MR brake are designed and manufactured with consideration of the size and output torque which is usable to the robotic surgery. A proportional-integral-derivative (PID) controller is then designed and implemented to achieve torque/force tracking trajectories. It is verified that the proposed haptic master can track well the desired torque and force occurred in the surgical place by controlling the input current applied to MR clutch and brake.
International Space Station (ISS)
2002-06-07
Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
High precision redundant robotic manipulator
Young, Kar-Keung David
1998-01-01
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
Design and simulation of EVA tools and robot end effectors for servicing missions of the HST
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1995-01-01
The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.
Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883
Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.
Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects.
Ziherl, Jaka; Novak, Domen; Olenšek, Andrej; Mihelj, Matjaž; Munih, Marko
2010-10-18
Robotic systems are becoming increasingly common in upper extremity stroke rehabilitation. Recent studies have already shown that the use of rehabilitation robots can improve recovery. This paper evaluates the effect of different modes of robot-assistances in a complex virtual environment on the subjects' ability to complete the task as well as on various haptic parameters arising from the human-robot interaction. The MIMICS multimodal system that includes the haptic robot HapticMaster and a dynamic virtual environment is used. The goal of the task is to catch a ball that rolls down a sloped table and place it in a basket above the table. Our study examines the influence of catching assistance, pick-and-place movement assistance and grasping assistance on the catching efficiency, placing efficiency and on movement-dependent parameters: mean reaching forces, deviation error, mechanical work and correlation between the grasping force and the load force. The results with groups of subjects (23 subacute hemiparetic subjects, 10 chronic hemiparetic subjects and 23 control subjects) showed that the assistance raises the catching efficiency and pick-and-place efficiency. The pick-and-place movement assistance greatly limits the movements of the subject and results in decreased work toward the basket. The correlation between the load force and the grasping force exists in a certain phase of the movement. The results also showed that the stroke subjects without assistance and the control subjects performed similarly. The robot-assistances used in the study were found to be a possible way to raise the catching efficiency and efficiency of the pick-and-place movements in subacute and chronic subjects. The observed movement parameters showed that robot-assistances we used for our virtual task should be improved to maximize physical activity.
Microrobotics surveillance: discrete and continuous starbot
NASA Astrophysics Data System (ADS)
Mayyas, M.; Lee, W. H.; Stephanou, Harry
2011-05-01
This paper focuses on robotic technologies and operational capabilities of multiscale robots that demonstrate a unique class of Microsystems with the ability to navigate diverse terrains and environments. We introduce two classes of robots which combine multiple locomotion modalities including centimeter scale Discrete and Continuous robots which are referred here by D-Starbot and C-Starbot, respectively. The first generation of the robots were obtained to allow rapid shape reconfiguration and flipping recovery to accomplish tasks such as lowering and raising to dexterously go over and under obstacles, deform to roll over hostile location as well as squeezing through opening smaller than its sizes. The D-Starbot is based on novel mechanisms that allow shape reconfiguration to accomplish tasks such as lowering and raising to go over and under obstacles as well as squeezing through small voids. The CStarbot is a new class of foldable robots that is generally designed to provide a high degree of manufacturability. It consists of flexible structures that are built out of composite laminates with embedded microsystems. The design concept of C-Starbot are suitable for robots that could emulate and combine multiple locomotion modalities such as walking, running, crawling, gliding, clinging, climbing, flipping and jumping. The first generation of C-Starbot has centimeter scale structure consisting of flexible flaps, each being coupled with muscle-like mechanism. Untethered D-Starbot designs are prototyped and tested for multifunctional locomotion capabilities in indoor and outdoor environments. We present foldable mechanism and initial prototypes of C-Starbot capable of hopping and squeezing at different environments. The kinematic performance of flexible robots is thoroughly presented using the large elastic deflection of a single arm which is actuated by pulling force acting at variable angles and under payload and friction forces.
Inversion Of Jacobian Matrix For Robot Manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.
Development of a force-reflecting robotic platform for cardiac catheter navigation.
Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung
2010-11-01
Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
1997-12-16
The access tower around the Athena II rocket for the Lunar Prospector spacecraft, to be launched for NASA by Lockheed Martin, was rolled back today at Launch Complex 46 at Cape Canaveral Air Station for final prelaunch preparations. The small robotic spacecraft is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is currently scheduled for Jan. 5, 1998 at 8:31 p.m
1997-12-16
The access tower around the Athena II rocket for the Lunar Prospector spacecraft, to be launched for NASA by Lockheed Martin, was rolled back today at Launch Complex 46 at Cape Canaveral Air Station for final prelaunch preparations. The small robotic spacecraft is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is currently scheduled for Jan. 5, 1998 at 8:31 p.m
Space Shuttle Discovery is Prepared for Launch
2011-02-23
The space shuttle Discovery is seen shortly after the Rotating Service Structure was rolled back at launch pad 39A, at the Kennedy Space Center in Cape Canaveral, Florida, on Wednesday, Feb. 23, 2011. Discovery, on its 39th and final flight, will carry the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2014-06-01
transmitted from a controller mechanism that contains inertial measurement unit ( IMU ) sensors to sense rotation and acceleration of movement. Earlier...assets, and standard hand signal commands can be presented to human team members via a variety of modalities. IMU sensor technologies placed on the body...obstacle event (e.g., climbing, crawling, combat roll , running) and between obstacles (i.e., walking). The following analyses are for each task
Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui
2018-02-01
Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media.
Finlayson, Chris E; Baumberg, Jeremy J
2017-06-22
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color. The further engineering of this shear-ordering using a controllable "roll-to-roll" process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.
The robotic lumbar spine: dynamics and feedback linearization control.
Karadogan, Ernur; Williams, Robert L
2013-01-01
The robotic lumbar spine (RLS) is a 15 degree-of-freedom, fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The design incorporates five active lumbar vertebrae and the sacrum, with dimensions of an average adult human spine. It is actuated by 20 cables connected to electric motors. Every vertebra is connected to the neighboring vertebrae by spherical joints. Medical schools can benefit from a tool, system, or method that will help instructors train students and assess their tactile proficiency throughout their education. The robotic lumbar spine has the potential to satisfy these needs in palpatory diagnosis. Medical students will be given the opportunity to examine their own patient that can be programmed with many dysfunctions related to the lumbar spine before they start their professional lives as doctors. The robotic lumbar spine can be used to teach and test medical students in their capacity to be able to recognize normal and abnormal movement patterns of the human lumbar spine under flexion-extension, lateral bending, and axial torsion. This paper presents the dynamics and nonlinear control of the RLS. A new approach to solve for positive and nonzero cable tensions that are also continuous in time is introduced.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Georgescu, Monica; Sacccomandi, Arnaud; Baudron, Bernard; Arbeille, Philippe L
2016-04-01
A robotic arm was developed by our laboratory for tele-operated echography on patients in locations isolated from a trained sonographer. The objective of the study was to evaluate, over a 1-year period, the use of the robotic arm for telesonography performed by a sonographer located at the University Hospital (Tours, France) on patients in two isolated medical centers 50 km away linked via the Internet. A nonsonographer operator (physician or paramedic) located the ultrasound probe attached to the robotic arm over the appropriate acoustic window for the organ of interest by rolling the whole robotic arm and mechanical support across the floor. The expert sonographer then telemanipulated the robotic arm via an Internet connection and adjusted the orientation of the probe until the most appropriate organ view for delivering a diagnosis was obtained. Three hundred telesonography examinations were performed within 1 year: 68 (22.7%) on abdominal organs, 20 (6.7%) on pelvic organs, 138 (46%) on supraaortic vessels (carotid artery), 33 (11%) on the thyroid, 30 (10%) on leg veins, and 11 (3.7%) on the kidney and urinary tract. Telesonography could not be achieved in 10 of the 300 cases due to poor image quality on obese patients or those presenting poor echogenicity. These cases were re-examined at the university hospital by a sonographer. The rate of telesonography exams over the 1-year period was 1.5 per day for the "general population" medical site and 1 per week for the "elderly patient" medical site. This study demonstrated that telesonography using a robotic arm can be routinely used for providing echographic diagnoses on patients isolated from imaging centers.
International Space Station (ISS)
2002-06-05
Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.
High precision redundant robotic manipulator
Young, K.K.D.
1998-09-22
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.
Thermal Image Sensing Model for Robotic Planning and Search.
Castro Jiménez, Lídice E; Martínez-García, Edgar A
2016-08-08
This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image's intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot's course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach.
Large-scale ordering of nanoparticles using viscoelastic shear processing.
Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J
2016-06-03
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
Large-scale ordering of nanoparticles using viscoelastic shear processing
Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.
2016-01-01
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808
NASA Technical Reports Server (NTRS)
Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.
2013-01-01
We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Nels W.
Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.Themore » project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.« less
Miniature Robotic Spacecraft for Inspecting Other Spacecraft
NASA Technical Reports Server (NTRS)
Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer;
2004-01-01
A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.
1991-05-01
Configuration 17 4.3 Locomotor 19 4.3.1 Base Frame 20 4.3.2 Motors and Drive Train 21 4.3.3 Roll Frame 25 4.3.4 Rack Mount Enclosure 26 4.4 On-Board...tipover, or pitfalls to lesser locomotors . The Terregator can subtcnd moves of millimeter resolution at speeds of zero to several miles per hour. The...guidance systems to achieve a prototypical "intelligent inachine". A mobile base, or locomotor , which will transport the remaining components of an
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Body saccades of Drosophila consist of stereotyped banked turns.
Muijres, Florian T; Elzinga, Michael J; Iwasaki, Nicole A; Dickinson, Michael H
2015-03-01
The flight pattern of many fly species consists of straight flight segments interspersed with rapid turns called body saccades, a strategy that is thought to minimize motion blur. We analyzed the body saccades of fruit flies (Drosophila hydei), using high-speed 3D videography to track body and wing kinematics and a dynamically scaled robot to study the production of aerodynamic forces and moments. Although the size, degree and speed of the saccades vary, the dynamics of the maneuver are remarkably stereotypic. In executing a body saccade, flies perform a quick roll and counter-roll, combined with a slower unidirectional rotation around their yaw axis. Flies regulate the size of the turn by adjusting the magnitude of torque that they produce about these control axes, while maintaining the orientation of the rotational axes in the body frame constant. In this way, body saccades are different from escape responses in the same species, in which the roll and pitch component of banking is varied to adjust turn angle. Our analysis of the wing kinematics and aerodynamics showed that flies control aerodynamic torques during the saccade primarily by adjusting the timing and amount of span-wise wing rotation. © 2015. Published by The Company of Biologists Ltd.
Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
Umedachi, T; Vikas, V; Trimmer, B A
2016-03-10
Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new performance capabilities.
Jorge-Villar, Susana E; Edwards, Howell G M; Benning, Liane G
2011-11-01
The discovery of small, spherical nodules termed 'blueberries' in Gusev Crater on Mars, by the NASA rover Opportunity has given rise to much debate on account of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size and morphology has been analysed using Raman spectroscopy; the mineralogical composition has been determined and evidence found for the biological colonisation of these nodules from the spectral signatures of cyanobacterial protective biochemical residues such as scytonemin, carotenoids, phycocyanins and xanthophylls. This is an important result for the recognition of future sites for the planned astrobiological exploration of planetary surfaces using remote robotic instrumentation in the search for extinct and extant life biosignatures and for the expansion of putative terrestrial Mars analogue geological niches and morphologies.
Friction mechanism of individual multilayered nanoparticles.
Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef
2011-12-13
Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS(2) in the relatively low range of normal stress (0.96 ± 0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces.
Friction mechanism of individual multilayered nanoparticles
Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef
2011-01-01
Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS2 in the relatively low range of normal stress (0.96±0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces. PMID:22084073
FLEXnav: a fuzzy logic expert dead-reckoning system for the Segway RMP
NASA Astrophysics Data System (ADS)
Ojeda, Lauro; Raju, Mukunda; Borenstein, Johann
2004-09-01
Most mobile robots use a combination of absolute and relative sensing techniques for position estimation. Relative positioning techniques are generally known as dead-reckoning. Many systems use odometry as their only dead-reckoning means. However, in recent years fiber optic gyroscopes have become more affordable and are being used on many platforms to supplement odometry, especially in indoor applications. Still, if the terrain is not level (i.e., rugged or rolling terrain), the tilt of the vehicle introduces errors into the conversion of gyro readings to vehicle heading. In order to overcome this problem vehicle tilt must be measured and factored into the heading computation. A unique new mobile robot is the Segway Robotics Mobility Platform (RMP). This functionally close relative of the innovative Segway Human Transporter (HT) stabilizes a statically unstable single-axle robot dynamically, based on the principle of the inverted pendulum. While this approach works very well for human transportation, it introduces as unique set of challenges to navigation equipment using an onboard gyro. This is due to the fact that in operation the Segway RMP constantly changes its forward tilt, to prevent dynamically falling over. This paper introduces our new Fuzzy Logic Expert rule-based navigation (FLEXnav) method for fusing data from multiple gyroscopes and accelerometers in order to estimate accurately the attitude (i.e., heading and tilt) of a mobile robot. The attitude information is then further fused with wheel encoder data to estimate the three-dimensional position of the mobile robot. We have further extended this approach to include the special conditions of operation on the Segway RMP. The paper presents experimental results of a Segway RMP equipped with our system and running over moderately rugged terrain.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
State diagram for adhesion dynamics of deformable capsules under shear flow.
Luo, Zheng Yuan; Bai, Bo Feng
2016-08-17
Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca < 0.0075), whole-capsule deformation confers the capsule a flattened bottom in contact with the functionalized surface, which hence promotes the rolling-to-firm-adhesion transition. It is consistent with the observations from previous studies that cell deformation promotes the adhesion of cells lying in the rolling regime. However, it is surprising to find that, at relatively high capillary numbers (e.g. 0.0075 < Ca < 0.0175), the effect of capsule deformability on its adhesion dynamics is far more complex than just promoting adhesion. High deformability of capsules makes their bottom take a concave shape with no adhesion bond formation in the middle. The appearance of this specific capsule shape inhibits the transitions of both rolling-to-firm-adhesion and detachment-to-rolling, and it means that capsule deformation no longer promotes the capsule adhesion. Besides, it is interesting to note that, when the capillary number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape.
Modeling the convergence accommodation of stereo vision for binocular endoscopy.
Gao, Yuanqian; Li, Jinhua; Li, Jianmin; Wang, Shuxin
2018-02-01
The stereo laparoscope is an important tool for achieving depth perception in robot-assisted minimally invasive surgery (MIS). A dynamic convergence accommodation algorithm is proposed to improve the viewing experience and achieve accurate depth perception. Based on the principle of the human vision system, a positional kinematic model of the binocular view system is established. The imaging plane pair is rectified to ensure that the two rectified virtual optical axes intersect at the fixation target to provide immersive depth perception. Stereo disparity was simulated with the roll and pitch movements of the binocular system. The chessboard test and the endoscopic peg transfer task were performed, and the results demonstrated the improved disparity distribution and robustness of the proposed convergence accommodation method with respect to the position of the fixation target. This method offers a new solution for effective depth perception with the stereo laparoscopes used in robot-assisted MIS. Copyright © 2017 John Wiley & Sons, Ltd.
Robotic conveyance of artillery projectiles for remote ammunition resupply operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, T.L.; Glassell, R.L.
1995-07-01
The U.S. Army`s Project Manager, Advanced Field Artillery System/Future Armored Resupply Vehicle has given Oak Ridge National Laboratory the task of developing a robotic conveyance system which will provide automated artillery ammunition transfer. This technology is currently being developed and will be demonstrated in the summer of 1995. This paper describes the development of an ammunition transfer arm to date. The arm consists of three sections and 6 D.F. which will allow the Future Armored Resupply Vehicle to dock and mate with the Advanced Field Artillery System on terrain varying from {+-}10{degrees} in pitch, yaw, and roll and will allowmore » for alignment of the fuel and propellant transfer ports. This arm will deliver the ammunition to the AFAS, where it will be received by an automatic handling and storage system inside the AFAS.« less
Customized ATP towpreg. [Automated Tow Placement
NASA Technical Reports Server (NTRS)
Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.
1992-01-01
Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers prepare to roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
STS-111 Onboard Photo of the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
International Space Station (ISS)
2002-06-07
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Full-angle tomographic phase microscopy of flowing quasi-spherical cells.
Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro
2017-12-19
We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.
Zbyszewski, Dinusha; Challacombe, Benjamin; Li, Jichun; Seneviratne, Lakmal; Althoefer, Kaspar; Dasgupta, Prokar; Murphy, Declan
2010-07-01
We describe a comparative study between an enhanced air-cushion tactile sensor and a wheeled indentation probe. These laparoscopic tools are designed to rapidly locate soft-tissue abnormalities during minimally invasive surgery (MIS). The air-cushion tactile sensor consists of an optically based sensor with a 7.8 mm sphere "floating" on a cushion of air at the tip of a shaft. The wheeled indentation probe is a 10 mm wide and 5 mm in diameter wheel mounted to a force/torque sensor. A continuous rolling indentation technique is used to pass the sensors over the soft-tissue surfaces. The variations in stiffness of the viscoelastic materials that are detected during the rolling indentations are illustrated by stiffness maps that can be used for tissue diagnosis. The probes were tested by having to detect four embedded nodules in a silicone phantom. Each probe was attached to a robotic manipulator and rolled over the silicone phantom in parallel paths. The readings of each probe collected during the process of rolling indentation were used to achieve the final results. The results show that both sensors reliably detected the areas of variable stiffness by accurately identifying the location of each nodule. These are illustrated in the form of two three-dimensional spatiomechanical maps. These probes have the potential to be used in MIS because they could provide surgeons with information on the mechanical properties of soft tissue, consequently enhancing the reduction in haptic feedback.
Benefit of "Push-pull" Locomotion for Planetary Rover Mobility
NASA Technical Reports Server (NTRS)
Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.
2011-01-01
As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.
Feasibility of Dynamic Stability Measurements of Planetary Entry Capsules Using MSBS
NASA Technical Reports Server (NTRS)
Britcher, Colin; Schoenenberger, Mark
2015-01-01
The feasibility of conducting dynamic stability testing of planetary entry capsules at low supersonic Mach numbers using a Magnetic Suspension and Balance System (MSBS) is reviewed. The proposed approach would employ a spherical magnetic core, exert control in three degrees-of-freedom (i.e. x, y, z translations) and allow the model to freely rotate in pitch, yaw, and roll. A proof-of-concept system using an existing MSBS electromagnet array in a subsonic wind tunnel is described, with future potential for development of a new system for a supersonic wind tunnel.
Body shape helps legged robots climb and turn in complex 3-D terrains
NASA Astrophysics Data System (ADS)
Han, Yuanfeng; Wang, Zheliang; Li, Chen
Analogous to streamlined shapes that reduce drag in fluids, insects' ellipsoid-like rounded body shapes were recently discovered to be ``terradynamically streamlined'' and enhance locomotion in cluttered terrain by facilitating body rolling. Here, we hypothesize that there exist more terradynamic shapes that facilitate other modes of locomotion like climbing and turning in complex 3-D terrains by facilitating body pitching and yawing. To test our hypothesis, we modified the body shape of a legged robot by adding an elliptical and a rectangular shell and tested how it negotiated with circular and square vertical pillars. With a rectangular shell the robot always pitched against square pillars in an attempt to climb, whereas with an elliptical shell it always yawed and turned away from circular pillars given a small initial lateral displacement. Square / circular pillars facilitated pitching / yawing, respectively. To begin to reveal the contact physics, we developed a locomotion energy landscape model. Our model revealed that potential energy barriers to transition from pitching to yawing are high for angular locomotor and obstacle shapes (rectangular / square) but vanish for rounded shapes (elliptical / circular). Our study supports the plausibility of locomotion energy landscapes for understanding the rich locomotor transitions in complex 3-D terrains.
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Alternative Way of Shifting Mass to Move a Spherical Robot
NASA Technical Reports Server (NTRS)
Lux, James
2005-01-01
The method proposed calls for suspending a payload by use of four or more cables that would be anchored to the inner surface of the sphere. In this method, the anchor points would not be diametrically opposite points defining Cartesian axes. The payload, which includes the functional analog of the aforementioned control box, would contain winches that would shorten or lengthen the cables in a coordinated manner to shift the position of the payload within the shell.
Image Mapping and Visual Attention on the Sensory Ego-Sphere
NASA Technical Reports Server (NTRS)
Fleming, Katherine Achim; Peters, Richard Alan, II
2012-01-01
The Sensory Ego-Sphere (SES) is a short-term memory for a robot in the form of an egocentric, tessellated, spherical, sensory-motor map of the robot s locale. Visual attention enables fast alignment of overlapping images without warping or position optimization, since an attentional point (AP) on the composite typically corresponds to one on each of the collocated regions in the images. Such alignment speeds analysis of the multiple images of the area. Compositing and attention were performed two ways and compared: (1) APs were computed directly on the composite and not on the full-resolution images until the time of retrieval; and (2) the attentional operator was applied to all incoming imagery. It was found that although the second method was slower, it produced consistent and, thereby, more useful APs. The SES is an integral part of a control system that will enable a robot to learn new behaviors based on its previous experiences, and that will enable it to recombine its known behaviors in such a way as to solve related, but novel, task problems with apparent creativity. The approach is to combine sensory-motor data association and dimensionality reduction to learn navigation and manipulation tasks as sequences of basic behaviors that can be implemented with a small set of closed-loop controllers. Over time, the aggregate of behaviors and their transition probabilities form a stochastic network. Then given a task, the robot finds a path in the network that leads from its current state to the goal. The SES provides a short-term memory for the cognitive functions of the robot, association of sensory and motor data via spatio-temporal coincidence, direction of the attention of the robot, navigation through spatial localization with respect to known or discovered landmarks, and structured data sharing between the robot and human team members, the individuals in multi-robot teams, or with a C3 center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.
2015-10-05
To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less
Direct Immersion Annealing of Thin Block Copolymer Films.
Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir
2015-10-07
We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.
Direct Immersion Annealing of Thin Block Copolymer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.
2015-09-09
We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less
Summary of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.
2001-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.
2003-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Dynamic gamma knife radiosurgery
NASA Astrophysics Data System (ADS)
Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun
2009-03-01
Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the dose distributions, thus giving the clinician one more dimension of flexibility of choosing a plan based on the clinical situations.
NASA Technical Reports Server (NTRS)
1997-01-01
Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.
Development of structural schemes of parallel structure manipulators using screw calculus
NASA Astrophysics Data System (ADS)
Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV
2018-03-01
The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.
Design and Implementation of Sound Searching Robots in Wireless Sensor Networks
Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao
2016-01-01
A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well. PMID:27657088
Design and Implementation of Sound Searching Robots in Wireless Sensor Networks.
Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao
2016-09-21
A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well.
Motion capability analysis of a quadruped robot as a parallel manipulator
NASA Astrophysics Data System (ADS)
Yu, Jingjun; Lu, Dengfeng; Zhang, Zhongxiang; Pei, Xu
2014-12-01
This paper presents the forward and inverse displacement analysis of a quadruped robot MANA as a parallel manipulator in quadruple stance phase, which is used to obtain the workspace and control the motion of the body. The robot MANA designed on the basis of the structure of quadruped mammal is able to not only walk and turn in the uneven terrain, but also accomplish various manipulating tasks as a parallel manipulator in quadruple stance phase. The latter will be the focus of this paper, however. For this purpose, the leg kinematics is primarily analyzed, which lays the foundation on the gait planning in terms of locomotion and body kinematics analysis as a parallel manipulator. When all four feet of the robot contact on the ground, by assuming there is no slipping at the feet, each contacting point is treated as a passive spherical joint and the kinematic model of parallel manipulator is established. The method for choosing six non-redundant actuated joints for the parallel manipulator from all twelve optional joints is elaborated. The inverse and forward displacement analysis of the parallel manipulator is carried out using the method of coordinate transformation. Finally, based on the inverse and forward kinematic model, two issues on obtaining the reachable workspace of parallel manipulator and planning the motion of the body are implemented and verified by ADAMS simulation.
Robotic weather balloon launchers spread in Alaska
NASA Astrophysics Data System (ADS)
Rosen, Julia
2018-04-01
Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.
NASA Technical Reports Server (NTRS)
2003-01-01
May 10, 2003Prelaunch at Kennedy Space CenterOn Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.NASA Technical Reports Server (NTRS)
Jacobus, Heidi; Riggs, Alan J.; Jacobus, Charles; Weinstein, Yechiel
1991-01-01
Teleoperated control requires a master human interface device that can provide haptic input and output which reflect the responses of a slave robotic system. The effort reported in this paper addresses the design and prototyping of a six degree-of-freedom (DOF) Cartesian coordinate hand controller for this purpose. The device design recommended is an XYZ stage attached to a three-roll wrist which positions a flight-type handgrip. Six degrees of freedom are transduced and control brushless DC motor servo electronics similar in design to those used in computer controlled robotic manipulators. This general approach supports scaled force, velocity, and position feedback to aid an operator in achieving telepresence. The generality of the device and control system characteristics allow the use of inverse dynamics robotic control methodology to project slave robot system forces and inertias to the operator (in scaled form) and at the same time to reduce the apparent inertia of the robotic handcontroller itself. The current control design, which is not multiple fault tolerant, can be extended to make flight control or space use possible. The proposed handcontroller will have advantages in space-based applications where an operator must control several robot arms in a simultaneous and coordinated fashion. It will also have applications in intravehicular activities (within the Space Station) such as microgravity experiments in metallurgy and biological experiments that require isolation from the astronauts' environment. For ground applications, the handcontroller will be useful in underwater activities where the generality of the proposed handcontroller becomes an asset for operation of many different manipulator types. Also applications will emerge in the Military, Construction, and Maintenance/Manufacturing areas including ordnance handling, mine removal, NBC (Nuclear, Chemical, Biological) operations, control of vehicles, and operating strength and agility enhanced machines. Future avionics applications including advanced helicopter and aircraft control may also become important.
The force control and path planning of electromagnetic induction-based massage robot.
Wang, Wendong; Zhang, Lei; Li, Jinzhe; Yuan, Xiaoqing; Shi, Yikai; Jiang, Qinqin; He, Lijing
2017-07-20
Massage robot is considered as an effective physiological treatment to relieve fatigue, improve blood circulation, relax muscle tone, etc. The simple massage equipment quickly spread into market due to low cost, but they are not widely accepted due to restricted massage function. Complicated structure and high cost caused difficulties for developing multi-function massage equipment. This paper presents a novel massage robot which can achieve tapping, rolling, kneading and other massage operations, and proposes an improved reciprocating path planning algorithm to improve massage effect. The number of coil turns, the coil current and the distance between massage head and yoke were chosen to investigate the influence on massage force by finite element method. The control system model of the wheeled massage robot was established, including control subsystem of the motor, path algorithm control subsystem, parameter module of the massage robot and virtual reality interface module. The improved reciprocating path planning algorithm was proposed to improve regional coverage rate and massage effect. The influence caused by coil current, the number of coil turns and the distance between massage head and yoke were simulated in Maxwell. It indicated that coil current has more important influence compared to the other two factors. The path planning simulation of the massage robot was completed in Matlab, and the results show that the improved reciprocating path planning algorithm achieved higher coverage rate than the traditional algorithm. With the analysis of simulation results, it can be concluded that the number of coil turns and the distance between the moving iron core and the yoke could be determined prior to coil current, and the force can be controllable by optimizing structure parameters of massage head and adjusting coil current. Meanwhile, it demonstrates that the proposed algorithm could effectively improve path coverage rate during massage operations, therefore the massage effect can be improved.
Orion rolled out and mated on This Week @NASA - November 14, 2014
2014-11-14
In preparation for its first spaceflight test next month, NASA’s Orion spacecraft was transported from Kennedy Space Center’s Launch Abort System Facility to Space Launch Complex 37 at nearby Cape Canaveral Air Force Station on November 11, arriving at the launch pad early Nov. 12. NASA’s new deep space exploration capsule then was attached to the top of the Delta IV Heavy rocket that will carry it to space for the Dec. 4 test. Also, ISS crew returns safely, Earth Science research to continue with developing nations, Rosetta update, Rocks and Robots and more!
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 1 at NASAs Kennedy Space Center, a worker rolls the plastic cover removed from the Orbital Boom Sensor System (OBSS), at right, which will be installed in the payload bay of Atlantis. The 50- foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission STS-121 has a launch window of July 12 - July 31, 2005.
Spatial and rotational quality assurance of 6DOF patient tracking systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary
Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations. In this work, the authors develop a novel technique to evaluate the 6 degree of freedom 6(DOF) (translations and rotations) performance of external motion tracking systems. The authors apply this methodology to an infrared marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to perform motions with sub-millimeter and subdegree accuracy in a 6DOF workspace. An infraredmore » marker tracking system was first used to validate a calibration algorithm which associates the motion phantom coordinate frame to the camera frame. The 6DOF positions of the mobile robotic system in this space were then tracked and recorded independently by an optical surface tracking system after a cranial phantom was rigidly fixed to the moveable platform of the robotic stage. The calibration methodology was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20 × 20 × 16 mm and 5° × 5° × 5° workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the infrared (IR) marker tracking system to have maximal root-mean square error (RMSE) values of 0.18, 0.25, 0.07 mm, 0.05°, 0.05°, and 0.09° in left–right (LR), superior–inferior (SI), anterior–posterior (AP), pitch, roll, and yaw, respectively, comparing the intended 6DOF position and the measured position by the IR camera. Similarly, the 6DOF RSME discrepancy for the HD optical surface tracker yielded maximal values of 0.46, 0.60, 0.54 mm, 0.06°, 0.11°, and 0.08° in LR, SI, AP, pitch, roll, and yaw, respectively, over the same 6DOF evaluative workspace. An earlier generation 3D optical surface tracking unit was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.69, 0.74, 0.47 mm, 0.28°, 0.19°, and 0.18°, in LR, SI, AP, pitch, roll, and yaw, respectively, in the same 6DOF evaluation space. Conclusions: The proposed technique was found to be effective at evaluating the performance of 6DOF patient tracking systems. All observed optical tracking systems were found to exhibit tracking capabilities at the sub-millimeter and subdegree level within a 6DOF workspace.« less
Rover Wheel-Actuated Tool Interface
NASA Technical Reports Server (NTRS)
Matthews, Janet; Ahmad, Norman; Wilcox, Brian
2007-01-01
A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1994-01-01
Real-time video presentations are provided in the field of operator-supervised automation and teleoperation, particularly in control stations having movable cameras for optimal viewing of a region of interest in robotics and teleoperations for performing different types of tasks. Movable monitors to match the corresponding camera orientations (pan, tilt, and roll) are provided in order to match the coordinate systems of all the monitors to the operator internal coordinate system. Automated control of the arrangement of cameras and monitors, and of the configuration of system parameters, is provided for optimal viewing and performance of each type of task for each operator since operators have different individual characteristics. The optimal viewing arrangement and system parameter configuration is determined and stored for each operator in performing each of many types of tasks in order to aid the automation of setting up optimal arrangements and configurations for successive tasks in real time. Factors in determining what is optimal include the operator's ability to use hand-controllers for each type of task. Robot joint locations, forces and torques are used, as well as the operator's identity, to identify the current type of task being performed in order to call up a stored optimal viewing arrangement and system parameter configuration.
Corrosion Inhibition of Cold-rolled Low Carbon Steel with Pulse Fiber Laser Ablation in Water
NASA Astrophysics Data System (ADS)
Chan, Sze Ney; Wong, Wai Yin; Walvekar, Rashmi; Kadhum, Abdul Amir H.; Khalid, Mohammad; Lim, Kean Long
2018-04-01
This study aims at the use of a fiber laser for modifying the surface properties of cold-rolled low carbon steel via a pulse laser ablation technique in water. The effect on the corrosion behavior of the fiber laser-treated metal surface was investigated in NaCl and HCl environments. Electrochemical tests showed significant improvement in the corrosion resistance of the laser-treated sample in NaCl, with an increase in open-circuit potential (OCP) from - 0.65 to - 0.60 V and an inhibition efficiency of 89.22% as obtained from the impedance study. Such improvement was less significant in an acidic environment. Lower corrosion rates of 20.9 mpy and 5.819 × 103 mpy were obtained for the laser-treated samples in neutral and acidic electrolytes, respectively, than the corrosion rates obtained for the as-received samples (33.2 mpy and 11.98 × 103 mpy). Morphological analysis indicated a passive film built by spherical grains of regular size on the metal surface after laser treatment. The corrosion inhibition effects in NaCl were evident by the nonexistence of the common corrosion products of lepidocrocite and crystalline structures that were seen on as-received samples; only polyhedral crystals with micrograins grown on them were seen covering the laser-treated surface. Therefore, the laser treatment using a fiber laser source improved the corrosion resistance of cold-rolled low carbon steel.
Three Degree of Freedom Parallel Mechanical Linkage
NASA Technical Reports Server (NTRS)
Adelstein, Bernard D. (Inventor)
1998-01-01
A three degree of freedom parallel mechanism or linkage that couples three degree of freedom translational displacements at an endpoint, such as a handle, a hand grip, or a robot tool, to link rotations about three axes that are fixed with respect to a common base or ground link. The mechanism includes a three degree of freedom spherical linkage formed of two closed loops, and a planar linkage connected to the endpoint. The closed loops are rotatably interconnected, and made of eight rigid links connected by a plurality of single degree of freedom revolute joints. Three of these revolute joints are base joints and are connected to a common ground. such that the axis lines passing through the revolute joints intersect at a common fixed center point K forming the center of a spherical work volume in which the endpoint is capable of moving. 'Me three degrees of freedom correspond to the spatial displacement of the endpoint, for instance. The mechanism provides a new overall spatial kinematic linkage composed of a minimal number of rigid links and rotary joints. The mechanism has improved mechanical stiffness, and conveys mechanical power bidirectionally between the human operator and the electromechanical actuators. It does not require gears, belts. cable, screw or other types of transmission elements, and is useful in applications requiring full backdrivability. Thus, this invention can serve as the mechanical linkage for actively powered devices such as compliant robotic manipulators and force-reflecting hand controllers, and passive devices such as manual input devices for computers and other systems.
Mini AERCam Inspection Robot for Human Space Missions
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.
2004-01-01
The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.
Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang
2014-01-01
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less
Optic flow-based collision-free strategies: From insects to robots.
Serres, Julien R; Ruffier, Franck
2017-09-01
Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
ARV robotic technologies (ART): a risk reduction effort for future unmanned systems
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2006-05-01
The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.
Investigating Astromaterials Curation Applications for Dexterous Robotic Arms
NASA Technical Reports Server (NTRS)
Snead, C. J.; Jang, J. H.; Cowden, T. R.; McCubbin, F. M.
2018-01-01
The Astromaterials Acquisition and Curation office at NASA Johnson Space Center is currently investigating tools and methods that will enable the curation of future astromaterials collections. Size and temperature constraints for astromaterials to be collected by current and future proposed missions will require the development of new robotic sample and tool handling capabilities. NASA Curation has investigated the application of robot arms in the past, and robotic 3-axis micromanipulators are currently in use for small particle curation in the Stardust and Cosmic Dust laboratories. While 3-axis micromanipulators have been extremely successful for activities involving the transfer of isolated particles in the 5-20 micron range (e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other applications. For instance, curators removing particles from cosmic dust collectors by hand often employ scooping and rotating motions to successfully free trapped particles from the silicone oil coatings. Similar scooping and rotating motions are also employed when isolating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust curators have been remarkably successful with these kinds of particle manipulations using handheld tools, operator fatigue limits the number of particles that can be removed during a given extraction session. The challenges for curation of small particles will be exacerbated by mission requirements that samples be processed in N2 sample cabinets (i.e. gloveboxes). We have been investigating the use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot arms potentially have applications beyond small particle manipulation. For instance, future sample return missions may involve biologically sensitive astromaterials that can be easily compromised by physical interaction with a curator; other potential future returned samples may require cryogenic curation. Robot arms may be combined with high resolution cameras within a sample cabinet and controlled remotely by curator. Sophisticated robot arm and hand combination systems can be programmed to mimic the movements of a curator wearing a data glove; successful implementation of such a system may ultimately allow a curator to virtually operate in a nitrogen, cryogenic, or biologically sensitive environment with dexterity comparable to that of a curator physically handling samples in a glove box.
Retro reproduction: an old imaging technology rewrites the rules of modern embryology.
Fischer, Shannon
2015-01-01
On a video screen, against a black backdrop, 15 spherical blue-green cells vibrate with a quiet energy. Slowly at first, then faster, they begin to roil and roll. Within the confines of their round membrane cases, they divide, becoming two, three, four cells, then those, in turn, divide to become eight. One splits into two, then pauses, struggling to catch up and spinning off pieces of cellular detritus as it does. Near the top, another, by now many cells rich, hollows out and expands, contracts, expands, contracts. It falls in upon itself and then hatches, pouring out from its shell and ballooning to the side.
Generative Representations for Automated Design of Robots
NASA Technical Reports Server (NTRS)
Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.
2007-01-01
A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
Perception, planning, and control for walking on rugged terrain
NASA Technical Reports Server (NTRS)
Simmons, Reid; Krotkov, Eric
1991-01-01
The CMU Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. To gain experience with the problems involved in walking on rugged terrain, a full-scale prototype leg was built and mounted on a carriage that rolls along overhead rails. Issues addressed in developing the software system to autonomously walk the leg through rugged terrain are described. In particular, the insights gained into perceiving and modeling rugged terrain, controlling the legged mechanism, interacting with the ground, choosing safe yet effective footfalls, and planning efficient leg moves through space are described.
Electrohydrodynamic interactions of spherical particles under Quincke rotation
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2012-11-01
Quincke rotation denotes the spontaneous rotation of dielectric particles immersed in a slightly dielectric liquid when subjected to a high enough DC electric field. It occurs when the charge relaxation time of the particles is greater than that of the fluid medium, causing the particles to become polarized in a direction opposite to that of the electric field and therefore giving rise to an unstable equilibrium position. When slightly perturbed, the particles start to rotate, and if the electric field exceeds a critical value the perturbations do not decay and the particle rotations reach a steady state with a constant angular velocity. We use a combination of numerical simulations and asymptotic theory to study the effect of electrohydrodynamic interactions between particles under Quincke rotation. We study the prototypical case of two equally charged spheres carrying no net charge and interacting with each other both hydrodynamically and electrically. The case of spherical particles free to roll on a horizontal grounded electrode is also described. We show that Quincke rotation results in self-propulsion of the particles in the plane of the electrode, and interactions between a pair of such ``rollers'' are analyzed.
Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen
2017-12-06
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
STS-111 Onboard Photo of Endeavour Docking With PMA-2
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
Thermal Image Sensing Model for Robotic Planning and Search
Castro Jiménez, Lídice E.; Martínez-García, Edgar A.
2016-01-01
This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image’s intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot’s course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach. PMID:27509510
International Space Station (ISS)
2002-06-09
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
International Space Station (ISS)
2002-06-09
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang
Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental resultsmore » with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.« less
Bidirectional Reflectance Distribution Functions For the OSIRIS-REx Target Asteroid (101955) Bennu
NASA Astrophysics Data System (ADS)
Takir, Driss; Clark, Beth E.; Lauretta, Dante S.; d'Aubigny, Christian Drouet; Hergenrother, Carl W.; Li, Jian-Yang; Binzel, Richard P.
2014-11-01
We used ground-based photometric phase curve data of asteroid (101955) Bennu and low phase-angle (proxy) data from asteroid (253) Mathilde to fit precise Modified Minnaert, Modified Lommel-Seeliger, and (RObotic Lunar Orbiter) ROLO photometric models that capture the light scattering properties of the surface and subsequently allow us to calculate the geometric albedo, phase integral, and spherical Bond albedo for this asteroid. Radiance Factor functions (RADFs) are used to model the disk-resolved brightness of Bennu. Our geometric albedo values of 0.047 ,0.047, and 0.048 for the Modified Minnaert, Modified Lommel-Seeliger, and ROLO models, respectively, are consistent with the geometric albedo of 0.030-0.045 computed by Hergenrother et al. (2013), using IAU H-G photometric system. Also, our spherical Bond albedo values of 0.016, 0.015, and 0.015 for the Minnaert model, Lommel-Seeliger, and ROLO models, respectively, are consistent with the value of 0.017 presented by Emery et al. (2014).
Su, Hao; Dickstein-Fischer, Laurie; Harrington, Kevin; Fu, Qiushi; Lu, Weina; Huang, Haibo; Cole, Gregory; Fischer, Gregory S
2010-01-01
This paper presents the development of new prismatic actuation approach and its application in human-safe humanoid head design. To reduce actuator output impedance and mitigate unexpected external shock, the prismatic actuation method uses cables to drive a piston with preloaded spring. By leveraging the advantages of parallel manipulator and cable-driven mechanism, the developed neck has a parallel manipulator embodiment with two cable-driven limbs embedded with preloaded springs and one passive limb. The eye mechanism is adapted for low-cost webcam with succinct "ball-in-socket" structure. Based on human head anatomy and biomimetics, the neck has 3 degree of freedom (DOF) motion: pan, tilt and one decoupled roll while each eye has independent pan and synchronous tilt motion (3 DOF eyes). A Kalman filter based face tracking algorithm is implemented to interact with the human. This neck and eye structure is translatable to other human-safe humanoid robots. The robot's appearance reflects a non-threatening image of a penguin, which can be translated into a possible therapeutic intervention for children with Autism Spectrum Disorders.
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
A torsional MRE joint for a C-shaped robotic leg
NASA Astrophysics Data System (ADS)
Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.
2017-01-01
Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.
International Space Station (ISS)
2002-06-01
Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Kinematic synthesis of bevel-gear-type robotic wrist mechanisms
NASA Astrophysics Data System (ADS)
Lin, Chen-Chou
Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of workplace are derived. The workspace boundary equations can be derived via both geometric consideration and Jacobian analysis. The workspace is divided by inner and outer boundaries into regions of accessibility of zero, two, and four. The design criteria of full workspace and a maximum four-root region are established.
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
On the control of a robot ball using two omniwheels
NASA Astrophysics Data System (ADS)
Ivanov, Alexander P.
2015-07-01
We discuss the dynamics of a balanced body of spherical shape on a rough plane, controlled by the movement of a built-in shell. These two shells are set in relative motion due to rotation of the two symmetrical omniwheels. It is shown that the ball can be moved to any point on the plane along a straight or (in the case of the initial degeneration) polygonal line. Moreover, any prescribed curvilinear trajectory of the ball center can be followed by an appropriate control strategy as far as the diameter connecting both wheels is nonvertical.
NASA Technical Reports Server (NTRS)
Coe, H. H.
1984-01-01
Planetsys and Spherbean, two computer programs developed for the analysis of rolling element bearings, were used to simulate the thermal performance of an OH-58 helicopter main rotor transmission. A steady state and a transient thermal analysis were made and temperatures thus calculated were compared with experimental data obtained from a transmission that was operated to destruction, which occurred about 30 min after all the oil was drained from the transmission. Temperatures predicted by Spherbean were within 3% of the corresponding measured values at 15 min elapsed time and within 9% at 25 min. Spherbean also indicates a potential for high bearing cage temperatures with misalignment and outer ring rotation.
Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yi; Tian, Baohong; Volinsky, Alex A.; Sun, Huili; Chai, Zhe; Liu, Ping; Chen, Xiaohong; Liu, Yong
2016-04-01
Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.
Direct Immersion Annealing of Block Copolymer Thin Films
NASA Astrophysics Data System (ADS)
Karim, Alamgir
We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene -poly(methyl methacrylate) (PS -PMMA) system: rapid short range order, optimal long-range order, and a film instability regime. Kinetic studies in the ``optimal long-range order'' processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. Inclusion of nanoparticles in these films at high concentrations and fast ordering kinetics study with neutron reflectivity and SANS will be discussed. This is (late) Contributed Talk Abstract for Dillon Medal Symposium at DPOLY - discussed with DPOLY Chair Dvora Perahia.
Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Fradkov, V. E.
1996-01-01
We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.
Calibration of discrete element model parameters: soybeans
NASA Astrophysics Data System (ADS)
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
STS-111 Onboard Photo of Endeavour Docking With PMA-2
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
Free-to-Roll Testing of Airplane Models in Wind Tunnels
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Owens, D. Bruce; Hall, Robert M.
2007-01-01
A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating head rigidly to the stationary head. Switching between the static and FTR test modes takes only about 30 minutes. The FTR test rig was originally mounted in a 16-ft (approximately 4.0-m) transonic wind tunnel, but could just as well be adapted to use in any large wind tunnel. In one series of tests on the FTR rig, static and dynamic characteristics of models of four different fighter airplanes were measured. Two of the models exhibited uncommanded lateral motions; the other two did not. A figure of merit was developed to discern the severity of lateral motions. Using this figure of merit, it was shown that the FTR test technique enabled identification of conditions under which the uncommanded lateral motions occurred. The wind-tunnel conditions thus identified were found to be correlated with flight conditions under which the corresponding full-size airplanes exhibited uncommanded lateral motions.
The effects of patch-potentials on the gravity probe B gyroscopes.
Buchman, S; Turneaure, J P
2011-07-01
Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.
Magnetic Eigenmodes in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.
2002-11-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
3D tracking of laparoscopic instruments using statistical and geometric modeling.
Wolf, Rémi; Duchateau, Josselin; Cinquin, Philippe; Voros, Sandrine
2011-01-01
During a laparoscopic surgery, the endoscope can be manipulated by an assistant or a robot. Several teams have worked on the tracking of surgical instruments, based on methods ranging from the development of specific devices to image processing methods. We propose to exploit the instruments' insertion points, which are fixed on the patients abdominal cavity, as a geometric constraint for the localization of the instruments. A simple geometric model of a laparoscopic instrument is described, as well as a parametrization that exploits a spherical geometric grid, which offers attracting homogeneity and isotropy properties. The general architecture of our proposed approach is based on the probabilistic Condensation algorithm.
Scaling effects in direct shear tests
Orlando, A.D.; Hanes, D.M.; Shen, H.H.
2009-01-01
Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians roll the test equipment away from an external tank door on space shuttle Atlantis following the successful completion of a push test. Two umbilical doors, located on the shuttle's aft fuselage, close after external tank separation following launch. The test confirms that the door's actuators are functioning properly and that signals sent from the actuators correctly indicate that the doors have closed, creating the necessary thermal barrier for reentry. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Troy Cryder
Deformation-Induced Precession of a Robot Moving on Curved Space
NASA Astrophysics Data System (ADS)
Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel
Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.
2011-03-02
CAPE CANAVERAL, Fla. -- Space shuttle Endeavour is firmly attached to its external fuel tank and solid rocket boosters in a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Thate, Robert
2012-01-01
The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.
Cohesion, granular solids, granular liquids, and their connection to small near-Earth objects
NASA Astrophysics Data System (ADS)
Sánchez, P.; Scheeres, D.
2014-07-01
During the last 15 years or so, the Planetary Sciences community has been using Discrete Element Method (DEM) simulation codes to study small near-Earth objects (NEOs). In general, these codes treat gravitational aggregates as conglomerates of spherical particles; a good approximation given that many asteroids are self-gravitating granular media. Unfortunately, the degree of sophistication of these codes, and our own understanding, has not been high enough as to appropriately represent realistic physical properties of granular matter. In particular, angles of friction (θ) and cohesive strength (σ_c) of the aggregates were rarely taken in consideration and this could have led to unrealistic dynamics, and therefore, unrealistic conclusions about the dynamical evolution of small NEOs. In our research, we explore the failure mechanics of spherical (r=71 m) and ellipsoidal (r_1=92 m) self-gravitating aggregates with different angles of friction and values for their cohesive strength, in order to better understand the geophysics of rubble-pile asteroids. In particular we focused on the deformation and different disruption modes provoked by an always increasing angular velocity (spin rate). Scaling arguments allow us to regard simulations with the same aggregate size and different σ_c as equivalent to simulations of aggregates of different size and the same σ_c. We use a computational code that implements a Soft-Sphere DEM. The aggregates are composed by 3,000 spherical solid spheres (7--10 m) with 6 degrees of freedom. The code calculates normal, as well as, frictional (tangential) contact forces by means of soft potentials and the aggregate as a whole mimics the effect of non- spherical particles through the implementation of rolling friction. Cohesive forces, and a cohesive stress, are calculated as the net effect of the sum of the van der Waals forces between the smaller regolith, sand and dust (powder) that are present in real asteroids [1]. These finer materials form a matrix of sorts that holds the bigger boulders together. The aggregates were slowly spun up to disruption controlling for angle of friction, cohesion and global shape. Systems with no frictional forces had θ≈ 12° and are in effect granular liquids in the best case scenario. Systems with only surface-surface friction had θ≈ 25°, which is typical in laboratory experiments with spherical glass beads. Systems that also implemented rolling friction had θ≈ 35°, which is typical of non-cohesive granular media on the Earth. How much each aggregate deformed before disruption was directly related to the angle of friction. The greater θ allowed for much less deformation before disruption. Cohesive forces on the other hand controlled the mode of disruption and maximum spin rate and showed that the change from shedding to fission is continuous and therefore, they should not be seen as different disruption processes. The figure shows the deformation and disruption of three initially spherical aggregates (left) and three initially ellipsoidal aggregates (right) with increasing cohesive strength from left to right (θ≈ 35°). Through scaling arguments we could also see these aggregates as having the exact same σ_c=25 Pa but different sizes. If we do that, the aggregates measure about 1.6 km, 5 km, and 22 km, and the particles, or groups of particles being detached now have similar sizes. This has now become a problem of resolution, i.e., the number and size of particles used in a simulation. These results start to raise fundamental questions regarding the difference between shedding and fission. Is it shedding when it is dust grain by dust grain ejection from the main body or when it is in groups of 10, 100, or 100,000 dust particles? Is it fission when a 1-m piece of the asteroid detaches or when it splits in the middle? Which values of θ and σ_c are realistic? These and other questions will be explored.
Impact of tool wear on cross wedge rolling process stability and on product quality
NASA Astrophysics Data System (ADS)
Gutierrez, Catalina; Langlois, Laurent; Baudouin, Cyrille; Bigot, Régis; Fremeaux, Eric
2017-10-01
Cross wedge rolling (CWR) is a metal forming process used in the automotive industry. One of its applications is in the manufacturing process of connecting rods. CWR transforms a cylindrical billet into a complex axisymmetrical shape with an accurate distribution of material. This preform is forged into shape in a forging die. In order to improve CWR tool lifecycle and product quality it is essential to understand tool wear evolution and the physical phenomena that change on the CWR process due to the resulting geometry of the tool when undergoing tool wear. In order to understand CWR tool wear behavior, numerical simulations are necessary. Nevertheless, if the simulations are performed with the CAD geometry of the tool, results are limited. To solve this difficulty, two numerical simulations with FORGE® were performed using the real geometry of the tools (both up and lower roll) at two different states: (1) before starting lifecycle and (2) end of lifecycle. The tools were 3D measured with ATOS triple scan by GOM® using optical 3D measuring techniques. The result was a high-resolution point cloud of the entire geometry of the tool. Each 3D point cloud was digitalized and converted into a STL format. The geometry of the tools in a STL format was input for the 3D simulations. Both simulations were compared. Defects of products obtained in simulation were compared to main defects of products found industrially. Two main defects are: (a) surface defects on the preform that are not fixed in the die forging operation; and (b) Preform bent (no longer straight), with two possible impacts: on the one hand that the robot cannot grab it to take it to the forging stage; on the other hand, an unfilled section in the forging operation.
Lediju Bell, Muyinatu A.; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter; Wong, John
2014-01-01
Abstract. Ultrasound can provide real-time image guidance of radiation therapy, but the probe-induced tissue deformations cause local deviations from the treatment plan. If placed during treatment planning, the probe causes streak artifacts in required computed tomography (CT) images. To overcome these challenges, we propose robot-assisted placement of an ultrasound probe, followed by replacement with a geometrically identical, CT-compatible model probe. In vivo reproducibility was investigated by implanting a canine prostate, liver, and pancreas with three 2.38-mm spherical markers in each organ. The real probe was placed to visualize the markers and subsequently replaced with the model probe. Each probe was automatically removed and returned to the same position or force. Under position control, the median three-dimensional reproducibility of marker positions was 0.6 to 0.7 mm, 0.3 to 0.6 mm, and 1.1 to 1.6 mm in the prostate, liver, and pancreas, respectively. Reproducibility was worse under force control. Probe substitution errors were smallest for the prostate (0.2 to 0.6 mm) and larger for the liver and pancreas (4.1 to 6.3 mm), where force control generally produced larger errors than position control. Results indicate that position control is better than force control for this application, and the robotic approach has potential, particularly for relatively constrained organs and reproducibility errors that are smaller than established treatment margins. PMID:26158038
Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2001-01-01
The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.
Mini AERCam: A Free-Flying Robot for Space Inspection
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2001-01-01
The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.
Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.
Wong, Tin Wui; Musa, Nafisah
2012-07-01
Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. Copyright © 2012 Elsevier B.V. All rights reserved.
After Opportunity's First Drive in Six Weeks
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007). Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards. Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.Gao, Xiang; Yan, Shenggang; Li, Bin
2017-01-01
Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006
Microcapsules fabricated from liquid marbles stabilized with latex particles.
Ueno, Kazuyuki; Hamasaki, Sho; Wanless, Erica J; Nakamura, Yoshinobu; Fujii, Syuji
2014-03-25
Millimeter- and centimeter-sized "liquid marbles" were readily prepared by rolling water droplets on a powder bed of dried submicrometer-sized polystyrene latex particles carrying poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS). Scanning electron microscopy studies indicated that flocs of the PDEA-PS particles were adsorbed at the surface of these water droplets, leading to stable spherical liquid marbles. The liquid marbles were deformed as a result of water evaporation to adopt a deflated spherical geometry, and the rate of water evaporation decreased with increasing atmospheric relative humidity. Conversely, liquid marbles formed using saturated aqueous LiCl solution led to atmospheric water absorption by the liquid marbles and a consequent mass increase. The liquid marbles can be transformed into polymeric capsules containing water by exposure to solvent vapor: the PDEA-PS particles were plasticized with the solvent vapor to form a polymer film at the air-water interface of the liquid marbles. The polymeric capsules with aqueous volumes of 250 μL or less kept their oblate ellipsoid/near spherical shape even after complete water evaporation, which confirmed that a rigid polymeric capsule was successfully formed. Both the rate of water evaporation from the pure water liquid marbles and the rate of water adsorption into the aqueous LiCl liquid marbles were reduced with an increase of solvent vapor treatment time. This suggests that the number and size of pores within the polymer particles/flocs on the liquid marble surface decreased due to film formation during exposure to organic solvent vapor. In addition, organic-inorganic composite capsules and colloidal crystal capsules were fabricated from liquid marbles containing aqueous SiO2 dispersions.
MR-guided focused ultrasound robot for performing experiments on large animals
NASA Astrophysics Data System (ADS)
Mylonas, N.; Damianou, C.
2011-09-01
Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
Modeling and Simulation of Two Wheelchair Accessories for Pushing Doors.
Abdullah, Soran Jalal; Shaikh Mohammed, Javeed
2017-03-27
Independent mobility is vital to individuals of all ages, and wheelchairs have proven to be great personal mobility devices. The tasks of opening and navigating through a door are trivial for healthy people, while the same tasks could be difficult for some wheelchair users. A wide range of intelligent wheelchair controllers and systems, robotic arms, or manipulator attachments integrated with wheelchairs have been developed for various applications, including manipulating door knobs. Unfortunately, the intelligent wheelchairs and robotic attachments are not widely available as commercial products. Therefore, the current manuscript presents the modeling and simulation of a novel but simple technology in the form of a passive wheelchair accessory (straight, arm-like with a single wheel, and arc-shaped with multiple wheels) for pushing doors open from a wheelchair. From the simulations using different wheel shapes and sizes, it was found that the arc-shaped accessory could push open the doors faster and with almost half the required force as compared to the arm-like accessory. Also, smaller spherical wheels were found to be best in terms of reaction forces on the wheels. Prototypes based on the arc-shaped accessory design will be manufactured and evaluated for pushing doors open and dodging or gliding other obstacles.
NASA Technical Reports Server (NTRS)
Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.
2003-01-01
Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.
NASA Astrophysics Data System (ADS)
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
Improved Method Being Developed for Surface Enhancement of Metallic Materials
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.
2001-01-01
Surface enhancement methods induce a layer of beneficial residual compressive stress to improve the impact (FOD) resistance and fatigue life of metallic materials. A traditional method of surface enhancement often used is shot peening, in which small steel spheres are repeatedly impinged on metallic surfaces. Shot peening is inexpensive and widely used, but the plastic deformation of 20 to 40 percent imparted by the impacts can be harmful. This plastic deformation can damage the microstructure, severely limiting the ductility and durability of the material near the surface. It has also been shown to promote accelerated relaxation of the beneficial compressive residual stresses at elevated temperatures. Low-plasticity burnishing (LPB) is being developed as an improved method for the surface enhancement of metallic materials. LPB is being investigated as a rapid, inexpensive surface enhancement method under NASA Small Business Innovation Research contracts NAS3-98034 and NAS3-99116, with supporting characterization work at NASA. Previously, roller burnishing had been employed to refine surface finish. This concept was adopted and then optimized as a means of producing a layer of compressive stress of high magnitude and depth, with minimal plastic deformation (ref. 1). A simplified diagram of the developed process is given in the following figure. A single pass of a smooth, free-rolling spherical ball under a normal force deforms the surface of the material in tension, creating a compressive layer of residual stress. The ball is supported in a fluid with sufficient pressure to lift the ball off the surface of the retaining spherical socket. The ball is only in mechanical contact with the surface of the material being burnished and is free to roll on the surface. This apparatus is designed to be mounted in the conventional lathes and vertical mills currently used to machine parts. The process has been successfully applied to nickel-base superalloys by a team from the NASA Glenn Research Center, Lambda Research, and METCUT Research, as supported by the NASA Small Business Innovation Research Phase I and II programs, the Ultra Safe program, and the Ultra- Efficient Engine Technology (UEET) Program.
NASA Astrophysics Data System (ADS)
Hartl, Alexandre E.
This dissertation provides a thorough treatment on the dynamic modeling and simulation of spherical objects, and its applications to planetary rovers and gravitational billiards. First, the equations governing the motion of a wind-driven spherical rover are developed, and a numerical procedure for their implementation is shown. Dynamic simulations (considering the Earth and Mars atmospheres) for several terrain types and conditions illustrate how a rover may maneuver across flat terrain, channels and craters. The effects of aerodynamic forces on the rover's motion is studied. The results show the wind force may both push and hinder the rover's motion while sliding, rolling and bouncing. The rover will periodically transition between these modes of movement when the rover impacts sloped surfaces. Combinations of rolling and bouncing may be a more effective means of transport for a rover traveling through a channel when compared to rolling alone. The aerodynamic effects, of drag and the Magnus force, are contributing factors to the possible capture of the rover by a crater. Next, a strategy is formulated for creating randomized Martian rock fields based on statistical models, where the rover's interactions with these fields are analyzed. Novel procedures for creating randomized Martian rock fields are presented, where optimization techniques allow terrain generation to coincide with the rover's motion. Efficient collision detection routines reduce the number of tests of potential collisions between the rover and the terrain while establishing new contact constraints. The procedures allow for the exploration of large regions of terrain while minimizing computational costs. Simulations demonstrate that bouncing is the rover's dominant mode of travel through the rock fields. Monte-Carlo simulations illustrate how the rover's down-range position depends on the rover design and atmospheric conditions. Moreover, the simulations verify the rover's capacity for long distance travel over Martian rock fields. Finally, a mathematical model that captures the essential dynamics required for describing the motion of a real world billiard for arbitrary boundaries is presented. The model considers the more realistic situation of an inelastic, rotating, gravitational billiard in which there are retarding forces due to air resistance and friction. The simulations demonstrate that the parabola has stable, periodic motion, while the wedge and hyperbola, at high driving frequencies, appear chaotic. The hyperbola, at low driving frequencies, behaves similarly to the parabola, and has regular motion. Direct comparisons are made between the model's predictions and previously published experimental data. The representation of the coefficient of restitution employed in the model resulted in good agreement with the experimental data for all boundary shapes investigated. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.
The Five-Hundred Aperture Spherical Radio Telescope (fast) Project
NASA Astrophysics Data System (ADS)
Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei
Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.
A novel slithering locomotion mechanism for a snake-like soft robot
NASA Astrophysics Data System (ADS)
Cao, Yunteng; Liu, Yilun; Chen, Youlong; Zhu, Liangliang; Yan, Yuan; Chen, Xi
2017-02-01
A novel mechanism for slithering locomotion of a snake-like soft robot is presented. A rectangular beam with an isotropic coefficient of friction of its contact surface with the flat ground can move forward or backward when actuated by a periodic traveling sinusoidal wave. The Poisson's ratio of the beam plays an important role in the slithering locomotion speed and direction, particularly when it is negative. A theoretical model is proposed to elucidate the slithering locomotion mechanism, which is analogous to the rolling of a wheel on ground. There are two key factors of slithering locomotion: a rotational velocity field and a corresponding local contact region between the beam and ground. During wriggling motion of the rectangular beam, a rotational velocity field is observed near the maximum curvature point of the beam. If the beam has a negative Poisson's ratio, the axial tension will cause a lateral expansion so that the contact region between the beam and ground is located at the outer edge of the maximum curvature (the largest lateral expansion point). The direction of the beam's velocity at this outer edge is usually opposite to the traveling wave direction, so the friction force propels the beam in the direction of the traveling wave. A similar scenario is found for the relatively large amplitude of wriggling motion when the beam's Poisson's ratio is positive. Finite element method (FEM) simulation was conducted to verify the slithering locomotion mechanism, and good agreement was found between the FEM simulation results and theoretical predictions. The insights obtained here present a simple, novel and straightforward mechanism for slithering locomotion and are helpful for future designs of snake-like soft robots.
NASA Astrophysics Data System (ADS)
Middleton, Chad A.; Weller, Dannyl
2016-04-01
We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media
Finlayson, Chris E.; Baumberg, Jeremy J.
2017-01-01
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals”) with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics. PMID:28773044
NASA Technical Reports Server (NTRS)
McIlraith, Sheila; Biswas, Gautam; Clancy, Dan; Gupta, Vineet
2005-01-01
This paper reports on an on-going Project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. We cast the diagnosis problem as a model selection problem. To reduce the space of potential models under consideration, we exploit techniques from qualitative reasoning to conjecture an initial set of qualitative candidate diagnoses, which induce a smaller set of models. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.
Insects traversing grass-like vertical compliant beams
NASA Astrophysics Data System (ADS)
Li, Chen; Fearing, Ronald; Full, Robert
2014-03-01
Small running animals encounter many challenging terrains. These terrains can be filled with 3D, multi-component obstacles. Here, we study cockroaches (Blaberus discoidalis) moving through grass-like vertical compliant beams during escape. We created an apparatus to control and vary geometric parameters and mechanical properties of model grass including height, width, thickness, lateral and fore-aft spacings, angle, number of layers, stiffness, and damping. We observed a suite of novel locomotor behaviors not previously described on simpler 2D ground. When model grass height was >2 × body length and lateral spacing was <0.5 × body width, the animal primarily (probability P = 50%) rolled its body onto its side to rapidly (time t = 2.1 s) maneuver through the gaps between model grass. We developed a simple energy minimization model, and found that body roll reduces the energy barriers that the animal must overcome during traversal. We hypothesized that the animal's ellipsoidal body shape facilitated traversal. To test our hypothesis, we modified body shape by adding either a rectangular or an oval plate onto its dorsal surface, and found that P dropped by an order of magnitude and t more than doubled. Upon removal of either plate, both P and t recovered. Locomotor kinematics and geometry effectively coupled to terrain properties enables negotiation of 3D, multi-component obstacles, and provides inspiration for small robots to navigate such terrain with minimal sensing and control.
2011-03-01
CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-03-01
CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-03-01
CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
Control design and robustness analysis of a ball and plate system by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Balthazar, José M.; Reis, Célia A. dos
2014-12-10
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinearmore » closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.« less
Control design and robustness analysis of a ball and plate system by using polynomial chaos
NASA Astrophysics Data System (ADS)
Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia
2014-12-01
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.
Head-coupled remote stereoscopic camera system for telepresence applications
NASA Astrophysics Data System (ADS)
Bolas, Mark T.; Fisher, Scott S.
1990-09-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
Highly stretchable electroluminescent skin for optical signaling and tactile sensing.
Larson, C; Peele, B; Li, S; Robinson, S; Totaro, M; Beccai, L; Mazzolai, B; Shepherd, R
2016-03-04
Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli. Copyright © 2016, American Association for the Advancement of Science.
2008-02-18
KENNEDY SPACE CENTER, FLA. -- A water truck (at right) creates a ghostlike image against the black sky as it sprays the dust on the dry crawlerway in front of space shuttle Endeavour (at left). The shuttle is rolling out to Launch Pad 39A for the STS-123 mission. The journey from the Vehicle Assembly Building began at 11:24 p.m. on Feb. 17, approximately 30 minutes before it's scheduled start time due to favorable weather conditions. The shuttle arrived at the launch pad at 4:45 a.m. Monday and was hard down at 6:22 a.m. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Launch is targeted for March 11. Photo credit: NASA/Amanda Diller
UNEXMIN H2020 Project: an underwater explorer for flooded mines
NASA Astrophysics Data System (ADS)
Lopes, Luís; Zajzon, Norbert; Bodo, Balázs; Henley, Stephen; Žibret, Gorazd; Almeida, José; Vörös, Csaba; Horvath, Janos; Dizdarevič, Tatjana; Rossi, Claudio; McLoughlin, Mike
2017-04-01
UNEXMIN (Underwater Explorer for Flooded Mines, Grant Agreement No. 690008, www.unexmin.eu) is a project funded by the European Commission's HORIZON2020 Framework Programme. The project is developing a multi-platform robotic system for the autonomous exploration and mapping of Europe's flooded mines. The robotic system - UX-1 - will use non-invasive methods for the 3D mapping of abandoned flooded mines, bringing new important geological and mineralogical data that cannot be currently obtained by any other means. This technology will allow the development or update of geological models at local and regional levels. The data collected will then be used to consider new exploration scenarios for the possible re-opening of some of Europe's abandoned mines which may still contain valuable resources of strategic minerals. The deployment of a multi-robotic system in such a confined environment poses challenges that must be overcome so that the robots can work autonomously, without damaging the equipment and the mine itself. Key challenges are related to the i) structural design for robustness and resilience, ii) localization, navigation and 3D mapping, iii) guidance, propulsion and control, iv) autonomous operation and supervision, v) data processing, interpretation and evaluation. The scientific instrument array is currently being tested, built and tailored for the submersible: pH, electrical conductivity, pressure and temperature analyzers and a water sampler (water sampling methods), a magnetic field analyzer, a gamma-ray counter and a sub-bottom profiler (geophysical methods) and a multispectral and UV fluorescence imaging units (optical observation methods). The instruments have been selected to generate data of maximum geoscientific interest, considering the limiting factors of the submerged underground environment, the necessary robotic functions, the size for the robot and other constraints. Other crucial components for the robot's functionality (such as movement, control, autonomy, mapping, interpretation and evaluation) include cameras, SONARs, thrusters, DVL, inertial navigation system, laser scanner, computer, batteries and the integrated pressure hull. The UNEXMIN project is currently ongoing with the development of the first mechanical model as well as the scientific instruments. The robot prototype is being developed with a spherical shape with a diameter such that will allow it to fit into the sometimes narrow underground mine openings and to freely move around them, to a depth of 500m. Component/instrument validations and simulations are being worked out to understand the behavior of the technology in the flooded mine environment. At the same time post-processing and data analysis tools are also being developed and prepared. After the groundwork and setup phases, the first robot prototype is going to be tested in four sites under real life conditions corresponding to increasingly difficult mission objectives in terms of mine layout, geometry and topology. The test sites include the Kaatiala pegmatite mine in Finland, the Urgeiriça uranium mine in Portugal and the Idrija mercury mine in Slovenia. The final, most ambitious demonstration will occur in the UK with the resurveying of the entire flooded section of the Ecton underground copper mine that nobody has seen for over 150 years.
Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera
NASA Astrophysics Data System (ADS)
Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.
2017-05-01
A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.
NASA Technical Reports Server (NTRS)
Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.;
2015-01-01
This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.
Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang
2018-03-07
Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
NASA Technical Reports Server (NTRS)
Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar
2014-01-01
When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder, to include the torso, knees, ankle, elbows, wrists and neck. Part of this update included adding a representation of 'roll' about an axis, for upper arm and lower leg rotations. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. This visualization method will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development.
2011-03-01
CAPE CANAVERAL, Fla. -- Members of the media snap photos as a large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Mobile Service Tower is rolled back at Space Launch Complex 17B, Cape Canaveral Air Force Station, to reveal the Delta II Heavy launch vehicle ready for launch of the Mars Exploration Rover-B (MER-B) mission, with the rover 'Opportunity' aboard. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-B is scheduled to launch on June 28 at one of two available times, 11:56:16 p.m. EDT or 12:37:59 a.m. EDT on June 29.
2002-05-15
KENNEDY SPACE CENTER, FLA. -- STS-111 Mission Specialist Franklin Chang-Diaz poses for the camera before taking his turn at driving the M-113 armored personnel carrier during emergency egress training at the pad. Behind him (right) is Mission Specialist Philippe Perrin, with the French Space Agency. The training is part of Terminal Countdown Demonstration Test activities at KSC. The TCDT also includes a simulated launch countdown. Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
NASA Astrophysics Data System (ADS)
Bilardello, D.
2014-12-01
Understanding depositional remanent magnetizations (DRMs) bears implications on interpreting paleomagnetic and paleointensity records extracted from sedimentary rocks. Laboratory deposition experiments have yielded DRMs with shallow remanent inclinations and revealed a field dependence of the magnetization (M), which is orders of magnitude lower than the saturation remanence. To investigate these observations further, experiments involving differently shaped particles were performed. Spherical particles confirmed the field dependence of both the inclination error and M and the fact that the DRM acquired experimentally is lower than saturation. A sediment concentration dependence of the inclination error was observed, indicating a dependance of the inclination error on the sediment load/burial depth or the sedimentation rate. Other outcome was the certainty that spherical particles alone can lead to substantial inclination shallowing. Numerical simulations of settling spherical particles indicated that DRM should be ~10 times lower than the saturation remanence and predicted that rolling of the grains on the sediment surface and particle interactions during settling can produce a substantial shallowing of the inclination and lowering of the remanence, bringing the simulations in close agreement to the experimental results. Experiments involving platy particles, instead allowed interesting comparisons and gave insight into the behavior of differently shaped particles, for instance yielding smaller amounts of shallowing than spheres, in contrast to general belief. Viewing DRM as an anisotropic process allows fitting the experimental results with tensors (kDRM). The ratios of kvertical over khorizontal are in good agreement to the ratios of M obtained in vertical over horizontal experimental fields, which should be equivalent to the widely used inclination shallowing factor f. Experimental results were highly repeatabile, however not always as repeatable for both M and inclination (direction) for both particle shapes, heighlighting that while a sediment might carry a stable remanent direction, it may not always be a particularily good paleointensity recorder.
3D Visual Tracking of an Articulated Robot in Precision Automated Tasks
Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.
2017-01-01
The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860
Cross-directional interlocking of rolls in an air press of a papermaking machine
Beck, David A.; Gorshe, Thomas
2003-05-13
An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.
Implementation of an algorithm for cylindrical object identification using range data
NASA Technical Reports Server (NTRS)
Bozeman, Sylvia T.; Martin, Benjamin J.
1989-01-01
One of the problems in 3-D object identification and localization is addressed. In robotic and navigation applications the vision system must be able to distinguish cylindrical or spherical objects as well as those of other geometric shapes. An algorithm was developed to identify cylindrical objects in an image when range data is used. The algorithm incorporates the Hough transform for line detection using edge points which emerge from a Sobel mask. Slices of the data are examined to locate arcs of circles using the normal equations of an over-determined linear system. Current efforts are devoted to testing the computer implementation of the algorithm. Refinements are expected to continue in order to accommodate cylinders in various positions. A technique is sought which is robust in the presence of noise and partial occlusions.
High-precision processing and detection of the high-caliber off-axis aspheric mirror
NASA Astrophysics Data System (ADS)
Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie
2017-10-01
To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.
Pulsar Observations with Radio Telescope FAST
NASA Astrophysics Data System (ADS)
Nan, Ren-Dong; Wang, Qi-Ming; Zhu, Li-Chun; Zhu, Wen-Bai; Jin, Cheng-Jin; Gan, Heng-Qian
2006-12-01
FAST, Five hundred meter Aperture Spherical Telescope, is the Chinese effort for the international project SKA, Square Kilometer Array. An innovative engineering concept and design pave a new road to realizing huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Besides a general coverage of those critical technologies involved in FAST concept, the progresses in demonstrating model being constructed at the Miyun Radio Observatory of the NAOC is introduced. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of science goals, for example, the natural hydrogen line surveying in distant galaxies, looking for the first generation of shining objects, hearing the possible signal from other civilizations, etc. Among these subjects, the most striking one could be pulsar study. Large scale survey by FAST will not only improve the statistics of the pulsar population, but also may offer us a good fortune to pick up more of the most exotic, even unknown types like a sub-millisecond pulsar or a neutron star -- black hole binary as the telescope is put into operation.
International Space Station (ISS)
2002-06-01
Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Expedition Crews Four and Five and STS-111 Crew Aboard the ISS
NASA Technical Reports Server (NTRS)
2002-01-01
Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Elastically stretchable thin film conductors on an elastomeric substrate
NASA Astrophysics Data System (ADS)
Jones Harris, Joyelle Elizabeth
Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.
Controlled-force end seal arrangement for an air press of a papermaking machine
Beck, David A.
2003-07-08
An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qili; Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071; Shirinzadeh, Bijan
2015-07-28
A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cellmore » mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.« less
NASA Astrophysics Data System (ADS)
Ganji, Farid
This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.
Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco
NASA Astrophysics Data System (ADS)
Pujiyanto, Hamdani
2017-01-01
A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.
A Roll, Fin, and Fin Controller Prediction Computer Program.
1980-06-01
IERATI *EQ. 03 WRITE16920301 ROLL 365 365 3R1TE(G. 26311 ROLL 366 no 505 ImU - 1,NNU ROLL 36? 50S WRITE(G.2011 3U(I’U),OAWPU(1PU,SIGLCfINU) ROLL 360...ROLL DAMPING WILL BE ONE**/$ ROLL 642 2016 FORMAT (/jIX,*LONGCRESTEO SVECTRA AND COMPONENTS WILL SE PRINTED. ROLL 44S 2’) ROLL 444 2019 FORMAT (1/19
Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty
NASA Astrophysics Data System (ADS)
Armah, Stephen Kofi
Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone's control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded-type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations.
Shuck, A.B.; Shaw, W.C.
1961-06-20
A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.
An experimental study for determining human discomfort response to roll vibration
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.
1976-01-01
An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.
Adhesion and friction in gecko toe attachment and detachment
Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob
2006-01-01
Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of ≈20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle θ between 0 and 90° to the substrate, has a “normal adhesion force” contribution, produced at the spatula-substrate bifurcation zone, and a “lateral friction force” contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles θ between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism. PMID:17148600
Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265
Effect of Equal Biaxial Pre-Strain on Forming Limit Diagram of AA5083
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhalehfar, F.; Hosseinipour, S. J.; Nourouzi, S.
In this work, the effect of equal biaxial pre-strain on the forming limit curve (FLC) of 5083 aluminum alloy has been investigated. For this purpose, in the first stage, square blanks with dimensions of 200 mm in each length were cut from the original sheet and stretched by a spherical punch to the specified heights. Then, specimens were prepared by cutting the pre-strained blanks with the longitudinal axis parallel and perpendicular to the rolling direction. In the second stage, the specimens were tested by the out-of-plane test method to determine the forming limit diagram (FLD) according to the ISO 12004.more » Furthermore, forming limit stress diagram (FLSD) was determined by using Hill's quadratic yield function. The results showed that the equal biaxial pre-straining decreased and shifted the FLC to the right hand side of the diagram. However, it had not any effect on the forming limit stress curves.« less
NASA Astrophysics Data System (ADS)
Atkinson, William
2008-10-01
A closed analytic solution for the potential due to a gravitating solid oblate spheroid, derived in oblate spheroidal coordinates in this paper, is shown to be much simpler than those obtained either in cylindrical coordinates (MacMillan) or in spherical coordinates (McCullough). The derivation in oblate spheroidal coordinates is also much simpler to follow than those of the MacMillan or McCullough. The potential solution is applied in exacting a closed solution for the equations of motion for an object rolling on the surface of the spheroid subjected only to the gravitational force component tangential to the surface of the spheroid. The exact solution was made possible by the fact that the force can be represented as separable functions of the coordinates only in oblate spheroidal coordinates. The derivation is a good demonstration of the use of curvilinear coordinates to problems in classical mechanics, potential theory, and mathematical physics for both undergraduate and graduate students.
Stability Limits for Rubble Pile Asteroid Shapes
NASA Astrophysics Data System (ADS)
Scheeres, Daniel
2018-04-01
The stability of rubble pile asteroids are explored analytically, using simple models for their constituent components. Specifically, we look at the stability of spherical components resting and potentially rolling on each other as a function of their relative sizes, configuration and number. This talk will present some recent results in this problem. Of specific interest is a 5:1 limit on the elongation of a rubble pile body for stability, which is interestingly the same extreme elongation found for the first interstellar object. This limit is for a rubble pile consisting of stacked spheres, resting on each other in a straight line. If there are 5 or less bodies resting on each other in this configuration, there is an interval of spin rates for which the configuration is stable. If there are 6 or more bodies stacked as such, the spin rate for it to stabilize is beyond the spin rate at which it fissions. The talk will also explore additional results for different configurations of bodies resting on each other.
Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges
NASA Astrophysics Data System (ADS)
Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.
2013-01-01
Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.
Clustering of particles and pathogens within evaporating drops
NASA Astrophysics Data System (ADS)
Park, Jaebum; Kim, Ho-Young
2017-11-01
The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.
NASA Astrophysics Data System (ADS)
Takagi, Kenta; Omote, Masanori; Kawasaki, Akira
2010-03-01
The orderly build-up of monosized microspheres with sizes of hundreds of micrometres enabled us to develop three-dimensional (3D) photonic crystal devices for terahertz electromagnetic waves. We designed and manufactured an original 3D particle assembly system capable of fabricating arbitrary periodic structures from these spherical particles. This method employs a pick-and-place assembling approach with robotic manipulation and interparticle laser microwelding in order to incorporate a contrivance for highly accurate arraying: an operation that compensates the size deviation of raw monosized particles. Pre-examination of particles of various materials revealed that interparticle laser welding must be achieved with local melting by suppressing heat diffusion from the welding area. By optimizing the assembly conditions, we succeeded in fabricating an accurate periodic structure with a diamond lattice from 400 µm polyethylene composite particles. This structure demonstrated a photonic bandgap in the terahertz frequency range.
Efficient Jacobian inversion for the control of simple robot manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1988-01-01
Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.
NASA Astrophysics Data System (ADS)
Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong
2018-04-01
Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
...-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of Antidumping Duty Administrative... duty order on certain hot-rolled flat-rolled carbon quality steel products (hot-rolled steel) from... 1, 2008, through February 28, 2009. We preliminarily determine that the sale of hot-rolled steel...
Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Nóbrega, J Miguel; Mano, João F
2013-08-01
Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies.
Flocking ferromagnetic colloids
Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.
2017-01-01
Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633
Flocking ferromagnetic colloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.
Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less
2011-03-01
CAPE CANAVERAL, Fla. -- This is a 3-D image of space shuttle Endeavour as it is outfitted with a metal sling that will lift the spacecraft from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. To view this image, use green and magenta 3-D glasses. Endeavour and six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-03-01
CAPE CANAVERAL, Fla. -- This is a 3-D image of space shuttle Endeavour as it is outfitted with a metal sling that will lift the spacecraft from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. To view this image, use green and magenta 3-D glasses. Endeavour and six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-03-01
CAPE CANAVERAL, Fla. -- This is a 3-D image of space shuttle Endeavour as it is outfitted with a metal sling that will lift the spacecraft from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. To view this image, use green and magenta 3-D glasses. Endeavour and six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
Flocking ferromagnetic colloids
Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.
2017-02-15
Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less
2002-05-15
KENNEDY SPACE CENTER, FLA. - STS-111 Mission Specialist Philippe Perrin, with the French Space Agency, takes a break at the pad during Terminal Countdown Demonstration Test activities at KSC. In the background is Space Shuttle Endeavour. . The TCDT includes emergency egress training at the pad and a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Endeavour on mission STS-111 is scheduled for May 30, 2002
Characteristics of AZ31 Mg alloy joint using automatic TIG welding
NASA Astrophysics Data System (ADS)
Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua
2017-01-01
The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...
49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?
Code of Federal Regulations, 2011 CFR
2011-10-01
... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...
49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?
Code of Federal Regulations, 2010 CFR
2010-10-01
... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.
Inflationary dynamics with a smooth slow-roll to constant-roll era transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odintsov, S.D.; Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com
In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces.more » In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.« less
A novel method of freeform surface grinding with a soft wheel based on industrial robots
NASA Astrophysics Data System (ADS)
Sha, Sheng-chun; Guo, Xiao-ling
2011-08-01
In order to meet the growing demand for high-quality images, optical elements of freeform surface are more and more applied to imaging system. However the fabrication of freeform surface optical elements is much more difficult than that of traditional spherical ones. Recent research on freeform surface manufacture often deals with precision machine tools which have limitations on dimensions and are always expensive. Little has been researched on industrial robots. In this paper, a new method of freeform surface grinding based on industrial robots was found. This method could be applied to both whole surface grinding as well as partial surface grinding. The diameter of lenses to be ground would not be restricted to the machine tool's size. In this method a high-speed-rotating soft wheel was used. The relation between removing amount and grinding time which could be called removing function was established and measured. The machining precision was achieved by means of controlling the grinding time instead of the machine tool or industrial robot itself. There are two main factors affecting the removing function: i).rotating speed of the soft wheel; ii).pressure between the wheel and the work piece. In this paper, two groups of experiments have been conducted. One is the removing function tested at constant rotating speed while under different pressure. The other is that tested under a certain pressure with variable speed. Tables and curves which can show the effect of speed and pressure on the removing efficiency have been obtained. Cause for inaccuracy between experiment data and calculated result according to the theory and the non-linearity in the curves was analyzed. Through these analyses the removing function could be concluded under certain condition including rotating speed and pressure. Finally several experiments were performed to verify the appropriateness of the removing function. It could also be concluded that this method was more efficient in comparison with traditional grinding technology particularly in the aspect of partial surface grinding. This paper also brought up a new idea that this method could be combined with other freeform surface grinding technics to realize a more flexible, efficient, reliable and economical type of optical fabrication. It would become a potential technic especially for partial optical surface grinding and repair.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
The computer program SASHBEAN (Sikorsky Aircraft Spherical Roller High Speed Bearing Analysis) analyzes and predicts the operating characteristics of a Single Row, Angular Contact, Spherical Roller Bearing (SRACSRB). The program runs on an IBM or IBM compatible personal computer, and for a given set of input data analyzes the bearing design for it's ring deflections (axial and radial), roller deflections, contact areas and stresses, induced axial thrust, rolling element and cage rotation speeds, lubrication parameters, fatigue lives, and amount of heat generated in the bearing. The dynamic loading of rollers due to centrifugal forces and gyroscopic moments, which becomes quite significant at high speeds, is fully considered in this analysis. For a known application and it's parameters, the program is also capable of performing steady-state and time-transient thermal analyses of the bearing system. The steady-state analysis capability allows the user to estimate the expected steady-state temperature map in and around the bearing under normal operating conditions. On the other hand, the transient analysis feature provides the user a means to simulate the 'lost lubricant' condition and predict a time-temperature history of various critical points in the system. The bearing's 'time-to-failure' estimate may also be made from this (transient) analysis by considering the bearing as failed when a certain temperature limit is reached in the bearing components. The program is fully interactive and allows the user to get started and access most of its features with a minimal of training. For the most part, the program is menu driven, and adequate help messages were provided to guide a new user through various menu options and data input screens. All input data, both for mechanical and thermal analyses, are read through graphical input screens, thereby eliminating any need of a separate text editor/word processor to edit/create data files. Provision is also available to select and view the contents of output files on the monitor screen if no paper printouts are required. A separate volume (Volume-2) of this documentation describes, in detail, the underlying mathematical formulations, assumptions, and solution algorithms of this program.
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent
2005-01-01
Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.
Concept verification of three dimensional free motion simulator for space robot
NASA Technical Reports Server (NTRS)
Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett
1994-01-01
In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
NASA Astrophysics Data System (ADS)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).
Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation
NASA Astrophysics Data System (ADS)
Yi, Hou Hui
The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.
75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...
76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material...) entitled Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, Japan, and Russia: Investigation...
75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice that it has...-rolled steel from Russia would be likely to lead to continuation or recurrence of material injury...
75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...
On the Influence of Surface Heterogeneities onto Roll Convection
NASA Astrophysics Data System (ADS)
Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.
2009-04-01
Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -ziL (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.
Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.
Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G
2014-12-01
The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the American Physiological Society.
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy
NASA Astrophysics Data System (ADS)
Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan
2017-09-01
Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full Sunset Review of Countervailing... of the countervailing duty (CVD) order on certain hot-rolled flat-rolled carbon-quality steel products (hot-rolled steel) from Brazil, pursuant to section 751(c) of the Tariff Act of 1930, as amended...
21 CFR 136.180 - Whole wheat bread, rolls, and buns.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...
NASA Astrophysics Data System (ADS)
Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan
2016-09-01
As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.
NASA Astrophysics Data System (ADS)
Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin
2012-04-01
The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
Technical Note: Unified imaging and robotic couch quality assurance.
Cook, Molly C; Roper, Justin; Elder, Eric S; Schreibmann, Eduard
2016-09-01
To introduce a simplified quality assurance (QA) procedure that integrates tests for the linac's imaging components and the robotic couch. Current QA procedures for evaluating the alignment of the imaging system and linac require careful positioning of a phantom at isocenter before image acquisition and analysis. A complementary procedure for the robotic couch requires an initial displacement of the phantom and then evaluates the accuracy of repositioning the phantom at isocenter. We propose a two-in-one procedure that introduces a custom software module and incorporates both checks into one motion for increased efficiency. The phantom was manually set with random translational and rotational shifts, imaged with the in-room imaging system, and then registered to the isocenter using a custom software module. The software measured positioning accuracy by comparing the location of the repositioned phantom with a CAD model of the phantom at isocenter, which is physically verified using the MV port graticule. Repeatability of the custom software was tested by an assessment of internal marker location extraction on a series of scans taken over differing kV and CBCT acquisition parameters. The proposed method was able to correctly position the phantom at isocenter within acceptable 1 mm and 1° SRS tolerances, verified by both physical inspection and the custom software. Residual errors for mechanical accuracy were 0.26 mm vertically, 0.21 mm longitudinally, 0.55 mm laterally, 0.21° in pitch, 0.1° in roll, and 0.67° in yaw. The software module was shown to be robust across various scan acquisition parameters, detecting markers within 0.15 mm translationally in kV acquisitions and within 0.5 mm translationally and 0.3° rotationally across CBCT acquisitions with significant variations in voxel size. Agreement with vendor registration methods was well within 0.5 mm; differences were not statistically significant. As compared to the current two-step approach, the proposed QA procedure streamlines the workflow, accounts for rotational errors in imaging alignment, and simulates a broad range of variations in setup errors seen in clinical practice.
40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...
40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing
2009-07-01
The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less
Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.
Nooij, Suzanne A E; Groen, Eric L
2011-05-01
Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.
2006-01-01
The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.
Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes
2011-01-01
tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1985-01-01
Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.
NASA Technical Reports Server (NTRS)
Girala, A. S. (Inventor)
1981-01-01
A self clamping cutting tool which includes a handle attached to a C-shaped housing is described. Rotatably mounted within the housing is a C-shaped tool body carrying a set of clamping rolls, two support rolls, and an edged cutting roll (64). The support rolls are disposed to one side of the axis of a pipe and the cutting roll is disposed to the other side of a pipe axis so that these rolls contact a pipe at three circumferential points. Cutter advancing apparatus advance the cutting roll toward the support rollers. The support rolls and cutting roll are rotatable independently of the C-shaped housing. A one way ratchet mechanism disposed between the C-shaped housing and the C-shaped tool body permits operation by movement in one rotational direction about the pipe axis.
Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results
Colin Ashmore; Donald L. Sirois; Bryce J. Stokes
1987-01-01
Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...
Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow
Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.
2002-01-01
Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042
Hot rolling of thick uranium molybdenum alloys
DeMint, Amy L.; Gooch, Jack G.
2015-11-17
Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Fan, Li-Juan; Yang, Xiao-Feng; Chen, Yan-Yan
2008-09-01
The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases. Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.
Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.
2011-01-01
The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.
Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu
2017-11-15
For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.
2014-04-23
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions ofmore » the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).« less
Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme
NASA Astrophysics Data System (ADS)
Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing
2017-05-01
Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Saumyadeep; Overman, Nicole; Varga, Tamas
The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Momore » rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.« less
Wounding potential of 4.4-mm (.173) caliber steel ball projectiles.
Kamphausen, Thomas; Janßen, Katharina; Banaschak, Sibylle; Rothschild, Markus Alexander
2018-03-06
From time to time, severe or fatal injuries caused by small caliber air rifle projectiles are seen. In forensic sciences, the theoretical wounding potential of these weapons and projectiles is widely known. Usually, shots against the skull were reported and, in these cases, penetrating the eyes or thin bone layers of the temporal region. Amongst a huge number of different projectiles available for air guns, sub-caliber 4.4-mm (.173) caliber steel ball projectiles were used in an unusual suicide case. This case led to fundamental questions concerning wound ballistics. An 82-year-old man shot once against his right temporal region and twice into his mouth with a 4.5-mm (.177) caliber air rifle. Because of the exceptionally deep penetration of the base of the skull and the use of spherical-shaped sub-caliber air rifle projectiles, terminal ballistic features were analyzed and compared to results published in forensic literature. Test shots using the same weapon and similar projectiles were fired into ballistic gelatin to measure and calculate basic wound ballistic variables of cal. 4.4-mm (.173) steel balls. In comparison, further test shots with cal. 4.5-mm (.177) steel balls BB (ball bearing), flat-headed and pointed air rifle pellets ("diabolos") were carried out. The theoretical penetration depth in solid bone was calculated with 36.4 mm, and test shots in gelatin from hard contact produced an on-average wound track of 120 mm underlining the potential wounding effect. Furthermore, spherical projectiles could roll back and forth within the barrel, and an air cushion between projectile and breechblock can reduce muzzle velocity by more than half, explaining the retained missile in the temporal region.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Countervailing Duty Administrative... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...-Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty Administrative Review, 75...
NASA Astrophysics Data System (ADS)
Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.
2017-01-01
The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.
A study of roll attractor and wing rock of delta wings at high angles of attack
NASA Technical Reports Server (NTRS)
Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.
1993-01-01
Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.
Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill
NASA Astrophysics Data System (ADS)
Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero
2018-05-01
In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun
2017-12-01
The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.
Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling
NASA Astrophysics Data System (ADS)
Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping
2014-07-01
An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.
Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing
NASA Astrophysics Data System (ADS)
Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon
2017-06-01
The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Limit for the Preliminary Results of Administrative Review of the Suspension Agreement on Hot-Rolled... Preliminary Results of Administrative Review of the Suspension Agreement on Hot-Rolled Flat-Rolled Carbon... Suspending the Antidumping Investigation on Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
... DEPARTMENT OF COMMERCE International Trade Administration [C-351-829] Certain Hot-Rolled Flat... Commerce (the Department) published the countervailing duty order on certain hot-rolled flat- rolled carbon-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot...
Why Low Bounce Balls Exhibit High Rolling Resistance
ERIC Educational Resources Information Center
Cross, Rod
2015-01-01
A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…
76 FR 15299 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Rescission of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... DEPARTMENT OF COMMERCE International Trade Administration [C-533-821] Certain Hot-Rolled Carbon... on certain hot-rolled carbon steel flat products from India. See Antidumping or Countervailing Duty... products covered under this order are certain hot-rolled flat- rolled carbon steel flat products of a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-865] Certain Hot-Rolled Carbon... review of the antidumping duty order on certain hot- rolled carbon steel flat products (``hot-rolled...\\ See Notice of Antidumping Duty Order: Certain Hot-Rolled Carbon Steel Flat Products from the People's...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... DEPARTMENT OF COMMERCE International Trade Administration [A-533-820] Certain Hot-Rolled Carbon...'') published the preliminary results of the antidumping duty administrative review for certain hot-rolled carbon steel flat products from India (``Indian Hot-Rolled''). See Certain Hot-Rolled Carbon Steel Flat...
Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi
2015-01-01
A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147
Dynamics and control of tethered antennas/reflectors in orbit
NASA Astrophysics Data System (ADS)
Liu, Liangdong; Bainum, Peter M.
The system linear equations for the motion of a tethered shallow spherical shell in orbit with its symmetry axis nominally following the local vertical are developed. The shell roll, yaw, tether out-of-plane swing motion and elastic vibrations are decoupled from the shell and tether in-plane pitch motions and elastic vibrations. The neutral gravity stability conditions for the special case of a constant length rigid tether are given for in-plane motion and out-of-plant motion. It is proved that the in-plane motion of the system could be asymptotically stable based on Rupp's tension control law, for a variable length tether. However, the system simulation results indicate that the transient responses can be improved significantly, especially for the damping of the tether and shell pitch motion, by an optimal feedback control law for the rigid variable length tether model. It is also seen that the system could be unstable when the effect of tether flexibility is included if the control gains are not chosen carefully. The transient responses for three different tension control laws are compared during typical station keeping operations.
Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects
NASA Technical Reports Server (NTRS)
Wiscombe, W.; Chiu, C. J-Y.
2012-01-01
Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.
Active motility in bimodular bacterial aggregates
NASA Astrophysics Data System (ADS)
Zeng, Yu; Liu, Bin
2017-11-01
Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).
NASA Astrophysics Data System (ADS)
Hofherr, O.; Wachten, Christian; Müller, C.; Reinecke, H.
2014-11-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) accurately determine x-y-z coordinates of passive retroreflectors. Next-generation systems answer the need to measure an object`s rotational orientation (pitch, yaw, roll). So far, these devices are based either on photogrammetry or on enhanced retroreflectors. Here we present a new method to measure all six degrees of freedom in conjunction with a LT. The basic principle is to analyze the orientation to the LT's beam path by coupling-out laser radiation. The optical design is inspired by a cat's eye retroreflector equipped with an integrated beam splitter layer. The optical spherical aberration is compensated, which reduces the divergence angle for the reflected beam by one order of magnitude compared to an uncompensated standard system of the same size. The wave front distortion is reduced to less than 0.1 λ @ 633 nm for beam diameters up to 8 mm. Our active retroreflector is suitable for long-range measurements for a distance > 10 m.
Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
Jin, Haibao; Ding, Yan-Huai; Wang, Mingming; ...
2018-01-18
Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less
Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Haibao; Ding, Yan-Huai; Wang, Mingming
Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less
Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets
Abedini-Nassab, Roozbeh; Lim, Byeonghwa; Yang, Ye; Howdyshell, Marci; Sooryakumar, Ratnasingham; Yellen, Benjamin B.
2015-01-01
We investigate the non-linear dynamics of superparamagnetic beads moving around the periphery of patterned magnetic disks in the presence of an in-plane rotating magnetic field. Three different dynamical regimes are observed in experiments, including (1) phase-locked motion at low driving frequencies, (2) phase-slipping motion above the first critical frequency fc1, and (3) phase-insulated motion above the second critical frequency fc2. Experiments with Janus particles were used to confirm that the beads move by sliding rather than rolling. The rest of the experiments were conducted on spherical, isotropic magnetic beads, in which automated particle position tracking algorithms were used to analyze the bead dynamics. Experimental results in the phase-locked and phase-slipping regimes correlate well with numerical simulations. Additional assumptions are required to predict the onset of the phase-insulated regime, in which the beads are trapped in closed orbits; however, the origin of the phase-insulated state appears to result from local magnetization defects. These results indicate that these three dynamical states are universal properties of bead motion in non-uniform oscillators. PMID:26648596
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
Experimental designs for a Benign Paroxysmal Positional Vertigo model
2013-01-01
Background The pathology of the Benign Paroxysmal Positional Vertigo (BPPV) is detected by a clinician through maneuvers consisting of a series of consecutive head turns that trigger the symptoms of vertigo in patient. A statistical model based on a new maneuver has been developed in order to calculate the volume of endolymph displaced after the maneuver. Methods A simplification of the Navier‐Stokes problem from the fluids theory has been used to construct the model. In addition, the same cubic splines that are commonly used in kinematic control of robots were used to obtain an appropriate description of the different maneuvers. Then experimental designs were computed to obtain an optimal estimate of the model. Results D‐optimal and c‐optimal designs of experiments have been calculated. These experiments consist of a series of specific head turns of duration Δt and angle α that should be performed by the clinician on the patient. The experimental designs obtained indicate the duration and angle of the maneuver to be performed as well as the corresponding proportion of replicates. Thus, in the D‐optimal design for 100 experiments, the maneuver consisting of a positive 30° pitch from the upright position, followed by a positive 30° roll, both with a duration of one and a half seconds is repeated 47 times. Then the maneuver with 60° /6° pitch/roll during half a second is repeated 16 times and the maneuver 90° /90° pitch/roll during half a second is repeated 37 times. Other designs with significant differences are computed and compared. Conclusions A biomechanical model was derived to provide a quantitative basis for the detection of BPPV. The robustness study for the D‐optimal design, with respect to the choice of the nominal values of the parameters, shows high efficiencies for small variations and provides a guide to the researcher. Furthermore, c‐optimal designs give valuable assistance to check how efficient the D‐optimal design is for the estimation of each of the parameters. The experimental designs provided in this paper allow the physician to validate the model. The authors of the paper have held consultations with an ENT consultant in order to align the outline more closely to practical scenarios. PMID:23509996
NASA Astrophysics Data System (ADS)
Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping
2017-10-01
Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.
NASA Astrophysics Data System (ADS)
Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyachinda, Saran; Soonthornthum, Boonrucksar; Deboos, Alexis
2016-07-01
The National Astronomical Research Institute (NARIT) is currently developing an all spherical five lenses focal reducer to image a FOV circular of diameter Δθ = 14.6' on the 4K camera with a pixel scale equal to 0.42''/pixel. The spatial resolution will be better than 1.2'' over the full visible spectral domain [400 nm, 800 nm]. The relative irradiance between the ghost and the science images will be lower than 10-4. The maximum distortion will be lower than 1% and the maximum angle of incidence on the filters will be equal to 8°. The focal reducer comprises 1 doublet L1 located at the fork entrance and 1 triplet L2 located in front of the camera. The doublet L1 will be mounted on a tip-tilt mount placed on a robotic sliding rail. L1 will thus be placed in the optical path during the observations with the 4K camera and will be removed during the observations with the other instruments. The triplet L2 will be installed on the instrument cube in front of the camera equipped with the filter wheel. The glass will be manufactured in a specialized company, the mechanical parts will be manufactured by using the NARIT Computer Numerical Control machine and the lenses will be integrated at NARIT. In this paper, we describe the optical and mechanical designs and we present the geometrical performance, the transmission budget and the results of the stray light analyses.
Zhu, Qiuqiang; Yu, Shuguang; Chen, Guanshui; Ke, Lanlan; Pan, Daren
2017-01-01
The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The "omics"-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.
Rolling friction—models and experiment. An undergraduate student project
NASA Astrophysics Data System (ADS)
Vozdecký, L.; Bartoš, J.; Musilová, J.
2014-09-01
In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.
NASA Astrophysics Data System (ADS)
Hoever, Carsten; Kropp, Wolfgang
2015-09-01
The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
25 CFR 75.3 - Announcement of revision of roll.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...
25 CFR 75.3 - Announcement of revision of roll.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...
The Six Track Scherzer Rolling Lift Bridge Two double track spans ...
The Six Track Scherzer Rolling Lift Bridge Two double track spans closed. One double-track span open. Photocopy of plate xvi in Scherzer Rolling Lift Bridge Company, Scherzer Rolling Lift Bridges. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-865] Certain Hot-Rolled Carbon... review of the antidumping duty order on certain hot- rolled carbon steel flat products (``hot-rolled... of subject merchandise to the United States during the POR. \\1\\ See Certain Hot-Rolled Carbon Steel...
Computer-aided roll pass design in rolling of airfoil shapes
NASA Technical Reports Server (NTRS)
Akgerman, N.; Lahoti, G. D.; Altan, T.
1980-01-01
This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.
Weitz, Charles A; Olszowy, Kathryn M; Dancause, Kelsey N; Sun, Cheng; Pomer, Alysa; Silverman, Howard; Lee, G; Tarivonda, Len; Chan, Chim W; Kaneko, Akira; Lum, J K; Garruto, Ralph M
2017-04-01
In addition to the widespread availability of packaged cigarettes, the inhabitants of island nations of the Southwest Pacific frequently smoke commercially available loose tobacco using manufactured rolling papers, as well as locally grown tobacco rolled in manufactured rolling paper or wrapped in leaves, copybook paper, and newspaper. In this study, Vanuatu men who smoked local tobacco rolled in leaves, copybook paper, or newspaper showed significantly lower forced vital capacity (FVC), forced expiratory volume in 1 second (FEV 1 ), and FEV 1 /FVC ratios than men who smoked packaged cigarettes, store-bought tobacco rolled in manufactured rolling paper, or who smoked locally grown tobacco rolled in manufactured rolling papers. The addition of toxins from these unusual tobacco-wrapping media produces lung function deficits similar to the pattern noted among tobacco smokers who also inhale smoke from burning biomass. Thus, public health initiatives should consider including strategies addressing the use of wrapping media among smokers in South Pacific island societies.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Voracek, David
2007-01-01
A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned
Black carbon radiative forcing over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby
2014-11-01
We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.
Design and simulation of an articulated surgical arm for guiding stereotactic neurosurgery
NASA Astrophysics Data System (ADS)
Kadi, A. Majeed; Zamorano, Lucia J.; Frazer, Matthew P.; Lu, Yi
1992-03-01
In stereotactic surgery, the need exists for means of relating intraoperatively the position and orientation of the surgical instrument used by the neurosurgeon to a known frame of reference. An articulated arm is proposed which would provide the neurosurgeon with on-line information for position, and orientation of the surgical tools being moved by the neurosurgeon. The articulated arm has six degrees of freedom, with five revolute and one prismatic joints. The design features include no obstruction to the field of view, lightweight, good balance against gravity, an accuracy of 1 mm spherical error probability (SEP), and a solvable kinematic structure making it capable of fitting the operating room environment. The arm can be mounted on either the surgical table or the stereotactic frame. A graphical simulation of the arm was created using the IGRIP simulation package created by Deneb Robotics. The simulation demonstrates the use of the arm, mounted on several positions of the ring reaching various target points within the cranium.
Qibla Finder and Sholat Times Based on Digital Compass, GPS and Microprocessor
NASA Astrophysics Data System (ADS)
Sanjaya, W. S. M.; Anggraeni, D.; Nurrahman, F. I.; Kresnadjaja, W. G.; Dewi, I. P.; Mira; Aliah, H.; Marlina, L.
2018-01-01
To performing Sholat, Muslims around the world are required to pay attention to the requirements of Sholat, such as; determining the direction of the Qibla (Kaaba) and the time of Sholat. In this research will be made a real time Qibla Finder and Sholat Times named Q-Bot Ver3 to help Muslims find a Qibla direction and Time of Sholat anywhere. This Qibla Finder and Sholat Times are developed with robotic technology based on Digital Compass, GPS and Microcontroller. To determine the Qibla direction and Sholat times, latitude and longitude data form GPS module processed used spherical triangle trigonometry method, while the compass module used to show the Qibla direction. Moreover, this system has a buzzer which can sound if the device facing to the Qibla. This system is reliable and accurate in determining the Qibla Finder and Sholat Times. Thus, the advantage of the system is can correct the Qibla of Masjid and can help blind people to facing Qibla around the world.
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Roll-to-Roll production of carbon nanotubes based supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.
Impact of vertical wind shear on roll structure in idealized hurricane boundary layers
NASA Astrophysics Data System (ADS)
Wang, Shouping; Jiang, Qingfang
2017-03-01
Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.
GRCop-84 Rolling Parameter Study
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2008-01-01
This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.
The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies
Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F.
2018-01-01
Abstract Tactile sensing is an essential component in human–robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing. PMID:29297773
STS-111 crew breakfast before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies.
Ward-Cherrier, Benjamin; Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F
2018-04-01
Tactile sensing is an essential component in human-robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing.
Data management and digital delivery of analog data
Miller, W.A.; Longhenry, Ryan; Smith, T.
2008-01-01
The U.S. Geological Survey's (USGS) data archive at the Earth Resources Observation and Science (EROS) Center is a comprehensive and impartial record of the Earth's changing land surface. USGS/EROS has been archiving and preserving land remote sensing data for over 35 years. This remote sensing archive continues to grow as aircraft and satellites acquire more imagery. As a world leader in preserving data, USGS/EROS has a reputation as a technological innovator in solving challenges and ensuring that access to these collections is available. Other agencies also call on the USGS to consider their collections for long-term archive support. To improve access to the USGS film archive, each frame on every roll of film is being digitized by automated high performance digital camera systems. The system robotically captures a digital image from each film frame for the creation of browse and medium resolution image files. Single frame metadata records are also created to improve access that otherwise involves interpreting flight indexes. USGS/EROS is responsible for over 8.6 million frames of aerial photographs and 27.7 million satellite images.
2002-05-15
KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson drives the M-113 armored personnel carrier, used for emergency egress training at the pad. Passengers in the vehicle are Expedition 5 Commander Valeri Korzun and George Hoggard (center), with the KSC/CCAS Fire Department, who supervises the driving. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
2002-05-15
KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at KSC, STS-11 Commander Kenneth Cockrell practices driving the M-113 armored personnel carrier, part of emergency egress training at the pad. Supervising in front (left) is George Hoggard, with the KSC/CCAS Fire Department, who supervises the driving. Passengers in the M-113 (behind Hoggard) are Expedition 5 crew members Valeri Korzun and Peggy Whitson. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
2002-05-15
KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson poses for the camera before climbing inside the M-113 armored personnel carrier, used for emergency egress training at the pad. Behind her (right) is astronaut Tracy Caldwell, a mission specialist candidate currently assigned to the Astronaut Office Space Station Operations Branch. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
NASA Astrophysics Data System (ADS)
Gherase, Radu Mihai; Popescu, Marcel; Sonka, Adrian Bruno; Paraschiv, Petre
2017-11-01
We report the installation of the Ritchey-Chretien -0.36m robotic telescope in the Astrolabe "roll-off roof" building belonging to the Astronomical Institute of the Romanian Academy. The calibration procedure performed in order to set up the telescope is shown. The test observations show a limiting magnitude of ≈ 18.6 (mostly due to the sky light pollution of Bucharest) and a seeing in the order of 2.0-3.5 arc seconds. The available instruments are a CCD camera SBIG STL 11000 M with a field of view of 44 x 30 arc minutes and an Alpy 600 spectrograph. The CCD camera has a standard UBVRI filter wheel. The astrometric observations allowed to confirm the discovery of 2017 RV1 (M.P.E.C. 2017-R57). The telescope was used to obtain photometric data for the near-Earth asteroids (326683) 2002 WP and 2016 LX48. These were reported to Minor Planet Bulletin (Sonka et al., 2017). Preliminary observations of (3122) Florence were performed with the Alpy 600 spectrograph. It allows covering the spectral interval 0.4-0.80 microns with a resolution of R≈600.
STS-110 Atlantis rolls out to Launch Pad 39-A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the foreground, white herons at the canal's edge pay scant attention the immense Space Shuttle towering above them. The Shuttle is inching its way to the top of the launch pad. In the background are seen the Rotating Service Structure (open) and the Fixed Service Structure, which holds the 80-foot lightning mast on top. The Shuttle sits on top of the Mobile Launcher Platform, which rests on the crawler-transporter. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space.
40 CFR 1066.225 - Roll runout and diameter verification procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...
40 CFR 1066.225 - Roll runout and diameter verification procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface. Ensure...
40 CFR 1066.225 - Roll runout and diameter verification procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...
The measurement of dynamic radii for passenger car tyre
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, R.
2017-10-01
The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.
Adaptive attenuation of aliased ground roll using the shearlet transform
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam
2015-01-01
Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui
2015-08-15
Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less
Railroad Classification Yard Technology Manual. Volume III. Freight Car Rollability
DOT National Transportation Integrated Search
1981-07-01
The report presents a survey of rolling resistance research, histograms of rolling resistance from five yards, a statistical regression analysis of causal factors affecting rolling resistance, procedures for constructing a rolling resistance histogra...
THE EFFECTS OF $gamma$-IRRADIATION AND ROLLING ON THE TEARING PROPERTIES OF POLYETHYLENE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunekawa, Y.; Awatani, J.; Kojima, K.
1961-01-01
Polyethylene samples of 2 mm thickness were gamma irradiated in water. The total dosage for the samples irradiated after the rolling treatraent was 1.5 x lO/sup 5/ r/hr, while the dosage for the saraples irradiated before the rolling was 1.2 x lO/sup 5/ r/hr. The tensile strength of the irradiated and rolled saraple increased with increasing dosage. A comparison of tearing strengths between the rolled samples and the rolled and irradiated samples was raade. (OID)
The role of compressional viscoelasticity in the lubrication of rolling contacts.
NASA Technical Reports Server (NTRS)
Harrison, G.; Trachman, E. G.
1972-01-01
A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.
NASA Astrophysics Data System (ADS)
Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter
2017-09-01
Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.
Multi-stage FE simulation of hot ring rolling
NASA Astrophysics Data System (ADS)
Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.
2013-05-01
As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.L.; Wu, G.Q.; Zhang, D.C.
2015-06-15
The YAl{sub 2p}/MgLiAl composite prepared by stir casting was initially forged and then rolled at 200 °C to different thicknesses. The microstructural evolution in the composite during warm rolling was investigated by using transmission electron microscope (TEM). It is found that increasing rolling reduction is conducive to the uniform distribution and refinement of the YAl{sub 2} particles. The rolling deformation promoted the precipitation of an α phase, and the α precipitate is semi-coherent to the matrix with an orientation relationship to the β matrix as: (0002){sub α}‖(110){sub β}. In addition, many nano-sized YAl particles with a cubic shape were foundmore » in the matrix of the composite with a high rolling reduction due to the diffusion of Y from YAl{sub 2} to the matrix, which reacted with the Al in the matrix during warm rolling. - Highlights: • The reinforcement YAl{sub 2} particles were distributed more uniformly in the matrix and refined with increasing rolling reduction. • The rolling deformation promoted and refined the precipitation of an α phase with increasing rolling reduction. • Many nano-sized YAl phases were produced and distributed in the matrix of the composite at a high rolling reduction.« less
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.
This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.
1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL ...
1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL MILL, ALSO KNOWN AS THE NO. 31 HOT ROLL MILL; LOOKING SOUTHWEST - American Brass Company, Kenosha Works, Hot Roll Mill, Kenosha, Kenosha County, WI
Increased compactibility of acetames after roll compaction.
Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter
2011-01-01
A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2017-11-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2018-03-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
75 FR 36363 - Procurement List: Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
...-ply, 8'' x 350' rolls, white NSN: 8540-00-NIB-0061--Jumbo Roll Toilet Tissue, 1 ply, 3.7'' x 2000' NSN: 8540-00-NIB-0063--Jumbo Roll Toilet Tissue, 2 ply, 3.7'' x 1000' NSN: 8540-00-NIB-0007--Jumbo Roll Toilet Tissue, 2 ply, 3.7'' x 2000', 12'' dia. Roll NSN: 8540-00-NIB-0064--Center-Pull Paper Towel, 2-ply...
46 CFR 154.610 - Design temperature not colder than 0 °C (32 °F).
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials must meet §§ 54.25-1 and 54.25-3 of this chapter. (b) Plates, forgings, rolled and forged bars and... batch of forgings, forged or rolled fittings, and forged or rolled bars and shapes. (f) The specified... ton batch of forgings, forged or rolled fittings and rolled or forged bars and shapes. (h) The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Vineet V.; Paxton, Dean M.; Lavender, Curt A.
Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing ofmore » these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.« less
A three-fingered, touch-sensitive, metrological micro-robotic assembly tool
NASA Astrophysics Data System (ADS)
Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.
2015-12-01
This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere. Finally, assemblies of spheres onto the edge of a razor blade plus assembly of spherical contact probes for micro-meter scale coordinate measurement applications are presented.
NASA Astrophysics Data System (ADS)
Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard
2017-10-01
In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.
NASA Astrophysics Data System (ADS)
Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.
2014-12-01
The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.
Inflation with a smooth constant-roll to constant-roll era transition
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2017-07-01
In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.
NASA Astrophysics Data System (ADS)
Pedneault, Sylvain; Huot, Jacques; Roué, Lionel
In the present work, cold rolling has been investigated as a new means of producing Mg-based metal hydrides for nickel-metal hydride (Ni-MH) batteries. Structure and electrochemical evolution of 2Mg-Ni cold-rolled samples were investigated as a function of the number of rolling passes as well as heat treatment. It was found that nanocrystalline Mg 2Ni alloy can be obtained by an appropriate three step process involving rolling, heat treatment and rolling again. It was shown that the number of primary and secondary rolling passes must be carefully optimized in order to favour the complete formation of Mg 2Ni alloy having a nanocrystalline structure (∼10 nm in crystallite size) without excessive sample oxidation. Actually, the best result was obtained by first rolling 90 times, followed by a heat treatment at 400 °C for 4 h and roll again 20 times. The resulting material displayed an initial discharge capacity of 205 mAh g -1, which is quite similar to that obtained with ball-milled Mg 2Ni alloy.
40 CFR 467.21 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Rolling With Emulsions Subcategory § 467.21 Specialized definitions. For the purpose of this subpart: (a) The “core” of the rolling with emulsions subcategory shall include rolling using emulsions, roll grinding, stationary casting, homogenizing, artificial...
75 FR 50877 - Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines AGENCY: Federal Aviation.... The FAA amends Sec. 39.13 by adding the following new AD: 2010-17-13 Rolls-Royce plc (Formerly Rolls...) None. Applicability (c) This AD applies to Rolls-Royce plc (RR) model RB211-524C2-19 and RB211-524C2-B...
Development of a Dirigible Bomb
1943-04-15
X - ¥ control for all future high-angle dirigible bombs in spite of the instrumental complications involved. /. two gyro system consisting of t...ts found thet the bomb wos in roll equilibrium £.t aero roll orientetion . Moreover, these roll equilibrium positions ire stt-ble ss indicated by...tirflow giving rise to voll torques in the seme direction fcs roll dis- placements from the «ero orientetion , the roll equilibrium found for equel pitch
A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys
NASA Astrophysics Data System (ADS)
Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong
2018-06-01
The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.
Advances in roll to roll processing of optics
NASA Astrophysics Data System (ADS)
Watts, Michael P. C.
2008-02-01
Today, there are a number of successful commercial applications that utilize roll to roll processing and almost all involve optics; unpatterned film, patterned film, and devices on film. The largest applications today are in holograms, and brightness enhancement film (BEF) for LCD. Solar cells are rapidly growing. These are mostly made in large captive facilities with their own proprietary equipment, materials and pattern generation capability. World wide roll to roll volume is > 100M meters2 year -1, and generates sales of > $5B. The vast majority of the sales are in BEF film by 3M.